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Talk Outline

I Three growth models
I Internal DLA
I Divisible Sandpile
I Rotor-router model

I Discrete potential theory and the obstacle problem.

I Scaling limit and quadrature domains.

I The abelian sandpile as a growth model
I Conjectures about pattern formation:

I Scale invariance
I Dimensional reduction
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Internal DLA with Multiple Sources

I Finite set of points x1, . . . ,xk ∈ Zd .

I Start with m particles at each site xi .

I Each particle performs simple random walk in Zd until
reaching an unoccupied site.

I Get a random set of km occupied sites in Zd .

I The distribution of this random set does not depend on the
order of the walks (Diaconis-Fulton ’91).
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100 point sources arranged on a 10×10 grid in Z2.

Sources are at the points (50i ,50j) for 0≤ i , j ≤ 9.
Each source started with 2200 particles.
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50 point sources arranged at random in a box in Z2.

The sources are iid uniform in the box [0,500]2.
Each source started with 3000 particles.
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Questions

I Fix sources x1, . . . ,xk ∈ Rd .

I Run internal DLA on 1
nZd with nd particles per source.

I As the lattice spacing goes to zero, is there a scaling limit?

I If so, can we describe the limiting shape?

I Lawler-Bramson-Griffeath ’92 studied the case k = 1: For a
single source, the limiting shape is a ball in Rd .

I Not clear how to define dynamics in Rd .
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Overlapping Internal DLA Clusters

I Idea: First let the particles at each source xi perform internal
DLA ignoring the particles from the other sources.

I Get k overlapping internal DLA clusters, each of which is
close to a ball.

I Hard part: How does the shape change when the particles in
the overlaps continue walking until they reach unoccupied
sites?
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Two-source internal DLA cluster built from overlapping
single-source clusters.
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Diaconis-Fulton Addition

I Finite sets A,B ⊂ Zd .

I In our application, A and B will be overlapping internal DLA
clusters from two different sources.

I Write A∩B = {y1, . . . ,yk}.
I To form A+B, let C0 = A∪B and

Cj = Cj−1∪{zj}

where zj is the endpoint of a simple random walk started at yj

and stopped on exiting Cj−1.

I Define A+B = Ck .

I Abeilan property: the law of A+B does not depend on the
ordering of y1, . . . ,yk .
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Diaconis-Fulton sum of two squares in Z2 overlapping in a
smaller square.
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Divisible Sandpile

I Given A,B ⊂ Zd , start with
I mass 2 on each site in A∩B; and
I mass 1 on each site in A∪B−A∩B.

I At each time step, choose x ∈ Zd with mass m(x) > 1, and
distribute the excess mass m(x)−1 equally among the 2d
neighbors of x .

I As t→ ∞, get a limiting region A⊕B ⊂ Zd of sites with
mass 1.

I Sites in ∂(A⊕B) have fractional mass.
I Sites outside have zero mass.

I Abelian property: A⊕B does not depend on the choices.
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Divisible sandpile sum of two squares in Z2 overlapping in a
smaller square.
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Diaconis-Fulton sum Divisible sandpile sum
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Odometer Function

I u(x) = total mass emitted from x .

I Discrete Laplacian:

∆u(x) =
1

2d ∑
y∼x

u(y)−u(x)

= mass received−mass emitted

= 1−1A(x)−1B(x), x ∈ A⊕B.

I Boundary condition: u = 0 on ∂(A⊕B).

I Need additional information to determine the domain A⊕B.
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Free Boundary Problem

I Unknown function u, unknown domain D = {u > 0}.

u ≥ 0

∆u ≤ 1−1A−1B

u(∆u−1 + 1A + 1B) = 0.
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Least Superharmonic Majorant

I Given A,B ⊂ Zd , let

γ(x) =−|x |2− ∑
y∈A

g(x ,y)− ∑
y∈B

g(x ,y),

where g is the Green’s function for simple random walk

g(x ,y) = Ex#{k|Xk = y}.

I Let s(x) = inf{φ(x) | φ is superharmonic on Zd and φ≥ γ}.

I Then the odometer function is u = s− γ.
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The Smash Sum of Two Domains in Rd

I A,B ⊂ Rd bounded open sets such that ∂A,∂B have zero
d-dimensional Lebesgue measure.

I The smash sum of A and B is the domain

A⊕B = A∪B ∪{s > γ}

where

γ(x) =−|x |2−
Z
A

g(x ,y)dy −
Z
B

g(x ,y)dy

and

s(x) = inf{φ(x)|φ is continuous, superharmonic, and φ≥ γ}

is the least superharmonic majorant of γ.
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I Obstacle for two overlapping disks A and B:

γ(x) =−|x |2−
Z
A

g(x ,y)dy −
Z
B

g(x ,y)dy

I Obstacle for two point sources x1 and x2:

γ(x) =−|x |2−g(x ,x1)−g(x ,x2)
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The smash sum

A⊕B = A∪B ∪{s > γ}

of two overlapping disks A,B ⊂ R2.
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Properties of the Smash Sum

I Associativity: (A⊕B)⊕C = A⊕ (B⊕C ).
I Analogous to the abelian property of the divisible sandpile.

I Volume conservation: vol(A⊕B) = vol(A) + vol(B).
I Analogous to mass conservation for the divisible sandpile.

I Quadrature identity: If h is an integrable superharmonic
function on A⊕B, thenZ

A⊕B
h(x)dx ≤

Z
A

h(x)dx +
Z
B

h(x)dx .

I One can also take this as the defining property of the smash
sum (Gustafsson ’88).
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Two Physical Interpretations of the Smash Sum

I Hele-Shaw “stamping” problem:
I Blob of incompressible fluid in the narrow gap between two

plates.
I Initial shape of the blob is A∪B.
I Stamp the plates together on A∩B.
I Fluid will expand to fill A⊕B.

I Electrostatic interpretation (S. Sheffield):
I Positively charged solid in A∩B (charge density +1).
I Neutral solid in A∪B−A∩B.
I Negatively charged fluid (charge density −1) outside A∪B.
I Total energy is minimized when the fluid occupies

A⊕B−A∪B.
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Scaling Limit of the Discrete Models

I Let A,B ⊂ Rd be bounded open sets such that ∂A, ∂B have
measure zero.

I Lattice spacing δn ↓ 0.

I Theorem (L.-Peres) With probability one

Dn,Rn, In→ D as n→ ∞,

where
I Dn, Rn, In are the smash sums of A∩δnZd and B ∩δnZd ,

computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.

I D = A∪B ∪{s > γ}.
I Convergence is in the sense of ε-neighborhoods: for all ε > 0

D ::
ε ⊂ Dn,Rn, In ⊂ Dε:: for all sufficiently large n.
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computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.

I D = A∪B ∪{s > γ}.
I Convergence is in the sense of ε-neighborhoods: for all ε > 0

D ::
ε ⊂ Dn,Rn, In ⊂ Dε:: for all sufficiently large n.
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Internal DLA Divisible Sandpile Rotor-Router Model
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Steps of the Proof

convergence of densities

⇓
convergence of obstacles

⇓
convergence of odometer functions

⇓
convergence of domains.
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Multiple Point Sources

I Fix centers x1, . . . ,xk ∈ Rd and λ1, . . . ,λk > 0.

I Theorem (L.-Peres) With probability one

Dn,Rn, In→ D as n→ ∞,

For any ε > 0, with probability one

D ::
ε ⊂ Dn,Rn, In ⊂ Dε::

for all sufficiently large n, where
I Dn, Rn, In are the domains of occupied sites δnZd , if bλiδ

−d
n c

particles start at each site x ::
i and perform divisible sandpile,

rotor-router, and Diaconis-Fulton dynamics, respectively.
I D is the smash sum of balls B(xi , ri ), where λi = ωd rd

i .

I Follows from the main result and the case of a single point
source.
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Quadrature Domains

I Given x1, . . .xk ∈ Rd and λ1, . . . ,λk > 0.

I A domain D ⊂ Rd satisfying

Z
D

h(x)dx ≤
k

∑
i=1

λih(xi ).

for all integrable superharmonic functions h on D is called a
quadrature domain.
(Aharonov-Shapiro ’76, Gustafsson, Sakai, Putinar, ...)

I The smash sum B1⊕ . . .⊕Bk is such a domain, where Bi is
the ball of volume λi centered at xi .

I In dimension two, the boundary of B1⊕ . . .⊕Bk lies on an
algebraic curve of degree 2k .
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1

πr2

ZZ
D

h(x ,y)dx dy ≤ h(−1,0) +h(1,0)
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The Abelian Sandpile as a Growth Model

I Start with n chips at the origin in Zd .

I If a site has at least 2d chips, it topples by sending one chip
to each of the 2d neighboring sites.

I Abelian property: The final chip configuration does not
depend on the order of the firings.

I Bak-Tang-Wiesenfeld ’87, Dhar ’90, . . .
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Sandpile of 1,000,000 chips in Z2
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Growth on a General Background

I Let each site x ∈ Zd start with σ(x) chips.
(σ(x)≤ 2d −1)

I We call σ the background configuration.

I Place n additional chips at the origin.

I Let Sn,σ be the set of sites that topple.
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Constant Background σ≡ h

h = 2 h = 1 h = 0
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The Square Sandpile: d = h = 2
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Closeup of the Lower Left Corner
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Odometer Function

I u(x) = number of times x topples.

I Discrete Laplacian:

∆u(x) = ∑
y∼x

u(y)−2d u(x)

= chips received− chips emitted

= τ
◦(x)− τ(x)

where τ is the initial unstable chip configuration
and τ◦ is the final stable configuration.
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Stabilizing Functions

I Given a chip configuration τ on Zd and a function
u1 : Zd → Z, call u1 stabilizing for τ if

τ + ∆u1 ≤ 2d −1.

I If u1 and u2 are stabilizing for τ, then

τ + ∆min(u1,u2)≤ τ + max(∆u1,∆u2)

= max(τ + ∆u1,τ + ∆u2)

≤ 2d −1

so min(u1,u2) is also stabilizing for τ.
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Least Action Principle

I Let τ be a chip configuration on Zd that stabilizes after
finitely many topplings, and let u be its odometer function.

I Least Action Principle:

If u1 : Zd → Z≥0 is stabilizing for τ, then u ≤ u1.

I So the odometer is minimal among all nonnegative stabilizing
functions:

u(x) = min{u1(x) |u1 ≥ 0 is stabilizing for τ}.

I Interpretation: “Sandpiles are lazy.”
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Proof of LAP

I Odometer function u, stabilizing function u1. Want u ≤ u1.

I Perform legal topplings in any order, without allowing any
site x to topple more than u1(x) times, until no such toppling
is possible.

I Get a function u′ ≤ u1 and chip configuration τ′ = τ + ∆u′.

I If τ′ is stable, then u′ = u by the abelian property.

I Otherwise, τ′ has some unstable site y , and u′(y) = u1(y).

I Further topplings according to u1−u′ can only increase the
number of chips at y .

I But y is stable in τ + ∆u1. ⇒⇐
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Obstacle Problem with an Integrality Condition

I Lemma. The abelian sandpile odometer function is given by

u = s− γ

where

s(x) = min

{
f (x)

∣∣∣∣∣ f : Zd → R is superharmonic

and f − γ is Z≥0-valued

}
.

I The obstacle γ is given by

γ(x) =−(2d −1)|x |2 +n ·g(o,x)

2d

where g is the Green’s function for simple random walk in Zd

g(o,x) = Eo#{k |Xk = x}.
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Bootstrapping From Small Values of h

I Theorem (L.-Peres) Let Sn,h be the set of sites visited by the
abelian sandpile in Zd , starting from n chips at the origin and
constant background h ≤ d −1.

Then(
Ball of volume

n−o(n)

2d −1−h

)
⊂Sn,h⊂

(
Ball of volume

n +o(n)

d −h

)
.

I Improves earlier bounds of Le Borgne and Rossin, Fey and
Redig.
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Bounds for the Abelian Sandpile Shape

(Disk of area n/3)⊂ Sn ⊂ (Disk of area n/2)
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Growth Rate of The Square Sandpile

I Theorem (Fey-L.-Peres) Let Sn,2 be the set of sites in Z2

that topple if n + 2 chips start at the origin and 2 chips start
at every other site in Z2.

Then for any ε > 0, we have

Sn,2 ⊂ Qr

for all sufficiently large n, where

r =

(
2√
π

+ ε

)√
n

and
Qr = {x ∈ Z2 : |x1|, |x2| ≤ r}.

I Similar bound with r = Θ(n1/d) in d dimensions, for any
constant background h ≤ 2d −2.
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A Mystery: Scale Invariance

I Big sandpiles look like scaled up small sandpiles!

I Let σn(x) be the final number of chips at x in the sandpile
of n particles on Zd .

I Squint your eyes: for x ∈ Rd let

fn(x) =
1

a2
n

∑
y∈Zd

||y−
√

nx ||≤an

σn(y).

where an is a sequence of integers such that

an ↑ ∞ and
an√
n
↓ 0.
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Scale Invariance Conjecture

I Conjecture: There is a sequence an and a function
f : Rd → R≥0 which is locally constant almost everywhere,
such that fn→ f at all continuity points of f .
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Two Sandpiles of Different Sizes

n = 100,000 n = 200,000

(scaled down by
√

2)
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Locally constant “steps” of f correspond to periodic
patterns:
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A Mystery: Dimensional Reduction

I Our argument used simple properties of one-dimensional
sandpiles to bound the diameter of higher-dimensional
sandpiles.

I Deepak Dhar pointed out that there seems to be a deeper
relationship between sandpiles in d and d −1 dimensions...
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Dimensional Reduction Conjecture

I σn,d : sandpile of n chips on background h = 2d −2 in Zd .

I Conjecture: For any n there exists m such that

σn,d(x1, . . . ,xd−1,0) = 2 + σm,d−1(x1, . . . ,xd−1)

for almost all x sufficiently far from the origin.
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A Two-Dimensional Slice of A Three-Dimensional Sandpile

d = 3 (slice through origin) d = 2
h = 4 h = 2

n = 5,000,000 m = 46,490
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Thank You!

arXiv:0712.3378
arXiv:0901.3805
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