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Talk Outline

v

Three growth models

» Internal DLA
» Divisible Sandpile
» Rotor-router model

Discrete potential theory and the obstacle problem.
Scaling limit and quadrature domains.

The abelian sandpile as a growth model
Conjectures about pattern formation:

» Scale invariance
» Dimensional reduction
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Internal DLA with Multiple Sources

> Finite set of points xg,...,xx € Z9.

» Start with m particles at each site x;.
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Internal DLA with Multiple Sources

> Finite set of points xg,...,xx € Z9.
» Start with m particles at each site x;.

» Each particle performs simple random walk in Z9 until
reaching an unoccupied site.
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Internal DLA with Multiple Sources

> Finite set of points xg,...,xx € Z9.
» Start with m particles at each site x;.

» Each particle performs simple random walk in Z9 until
reaching an unoccupied site.

» Get a random set of km occupied sites in Z9.

» The distribution of this random set does not depend on the
order of the walks (Diaconis-Fulton "91).
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100 point sources arranged on a 10 x 10 grid in Z2.

Sources are at the points (50/,505) for 0 </,j <9.
Each source started with 2200 particles.
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50 point sources arranged at random in a box in Z2.

The sources are iid uniform in the box [0,500]2.
Each source started with 3000 particles.

Lionel Levine Obstacle Problems and Lattice Growth Models



Questions

» Fix sources xi,...,xx € RY.

» Run internal DLA on 1Z< with n9 particles per source.
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Questions

» Fix sources xi,...,xx € RY.
» Run internal DLA on 1Z< with n9 particles per source.

> As the lattice spacing goes to zero, is there a scaling limit?
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Questions

» Fix sources xi,...,xx € RY.
» Run internal DLA on 1Z< with n9 particles per source.
> As the lattice spacing goes to zero, is there a scaling limit?

» If so, can we describe the limiting shape?
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Questions

Fix sources xi,...,xx € RY.

Run internal DLA on 179 with n? particles per source.

As the lattice spacing goes to zero, is there a scaling limit?
If so, can we describe the limiting shape?

Lawler-Bramson-Griffeath '92 studied the case k =1: For a
single source, the limiting shape is a ball in R9.

vV v . v. v Y
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Questions

Fix sources xi,...,xx € RY.

Run internal DLA on 179 with n? particles per source.

As the lattice spacing goes to zero, is there a scaling limit?
If so, can we describe the limiting shape?

Lawler-Bramson-Griffeath '92 studied the case k =1: For a
single source, the limiting shape is a ball in R9.

vV v . v. v Y

Not clear how to define dynamics in R,

v
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Overlapping Internal DLA Clusters

» ldea: First let the particles at each source x; perform internal
DLA ignoring the particles from the other sources.

Lionel Levine Obstacle Problems and Lattice Growth Models



Overlapping Internal DLA Clusters

» ldea: First let the particles at each source x; perform internal
DLA ignoring the particles from the other sources.

> Get k overlapping internal DLA clusters, each of which is
close to a ball.
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Overlapping Internal DLA Clusters

» ldea: First let the particles at each source x; perform internal
DLA ignoring the particles from the other sources.

> Get k overlapping internal DLA clusters, each of which is
close to a ball.

» Hard part: How does the shape change when the particles in
the overlaps continue walking until they reach unoccupied
sites?
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Two-source internal DLA cluster built from overlapping
single-source clusters.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.

» In our application, A and B will be overlapping internal DLA
clusters from two different sources.
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Diaconis-Fulton Addition

> Finite sets A, B C Z9.
» In our application, A and B will be overlapping internal DLA
clusters from two different sources.

> Write ANB = {y1,...,yx}.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.

» In our application, A and B will be overlapping internal DLA
clusters from two different sources.

> Write ANB = {y1,..., ¥k}
» To form A+ B, let (o, =AUB and

G=G 1U{z)

where z; is the endpoint of a simple random walk started at y;
and stopped on exiting Cj_1.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.

» In our application, A and B will be overlapping internal DLA
clusters from two different sources.

> Write ANB = {y1,..., ¥k}
» To form A+ B, let (o, =AUB and
G=Gu{z)

where z; is the endpoint of a simple random walk started at y;
and stopped on exiting Cj_1.

» Define A+ B = (.
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Diaconis-Fulton Addition

» Finite sets A,B C Z9.

» In our application, A and B will be overlapping internal DLA
clusters from two different sources.

> Write ANB = {y1,..., ¥k}
» To form A+ B, let (o, =AUB and

G=G 1U{z)

where z; is the endpoint of a simple random walk started at y;
and stopped on exiting Cj_1.

» Define A+ B = (.
» Abeilan property: the law of A+ B does not depend on the
ordering of yi,..., Y.
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Diaconis-Fulton sum of two squares in Z? overlapping in a
smaller square.
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Divisible Sandpile

> Given A, B C Z9, start with

» mass 2 on each site in AN B; and
» mass 1 on each site in AUB—ANB.
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Divisible Sandpile

> Given A, B C Z9, start with

» mass 2 on each site in AN B; and
» mass 1 on each site in AUB—ANB.

» At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.
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Divisible Sandpile

> Given A, B C Z9, start with
» mass 2 on each site in AN B; and
» mass 1 on each site in AUB—ANB.

» At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.

> As t — oo, get a limiting region A® B C Z9 of sites with
mass 1.

» Sites in d(A® B) have fractional mass.
» Sites outside have zero mass.
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Divisible Sandpile

> Given A, B C Z9, start with
» mass 2 on each site in AN B; and
» mass 1 on each site in AUB—ANB.

» At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.

> As t — oo, get a limiting region A® B C Z9 of sites with
mass 1.

» Sites in d(A® B) have fractional mass.
» Sites outside have zero mass.

» Abelian property: A@ B does not depend on the choices.

Lionel Levine Obstacle Problems and Lattice Growth Models



Divisible sandpile sum of two squares in Z? overlapping in a
smaller square.
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Diaconis-Fulton sum Divisible sandpile sum
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Odometer Function

» u(x) = total mass emitted from x.



Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

y~x
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Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

y~x

= mass received — mass emitted
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Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

yrx
= mass received — mass emitted
:1—1A(X)—1B(X), x€EADB.
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Odometer Function

» u(x) = total mass emitted from x.

» Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

yrx
= mass received — mass emitted
:1—1A(X)—1B(X), x€EADB.

» Boundary condition: u=0 on d(A% B).
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Odometer Function

v

u(x) = total mass emitted from x.

v

Discrete Laplacian:

Au(x) = 55 X uly) — u(x)

yrx
= mass received — mass emitted
:1—1A(X)—1B(X), x€EADB.

v

Boundary condition: u=0 on d(A& B).

Need additional information to determine the domain A® B.

v
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Free Boundary Problem
» Unknown function u, unknown domain D = {u > 0}.

u>0
Au<l—-1,-1p
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Free Boundary Problem

» Unknown function u, unknown domain D = {u > 0}.

u>0
Au<l—1,—1p
u(Au—1+14+1p)=0.
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Least Superharmonic Majorant
» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB
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Least Superharmonic Majorant

» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB

where g is the Green's function for simple random walk

g(va) :Ex#{k’Xk :y}
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Least Superharmonic Majorant

» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB

where g is the Green's function for simple random walk

g(va) :Ex#{k’Xk :y}

> Let s(x) = inf{d(x) | ¢ is superharmonic on Z9 and ¢ > y}.
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Least Superharmonic Majorant

» Given A,B C 79, let

1) =—[x?= Y glx.y)— ¥ glx,y),

y€EA yeB

where g is the Green's function for simple random walk

g(va) :Ex#{k’Xk :y}

> Let s(x) = inf{d(x) | ¢ is superharmonic on Z9 and ¢ > y}.

» Then the odometer function is m
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The Smash Sum of Two Domains in R

» A,B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.
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The Smash Sum of Two Domains in R

» A,B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.

» The smash sum of A and B is the domain

A®B=AUBU{s >}
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The Smash Sum of Two Domains in R

» A,B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.

» The smash sum of A and B is the domain
A®B=AUBU{s >}

where

1) =~ = [ gy — [ g(xp)dy
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The Smash Sum of Two Domains in R

» A,B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.

» The smash sum of A and B is the domain
A®B=AUBU{s >}
where
1) =~ = [ gy — [ g(xp)dy
and

s(x) = inf{®(x)|0 is continuous, superharmonic, and ¢ > v}

is the least superharmonic majorant of .
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» Obstacle for two overlapping disks A and B:
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» Obstacle for two overlapping disks A and B:
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» Obstacle for two point sources x; and xu:
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Yx) = —|x* —g(x, x1) — g(x,%)
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The smash sum

A®B=AUBU{s>y}

of two overlapping disks A, B C R?.
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Properties of the Smash Sum

» Associativity: (A@B)®C =A% (Ba ().

» Analogous to the abelian property of the divisible sandpile.
» Volume conservation: vol(A@® B) = vol(A) + vol(B).

» Analogous to mass conservation for the divisible sandpile.
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Properties of the Smash Sum

» Associativity: (A@B)®C =A% (Ba ().

» Analogous to the abelian property of the divisible sandpile.
» Volume conservation: vol(A@® B) = vol(A) + vol(B).

» Analogous to mass conservation for the divisible sandpile.

» Quadrature identity: If h is an integrable superharmonic
function on A® B, then

/A@B h(X)dxg/Ah(X)dX+/‘3h(X)dx.

» One can also take this as the defining property of the smash
sum (Gustafsson '88).
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Two Physical Interpretations of the Smash Sum

» Hele-Shaw “stamping” problem:
» Blob of incompressible fluid in the narrow gap between two
plates.
» Initial shape of the blob is AU B.
» Stamp the plates together on AN B.
» Fluid will expand to fill A® B.
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Two Physical Interpretations of the Smash Sum

» Hele-Shaw “stamping” problem:
» Blob of incompressible fluid in the narrow gap between two
plates.
» Initial shape of the blob is AU B.
» Stamp the plates together on AN B.
» Fluid will expand to fill A® B.
» Electrostatic interpretation (S. Sheffield):
» Positively charged solid in AN B (charge density +1).

» Neutral solid in AUB—ANB.

» Negatively charged fluid (charge density —1) outside AU B.

» Total energy is minimized when the fluid occupies
A@B—-AUB.
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Scaling Limit of the Discrete Models

> Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.
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Scaling Limit of the Discrete Models

> Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
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Scaling Limit of the Discrete Models

> Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,
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Scaling Limit of the Discrete Models

> Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,

where
» D,, R, I, are the smash sums of AN§,Z? and BN3J,Z¢,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.
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Scaling Limit of the Discrete Models

> Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,

where
» D,, R, I, are the smash sums of AN§,Z? and BN3J,Z¢,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.
» D=AUBU{s>7}.
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Scaling Limit of the Discrete Models

> Let A, B C RY be bounded open sets such that 0A, 9B have
measure zero.

» Lattice spacing 8, | 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,

where

» D,, R, I, are the smash sums of AN§,Z? and BN3J,Z¢,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.

» D=AUBU{s>7}.

» Convergence is in the sense of e-neighborhoods: for all € >0

D C Dy, Ry, 1, C D¥* for all sufficiently large n.
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Internal DLA Divisible Sandpile ~ Rotor-Router Model

Lionel Levine Obstacle Problems and Lattice Growth Models



Steps of the Proof

convergence of densities

4

convergence of obstacles
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Steps of the Proof

convergence of densities

4

convergence of obstacles

4

convergence of odometer functions
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Steps of the Proof

convergence of densities

4

convergence of obstacles

4

convergence of odometer functions

4

convergence of domains.
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., Ak > 0.
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,
For any € > 0, with probability one
D; C Dp,Rp, 1, C D¥

for all sufficiently large n,
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,
For any € > 0, with probability one
D; C Dp,Rp, 1, C D¥
for all sufficiently large n, where
» D,, R,, I, are the domains of occupied sites §,Z9, if |A;5,9]

particles start at each site x;* and perform divisible sandpile,
rotor-router, and Diaconis-Fulton dynamics, respectively.
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,
For any € > 0, with probability one
D; C Dp,Rp, 1, C D¥
for all sufficiently large n, where
» D,, R,, I, are the domains of occupied sites §,Z9, if |A;5,9]
particles start at each site x;* and perform divisible sandpile,

rotor-router, and Diaconis-Fulton dynamics, respectively.
» D is the smash sum of balls B(x;,r;), where A; = wgr.
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Multiple Point Sources

» Fix centers xi,...,xx € R? and Aq,..., Ak > 0.
» Theorem (L.-Peres) With probability one

D,, R, 1,— D as n — oo,
For any € > 0, with probability one
D; C Dp,Rp, 1, C D¥

for all sufficiently large n, where
» D,, R,, I, are the domains of occupied sites §,Z9, if |A;5,9]
particles start at each site x;* and perform divisible sandpile,
rotor-router, and Diaconis-Fulton dynamics, respectively.
» D is the smash sum of balls B(x;,r;), where A; = wgr.
» Follows from the main result and the case of a single point
source.
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Quadrature Domains

> Given x1,...xx € RY and Aq,...,Ax > 0.
» A domain D C R¥ satisfying

/ h(x)dx < fx,-h(x,-).
b i=1

for all integrable superharmonic functions h on D is called a
quadrature domain.
(Aharonov-Shapiro '76, Gustafsson, Sakai, Putinar, ...)
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Quadrature Domains

> Given x1,...xx € RY and Aq,...,Ax > 0.
» A domain D C R¥ satisfying

/ h(x)dx < fx,-h(x,-).
b i=1

for all integrable superharmonic functions h on D is called a
quadrature domain.
(Aharonov-Shapiro '76, Gustafsson, Sakai, Putinar, ...)

» The smash sum B @...® By is such a domain, where B; is
the ball of volume A; centered at x;.
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Quadrature Domains

> Given x1,...xx € RY and Aq,...,Ax > 0.
» A domain D C R¥ satisfying

/ h(x)dx < fx,-h(x,-).
b i=1

for all integrable superharmonic functions h on D is called a
quadrature domain.
(Aharonov-Shapiro '76, Gustafsson, Sakai, Putinar, ...)

» The smash sum B @...® By is such a domain, where B; is
the ball of volume A; centered at x;.

» In dimension two, the boundary of By ®...® By lies on an
algebraic curve of degree 2k.
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e // x,y)dxdy < h(—1,0)+ h(1,0)
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The Abelian Sandpile as a Growth Model

» Start with n chips at the origin in Z9.

» If a site has at least 2d chips, it topples by sending one chip
to each of the 2d neighboring sites.
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The Abelian Sandpile as a Growth Model

» Start with n chips at the origin in Z9.

» If a site has at least 2d chips, it topples by sending one chip
to each of the 2d neighboring sites.

» Abelian property: The final chip configuration does not
depend on the order of the firings.
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The Abelian Sandpile as a Growth Model

» Start with n chips at the origin in Z9.

» If a site has at least 2d chips, it topples by sending one chip
to each of the 2d neighboring sites.

» Abelian property: The final chip configuration does not
depend on the order of the firings.

» Bak-Tang-Wiesenfeld '87, Dhar 90, ...
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Sandpile of 1,000,000 chips in Z>
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Growth on a General Background

> Let each site x € Z9 start with 6(x) chips.
(o(x)<2d-1)

» We call 6 the background configuration.

» Place n additional chips at the origin.

> Let S, be the set of sites that topple.
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Constant Background c = h
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d=h=2

le:

The Square Sandp

attice Growth Models
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Odometer Function

» u(x) = number of times x topples.



Odometer Function

» u(x) = number of times x topples.
» Discrete Laplacian:

Au(x)=Y u(y)—2du(x)

y~x
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Odometer Function

» u(x) = number of times x topples.
» Discrete Laplacian:

Au(x)=Y u(y)—2du(x)

y~x

= chips received — chips emitted
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Odometer Function

» u(x) = number of times x topples.
» Discrete Laplacian:

Zu —2d u(x)

y~x

= chips received — chips emitted
=1°(x) —t(x)

where T is the initial unstable chip configuration
and 1° is the final stable configuration.
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Stabilizing Functions
» Given a chip configuration T on Z¢ and a function
w729 =7, call uy stabilizing for 7 if

T+ Au <2d—1.
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Stabilizing Functions

» Given a chip configuration T on Z¢ and a function
w729 =7, call uy stabilizing for 7 if

T+ Au <2d—1.
» If u; and wy are stabilizing for 1, then

T+ Amin(u, u2) < T+ max(Aui, Aup)
=max(T+ Aup, T+ Aup)
<2d-1

so min(uy,up) is also stabilizing for 7.
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Least Action Principle

> Let T be a chip configuration on Z9 that stabilizes after
finitely many topplings, and let u be its odometer function.

» Least Action Principle:

If up : 29 — Z>q is stabilizing for t, then u < uy.
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Least Action Principle

> Let T be a chip configuration on Z9 that stabilizes after
finitely many topplings, and let u be its odometer function.

» Least Action Principle:
If up : 29 — Z>q is stabilizing for t, then u < uy.

» So the odometer is minimal among all nonnegative stabilizing
functions:

u(x) = min{ui(x)|u1 > 0 is stabilizing for t}.

» Interpretation: “Sandpiles are lazy.”
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Proof of LAP

» Odometer function u, stabilizing function u;. Want u < u3.

» Perform legal topplings in any order, without allowing any
site x to topple more than uj(x) times, until no such toppling
is possible.
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Proof of LAP

» Odometer function u, stabilizing function u;. Want u < u3.

» Perform legal topplings in any order, without allowing any
site x to topple more than uj(x) times, until no such toppling
is possible.

» Get a function v/ < 1y and chip configuration T =1+ Av/'.

» If T is stable, then v/ = u by the abelian property.
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Proof of LAP

» Odometer function u, stabilizing function u;. Want u < u3.

» Perform legal topplings in any order, without allowing any
site x to topple more than uj(x) times, until no such toppling
is possible.

» Get a function v/ < 1y and chip configuration T =1+ Av/'.
» If T is stable, then v/ = u by the abelian property.

» Otherwise, T has some unstable site y, and v'(y) = ui(y).

Lionel Levine Obstacle Problems and Lattice Growth Models



Proof of LAP

» Odometer function u, stabilizing function u;. Want u < u3.

v

Perform legal topplings in any order, without allowing any
site x to topple more than uj(x) times, until no such toppling
is possible.

Get a function v < 1y and chip configuration T =1+ Av/'.
If T is stable, then u' = u by the abelian property.

Otherwise, T has some unstable site y, and v/(y) = uv1(y).

vV v v Y

Further topplings according to u; — v’ can only increase the
number of chips at y.

» But y is stable in T4+ Au;. =<«
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Obstacle Problem with an Integrality Condition

» Lemma. The abelian sandpile odometer function is given by
u=s—y

where

—min! f
st mln{ () and f —7is Z>p-valued

f:729 ->Ris superharmonic}
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Obstacle Problem with an Integrality Condition

» Lemma. The abelian sandpile odometer function is given by
u=s—y
where

f:79 — R is superharmonic
s(x):min{f(x) T o stpernarmont }

and f —7is Z>p-valued

» The obstacle vy is given by

(2d - 1)|x|>+n-g(o,x)
Y(x)=— od

where g is the Green's function for simple random walk in Z¢

g(0,x) = Eo#t{ k| Xk = x}.
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Bootstrapping From Small Values of h

» Theorem (L.-Peres) Let S, , be the set of sites visited by the
abelian sandpile in Z9, starting from n chips at the origin and
constant background h <d —1.
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Bootstrapping From Small Values of h

» Theorem (L.-Peres) Let S, , be the set of sites visited by the
abelian sandpile in Z9, starting from n chips at the origin and
constant background h < d—1. Then

n—o(n) n+o(n)
(Ball of volume 2d—1—h> cS,nC <Ba|l of volume -5 > .
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Bootstrapping From Small Values of h

» Theorem (L.-Peres) Let S, , be the set of sites visited by the
abelian sandpile in Z9, starting from n chips at the origin and
constant background h < d—1. Then

n—o(n) n+o(n)
(Ball of volume 2d—1—h> cS,nC <Ba|l of volume -5 > .

» Improves earlier bounds of Le Borgne and Rossin, Fey and
Redig.
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Bounds for the Abelian Sandpile Shape

(Disk of area n/3) C S, C (Disk of area n/2)



Growth Rate of The Square Sandpile

» Theorem (Fey-L.-Peres) Let S,5 be the set of sites in 72
that topple if n+2 chips start at the origin and 2 chips start
at every other site in Z2.
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Growth Rate of The Square Sandpile

» Theorem (Fey-L.-Peres) Let S,5 be the set of sites in 72
that topple if n+2 chips start at the origin and 2 chips start
at every other site in Z2. Then for any € > 0, we have

5n72 C Qr

for all sufficiently large n, where

(G

and
Qr={xe 72 Ix1],|x2| < r}.
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Growth Rate of The Square Sandpile

» Theorem (Fey-L.-Peres) Let S,5 be the set of sites in 72
that topple if n+2 chips start at the origin and 2 chips start
at every other site in Z2. Then for any € > 0, we have

5n72 C Qr

for all sufficiently large n, where
: +¢e)vn
r=|{— n

N

Qr={xe 72 Ix1],|x2| < r}.

and

» Similar bound with r = ©(n'/9) in d dimensions, for any
constant background h <2d —2.
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A Mystery: Scale Invariance

» Big sandpiles look like scaled up small sandpiles!

> Let 6,(x) be the final number of chips at x in the sandpile
of n particles on Z9.
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A Mystery: Scale Invariance

» Big sandpiles look like scaled up small sandpiles!

> Let 6,(x) be the final number of chips at x in the sandpile
of n particles on Z9.

» Squint your eyes: for x € R? let

FOEETED YA 0L
n yezd

[ly—v/nx||<an
where a, is a sequence of integers such that

an

N

ap Tee and
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Scale Invariance Conjecture

» Conjecture: There is a sequence a, and a function
f : RY — Rxq which is locally constant almost everywhere,
such that f, — f at all continuity points of f.
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Two Sandpiles of Different Sizes

n=100,000 n = 200,000

(scaled down by v/2)
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Locally constant “steps” of f correspond to periodic
patterns:
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A Mystery: Dimensional Reduction

» Our argument used simple properties of one-dimensional
sandpiles to bound the diameter of higher-dimensional
sandpiles.

» Deepak Dhar pointed out that there seems to be a deeper
relationship between sandpiles in d and d — 1 dimensions...
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Dimensional Reduction Conjecture

> G, 4: sandpile of n chips on background h=2d —2 in z9.

» Conjecture: For any n there exists m such that

Gn,d(Xla- .. ,Xd_l,O) = 2+Gm,d—1(X1,- .. ,Xd_l)

for almost all x sufficiently far from the origin.
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A Two-Dimensional Slice of A Three-Dimensional Sandpile

d = 3 (slice through origin)
h=4
n=5,000,000




Thank You!
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