Obstacle Problems and Lattice Growth Models

Lionel Levine (MIT)

June 4, 2009

Joint work with Yuval Peres

Lionel Levine Obstacle Problems and Lattice Growth Models

向下 イヨト イヨト

э

Talk Outline

- Three growth models
 - Internal DLA
 - Divisible Sandpile
 - Rotor-router model
- Discrete potential theory and the obstacle problem.
- Scaling limit and quadrature domains.
- The abelian sandpile as a growth model
- Conjectures about pattern formation:
 - Scale invariance
 - Dimensional reduction

Internal DLA with Multiple Sources

- Finite set of points $x_1, \ldots, x_k \in \mathbb{Z}^d$.
- Start with *m* particles at each site *x_i*.

Internal DLA with Multiple Sources

- Finite set of points $x_1, \ldots, x_k \in \mathbb{Z}^d$.
- Start with *m* particles at each site *x_i*.
- ► Each particle performs simple random walk in Z^d until reaching an unoccupied site.

伺 とう ヨン うちょう

Internal DLA with Multiple Sources

- Finite set of points $x_1, \ldots, x_k \in \mathbb{Z}^d$.
- Start with *m* particles at each site *x_i*.
- ► Each particle performs simple random walk in Z^d until reaching an unoccupied site.
- Get a **random set** of km occupied sites in \mathbb{Z}^d .
- The distribution of this random set does not depend on the order of the walks (Diaconis-Fulton '91).

100 point sources arranged on a 10×10 grid in \mathbb{Z}^2 .

Sources are at the points (50i, 50j) for $0 \le i, j \le 9$. Each source started with 2200 particles.

50 point sources arranged at random in a box in $\mathbb{Z}^2.$

The sources are iid uniform in the box $[0,500]^2$. Each source started with 3000 particles.

- Fix sources $x_1, \ldots, x_k \in \mathbb{R}^d$.
- ▶ Run internal DLA on $\frac{1}{n}\mathbb{Z}^d$ with n^d particles per source.

- Fix sources $x_1, \ldots, x_k \in \mathbb{R}^d$.
- Run internal DLA on $\frac{1}{n}\mathbb{Z}^d$ with n^d particles per source.
- As the lattice spacing goes to zero, is there a scaling limit?

ヨット イヨット イヨッ

- Fix sources $x_1, \ldots, x_k \in \mathbb{R}^d$.
- ▶ Run internal DLA on $\frac{1}{n}\mathbb{Z}^d$ with n^d particles per source.
- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?

a

- Fix sources $x_1, \ldots, x_k \in \mathbb{R}^d$.
- ▶ Run internal DLA on $\frac{1}{n}\mathbb{Z}^d$ with n^d particles per source.
- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?
- ► Lawler-Bramson-Griffeath '92 studied the case k = 1: For a single source, the limiting shape is a ball in ℝ^d.

- Fix sources $x_1, \ldots, x_k \in \mathbb{R}^d$.
- ▶ Run internal DLA on $\frac{1}{n}\mathbb{Z}^d$ with n^d particles per source.
- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?
- ► Lawler-Bramson-Griffeath '92 studied the case k = 1: For a single source, the limiting shape is a ball in R^d.
- Not clear how to define dynamics in \mathbb{R}^d .

Overlapping Internal DLA Clusters

Idea: First let the particles at each source x_i perform internal DLA ignoring the particles from the other sources.

ヨット イヨット イヨッ

э

Overlapping Internal DLA Clusters

- Idea: First let the particles at each source x_i perform internal DLA ignoring the particles from the other sources.
- Get k overlapping internal DLA clusters, each of which is close to a ball.

Overlapping Internal DLA Clusters

- Idea: First let the particles at each source x_i perform internal DLA ignoring the particles from the other sources.
- Get k overlapping internal DLA clusters, each of which is close to a ball.
- Hard part: How does the shape change when the particles in the overlaps continue walking until they reach unoccupied sites?

Two-source internal DLA cluster built from overlapping single-source clusters.

母 ト く ヨ ト く ヨ ト

- Finite sets $A, B \subset \mathbb{Z}^d$.
- In our application, A and B will be overlapping internal DLA clusters from two different sources.

向下 イヨト イヨト

- Finite sets $A, B \subset \mathbb{Z}^d$.
- In our application, A and B will be overlapping internal DLA clusters from two different sources.
- Write $A \cap B = \{y_1, \ldots, y_k\}$.

(四) (日) (日)

- Finite sets $A, B \subset \mathbb{Z}^d$.
- In our application, A and B will be overlapping internal DLA clusters from two different sources.
- Write $A \cap B = \{y_1, \ldots, y_k\}$.
- ▶ To form A + B, let $C_0 = A \cup B$ and

$$C_j = C_{j-1} \cup \{z_j\}$$

where z_j is the endpoint of a simple random walk started at y_j and stopped on exiting C_{j-1} .

伺下 イヨト イヨト

- Finite sets $A, B \subset \mathbb{Z}^d$.
- In our application, A and B will be overlapping internal DLA clusters from two different sources.
- Write $A \cap B = \{y_1, \ldots, y_k\}$.
- ▶ To form A + B, let $C_0 = A \cup B$ and

$$C_j = C_{j-1} \cup \{z_j\}$$

where z_j is the endpoint of a simple random walk started at y_j and stopped on exiting C_{j-1} .

• Define $A + B = C_k$.

伺い イヨン イヨン

- Finite sets $A, B \subset \mathbb{Z}^d$.
- In our application, A and B will be overlapping internal DLA clusters from two different sources.
- Write $A \cap B = \{y_1, \ldots, y_k\}$.
- To form A + B, let $C_0 = A \cup B$ and

$$C_j = C_{j-1} \cup \{z_j\}$$

where z_j is the endpoint of a simple random walk started at y_j and stopped on exiting C_{j-1} .

- Define $A + B = C_k$.
- ► Abeilan property: the law of A + B does not depend on the ordering of y₁,..., y_k.

イロト イポト イヨト イヨト

Diaconis-Fulton sum of two squares in \mathbb{Z}^2 overlapping in a smaller square.

• Given $A, B \subset \mathbb{Z}^d$, start with

- mass 2 on each site in $A \cap B$; and
- mass 1 on each site in $A \cup B A \cap B$.

(4) (5) (4) (5) (4)

- Given $A, B \subset \mathbb{Z}^d$, start with
 - mass 2 on each site in $A \cap B$; and
 - mass 1 on each site in $A \cup B A \cap B$.
- At each time step, choose x ∈ Z^d with mass m(x) > 1, and distribute the excess mass m(x) − 1 equally among the 2d neighbors of x.

- Given $A, B \subset \mathbb{Z}^d$, start with
 - mass 2 on each site in $A \cap B$; and
 - mass 1 on each site in $A \cup B A \cap B$.
- At each time step, choose x ∈ Z^d with mass m(x) > 1, and distribute the excess mass m(x) − 1 equally among the 2d neighbors of x.
- As t→∞, get a limiting region A⊕B⊂Z^d of sites with mass 1.
 - Sites in $\partial(A \oplus B)$ have fractional mass.
 - Sites outside have zero mass.

- Given $A, B \subset \mathbb{Z}^d$, start with
 - mass 2 on each site in $A \cap B$; and
 - mass 1 on each site in $A \cup B A \cap B$.
- At each time step, choose x ∈ Z^d with mass m(x) > 1, and distribute the excess mass m(x) − 1 equally among the 2d neighbors of x.
- As t→∞, get a limiting region A⊕B⊂Z^d of sites with mass 1.
 - Sites in $\partial(A \oplus B)$ have fractional mass.
 - Sites outside have zero mass.
- Abelian property: $A \oplus B$ does not depend on the choices.

ゆ く き と く き と

Divisible sandpile sum of two squares in \mathbb{Z}^2 overlapping in a smaller square.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

• u(x) = total mass emitted from x.

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

・ロト ・回ト ・ヨト ・ヨト

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

= mass received – mass emitted

(1日) (日) (日)

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

= mass received – mass emitted
= 1 - 1_A(x) - 1_B(x), x \in A \oplus B.

回 と く ヨ と く ヨ と

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

= mass received – mass emitted
= $1 - 1_A(x) - 1_B(x), \qquad x \in A \oplus B$

▶ Boundary condition: u = 0 on $\partial(A \oplus B)$.

同下 イヨト イヨト

- u(x) = total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$

= mass received – mass emitted
= 1 - 1_A(x) - 1_B(x), x \in A \oplus B.

- Boundary condition: u = 0 on $\partial(A \oplus B)$.
- ▶ Need additional information to determine the domain $A \oplus B$.

(日本) (日本) (日本)

Free Boundary Problem

• Unknown function u, unknown domain $D = \{u > 0\}$.

$$u \ge 0$$
$$\Delta u \le 1 - 1_A - 1_B$$

・ロト ・回ト ・ヨト ・ヨト

Э

Free Boundary Problem

• Unknown function u, unknown domain $D = \{u > 0\}$.

$$u \ge 0$$

$$\Delta u \le 1 - 1_A - 1_B$$

$$u(\Delta u - 1 + 1_A + 1_B) = 0.$$

・ロト ・四ト ・ヨト ・ヨト - ヨ
• Given
$$A, B \subset \mathbb{Z}^d$$
, let
 $\gamma(x) = -|x|^2 - \sum_{y \in A} g(x, y) - \sum_{y \in B} g(x, y),$

・ロト ・回ト ・ヨト ・ヨト

• Given $A, B \subset \mathbb{Z}^d$, let

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x,y) - \sum_{y \in B} g(x,y),$$

where g is the Green's function for simple random walk

$$g(x,y) = \mathbb{E}_x \#\{k|X_k = y\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Given $A, B \subset \mathbb{Z}^d$, let

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x,y) - \sum_{y \in B} g(x,y),$$

where g is the Green's function for simple random walk

$$g(x,y) = \mathbb{E}_x \#\{k | X_k = y\}.$$

• Let $s(x) = \inf \{ \phi(x) \mid \phi \text{ is superharmonic on } \mathbb{Z}^d \text{ and } \phi \geq \gamma \}.$

• Given $A, B \subset \mathbb{Z}^d$, let

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x,y) - \sum_{y \in B} g(x,y),$$

where g is the Green's function for simple random walk

$$g(x,y) = \mathbb{E}_x \#\{k|X_k = y\}.$$

• Let $s(x) = \inf \{ \phi(x) \mid \phi \text{ is superharmonic on } \mathbb{Z}^d \text{ and } \phi \geq \gamma \}.$

• Then the odometer function is $u = s - \gamma$.

(4月) (1日) (日) 日

 A, B ⊂ ℝ^d bounded open sets such that ∂A, ∂B have zero d-dimensional Lebesgue measure.

- A, B ⊂ ℝ^d bounded open sets such that ∂A, ∂B have zero d-dimensional Lebesgue measure.
- The smash sum of A and B is the domain

$$A \oplus B = A \cup B \cup \{s > \gamma\}$$

向下 イヨト イヨト

- A, B ⊂ ℝ^d bounded open sets such that ∂A, ∂B have zero d-dimensional Lebesgue measure.
- The smash sum of A and B is the domain

$$A \oplus B = A \cup B \cup \{s > \gamma\}$$

where

$$\gamma(x) = -|x|^2 - \int_A g(x,y) dy - \int_B g(x,y) dy$$

高 とう ヨン うまと

- A, B ⊂ ℝ^d bounded open sets such that ∂A, ∂B have zero d-dimensional Lebesgue measure.
- The smash sum of A and B is the domain

$$A \oplus B = A \cup B \cup \{s > \gamma\}$$

where

$$\gamma(x) = -|x|^2 - \int_A g(x,y) dy - \int_B g(x,y) dy$$

and

 $s(x) = \inf\{\phi(x) | \phi \text{ is continuous, superharmonic, and } \phi \geq \gamma\}$

is the least superharmonic majorant of γ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Obstacle for two overlapping disks A and B:

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Obstacle for two overlapping disks A and B:

Obstacle for two point sources x₁ and x₂:

The smash sum

$A \oplus B = A \cup B \cup \{s > \gamma\}$

of two overlapping disks $A, B \subset \mathbb{R}^2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Properties of the Smash Sum

- Associativity: $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.
 - Analogous to the abelian property of the divisible sandpile.
- ► Volume conservation: $vol(A \oplus B) = vol(A) + vol(B)$.
 - Analogous to mass conservation for the divisible sandpile.

向下 イヨト イヨト

Properties of the Smash Sum

- Associativity: $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.
 - Analogous to the abelian property of the divisible sandpile.
- ► Volume conservation: $vol(A \oplus B) = vol(A) + vol(B)$.
 - Analogous to mass conservation for the divisible sandpile.
- ► Quadrature identity: If h is an integrable superharmonic function on A ⊕ B, then

$$\int_{A\oplus B}h(x)dx\leq \int_Ah(x)dx+\int_Bh(x)dx.$$

 One can also take this as the defining property of the smash sum (Gustafsson '88).

(1) マン・ション・

Two Physical Interpretations of the Smash Sum

Hele-Shaw "stamping" problem:

- Blob of incompressible fluid in the narrow gap between two plates.
- Initial shape of the blob is $A \cup B$.
- Stamp the plates together on $A \cap B$.
- Fluid will expand to fill $A \oplus B$.

向下 イヨト イヨト

Two Physical Interpretations of the Smash Sum

Hele-Shaw "stamping" problem:

- Blob of incompressible fluid in the narrow gap between two plates.
- Initial shape of the blob is $A \cup B$.
- Stamp the plates together on $A \cap B$.
- Fluid will expand to fill $A \oplus B$.
- Electrostatic interpretation (S. Sheffield):
 - Positively charged solid in $A \cap B$ (charge density +1).
 - Neutral solid in $A \cup B A \cap B$.
 - Negatively charged fluid (charge density -1) outside $A \cup B$.
 - ► Total energy is minimized when the fluid occupies $A \oplus B A \cup B$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A, B ⊂ ℝ^d be bounded open sets such that ∂A, ∂B have measure zero.

伺下 イヨト イヨト

- Let A, B ⊂ ℝ^d be bounded open sets such that ∂A, ∂B have measure zero.
- Lattice spacing $\delta_n \downarrow 0$.

伺下 イヨト イヨト

- Let A, B ⊂ ℝ^d be bounded open sets such that ∂A, ∂B have measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

向下 イヨト イヨト

- Let A, B ⊂ ℝ^d be bounded open sets such that ∂A, ∂B have measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

where

D_n, R_n, I_n are the smash sums of A∩δ_nZ^d and B∩δ_nZ^d, computed using divisible sandpile, rotor-router, and Diaconis-Fulton dynamics, respectively.

向下 イヨト イヨト

- Let A, B ⊂ ℝ^d be bounded open sets such that ∂A, ∂B have measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

where

D_n, R_n, I_n are the smash sums of A∩δ_nZ^d and B∩δ_nZ^d, computed using divisible sandpile, rotor-router, and Diaconis-Fulton dynamics, respectively.

$$\triangleright \quad D = A \cup B \cup \{s > \gamma\}.$$

向下 イヨト イヨト

- Let A, B ⊂ ℝ^d be bounded open sets such that ∂A, ∂B have measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

where

- D_n, R_n, I_n are the smash sums of A∩δ_nZ^d and B∩δ_nZ^d, computed using divisible sandpile, rotor-router, and Diaconis-Fulton dynamics, respectively.
- $\triangleright \quad D = A \cup B \cup \{s > \gamma\}.$
- \blacktriangleright Convergence is in the sense of $\epsilon\text{-neighborhoods:}$ for all $\epsilon>0$

 $D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$ for all sufficiently large n.

・ 同 ト ・ ヨ ト ・ ヨ ト

Divisible Sandpile

Rotor-Router Model

< ≣⇒

æ

Steps of the Proof

convergence of densities $\label{eq:convergence} \psi$ convergence of obstacles

물 제 문 제 문 제

æ

Steps of the Proof

convergence of densities $$\downarrow$$ convergence of obstacles $$\downarrow$$ convergence of odometer functions

3 × 4 3 ×

Steps of the Proof

convergence of densities $\downarrow \downarrow$ convergence of obstacles $\downarrow \downarrow$ convergence of odometer functions $\downarrow \downarrow$ convergence of domains.

• Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.

イロン イロン イヨン イヨン 三日

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

For any $\epsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n,

高 とう モン・ く ヨ と

э

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

D_n, R_n, I_n are the domains of occupied sites δ_nZ^d, if [λ_iδ_n^{-d}] particles start at each site x_i[∴] and perform divisible sandpile, rotor-router, and Diaconis-Fulton dynamics, respectively.

伺 と く き と く き と

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the domains of occupied sites δ_nZ^d, if [λ_iδ_n^{-d}] particles start at each site x_i[∷] and perform divisible sandpile, rotor-router, and Diaconis-Fulton dynamics, respectively.
- *D* is the smash sum of balls $B(x_i, r_i)$, where $\lambda_i = \omega_d r_i^d$.

高 とう モン・ く ヨ と

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- Theorem (L.-Peres) With probability one

$$D_n, R_n, I_n \to D$$
 as $n \to \infty$,

For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon}^{::} \subset D_n, R_n, I_n \subset D^{\varepsilon::}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the domains of occupied sites δ_nZ^d, if [λ_iδ_n^{-d}] particles start at each site x_i[∷] and perform divisible sandpile, rotor-router, and Diaconis-Fulton dynamics, respectively.
- *D* is the smash sum of balls $B(x_i, r_i)$, where $\lambda_i = \omega_d r_i^d$.
- Follows from the main result and the case of a single point source.

Quadrature Domains

- Given $x_1, \ldots x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- A domain $D \subset \mathbb{R}^d$ satisfying

$$\int_D h(x) dx \leq \sum_{i=1}^k \lambda_i h(x_i).$$

for all integrable superharmonic functions h on D is called a *quadrature domain*.

(Aharonov-Shapiro '76, Gustafsson, Sakai, Putinar, ...)

伺 とう ヨン うちょう

Quadrature Domains

- Given $x_1, \ldots x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- A domain $D \subset \mathbb{R}^d$ satisfying

$$\int_D h(x) dx \leq \sum_{i=1}^k \lambda_i h(x_i).$$

for all integrable superharmonic functions h on D is called a *quadrature domain*.

(Aharonov-Shapiro '76, Gustafsson, Sakai, Putinar, ...)

► The smash sum $B_1 \oplus \ldots \oplus B_k$ is such a domain, where B_i is the ball of volume λ_i centered at x_i .

向下 イヨト イヨト

Quadrature Domains

- Given $x_1, \ldots x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- A domain $D \subset \mathbb{R}^d$ satisfying

$$\int_D h(x) dx \leq \sum_{i=1}^k \lambda_i h(x_i).$$

for all integrable superharmonic functions h on D is called a *quadrature domain*.

(Aharonov-Shapiro '76, Gustafsson, Sakai, Putinar, ...)

- ► The smash sum $B_1 \oplus \ldots \oplus B_k$ is such a domain, where B_i is the ball of volume λ_i centered at x_i .
- In dimension two, the boundary of B₁⊕...⊕B_k lies on an algebraic curve of degree 2k.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\frac{1}{\pi r^2} \iint_D h(x,y) \, dx \, dy \le h(-1,0) + h(1,0)$

(1日) (日) (日)

æ

The Abelian Sandpile as a Growth Model

- Start with *n* chips at the origin in \mathbb{Z}^d .
- If a site has at least 2d chips, it topples by sending one chip to each of the 2d neighboring sites.

向下 イヨト イヨト

The Abelian Sandpile as a Growth Model

- Start with *n* chips at the origin in \mathbb{Z}^d .
- If a site has at least 2d chips, it topples by sending one chip to each of the 2d neighboring sites.
- Abelian property: The final chip configuration does not depend on the order of the firings.

高 とう モン・ く ヨ と
The Abelian Sandpile as a Growth Model

- Start with *n* chips at the origin in \mathbb{Z}^d .
- If a site has at least 2d chips, it topples by sending one chip to each of the 2d neighboring sites.
- Abelian property: The final chip configuration does not depend on the order of the firings.
- Bak-Tang-Wiesenfeld '87, Dhar '90, …

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sandpile of 1,000,000 chips in \mathbb{Z}^2

Э

Growth on a General Background

- ► Let each site $x \in \mathbb{Z}^d$ start with $\sigma(x)$ chips. $(\sigma(x) \le 2d - 1)$
- We call σ the background configuration.
- ▶ Place *n* additional chips at the origin.
- Let $S_{n,\sigma}$ be the set of sites that topple.

Constant Background $\sigma \equiv h$

The Square Sandpile: d = h = 2

Lionel Levine Obstacle Problems and Lattice Growth Models

Closeup of the Lower Left Corner

• u(x) = number of times x topples.

- u(x) = number of times x topples.
- Discrete Laplacian:

$$\Delta u(x) = \sum_{y \sim x} u(y) - 2d u(x)$$

白 ト イヨト イヨト

- u(x) = number of times x topples.
- Discrete Laplacian:

$$\Delta u(x) = \sum_{y \sim x} u(y) - 2d u(x)$$

= chips received – chips emitted

向下 イヨト イヨト

- u(x) = number of times x topples.
- Discrete Laplacian:

$$\Delta u(x) = \sum_{y \sim x} u(y) - 2d u(x)$$

= chips received - chips emitted
= $\tau^{\circ}(x) - \tau(x)$

where τ is the initial unstable chip configuration and τ° is the final stable configuration.

伺 と く き と く き と

Stabilizing Functions

• Given a chip configuration τ on \mathbb{Z}^d and a function $u_1: \mathbb{Z}^d \to \mathbb{Z}$, call u_1 stabilizing for τ if

$$\tau + \Delta u_1 \leq 2d - 1.$$

Stabilizing Functions

Given a chip configuration τ on Z^d and a function u₁ : Z^d → Z, call u₁ stabilizing for τ if

 $\tau + \Delta u_1 \leq 2d - 1.$

• If u_1 and u_2 are stabilizing for τ , then

$$egin{aligned} & au + \Delta \min(u_1, u_2) \leq au + \max(\Delta u_1, \Delta u_2) \ &= \max(au + \Delta u_1, au + \Delta u_2) \ &\leq 2d-1 \end{aligned}$$

so $\min(u_1, u_2)$ is also stabilizing for τ .

周 トレイモト イモト

Least Action Principle

Let τ be a chip configuration on Z^d that stabilizes after finitely many topplings, and let u be its <u>odometer function</u>.
Least Action Principle:

If $u_1 : \mathbb{Z}^d \to \mathbb{Z}_{\geq 0}$ is stabilizing for τ , then $u \leq u_1$.

向下 イヨト イヨト

Least Action Principle

- Let τ be a chip configuration on Z^d that stabilizes after finitely many topplings, and let u be its <u>odometer function</u>.
- Least Action Principle:

If $u_1 : \mathbb{Z}^d \to \mathbb{Z}_{\geq 0}$ is stabilizing for τ , then $u \leq u_1$.

So the odometer is minimal among all nonnegative stabilizing functions:

 $u(x) = \min\{u_1(x) | u_1 \ge 0 \text{ is stabilizing for } \tau\}.$

Interpretation: "Sandpiles are lazy."

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Odometer function u, stabilizing function u_1 . Want $u \leq u_1$.
- Perform legal topplings in any order, without allowing any site x to topple more than u₁(x) times, until no such toppling is possible.

向下 イヨト イヨト

- Odometer function u, stabilizing function u_1 . Want $u \leq u_1$.
- Perform legal topplings in any order, without allowing any site x to topple more than u₁(x) times, until no such toppling is possible.
- Get a function $u' \leq u_1$ and chip configuration $\tau' = \tau + \Delta u'$.
- If τ' is stable, then u' = u by the abelian property.

周 いってい うてい

- ▶ Odometer function u, stabilizing function u_1 . Want $u \le u_1$.
- Perform legal topplings in any order, without allowing any site x to topple more than u₁(x) times, until no such toppling is possible.
- Get a function $u' \leq u_1$ and chip configuration $\tau' = \tau + \Delta u'$.
- If τ' is stable, then u' = u by the abelian property.
- Otherwise, τ' has some unstable site y, and $u'(y) = u_1(y)$.

周 いってい うてい

- Odometer function u, stabilizing function u_1 . Want $u \leq u_1$.
- Perform legal topplings in any order, without allowing any site x to topple more than u₁(x) times, until no such toppling is possible.
- Get a function $u' \leq u_1$ and chip configuration $\tau' = \tau + \Delta u'$.
- If τ' is stable, then u' = u by the abelian property.
- Otherwise, τ' has some unstable site y, and $u'(y) = u_1(y)$.
- ► Further topplings according to u₁ − u' can only increase the number of chips at y.
- But y is stable in $\tau + \Delta u_1$. $\Rightarrow \Leftarrow$

Obstacle Problem with an Integrality Condition

Lemma. The abelian sandpile odometer function is given by

$$u = s - \gamma$$

where

$$s(x) = \min \left\{ f(x) \mid \begin{array}{c} f: \mathbb{Z}^d \to \mathbb{R} \text{ is superharmonic} \\ \text{and } f - \gamma \text{ is } \mathbb{Z}_{\geq 0} \text{-valued} \end{array} \right\}$$

٠

▲圖▶ ▲屋▶ ▲屋▶

Obstacle Problem with an Integrality Condition

Lemma. The abelian sandpile odometer function is given by

$$u = s - \gamma$$

where

$$s(x) = \min \left\{ f(x) \middle| \begin{array}{c} f : \mathbb{Z}^d \to \mathbb{R} \text{ is superharmonic} \\ \text{and } f - \gamma \text{ is } \mathbb{Z}_{\geq 0} \text{-valued} \end{array} \right\}$$

The obstacle γ is given by

$$\gamma(x) = -\frac{(2d-1)|x|^2 + n \cdot g(o,x)}{2d}$$

where g is the Green's function for simple random walk in \mathbb{Z}^d

$$g(o,x) = \mathbb{E}_o \#\{k|X_k = x\}.$$

٠

伺下 イヨト イヨト

Bootstrapping From Small Values of h

▶ **Theorem** (L.-Peres) Let $S_{n,h}$ be the set of sites visited by the abelian sandpile in \mathbb{Z}^d , starting from *n* chips at the origin and constant background $h \leq d-1$.

向下 イヨト イヨト

Bootstrapping From Small Values of h

► Theorem (L.-Peres) Let S_{n,h} be the set of sites visited by the abelian sandpile in Z^d, starting from n chips at the origin and constant background h ≤ d − 1. Then

$$\left(\text{Ball of volume } \frac{n-o(n)}{2d-1-h}\right) \subset S_{n,h} \subset \left(\text{Ball of volume } \frac{n+o(n)}{d-h}\right)$$

Bootstrapping From Small Values of h

► Theorem (L.-Peres) Let S_{n,h} be the set of sites visited by the abelian sandpile in Z^d, starting from n chips at the origin and constant background h ≤ d − 1. Then

$$\left(\text{Ball of volume } \frac{n-o(n)}{2d-1-h}\right) \subset S_{n,h} \subset \left(\text{Ball of volume } \frac{n+o(n)}{d-h}\right)$$

 Improves earlier bounds of Le Borgne and Rossin, Fey and Redig.

Bounds for the Abelian Sandpile Shape

(Disk of area n/3) $\subset S_n \subset$ (Disk of area n/2)

< 注→ 注

Growth Rate of The Square Sandpile

▶ **Theorem** (Fey-L.-Peres) Let $S_{n,2}$ be the set of sites in \mathbb{Z}^2 that topple if n+2 chips start at the origin and 2 chips start at every other site in \mathbb{Z}^2 .

ヨット イヨット イヨッ

Growth Rate of The Square Sandpile

Theorem (Fey-L.-Peres) Let S_{n,2} be the set of sites in Z² that topple if n+2 chips start at the origin and 2 chips start at every other site in Z². Then for any ε > 0, we have

 $S_{n,2} \subset Q_r$

for all sufficiently large n, where

$$r = \left(\frac{2}{\sqrt{\pi}} + \varepsilon\right)\sqrt{n}$$

and

$$Q_r = \{x \in \mathbb{Z}^2 : |x_1|, |x_2| \le r\}.$$

¬<</p>

Growth Rate of The Square Sandpile

► Theorem (Fey-L.-Peres) Let S_{n,2} be the set of sites in Z² that topple if n+2 chips start at the origin and 2 chips start at every other site in Z². Then for any ε > 0, we have

 $S_{n,2} \subset Q_r$

for all sufficiently large n, where

$$\mathbf{r} = \left(\frac{2}{\sqrt{\pi}} + \varepsilon\right)\sqrt{n}$$

and

$$Q_r = \{x \in \mathbb{Z}^2 : |x_1|, |x_2| \le r\}.$$

Similar bound with r = Θ(n^{1/d}) in d dimensions, for any constant background h ≤ 2d − 2.

A Mystery: Scale Invariance

- Big sandpiles look like scaled up small sandpiles!
- Let $\sigma_n(x)$ be the final number of chips at x in the sandpile of n particles on \mathbb{Z}^d .

向下 イヨト イヨト

A Mystery: Scale Invariance

- Big sandpiles look like scaled up small sandpiles!
- Let σ_n(x) be the final number of chips at x in the sandpile of n particles on Z^d.
- Squint your eyes: for $x \in \mathbb{R}^d$ let

$$f_n(x) = \frac{1}{a_n^2} \sum_{\substack{y \in \mathbb{Z}^d \\ ||y - \sqrt{n}x|| \leq a_n}} \sigma_n(y).$$

where a_n is a sequence of integers such that

$$a_n \uparrow \infty$$
 and $\frac{a_n}{\sqrt{n}} \downarrow 0.$

Scale Invariance Conjecture

▶ **Conjecture**: There is a sequence a_n and a function $f : \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ which is locally constant almost everywhere, such that $f_n \to f$ at all continuity points of f.

¬<</p>

Two Sandpiles of Different Sizes

n = 100,000

(scaled down by $\sqrt{2}$)

・ロン ・回と ・ヨン ・ヨン

3

n = 200,000

Locally constant "steps" of *f* correspond to periodic patterns:

A Mystery: Dimensional Reduction

- Our argument used simple properties of one-dimensional sandpiles to bound the diameter of higher-dimensional sandpiles.
- ▶ Deepak Dhar pointed out that there seems to be a deeper relationship between sandpiles in *d* and *d* − 1 dimensions...

• • = • • = •

Dimensional Reduction Conjecture

σ_{n,d}: sandpile of n chips on background h = 2d − 2 in Z^d.
Conjecture: For any n there exists m such that

$$\sigma_{n,d}(x_1,\ldots,x_{d-1},0) = 2 + \sigma_{m,d-1}(x_1,\ldots,x_{d-1})$$

for almost all x sufficiently far from the origin.

ヨット イヨット イヨッ

A Two-Dimensional Slice of A Three-Dimensional Sandpile

Thank You!

arXiv:0712.3378 arXiv:0901.3805

・ロン ・回と ・ヨン・

Э