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Summary. Markov chains on finite sets are used in a great variety of situations
to approximate, understand and sample from their limit distribution. A familiar
example is provided by card shuffling methods. From this viewpoint, one is interested
in the “mixing time” of the chain, that is, the time at which the chain gives a good
approximation of the limit distribution. A remarkable phenomenon known as the
cut-off phenomenon asserts that this often happens abruptly so that it really makes
sense to talk about “the mixing time”. Random walks on finite groups generalize card
shuffling models by replacing the symmetric group by other finite groups. One then
would like to understand how the structure of a particular class of groups relates to
the mixing time of natural random walks on those groups. It turns out that this is an
extremely rich problem which is very far to be understood. Techniques from a great
variety of different fields – Probability, Algebra, Representation Theory, Functional
Analysis, Geometry, Combinatorics – have been used to attack special instances of
this problem. This article gives a general overview of this area of research.
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1 Introduction

This article surveys what is known about the convergence of random walks
on finite groups, a subject to which Persi Diaconis gives a marvelous intro-
duction in [27]. In the early twentieth century, Markov, Poincaré and Borel
discussed the special instance of this problem associated with card shuffling
where the underlying group is the symmetric group S52. Two early references
are to Emile Borel [15] and K.D. Kosambi and U.V.R. Rao [95]. The early
literature focuses mostly on whether or not a given walk is ergodic: for card
shuffling, ergodicity means that the deck gets mixed up after many shuffles.
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Once ergodicity is established, the next task is to obtain quantitative esti-
mates on the number of steps needed to reach approximate stationarity. Of
course, this requires precise models and the choice of some sort of distance
between probability distributions.

Consider the shuffling method used by good card players called riffle shuf-
fling. At each step, the deck is cut into two packs which are then riffled to-
gether. A model was introduced by Gilbert and Shannon in a 1955 Bell Labo-
ratories technical memorandum. This model was later rediscovered and stud-
ied independently by Reeds in an unpublished work quoted in [27]. Around
1982, Aldous [1] proved that 3

2 log2 n riffle shuffles are necessary and sufficient
to mix up n cards, as n goes to infinity. A complete analysis of riffle shuffles
was finally obtained in 1992 by Bayer and Diaconis [13], who argue that seven
riffle shuffles are reasonable to mix up a deck of 52 cards.

A widespread misconception is to consider that the problem of the con-
vergence of ergodic random walks (more generally, ergodic Markov chains)
is solved by the Perron–Frobenius theorem which proves convergence to sta-
tionarity at an exponential rate controlled by the spectral gap (i.e., the gap
between 1 and the second largest eigenvalue in modulus). To understand
the shortcomings of this classical result, consider the Gilbert–Shannon–Reeds
model for riffle shuffles. Its spectral gap is 1/2, independently of the number
of cards (see the end of Section 3.2). This does not tell us how many times
n cards should be shuffled, let alone 52 cards. Spectral gap estimates are an
important part of the study of ergodic random walks but, taking seriously the
practical question “how many times should 52 cards be shuffled to mix up the
deck?” and generalizing it to random walks on finite groups lead to richer and
deeper mathematical problems. What is known about these problems is the
subject of this article.

At first sight, it is not entirely clear that the question “how many times
should 52 cards be shuffled to mix up the deck?” makes mathematical sense.
One reason it does is that stationarity is often reached abruptly. This impor-
tant fact, called the cut-off phenomenon, was discovered by Aldous, Diaconis
and Shahshahani [1, 50] and formalized by Aldous and Diaconis [5, 30]. In
their 1981 article [50], Diaconis and Shahshahani use the representation the-
ory of the symmetric group (and hard work) to give the first complete analysis
of a complex ergodic random walk: random transposition on the symmetric
group. Their main finding is that it takes tn = 1

2n logn random transpositions
to mix up a deck of n cards. More precisely, for any ε > 0, after (1− ε)tn ran-
dom transpositions the deck is far from being well mixed whereas after (1+ε)tn
random transpositions the deck is well mixed, when n is large enough. This
is the first example of the cut-off phenomenon. The riffle shuffle model gives
another example. Even for n = 52, the cut-off phenomenon for riffle shuffles
is visible. See Table 1 in Section 3.3.

It is believed that the cut-off phenomenon is widespread although it has
been proved only for a rather small number of examples. One of the most
interesting problems concerning random walks on finite groups is to prove
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or disprove the cut-off phenomenon for natural families of groups and walks.
Focusing on walks associated with small sets of generators, one wants to under-
stand how group theoretic properties relate to the existence or non-existence
of a cut-off and, more generally, to the behavior of random walks. For in-
stance, in any simple finite group, most pairs of elements generate the group
(see, e.g., [130]). Is it true that any finite simple group G contains a pair of
generators such that the associated random walk has a cut-off with a cut-off
time of order log |G| as |G| grows to infinity? Is it true that most walks based
on two generators in a simple finite group behave this way? As the cut-off
phenomenon can be very hard to establish, one often has to settle for less, for
instance, the order of magnitude of a possible cut-off time.

In 2001, Diaconis and Holmes were contacted by a company that builds
shuffling machines for the gambling industry. It turns out that these ma-
chines use a shuffling scheme that closely resembles one that they considered
independently and without the least idea that it could ever be of practical
value: see [37]. Besides shuffling and its possible multi-million-dollar applica-
tions for the gambling industry, random walks on finite groups are relevant
for a variety of applied problems. Diaconis [27] describes connections with
statistics. Random walks are a great source of examples for the general the-
ory of finite Markov chains [3, 124, 131] and can sometimes be used to analyze
by comparison Markov chains with fewer symmetries (see, e.g., [38]). It re-
lates to Monte-Carlo Markov Chain techniques and to problems in theoretical
computer science as described in [94, 131]. Random walks provided the first
explicit examples of expander graphs [108], a notion relevant to the construc-
tion of communication networks, see, e.g., [98]. In [55], Durrett discusses the
analysis of families of random walks modeling the scrambling of genes on
a chromosome by reversal of sequences of various lengths.

One perspective to keep in mind is that the study of random walks on finite
groups is part of the more general study of invariant processes on groups. See,
e.g., [125]. This direction of research relates to many different fields of math-
ematics. In particular, probability, finite and infinite group theory, algebra,
representation theory, number theory, combinatorics, geometry and analysis,
all have contributed fundamental ideas and results to the study of random
walks on groups. This is both one of the difficulties of the subject and one
of its blessings. Indeed, the deep connections with questions and problems
coming from other areas of mathematics are one of the exciting aspects of the
field.

The author is not aware of any previous attempt thoroughly to survey
techniques and results concerning the convergence of random walks on finite
groups. The book of Diaconis [27] has played and still plays a crucial role in
the development of the subject. The survey [45] by Diaconis and Saloff-Coste
served as a starting point for this article but has a narrower focus. Several
papers of Diaconis [28, 31, 32] survey some specific directions such as riffle
shuffle or the developments arising from the study of random transpositions.
Some examples are treated and put in the context of general finite Markov
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chains in [3, 124, 131]. The excellent book [98] and the survey article [99]
connect random walks to problems in combinatorics, group theory and number
theory as does the student text [136].

This survey focuses exclusively on quantitative rates of convergence. In-
teresting questions such as hitting times, cover times, and other aspects of
random walks are not discussed at all although they are related in various
ways to rates of convergence. See [3, 27]. Important generalizations of ran-
dom walks on groups to homogeneous spaces, Gelfand pairs, hypergroups and
other structures, as well as Markov chains on groups obtained by deforma-
tion of random walks are not discussed. For pointers in these directions, see
[14, 16, 17, 27, 29, 31, 32, 36, 41].

2 Background and Notation

2.1 Finite Markov Chains

Markov kernels and Markov chains. A Markov kernel on a finite set
X is a function K : X × X → [0, 1] such that

∑
yK(x, y) = 1. Given an

initial probability measure ν, the associated Markov chain is the discrete-
time stochastic process (X0, X1, . . . ) taking values in X whose law Pν on XN

is given by

Pν(Xi = xi, 0 ≤ i ≤ n) = ν(x0)K(x0, x1) · · ·K(xn−1, xn). (2.1)

We will use Px to denote the law of the Markov chain (Xn)n≥0 starting from
X0 = x, that is, Px = Pδx . One can view K as a stochastic matrix – the
transition matrix – whose rows and columns are indexed by X . We associate
to K a Markov operator – also denoted by K – which acts on functions by
Kf(x) =

∑
yK(x, y)f(y) and on measures by νK(A) =

∑
x ν(x)K(x,A).

The iterated kernel Kn(x, y) is defined inductively by

K1(x, y) = K(x, y) and Kn(x, y) =
∑

z∈X
Kn−1(x, z)K(z, y). (2.2)

Given X0 = x, the law of Xn is the probability measure A �→ Kn(x,A),
A ⊂ X . From this definition it follows that (Xi) has the Markov property
: the future depends on the past only through the present. More precisely,
let τ : XN → {0, 1, . . .} ∪ {∞} be a random variable such that the event
{τ ≤ n} depends only on X0, . . . , Xn (i.e., a stopping time). Then, conditional
on τ <∞ and Xτ = x, (Xτ+i)i≥0 is a Markov chain with kernel K started at
x and is independent of X0, . . . , Xτ .

There is also an X -valued continuous-time Markov process (Xt)t≥0 which
evolves by performing jumps according to K with independent exponential(1)
holding times between jumps. This means that Xt = XNt where Nt has
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a Poisson distribution with parameter t. Thus, starting from X0 = x, the
law of Xt is given by the familiar formula

Ht(x, ·) = e−t
∞∑

0

tn

n!
Kn(x, ·). (2.3)

In terms of Markov operators, this continuous-time process is associated with
the Markov semigroup Ht = e−t(I−K), t ≥ 0, where I denotes the identity
operator.

The invariant measure and time reversal. A probability distribution π
is invariant for K if πK = π. Given an invariant distribution π for K and
p ∈ [1,∞), set

‖f‖p =

(
∑

x

|f(x)|pπ(x)

)1/p

, Lp(π) = {f : X → R : ‖f‖p <∞},

where ‖f‖∞ = maxX |f |. Then K is a contraction on each Lp(π). Define

K∗(x, y) =
π(y)K(y, x)

π(x)
. (2.4)

The kernelK∗ is Markov and has the following interpretation: Let (Xn)0≤n≤N
be a Markov chain with kernel K and initial distribution π. Set Yn = XN−n,
0 ≤ n ≤ N . Then (Yn)0≤n≤N is a Markov chain with kernel K∗ and initial
distribution π. Thus K∗ corresponds to the chain obtained from (Xn) by time
reversal. The Markov kernel K∗ is also the kernel of the adjoint of the operator
K acting on L2(π). Clearly, K∗ = K if and only if

∀x, y ∈ X , π(x)K(x, y) = π(y)K(y, x). (2.5)

When (K,π) satisfies (2.5), one says that K is reversible with respect to π and
that π is a reversible measure for K. Equation (2.5) is also called the detailed
balance condition in the statistical mechanics literature.

Ergodic chains. A Markov kernel K is irreducible if, for any two states x, y
there exists an integer n = n(x, y) such that Kn(x, y) > 0. A state x is called
aperiodic if Kn(x, x) > 0 for all sufficiently large n. If K is irreducible and has
an aperiodic state then all states are aperiodic. We will mostly be interested
in irreducible, aperiodic chains.

Theorem 2.1. Let K be an irreducible Markov kernel on a finite state space
X . Then K admits a unique invariant distribution π and

∀x, y ∈ X , lim
t→∞

Ht(x, y) = π(y).

Assume further that K is aperiodic. Then the chain is ergodic, that is,

∀x, y ∈ X , lim
n→∞

Kn(x, y) = π(y).
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For irreducible K, the unique invariant distribution is also called the station-
ary (or equilibrium) probability.

In practice, one is interested in turning the qualitative conclusion of The-
orem 2.1 into more quantitative assertions. To this end some sort of distance
between probability measures must be chosen. The total variation distance
between two probability measures µ, ν on X is defined as

dTV(µ, ν) = ‖µ− ν‖TV = sup
A⊂X

{µ(A)− ν(A)}. (2.6)

It gives the maximum error made when using µ to approximate ν. Next,
consider the Lp(π)-distances relative to a fixed underlying probability measure
π on X . In the cases of interest here, π will be the invariant distribution of
a given Markov chain under consideration. Given two probability distributions
µ, ν with respective densities f, g with respect to π, set

dπ,p(µ, ν) = ‖f − g‖p =

(
∑

x∈X
|f(x)− g(x)|pπ(x)

)1/p

(2.7)

and dπ,∞(µ, ν) = max{|f − g|}. Setting µ(f) =
∑

fµ and p = 1, we have

dπ,1(µ, ν) = 2dTV(µ, ν) = 2‖µ− ν‖TV = max
‖f‖∞=1

{|µ(f)− ν(f)|} (2.8)

which is independent of the choice of π. For p = 2,

dπ,2(µ, ν) =

(
∑

x∈X

∣∣∣∣
µ(x)
π(x)

− ν(x)
π(x)

∣∣∣∣
2

π(x)

)1/2

.

Note that Jensen’s inequality shows that p �→ dπ,p is a non-decreasing func-
tion. In particular,

2dTV(µ, ν) ≤ dπ,2(µ, ν) ≤ dπ,∞(µ, ν). (2.9)

The following is one of the most useful basic results concerning ergodic chains.
It shows and explains why exponentially fast convergence is the rule if the
chain converges at all.

Proposition 2.2. Let K be a Markov kernel with invariant probability dis-
tribution π. Then, for any fixed 1 ≤ p ≤ ∞, n �→ supx∈X dπ,p(Kn(x, ·), π) is
a non-increasing sub-additive function. In particular, if

sup
x∈X

dπ,p(Km(x, ·), π) ≤ β

for some fixed integer m and some β ∈ (0, 1) then

∀n ∈ N, sup
x∈X

dπ,p(Kn(x, ·), π) ≤ β�n/m�.

See, e.g., [1, 3, 5, 124].
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2.2 Invariant Markov Chains on Finite Groups

Random walks. Let G be a finite group with identity element e. Let |G| be
the order (i.e., the number of elements) of G. Let p be a probability measure
on G. The left-invariant random walk on G driven by p is the Markov chain
with state space X = G and transition kernel

K(x, y) = p(x−1y).

As
∑

x p(x
−1y) =

∑
x p(x) = 1, any such chain admits the normalized count-

ing measure (i.e., uniform distribution) u ≡ 1/|G| as invariant distribution.
Moreover, u ≡ 1/|G| is a reversible measure for p if and only if p is symmetric,
i.e., p(x) = p(x−1) for all x ∈ G.

Fix an initial distribution ν. Let (ξi)∞0 be a sequence of independent G-
valued random variables, with ξ0 having law ν and ξi having law p for all
i ≥ 1. Then the left-invariant random walk driven by p can be obtained as

Xn = ξ0ξ1 . . . ξn.

The iterated kernel Kn(x, y) defined at (2.2) is given by the convolution power

Kn(x, y) = p(n)(x−1y)

where p(n) is the n-fold convolution product p ∗ · · · ∗ p with

f ∗ g(x) =
∑

z∈G
f(z)g(z−1x) =

∑

z∈G
f(xz−1)g(z).

For any initial distribution ν, we have Pν(Xn = x) = ν ∗ p(n)(x). The associ-
ated Markov operator K acting on functions is then given by

Kf(x) = f ∗ p̌(x)

where p̌(x) = p(x−1). The law of the associated continuous-time process de-
fined at (2.3) satisfies Ht(x, y) = Ht(x−1y) where

Ht(x) = Ht(e, x) = e−t
∞∑

0

tn

n!
p(n)(x). (2.10)

The adjoint K∗ of the operator K on L2(G) (i.e., L2 with respect to the
normalized counting measure) is

K∗f = f ∗ p.

This means that the time reversal of a random walk driven by a measure p is
driven by the measure p̌. Referring to the walk driven by p, we call the walk
driven by p̌ the reverse walk. Observe that we always have
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du,s(p(n), u) = du,s(p̌(n), u). (2.11)

In words, the distance to stationarity measured in terms of any of the distances
du,s is the same for a given random walk and for its associated reverse walk.
By (2.8), this applies to the distance in total variation as well.

One can also consider right-invariant random walks. The right-invariant
random walk driven by p has kernel K̃(x, y) = p(yx−1) and, in the notation
introduced above, it can be realized as X̃n = ξn . . . ξ1ξ0. The iterated kernel
K̃n(x, y) is given by K̃n(x, y) = p(n)(yx−1). Under the group anti-isomorphism
x �→ x−1, the left-invariant random walk driven by a given probability measure
p transforms into the right-random walk driven by p̌. Hence, it suffices to study
left-invariant random walks.

Ergodic random walks. The next proposition characterizes irreducibility
and aperiodicity in the case of random walks. It has been proved many times
by different authors. Relatively early references are [143, 144].

Proposition 2.3. On a finite group G, let p be a probability measure with
support Σ = {x ∈ G : p(x) > 0}.

– The chain driven by p is irreducible if and only if Σ generates G, i.e., any
group element is the product of finitely many elements of Σ.

– Assuming Σ generates G, the random walk driven by p is aperiodic if and
only if Σ is not contained in a coset of a proper normal subgroup of G.

To illustrate this proposition, let G = Sn be the symmetric group on n letters
and p the uniform distribution on the set Σ = {(i, j) : 1 ≤ i < j ≤ n}
of all transpositions. As any permutation can be written as a product of
transpositions, this walk is irreducible. It is not aperiodic since Σ ⊂ (1, 2)An
and the alternating group An is a proper normal subgroup of Sn.

If the random walk driven by p is aperiodic and irreducible then, by The-
orem 2.1, its iterated kernel Kn(x, y) = p(n)(x−1y) converges for each fixed
x ∈ G to its unique invariant measure which is the uniform measure u ≡ 1/|G|.
By left invariance, there is no loss of generality in assuming that the starting
point x is the identity element e in G and one is led to study the difference
p(n)−u. This brings some useful simplifications. For instance, du,s(Kn(x, ·), u)
is actually independent of x and is equal to

du,s(p(n), u) = |G|1−1/s




∑

y∈G

∣∣∣p(n)(y)− 1/|G|
∣∣∣
s




1/s

for any s ∈ [1,∞] with the usual interpretation if s = ∞. From now on, for
random walks on finite groups, we will drop the reference to the invariant
measure u and write ds for du,s. Proposition 2.2 translates as follows.
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Proposition 2.4. For any s ∈ [1,∞] and any probability measure p, the
function n → ds(p(n), u) is non-increasing and sub-additive. In particular,
if ds(p(m), u) ≤ β for some fixed integer m and β ∈ (0, 1) then

∀n ∈ N, ds(p(n), u) ≤ β�n/m�.

To measure ergodicity, we will mostly use the total variation distance
‖p(k) − u‖TV and the L2-distance d2(p(k), u). Note that d2 also controls the
a priori stronger distance d∞. Indeed, noting that p(2k) − u = (p(k) − u) ∗
(p(k)−u) and using the Cauchy–Schwarz inequality and (2.11), one finds that

d∞(p(2k), u) ≤ d2(p(k), u)2

with equality in the symmetric (i.e, reversible) case where p = p̌.

3 Shuffling Cards and the Cut-off Phenomenon

3.1 Three examples of card shuffling

Modeling card shuffling. That shuffling schemes can be modeled by
Markov chains has been clearly recognized from the beginning of Markov
chain theory. Indeed, card shuffling appears as one of the few examples given
by Markov in [104]. It then appears in the works of Poincaré and Borel. See in
particular [15], and the excellent historical discussion in [92]. Obviously, from
a mathematical viewpoint, an arrangement of a deck of cards can be thought
of as a permutation of the cards. Also, a shuffling is obviously a permutation
of the cards. There is however an intrinsic difference between an arrangement
of the cards and a shuffling: an arrangement of the cards relates face values
to positions whereas, strictly speaking, a shuffling is a permutation of the po-
sitions. By a good choice of notation, this difference somehow disapears but
this might introduce some confusion. Thus we now spell out in detail one of
the possible equivalent ways to model shufflings using random walks on Sn,
n = 52. We view the symmetric group Sn as the set of all bijective maps from
{1, . . . , n} to itself equipped with composition. Hence, for σ, θ ∈ Sn, σθ = σ◦θ.
One of several ways to describe a permutation σ is as an n-tuple (σ1, . . . , σn)
where σ(i) = σi.

To simplify, think of the 52 cards as marked from 1 to 52. An arrangement
of the deck can described as a 52-tuple giving the face values of the cards
in order from top to bottom. Thus we can identify the arrangement of the
deck (σ1, . . . , σ52) with the permutation σ : i �→ σ(i) = σi in S52. In this
notation, the deck corresponding to a permutation σ has card i in position
σ−1(i) whereas σ(i) gives the value of the card in position i. In particular,
the deck in order is represented by the identity element. Now, from a card
shuffling perspective, we want permutations to act on positions, not on face
values. One easily checks that, in the present notation, this corresponds to
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multiplication on the right in S52. Indeed, if the arrangement of the deck is σ
and we transpose the top two cards then the new arrangement of the deck is
σ ◦ τ with τ = (1, 2) since σ ◦ τ is (σ2, σ1, σ3, . . . , σ52).

Typically, shuffling cards proceeds by repeating several times a fixed proce-
dure where some randomness occurs. This can now be modeled by a measure
p on S52 which describes the shuffling procedure as picking a permutation θ
according to p and changing the arrangement σ of the deck to σθ = σ ◦ θ.
Thus the shuffling scheme whose elementary steps are modeled by p corre-
sponds to the left-invariant random walk on S52 driven by p. By invariance,
we can always assume that we start from the identity permutation, that is,
with the deck in order. Then, the distribution of the deck after n shuffles is
given by p(n). Let us describe three examples.

The Borel–Chéron shuffle. In [15, pages 8–10 and 254–256], Borel and
Chéron consider the following shuffling method: remove a random packet from
the deck and place it on top. The corresponding permutations are πa,b, 1 <
a ≤ b ≤ n = 52, given by

(
1 2 · · b−a+1 b−a+2 · · b b+1 · · 52

a a+1 · · b 1 · · a−1 b+1 · · 52

)

where the first row indicates position and the second row gives the value of
the cards in that position after πa,b if one starts with a deck in order. The
removed packet is random in the sense that p(π) = 0 unless π = πa,b for some
1 < a ≤ b ≤ n in which case p(π) =

(n
2

)−1 (a slightly different version is
considered in [42]).

The crude overhand shuffle. In this example, the player holds the deck in
the right hand and transfers a first block of cards from the top of the deck to
the left hand, then a second block of cards, and finally all the remaining cards.
This is then repeated many times. The randomness comes from the size of the
first and second block, say a and b. With our convention, the corresponding
permutation σa,b is

(
1 2 · · · 51−a−b 52−a−b · · · 52−a−1 52−a · · · 51 52

a+b+1 a+b+2 · · · 52 a+1 · · · a+b 1 · · · a−1 a

)
.

In this case, it is natural to take p(σ) = 0 unless σ = σa,b for some 1 ≤ a ≤
n = 52 and 0 ≤ b ≤ n − a, in which case p(σa,b) = 1/[n(n + 1 − a)]. Other
overhand shuffles are described in [116, 44].

The riffle shuffle or dovetail shuffle. Consider the way serious players
shuffle cards. The deck is cutinto two packs (of roughly equal sizes) and the
two packs are riffled together. A model was introduced by Gilbert and Shannon
(see Gilbert [66]) and later, independently, by Reeds [118]. In this model, the
cut is made according to a binomial distribution: the k top cards are cut
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with probability
(n
k

)
/2n, n = 52. The two packets are then riffled together in

such a way that the cards drop from the left or right heaps with probability
proportional to the number of cards in each heap. Thus, if there are a and
b cards remaining in the left and right heaps, then the chance the next card
will drop from the left heap is a/(a+ b). This describes a probability pRS on
the symmetric group. Experiments reported in Diaconis’ book [27] indicate
that this model describes well the way serious card players shuffle cards. It
is interesting to note that the inverse shuffle – i.e., the shuffle corresponding
to the measure p̌RS – is simple to describe: starting from the bottom, each
card is removed from the deck and placed randomly on one of two piles, left
or right, according to an independent sequence of Bernoulli random variables
(probability 1/2 for right and left). Finally, the right pile is put on top.

3.2 Exact Computations

The analysis of riffle shuffles. This section focuses on the riffle shuffle
model pRS of Gilbert, Shannon and Reeds, the GSR model for short. How
many GSR shuffles are needed to mix up a deck of n cards? To make this
question precise, let us use the total variation distance between the uniform
distribution u on the symmetric group Sn and the distribution p

(k)
RS after k

shuffles. The question becomes: how large must k be for ‖p(k)
RS − u‖TV to be

less than some fixed ε > 0? As far as shuffling cards is concerned, a value of ε
a little below 0.5 seems quite reasonable to aim for. Bayer and Diaconis [13]
give the following remarkably precise analysis of riffle shuffles.

Theorem 3.1. If a deck of n cards is shuffled k times with

k =
3
2

log2 n + c,

then for large n

‖p(k)
RS − u‖TV = 1− 2Φ

(
−2−c

4
√

3

)
+O

(
1

n1/4

)
,

where

Φ(t) =
1√
2π

∫ t

−∞
e−s

2/2ds.

A weaker form of this result was proved earlier in [1].
To people studying finite Markov chains, the fact that Theorem 3.1 can

be proved at all appears like a miracle. Consider for instance the following
“neat riffle shuffle” model proposed by Thorpe (see [27, 137]). For a deck of
n = 2k cards, cut the deck into two piles of exactly k cards each and put in
positions 2j and 2j−1 the j-th card of each of the two piles in random order.
No reasonable quantitative analysis of this shuffle is known.

The idea used by Bayer and Diaconis to analyze repeated riffle shuffles
is elementary. Given an arrangement of a deck of cards, a rising sequence is
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a maximal subset of cards of this arrangement consisting of successive face
values displayed in order. For example, the arrangement 2, 4, 3, 9, 1, 6, 7, 8, 5,
consists of 1; 2, 3; 4, 5; 6, 7, 8 and 9. Note that the rising sequences form
a partition of the deck. Denote by r the number of rising sequences of an
arrangement of the deck. By extension, we also say that r is the number of
rising sequences of the associated permutation. Now, it is a simple observation
that, starting from a deck in order, one riffle shuffle produces permutations
having at most 2 rising sequences. In fact (see [13]), the riffle shuffle measure
pRS is precisely given by

pRS(σ) = 2−n
(
n + 2− r

n

)

where r is the number of rising sequences of σ and
(m
n

)
= 0 when m < n.

The next step is to define the notion of an m-riffle shuffle which generalizes
the above 2-riffle shuffle. In an m-riffle shuffle, the deck is cut into m parts
which are then riffled together. It is easier to define a reverse m-riffle shuffle:
hold the deck, face down and create m piles by dealing the deck in order and
turning the cards face up on a table. For each card, pick a pile uniformly
at random, independently from all previous picks. When all the cards have
been distributed, assemble the piles from left to right and turn the deck face
down. Let pm = pm-RS be the probability measure corresponding to an m-riffle
shuffle. Diaconis and Bayer show that

pm(σ) = m−n
(
n +m− r

n

)

where r is again the number of rising sequences. Moreover, they show that
following an m-riffle shuffle by an �-riffle shuffle produces exactly an m�-riffle
shuffle, that is, p� ∗ pm = pm�. Thus the distribution p

(k)
RS of a deck of n cards

after k GSR riffle shuffles is given by

p
(k)
RS (σ) = 2−kn

(
n+ 2k − r

n

)
. (3.1)

From there, the proof of Theorem 3.1 consists in working hard to obtain
adequate asymptotics and estimates. Formula (3.1) allows us to compute the
total variation distance exactly for n = 52. This is reported (to three decimal
places) in Table 1.

Table 1. The total variation distance for k riffle shuffles of 52 cards

k 1 2 3 4 5 6 7 8 9 10

‖p(k)
RS − u‖TV 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043
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Top to random shuffles. There are not many examples of shuffles where the
law after k shuffles can be explicitly computed as above. In [34], the authors
study a class of shuffles that they call top to random shuffles. In a top m to
random shuffle, the top m cards are cut and inserted one at a time at random
in the remaining n−m cards. Call qm the corresponding probability measure.
In particular, q1 is called the top to random measure. Note the similarity with
the riffle shuffle: a top to random shuffle can be understood as a riffle shuffle
where exactly one card is cut off.

Given a probability measure µ on {0, 1, . . . , n}, set

qµ =
n∑

0

µ(i)qi. (3.2)

Further variations are considered in [34]. In some cases, an exact formula can
be given for the convolutions of such measures and this leads to the following
theorem.

Theorem 3.2. Let a, n, a ≤ n, be two integers. Let µ be a probability on
{0, . . . , a} with positive mean m. On Sn, consider the probability measure qµ
at (3.2). Then, for large n and

k =
n

m
logn + c,

we have ‖q(k)µ − u‖TV = f(c) + o(1) where f is a positive function such that
f(c) ≤ (1/2)e−2c for c > 0 and f(c) = 1− exp (−e−c + o(1)e−c) for c < 0.

Diagonalization. The riffle shuffles and top to random shuffles described
above, as well as variants and generalizations discussed in [60, 61], have re-
markable connections with results in algebra. These connections explain in
part why an exact formula exists for repeated convolution of these measures.
See [13, 32, 34, 40, 60, 61].

In particular, the convolution operators corresponding to the m-riffle shuf-
fle measures pm and the top to random measures qm are diagonalizable with
eigenvalues that can be explicitly computed. For instance, for the GSR mea-
sure pRS = p2, the eigenvalues are the numbers 2−i with multiplicity the
number of permutations having exactly n− i cycles, i = 0, . . . , n− 1. For the
top to random measure q = q1, the eigenvalues are i/n, i = 0, 1, . . . , n− 2, n,
and the multiplicity of i/n is exactly the number of permutations having i
fixed points. However, these results do not seem to be useful to control con-
vergence to stationarity. Curiously, the eigenvalues of top to random have
been computed independently for different reasons by different authors in-
cluding Wallach (Lie algebra cohomology) and Phatafod (linear search). See
the references in [32, 34].
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3.3 The Cut-off Phenomenon

Cut-off times. Table 1, Theorem 3.1 and Theorem 3.2 all illustrate a phe-
nomenon first studied by Aldous and Diaconis [5] and called the cut-off phe-
nomenon [30] (in [5], the term threshold phenomenon is used instead).

To give a precise definition, consider a family of finite groups Gn, each
equipped with its uniform probability measure un and with another probabil-
ity measure pn which induces a random walk on Gn.

Definition 3.3. We say that the cut-off phenomenon holds (in total varia-
tion) for the family ((Gn, pn)) if there exists a sequence (tn) of positive reals
such that

(a) lim
n→∞

tn =∞;

(b) For any ε ∈ (0, 1) and kn = [(1 + ε)tn], lim
n→∞

‖p(kn)
n − un‖TV = 0;

(c) For any ε ∈ (0, 1) and kn = [(1− ε)tn], lim
n→∞

‖p(kn)
n − un‖TV = 1.

We will often say, informally, that (Gn, pn) has a (total variation) cut-off at
time tn. For possible variants of this definition, see [30, 124].

Theorem 3.1 shows that the GSR riffle shuffle measure pRS on Sn has a cut-
off at time 3

2 log2 n. Similarly, Theorem 3.2 shows that the top to random
measure q1 on Sn has a cut-off at time n logn. Note that if (tn) and (t′n)
are cut-off times for the same family ((Gn, pn)), then tn ∼ t′n as n tends to
infinity. Table 2 below lists most examples known to have a cut-off.

Definition 3.4. For any probability measure p on a finite group G, set

T (G, p) = T (G, p, 1/(2e)) = inf
{
k : ‖p(k) − u‖TV ≤ 1/(2e)

}
(3.3)

where T (G, p, ε) = inf
{
k : ‖p(k) − u‖TV ≤ ε

}
. We call T (G, p) the total vari-

ation mixing time (mixing time for short) of the random walk driven by p.

Thus T (G, p) is the number of steps needed for the given random walk to be
1/(2e)-close to the uniform distribution in total variation. The arbitrary choice
of ε = 1/(2e) (any ε ∈ (0, 1/2) would do) is partially justified by Proposition
2.4 which shows that

∀ k ∈ N, 2‖p(k) − u‖TV ≤ e−�k/T (G,p)�.

To relate the last definition to the notion of cut-off, let ((Gn, pn)) be
a family of random walks having a (tn)-cut-off. Then, for any ε ∈ (0, 1),

T (Gn, pn, ε) ∼ T (Gn, pn) ∼ tn as n tends to ∞.

Thus, if (Gn, pn) presents a cut-off, one can always take the cut-off time to
be tn = T (Gn, pn) and one often says that the cut-off time tn is “the time
needed to reach equilibrium”.
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Table 2. Total variation cut-offs

G p (CO) § Ref

Z
d
2 p(ei) = 1/(d + 1) d

4
log d 8.2 [35, 27, 28]

Z
d
2 random spatula d

8
log d 8.2 [138]

Z
d
n p(ei) = 1/(d + 1), d → ∞ d log d

2(1−cos 2π/n)
8.2 [44, 47]

Z
d
2 most k-sets, k > d T (d, k) 8.2 [140]

abelian
most k-sets,

k = �(log |G|)s�, s > 1
s

s−1
log |G|
log k

8.3 [54, 87]

Sn GSR riffle shuffle, pRS
3
2

log2 n 3.2 [13]

Sn top m to random, qm
n
m

log n 3.2 [34]

Sn random transposition, pRT
n
2

log n 9.2 [50, 27]

Sn transpose (1, i), p� n log n 9.2 [28, 59]

Sn
lazy small odd conjugacy classes
C = (2), (4), (3, 2), (6), (2, 2, 2)

2n
|C| log n 9.2 [59, 122]

An
small even Sn conjugacy classes
(3), (2, 2), (5), (4, 2), (3, 3), (7)

n
|C| log n 9.2 [59, 122]

An
random m-cycle, m odd
m > n/2, n − m → ∞

log n
log(n/(n−m))

9.2 [103]

G 
 Sn
random transposition
with independent flips

n
2

log n 9.2 [128, 129]

G 
 Sn
random transposition

with paired flips
n
2

log n 9.2 [128, 129]

SLn(Fq) random transvections n 9.2 [86]

T (d, k) ∼





(d/4) log(d/(k − d)) if k − d = o(d)

aηd if k = (1 + η)d

d/ log2(k/d) if d/k = o(1).

One can easily introduce the notion of Ls-mixing time and Ls-cut-off,
1 < s ≤ ∞, by replacing 2‖p(kn)

n − un‖TV by ds(p
(kn)
n , un) in Definitions 3.4,

3.3. In Definition 3.3(c), one should require that limn→∞ ds(p
(kn)
n , un) = ∞. In

this survey, we will focus mostly on mixing time and cut-off in total variation
but we will also make significant use the L2-distance d2.

Cut-off and group structure. Not all natural families of walks have a cut-
off. For instance, the walk on Gn = Z/nZ driven by the uniform measure on
{−1, 0, 1} does not present a cut-off. For this walk, it takes k of order n2 to
have ‖p(k)

n − un‖TV close to 1/2. It then takes order n2 additional steps to go
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down to 1/4, etc. In particular, for any integer k > 0,

0 < lim inf
n→∞

‖p(kn2)
n − un‖TV ≤ lim sup

n→∞
‖p(kn2)
n − un‖TV < 1.

See Sections 7.2 and 8.2 below.
Trying to understand which walks on which families of groups have a cut-

off is one of the difficult open problems concerning random walks on finite
groups. To be meaningful, this question should be made more precise. One
possibility is to focus on walks driven by the uniform measure on minimal
generating sets, i.e., generating sets that do not contain any proper gener-
ating sets (one might allow here the inclusion of inverses to have reversible
walks and of the identity to cure periodicity problems). For instance, the set
Σ = {(1, i) : 1 < i ≤ n} (where (1, i) means transpose 1 and i) is a minimal
generating set of Sn and in this case one may want to consider the “transpose
top and random” measure p�, i.e., the uniform probability measure on {e}∪Σ.
Fourier analysis can be used to show that (Sn, p�) has a cut-off at time n logn,
see Section 9.5 below. For another example, take Σ = {τ, c} where τ = (1, 2)
and c is the long cycle (1, 2 . . . , n) in Sn. These two elements generate Sn and
this is obviously a minimal generating set. Let pτ,c denotes the uniform mea-
sure on {τ, c}. It is known that, for odd n, cn3 log n ≤ T (Sn, pτ,c) ≤ Cn3 logn
(see [45, 142] and Section 10). It is conjectured that this walk has a cut-off.

Problem 3.5. Is it true that most natural families (Sn, pn) where pn is uni-
form on a minimal generating set of Sn have a cut-off?

Problem 3.6. Is it true that most natural families (Gn, pn) where each Gn
is a simple group and pn is uniform on a minimal generating set of Gn have
a cut-off?

Problem 3.7. What is the range of the possible cut-off times for walks on
the symmetric group Sn based on minimal generating sets? (known examples
have the form tn = cna logn with a a small integer)

Unfortunately, these problems seem extremely difficult to attack. It is
known that about 3/4 of all pairs of permutations in Sn generate Sn [52]
but no one seems to know how to study the associated random walks,
let alone to prove or disprove the existence of a cut-off. The situation
is similar for all finite simple groups (almost all pairs in a finite sim-
ple group generate the group [130]). One of the only satisfactory results
in this direction is a negative result which will be discussed in Section
7.2 and says that reversible walks (with holding) based on minimal gen-
erating sets in groups of order pa (such groups are necessarily nilpotent)
with a bounded and p any prime do not present a cut-off. Instead, such
walks behave essentially as the simple random walk (with holding) on the
circle group Zn.
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Precut-off. The cut-off phenomenon is believed to be widespread but it
has been proved only in a rather limited number of examples, most of which
are recorded in Table 2. Indeed, to prove that a cut-off occurs, one needs to
understand the behavior of the walk before and around the time at which it
reaches equilibrium and this is a difficult question. In [124], further versions
of the cut-off phenomenon are discussed that shed some light on this problem.
Let us point out that there are many families of walks ((Gn, pn)) for which
the following property is known to be satisfied.

Definition 3.8. We say that the family (Gn, pn) presents a precut-off if there
exist a sequence tn tending to infinity with n and two constants 0 < a < b <∞
such that

lim
n→∞

‖p(bkn)
n − un‖TV = 0 and lim

n→∞
‖p(akn)
n − un‖TV > 0.

Table 3. Precut-offs

G p (PCO) § Ref

Sn adjacent transposition pAT n3 log n 4.1, 5.3, 10.2 [42, 141]

Sn �-adjacent transposition, p�-AT (n3/�2) log n 10.2 [55]

Sn
nearest neighbors transposition

on a square grid
n2 log n 10.2 [42, 141]

Sn random insertion n log n 10.2 [42]

Sn
Borel-Chéron

random packet to top
n log n 3.1, 10.2 [42]

Sn random inversion n log n 10.2 [55]

Sn
neat overhand shuffle,

i.e., reverse top to random
n log n 10.2 [42]

Sn crude overhand shuffle n log n 3.1, 10.2 [42]

Sn
Rudvalis shuffle,

i.e., top to n − 1 or n
n3 log n 4.1 [31, 85]

Sn
uniform on e, (1, 2),

top to bottom, botton to top
n3 log n 4.1, 10.2 [31, 85]

An
Sn conjugacy classes

C=(c1,...,c
), |C|=c1+···+c
=m�n

n
m

log n 9.2 [119]

Um(q) Ei,j(a), a ∈ Zq, 1 ≤ i < j ≤ m m2 log m 4.2 [114]

Lie type small conjugacy classes n=rank(G) 9.2 [68]

Z
d
2 � Zd perfect shuffles d2 4.2 [138]

SLn(Zq) A±, B±, r prime, n fixed log q 6.4 [46, 98]
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Thus, if a family ((Gn, pn)) presents a precut-off at time tn, there exist two
constants 0 < c ≤ C < ∞ such that, for each ε > 0 small enough and all n
large enough,

ctn ≤ T (Gn, pn, ε) ≤ Ctn.

The notion of precut-off captures the order of magnitude of a possi-
ble cut-off, but it is unknown whether or not families having a precut-off
must have a cut-off. In many cases, it is conjectured that they do. The
Borel-Chéron shuffle and the crude overhand shuffle described in Section
3.1 are two examples of shuffles for which a precut-off has been proved
(with tn = n logn, see [42] and Section 10). Another example is the adja-
cent transposition walk driven by the uniform probability measure pAT on
{e} ∪ {(i, i + 1) : 1 ≤ i < n}. This walk satisfies a precut-off at tine n3 logn
([42, 141]). In all these cases, the existence of a cut-off is conjectured. See
[30, 141] and Table 3. Solutions to the variants of Problems 3.5, 3.6 and 3.7
involving the notion of precut-off instead of cut-off would already be very
valuable results.

4 Probabilistic Methods

Two probabilistic methods have emerged that produce quantitative estimates
concerning the convergence to stationarity of finite Markov chains: coupling
and strong stationary times. Coupling is the most widely known and used.
Strong stationary times give an alternative powerful approach. Both involve
the construction and study of certain “stopping times” and have theoretical
and practical appeal. In particular, a stationary time can be interpreted as
a perfect sampling method. These techniques are presented below and illus-
trated on a number of examples of random walks. The books [3, 27] are excel-
lent references, as are [1, 4, 5]. When these techniques work, they often lead
to good results through very elegant arguments. The potential user should be
warned that careful proofs are a must when using these techniques. Experience
shows that it is easy to come up with “obvious” couplings or stationary times
that end up not being coupling or stationary times at all. Moreover, these two
techniques, especially strong stationary times, are not very robust. A good
example of a walk that has not yet been studied using coupling or stationary
time is random insertion on the symmetric group: pick two positions i, j uni-
formly independently at random, pull out the card in position i and insert it
in position j. This walk has a precut-off at time n logn, see Section 10 and
Table 3.

4.1 Coupling

Let K be a Markov kernel on a finite set X with invariant distribution
π. A coupling is simply a sequence of pairs of X -valued random variables
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(X1
n, X

2
n) such that each marginal sequence (X i

n), i = 1, 2, is a Markov chain
with kernel K. These two chains will have different initial distributions, one
being often the stationary distribution π. The pair (X1

n, X
2
n) may or may

not be Markovian (in most practical constructions, it is). Given the coupling
(X1

n, X
2
n), consider

T = inf
{
n : ∀ k ≥ n, X1

k = X2
k

}
.

Call T the coupling time (note that T is not a stopping time in general).

Theorem 4.1. Denote by µin the distribution of X i
n, i = 1, 2. Then

dTV(µ1
n, µ

2
n) ≤ P(T > n).

This is actually a simple elementary result (see, e.g., [1, 3, 27]) but it turns out
to be quite powerful. For further developments of the coupling technique for
finite Markov chains, see [3] and the references therein. For relations between
coupling and eigenvalue bounds, see, e.g., [18].

Specializing to random walks on finite groups, we obtain the following.

Theorem 4.2. Let p a probability measure on a finite group G. Let (X1
n, X

2
n)

be a coupling for the random walk driven by p with (X1
n) starting at the identity

and (X2
n) stationary. Then

dTV(p(n), u) ≤ P(T > n).

One theoretical appeal of coupling is that there always exists a coupling such
that the inequalities in the theorems above are in fact equalities (see the
discussions in [3, 27] and the references given there). Hence the coupling tech-
nique is exactly adapted to the study of convergence in total variation. In
practice, Theorem 4.2 reduces the problem of estimating the total variation
distance between a random walk and the uniform probability measure on G
to the construction of a coupling for which P(T > n) can be estimated. This
is best illustrated and understood by looking at some examples.

Coupling for random to top [1, 4, 27]. TS
12 Consider the random to

top shuffling scheme where a card is chosen at random and placed on top.
Obviously, this is the inverse shuffle of top to random. On Sn, this is the walk
driven by the uniform measure on the cycles ci = (1, 2, . . . , i), i = 1, . . . , n.
To construct a coupling, imagine having two decks of cards. The first one
is in some given order, the second one is perfectly shuffled. Pick a card at
random in the first deck, say, the tenth card. Look at is face value, say, the
ace of spades. Put it on top and put a check on its back. In the second deck,
find the ace of spades and put it on top. At each step, repeat this procedure.
This produces a pair of sequences of Sn-valued random variables (X1

k , X
2
k)

corresponding respectively to the arrangements of each of the decks of cards.
Obviously, (X1

k) is a random walk driven by the random to top measure p.

TS
12 Where should these quotations be placed?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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The same is true for X2
n because choosing a position in the deck uniformly at

random is equivalent to choosing the face value of a card uniformly at random.
Say we have a match if a card value has the same position in both decks. This
coupling has the following property: any checked card stays matched with its
sister card for ever and each time an unchecked card is touched in the first
deck, it is checked and matched with its sister card. Note however that matches
involving an unchecked card from the first deck might be broken along the
way. In any case, the coupling time T is always less or equal to T ′, the first
time all cards in the first deck have been checked. A simple application of
the well-known coupon collector’s problem gives P(T ′ > k) ≤ ne−k/n. This,
combined with a matching lower bound result, shows that random to top (and
also top to random) mixes in about n logn shuffles, a result which compares
well with the very precise result of Theorem 3.2.

Coupling for random transposition [1, 27]TS
12 . For n cards, the ran-

dom transposition shuffle involves choosing a pair of positions (i, j) uniformly
and independently at random in {1, . . . , n} and switching the cards at these
positions. Thus, the random transposition measure pRT is given by

pRT(τ) =






2/n2 if τ = (i, j), 1 ≤ i < j ≤ n,
1/n if τ = e,
0 otherwise.

(4.1)

Obviously, choosing uniformly and independently at random a position i and
a face value V and switching the card in position i with the card with face
value V gives an equivalent description of this measure. Given two decks,
we construct a coupling by picking i and V uniformly and independently.
In each deck, we transpose the card in position i with the card with face
value V . In this way, the number of matches never goes down and at least
one new match is created each time the cards with the randomly chosen
face value V are in different positions in the two decks and the cards in
the randomly chosen position i have distinct face values. Let (Zk) denote
the Markov process on {0, . . . , n} started at n with transition probabilities
K(i, i − 1) = (i/n)2, K(i, i) = 1 − (i/n)2. Let T ′ = inf{k : Zk = 0}. Then,
it is not hard to see that E(T ) ≤ E(T ′) ≤ 2n2 where T is the coupling time.
By Theorem 4.2, we obtain dTV(p(k)

RT , u) ≤ E(T )/k ≤ 2n2/k and the sub-
additivity of k �→ 2dTV(p(k)

RT , u) yields dTV(p(k)
RT , u) ≤ e1−k/(12n2). This shows

that T (Sn, pRT) ≤ 36n2. Theorem 9.2 below states that (Sn, pRT) presents
a cut-off at time tn = 1

2n logn. Convergence after order n2 steps is the best
that has been proved for random transposition using coupling.

Coupling for adjacent transposition [1]TS
12 . Consider now the shuffling

scheme where a pair of adjacent cards are chosen at random and switched. The
adjacent transposition measure on Sn, call it pAT, is the uniform measure on
{e, (1, 2), . . . , (n−1, n)}. Set σ0 = e and σi = (i, i+1), 1 ≤ i < n. To construct
a coupling, consider two decks of cards. Call A the set containing 0 and all
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positions j ∈ {1, . . . , n− 1} such that neither the cards in position j nor the
cards in position j + 1 are matched in those decks. List A as {j0, j1, . . . , j�}
in order. Let J be a uniform random variable in {0, . . . , n− 1} and set

J∗ =

{
J if J �∈ A

jk+1 if J = jk ∈ A with the convention that �+ 1 = 0.

The coupling is produced by applying σJ to the first deck and σJ∗ to the
second deck. As J∗ is uniform in {0, . . . , n − 1}, this indeed is a coupling.
To analyze the coupling time, observe that matches cannot be destroyed and
that, for any face value, the two cards with this face value always keep the
same relative order (e.g., if the ace of spades is higher in the first deck than
in the second deck when we start, this stays the same until they are matched.
Call T ′i the first time card i reaches the bottom of the deck (in the deck in
which this card is initially higher) and set T ′ = maxi{T ′i}. Then the coupling
time T is bounded above by T ′. Finally, any single card performs a symmetric
simple random walk on {1, . . . , n} with holding probability 1− 2/n except at
the endpoints where the holding probability is 1−1/n. Properly rescaled, this
process converges weakly to reflected Brownian motion on [0, 1] and the hitting
time of 1 starting from any given point can be analyzed. In particular, there are
constants A, a > 0 such that, for any i and any s > 0, P(T ′i > sn3) ≤ Ae−as.
Hence, for C large enough, P(T > Cn3 logn) ≤ Ane−aC logn ≤ (2e)−1. This
shows that T (Sn, pAT) ≤ Cn3 logn. A matching lower bound is given at the
end of Section 5.3. Hence (Sn, pAT) presents a precut-off at time tn = n3 logn.
See also Theorem 10.4 and [141].

Other couplings. Here we briefly describe further examples of random walks
for which reasonably good couplings are known:

– Simple random walk on the hypercube {0, 1}n as described in Section 8.2.
See [1, 27, 105].

– The GSR riffle shuffle described in Section 3.2. See [1] for a coupling show-
ing that 2 log2 n riffle shuffles suffice to mix up n cards.

– Overhand shuffles [1, 116]. An overhand shuffle is a shuffle where the deck
is divided into k blocks and the order of the blocks are reversed. Peman-
tle [116] gives a coupling analysis of a range of overhand shuffle models
showing that, in many reasonable cases, order n2 logn shuffles suffice to
mix up n cards whereas at least order n2 are necessary. Note however that
the crude overhand shuffle discussed in Section 3.1 has a precut-off at time
tn = n logn.

– The following shuffling method is one of those discussed in Borel and
Chéron [15]: take the top card and insert it at random, take the bottom
card and insert it a random. The coupling described above for random to
top can readily be adapted to this case. See [1, 27].

– Slow shuffles. At each step, either stay put or transpose the top two cards
or move the top card to the bottom, each with probability 1/3. It is not
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hard to construct a coupling showing that order n3 logn shuffles suffice to
mix up the cards using this procedure. Rudvalis (see [27, p. 90]) proposed
another shuffle as a candidate for the slowest shuffle. At each step, move the
top card either to bottom or second to bottom each with probability 1/2.
Hildebrand gives a coupling for this shuffle in his Ph. D Thesis [85] and
shows that order n3 logn such shuffles suffice. For these slow shuffles and
related variants, Wilson [142] proves that order n3 logn shuffles are neces-
sary to mix up n cards.

4.2 Strong Stationary Time

Separation. Given a Markov kernel K with invariant distribution π on a fi-
nite set X , set

sepK(x, n) = max
y∈X

(
1− Kn(x, y)

π(y)

)
, sepK(n) = max

x∈X
sepK(x, n).

The quantity sep(n) = sepK(n) is called the maximal separation between
Kn and π. As

dTV(Kn(x, ·), π) =
∑

y:Kn(x,y)≤π(y)

(π(y)−Kn(x, y)) ,

it is easy to see that dTV(Kn(x, ·), π) ≤ sepK(x, n). Thus separation always
controls the total variation distance. Separation is an interesting alternative
way to measure ergodicity. The function n �→ sep(n) is non-increasing and
sub-multiplicative [3, 5]. As an immediate application of these elementary
facts, one obtains the following Doeblin’s type result: Assume that there exist
an integer m and a real c > 0 such that, for all x, y ∈ X, Km(x, y) ≥ cπ(y).
Then dTV(Knm(x, ·), π) ≤ sep(nm) ≤ (1−c)n (this line of reasoning produces
very poor bounds in general but an example where it is useful is given in [39]).

Let (Xk) be a Markov chain with kernel K. A strong stationary time is
a randomized stopping time T for (Xk) such that

∀ k, ∀ y ∈ X , P(Xk = y/T = k) = π(y). (4.2)

This is equivalent to say that XT has distribution π and that the random
variables T and XT are independent. For a discussion of the relation between
strong stationary time and coupling, see [5]. Relations between strong sta-
tionary time and eigenvalues are explored in [107]. Strong stationary times
are related to the separation distance by the following theorem of Aldous and
Diaconis [5, 3, 27].

Theorem 4.3. Let T be a strong stationary time for the chain starting at
x ∈ X . Then

∀n, sepK(x, n) ≤ Px(T > n).

Moreover there exists a strong stationary time such that the above inequality
is an equality.
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Separation for random walks. In the case of random walks on finite
groups, separation becomes

sep(k) = sepp(k) = max
x∈G

(
1− |G|p(k)(x)

)
.

The next theorem restates the first part of Theorem 4.3 and gives an additional
result comparing separation and total variation distances in the context of
random walks on finite groups. See [5] and the improvement in [23].

Theorem 4.4. Let p be a probability measure on a finite group G. Then

dTV(p(k), u) ≤ sep(k)

and, provided dTV(p(k), u) ≤ (|G| − 1)/(2|G|),

sep(2k) ≤ 2dTV(p(k), u).

Let T be a strong stationary time for the associated random walk starting at
the identity e. Then

dTV(p(k), u) ≤ sep(k) ≤ Pe(T > k).

One can easily introduce the notion of separation cut-off (and precut-off): The
family ((Gn, pn)) has a separation cut-off if and only if there exists a sequence
sn tending to infinity such that

lim
n→∞

seppn
(*(1− ε)sn+) = 1, lim

n→∞
seppn

(*(1 + ε)sn+) = 0.

Theorem 4.4 implies that if ((Gn, pn)) has both a total variation cut-off at
time tn and a separation cut-off at time sn then tn ≤ sn ≤ 2tn.

There is sometimes an easy way to decide whether a given strong stationary
time is optimal (see [33, Remark 2.39]).

Definition 4.5. Given an ergodic random walk (Xn) on G started at e and
a strong stationary time T for (Xn), the group element x is called a halting
state if Pe(Xk = x, T > k) = 0, for all k = 0, 1, . . . .

Hence, a halting state is an element that cannot be reached before the strong
stationary time T (observe that, of course, Pe(XT = x) > 0). Obviously, if
there is a halting state, then T is a stochastically smallest possible strong
stationary time. As for coupling, the power of strong stationary times is best
understood by looking at examples.

Stationary time for top to random [27]TS
12 . Let q1 denote the top to

random measure on Sn. Consider the first time T1 a card is inserted under
the bottom card. This is a geometric waiting time with mean n. Consider
the first time T2 a second card is inserted under the original bottom card.
Obviously T2−T1 is a geometric waiting time with mean n/2, independent of
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T1. Moreover, the relative position of the two cards under the original bottom
card is equally likely to be high-low or low-high. Pursuing this analysis, we
discover that the first time T the bottom card comes on top and is inserted
at random is a strong stationary time. Moreover T = Tn = T1 + (T2 − T1) +
· · · + (Tn − Tn−1) where Ti − Ti−1 are independent geometric waiting time
with respective means n/i. Hence Pe(T > k) can be estimated. In particular,
it is bounded by ne−k/n. Hence Theorem 4.4 gives

dTV(q(k)1 , u) ≤ sep(k) ≤ Pe(T > k) ≤ ne−k/n.

This is exactly the same bound as provided by the coupling argument de-
scribed earlier. In fact, in this example, the coupling outlined earlier and the
stationary time T above are essentially equivalent. This T is not an optimal
stationary time but close. Let T ′ be the first time the card originally second
to bottom comes to the top and is inserted. This T ′ is an optimal stationary
time. It has a halting state: the permutation corresponding to the deck in
exact reverse order. This example has both a total variation and a separation
cut-off at time tn = n logn.

Stationary time for random transposition [27]TS
12 . We describe a strong

stationary time constructed by A. Broder. Variants are discussed in [27, 106].
The construction involves checking the back of the cards as they are shuffled
using repeated random transpositions. Recall that the random transposition
measure pRT defined at (4.1) can be described by letting the left and right
hands choose cards uniformly and independently at random. If either both
hands touch the same unchecked card or if the card touched by the left hand
is unchecked and the card touched by the right hand is checked then check
the back of the card touched by the left hand. Let T be the time that only
one card remains unchecked. The claim is that T is a strong stationary time.
See [27] for details. This stationary time has mean 2n logn+O(logn) and can
be used to show that a little over 2n logn random transpositions suffices to
mix up a deck of n cards. This is better than what is obtained by the best
known coupling, i.e., n2. Theorem 9.2 and Matthews [106] show that (Sn, pRT)
has a total variation cut-off as well as a separation cut-off at time 1

2n logn.

Stationary time for riffle shuffle [27]TS
12 . Recall that the inverse of

a riffle suffle can be described as follows. Consider a binary vector of length n
whose entries are independent uniform {0, 1}-random variables. Sort the deck
from bottom to top into a left pile and a right pile by using the above binary
vector with 0 sending the card left and 1 sending the card right. When this is
done, put the left pile on top of the right to obtain a new deck. A sequence
of k inverse riffle shuffles can be described by a binary matrix with n rows
and k columns where the (i, j)-entry describes what happens to the original
i-th card during the j-th shuffle. Thus the i-th row describes in which pile the
original i-th card falls at each of the k shuffles.
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Let T be the first time the matrix above has distinct rows. Then T is
a strong stationary time. Indeed, using the right to left lexicographic order
on binary vectors, after any number of shuffles, cards with “small” binary
vectors are on top of cards with “large” binary vectors. At time T all the rows
are distinct and the lexicographic order sorts out the cards and describes
uniquely the state of the deck. Because the entries are independent uniform
{0, 1}-variables, at time T , all deck arrangements are equally likely. Moreover,
the chance that T > k is the same as the probability that dropping n balls
into 2k boxes there is no box containing two or more balls. This is the same
as the birthday problem and we have

Pe(T > k) = 1−
n−1∏

1

(1− i2−k).

Using Calculus, this proves a separation cut-off at time 2 log2 n. Indeed, this
stationary time has a halting state: the deck in reverse order. Theorem 3.1
proves a variation distance cut-off at time 3

2 log2 n. See [1, 13, 27].

Stationary time on nilpotent groups. In his thesis [112], Pak used strong
stationary times skillfully to study problems that are somewhat different from
those discussed above. The papers [7, 21, 114] develop results for nilpotent
groups (for a definition, see Section 7 below). Here is a typical example. Let
Um(q) denote the group of all upper-triangular matrices with 1 on the diagonal
and coefficients mod q where q is an odd prime. Let Ei,j(a), 1 ≤ i < j ≤ m,
denote the matrix in Um(q) whose non-diagonal entries are all 0 except the
(i, j)-entry which equals a. The matrices Ei,i+1(1), 1 ≤ i < m, generate Um(q).
Consider the following two sets

Σ1 = {Ei,i+1(a) : a ∈ Zq, 1 ≤ i < m}
Σ2 = {Ei,j(a) : a ∈ Zq, 1 ≤ i < j ≤ m}.

and let p1, p2 denote the uniform probability on Σ1, Σ2 respectively. The ar-
ticle [114] uses the strong stationary time technique to prove that the walk
driven by p2 presents a precut-off at time tm = m2 logm, uniformly in the
two parameters m, q. In particular, there are constants C, c such that

cm2 logm ≤ T (Um(q), p2) ≤ Cm2 logm.

The results for the walk driven by p1 are less satisfactory. In [21], the
authors use a strong stationary time to show that if q % m2 then

cm2 ≤ T (Um(q), p1) ≤ Cm2.

The best known result for fixed q is described in Section 7 below and says
that T (Um(q), p1) ≤ Cm3.
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Stopping time and semidirect products. In his thesis [138], Uyemura-
Reyes develops a technique for walks on semidirect products which is closely
related to the strong stationary time idea. Let H,K be two finite groups and
φ : k �→ φk a homomorphism from K to the automorphism group of H . The
semidirect product H �φ K is the group whose underlying set is H ×K and
whose product law is (h1, k1)(h2, k2) = (h1φk1(h2), k1k2). By construction, H
is normal in H�φK. It follows that there is a natural projection from H�φK
onto K ∼= (H�φK)/H . If p is a probability measure on H�φK, let pK denote
its projection on K. Let (Xn) be the random walk on H �φ K driven by p
and write Xn = (ζn, ξn) with ζn ∈ H, ξn ∈ K. Then (ξn) is a random walk on
K driven by pK . Consider a stopping time T for (Xn) which satisfies

Pe(ζn = h, ξn = k/T ≤ n) =
1
|H |Pe(ξn = k/T ≤ n). (4.3)

Theorem 4.6. Referring to the notation introduced above, let (Xn) be the
random walk on G = H�φK driven by p and starting at the identity. Assume
that T is a stopping time satisfying (4.3). Then

‖p(n) − uG‖TV ≤ ‖p(n)
K − uK‖TV + 2Pe(T > n).

Moreover,
sepp(n) ≤ seppK

(n) + |K|Pe(T > n).

We now describe two applications taken from [138]. See [77] for related results.
Let G = Z

d
b � Zd where the action of Zd is by circular shift of the coordinates

in Z
d
b . When b = 2, this example has a card shuffling interpretation. Given

a deck of 2n cards, there are exactly two different perfect shuffles: cut the deck
into two equal parts and interlace the two heaps starting either from the left
or the right heap. When 2n = 2d for some d, the subgroup of S2n generated by
the two perfect shuffles is isomorphic to G = Z

d
2 � Zd. One of the shuffles can

be interpreted as g1 = (0, 1) and the other as g2(11, 1) where 0 = (0, . . . , 0)
and 11 = (1, 0, . . . , 0) in Z

d
2. Consider the simple random walk on G = Z

d
2 �Zd

driven by the probability p with p(e) = 2p(g1) = 2p(g2) = 1/2. Theorem 4.6
can be used to prove that T (Zd2 � Zd, p) ≤ Cd2 ([138] also gives a matching
lower bound).

For a second example, take b = d and consider the probability measure p
defined by p(0, 0) = p(±11, 0) = p(0,±1) = p(±11, 1) = p(±11,−1) = 1/9.
Uyemura-Reyes uses Theorem 4.6 to prove the mixing time upper bound
T (Zdd � Zd, p) ≤ Cd3 log d. He also derives a lower bound of order d3.

5 Spectrum and Singular Values

5.1 General Finite Markov Chains

Diagonalization. Let K be a Markov kernel with invariant distribution
π on a finite set X . Irreducibility and aperiodicity can be characterized in
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terms of the spectrum of K on L2(π) where L2(π) denote the space of
all complex valued functions equipped with the Hermitian scalar product
〈f, g〉π =

∑
x f(x)g(x)π(x). Indeed, K is irreducible if and only if 1 is a simple

eigenvalue whereas K is aperiodic if and only if any eigenvalue β �= 1 satisfies
|β| < 1.

If K and K∗ commute, that is, if K viewed as an operator on L2(π) is
normal, then K is diagonalizable in an orthonormal basis of L2(π). Let (βi)i≥0

be an enumeration of the eigenvalues, each repeated according to its multi-
plicity and let (vi)i≥0 be a corresponding orthonormal basis of eigenvectors.
Note that in general, the βi are complex numbers and the vi complex valued
functions. Without loss of generality, we assume that β0 = 1 and u0 ≡ 1.
Then

Kn(x, y)
π(y)

=
∑

i≥0

βni vi(x)vi(y) (5.1)

and
dπ,2(Kn(x, ·), π)2 =

∑

i≥1

|βi|2n|vi(x)|2. (5.2)

Let us describe a simple but useful consequence of (5.2) concerning the
comparison of the L2(π)-distances to stationarity of the discrete and contin-
uous Markov processes associated to a given reversible Markov kernel K. An
application is given below at the end of Section 8.2.

Theorem 5.1. Let (K,π) be a reversible Markov kernel on a finite set X and
let Ht be as in (2.3). Then

dπ,2(Kn(x, ·), π)2 ≤ β2n1
− (1 + dπ,2(Hn2(x, ·), π)2) + dπ,2(Hn(x, ·), π)2

where n = n1 + n2 + 1 and β− = max{0,−βmin}, βmin being the smallest
eigenvalue of K. Moreover,

dπ,2(H2n(x, ·), π)2 ≤ (π(x)−1 − 1)e−2n + dπ,2(Kn(x, ·), π)2.

Proof. The idea behind this theorem is simple: as (K,π) is reversible, it has
real eigenvalues 1 = β0 ≥ β1 ≥ · · · ≥ β|X |−1 ≥ −1. Viewed as an operator,
Ht is given by Ht = e−t(I−K) and has real eigenvalues e−t(1−βi), in increasing
order, associated with the same eigenvectors as for K. Hence, using (5.2) and
the similar formula for Ht, the statements of Theorem 5.1 follow from simple
Calculus inequalities. See Lemma 3 and Lemma 6 in [42] for details. The
factor π(x)−1 appears because, using the same notation as in (5.2), we have∑

i≥0 |vi(x)|2 = π(x)−1. �


Poincaré inequality. When (K,π) is reversible, an important classical tool
to bound eigenvalues is the variational characterization of the first eigenvalue.
Set

E(f, g) = 〈(I −K)f, g〉π =
∑

x

[(I −K)f(x)]g(x)π(x). (5.3)
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This form is called the Dirichlet form associated to (K,π). A simple compu-
tation shows that

E(f, g) =
1
2

∑

x,y

(f(x) − f(y))(g(x)− g(y))π(x)K(x, y). (5.4)

Restricting attention to the orthogonal of the constant functions, we see that

λ1 = 1− β1 = inf
{
E(f, f)
Varπ(f)

: f ∈ L2(π), Varπ(f) �= 0
}

(5.5)

where Varπ(f) denote the variance of f with respect to π, that is,

Varπ(f) = π(f2)− π(f)2 =
1
2

∑

x,y

|f(x)− f(y)|2π(x)π(y). (5.6)

It follows that, for any A ≥ 1, the inequality β1 ≤ 1 − 1/A is equivalent to
the so-called Poincaré inequality

Varπ(f) ≤ A E(f, f).

The quantity λ1 = 1− β1 is called the spectral gap of (K,π). It is the second
smallest eigenvalue of I−K. Some authors call 1/λ1 the relaxation time. It is
a widespread misconception that the relaxation time contains all the informa-
tion one needs to have good control on the convergence of a reversible Markov
chain. What λ1 gives is only the asymptotic exponential rate of convergence
of Ht − π to 0 as t tends to infinity.

Singular values. When K and its adjoint K∗ do not commute, it seems hard
to use the spectrum of K to get quantitative information on the convergence of
Kn(x, ·) to π. However, the singular values of K can be useful. For background
on singular values, see [91, Chap. 18]. Consider the operators KK∗ and K∗K.
Both are self-adjoint on L2(π) and have the same eigenvalues, all non-negative.
Denote the eigenvalues ofK∗K in non-increasing order and repeated according
to multiplicity by

σ2
0 = 1 ≥ σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

|X |−1

with σi ≥ 0, 0 ≤ i ≤ |X | − 1. Then, the non-negative reals σi are called
the singular values of K. More generally, for each integer j, denote by σi(j),
0 ≤ i ≤ |X | − 1 the singular values of Kj and let also vi,j be the associated
normalized eigenfunctions. Then we have

dπ,2(Kn(x, ·), π)2 =
∑

i≥1

σi(n)2|vi,n(x)|2. (5.7)

As
∑
i≥0 |vi,j(x)|2 = π(x)−1 and σi(n) ≤ σ1(n) ≤ σn1 (see [91, Th. 3.3.14]),

we obtain
∀n ∈ N, dπ,2(Kn(x, ·), π)2 ≤

(
π(x)−1 − 1

)
σ2n

1 .
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Let us emphasize here that it may well be that σ1 = 1 even when K is ergodic.
In such cases one may try to save the day by using the singular values of Kj

where j is the smallest integer such that σ1(j) < 1. This works well as long
as j is relatively small. We will see below in Theorem 5.3 how to use all the
singular values of K (or Kj) in the random walk case.

5.2 The Random Walk Case

Let us now return to the case of a left-invariant random walk driven by
a probability measure p on a group G, i.e., the case when K(x, y) = p(x−1y)
and π = u. In this case an important simplification occurs because, by left-
invariance, the left-hand side of both (5.2) and (5.7) are independent of x.
Averaging over x ∈ G and using the fact that our eigenvectors are normalized
in L2(G), we obtain the following.

Theorem 5.2. Let p a probability measure on a finite group G. Assume that
p ∗ p̌ = p̌ ∗ p, then we have

d2(p(n), u)2 =
∑

i≥1

|βi|2n (5.8)

where βi, 0 ≤ i ≤ |G|−1 are the eigenvalues associated to K(x, y) = p(x−1y)
as above. In particular, if β∗ = max{|βi| : i = 1, . . . , |G| − 1} denotes the
second largest eigenvalue in modulus, we have

d2(p(n), u)2 ≤ (|G| − 1)β2n
∗ . (5.9)

Note that p and p̌ always commute on abelian groups. Sections 6 and 10 below
discuss techniques leading to eigenvalues estimates.

Theorem 5.3. Let p a probability measure on a finite group G. Then, for any
integers n,m we have

d2(p(nm), u)2 ≤
∑

i≥1

σi(m)2n (5.10)

where σi(m), 0 ≤ i ≤ |G|−1 are the singular values associated to Km(x, y) =
p(m)(x−1y) in non-increasing order. In particular, for each m, we have

d2(p(nm), u)2 ≤ (|G| − 1)σ1(m)2n. (5.11)

Proof. Use (5.7) and the fact (see e.g., [91, Th. 3.3.14]) that, for all k, n,m,
k∑

0

σ(nm)2 ≤
k∑

0

σi(m)2n.

�


It is worth restating (5.10) as follows.
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Theorem 5.4. Let p a probability measure on a finite group G and let qm
denote either q̌(m) ∗ q(m) or q(m) ∗ q̌(m). Then

d2(p(nm), u) ≤ d2(q(�n/2�)m , u).

For applications of Theorem 5.4, see Section 10.3.
Let us point out that the fact that (5.8) and (5.10) do not involve eigen-

functions is what makes eigenvalue and comparison techniques (see Section
10) so powerful when applied to random walks on finite groups. For more
general Markov chains, the presence of eigenfunctions in (5.2) and (5.7) make
them hard to use and one often needs to rely on more sophisticated tools such
as Nash and logarithmic Sobolev inequalities. See, e.g., [3, 47, 48, 124] and
Martinelli’s article in this volume.

5.3 Lower Bounds

This section discusses lower bounds in total variation. The simplest yet use-
ful such lower bound follows from a direct counting argument: Suppose the
probability p has a support of size at most r. Then p(k) is supported on at
most rk elements. If k is too small, not enough elements have possibly been
visited to have a small variation distance with the uniform probability on G.
Namely,

‖p(k) − u‖TV ≥ 1− rk/|G| (5.12)

which gives

T (G, p) ≥ log(|G|/2)
log r

.

Useful improvements on this bound can be obtain if one has further informa-
tion concerning the group law, for instance if G is abelian or if many of the
generators commutes. See, e.g., [56] and [19].

Generally, lower bounds on total variation are derived by using specific
test sets or test functions. For instance, for random transposition and for
transpose top and random on the symmetric group, looking at the number of
fixed points yields sharp lower bounds in total variation, see [27, p. 43]. For
random transvection on SLn(Fq), the dimension of the space of fixed vectors
can be used instead [86].

Eigenvalues and eigenfunctions can also be useful in proving lower bounds
on d2(p(k), u) and, more surprisingly, on ‖p(k)−u‖TV. Start with the following
two simple observations.

Proposition 5.5. Let p be a probability measure on a finite group G. Assume
that β is an eigenvalue of p with multiplicity m. Then

d2(p(k), u)2 ≥ m|β|2k, 2‖p(k) − u‖TV ≥ |β|k.



294 Laurent Saloff-Coste

Proof. Let V be the eigenspace of β, of dimension m. It is not hard to
show that V contains a function φ, normalized by ‖φ‖2 = 1 and such that
φ(e) = ‖φ‖∞ ≥

√
m. See [20, p. 103]. Then d2(p(k), u) ≥ |〈p(k) − u, φ〉| =

|φ ∗ p̌(k)(e)| = |β|k|φ(e)| = |β|k
√
m. For the total variation lower bound, use

the last expression in (2.8) with any β-eigenfunction as a test function. �


Note that it is not uncommon for random walks on groups to have eigenvalues
with high multiplicity. Both of the inequalities in Proposition 5.5 are sharp
as k tends to infinity when β is the second largest eigenvalue in modulus.
However, the first inequality often gives good lower bound on the smallest
k such that d2(p(k), u) ≤ ε for fixed ε whereas the second inequality seldom
does for the similar question in total variation (the walk on the hypercube
of Theorem 8.7 illustrates this point). The following proposition can often be
used to obtain improved total variation lower bounds. It is implicit in [27] and
in [141]. See also [123, 126].

Proposition 5.6. Let β be an eigenvalue of p. Let φ be an eigenfunction
associated to β. Let Bk be such that

∀ k, Varp(k)(φ) ≤ B2
k. (5.13)

Then ‖p(k) − u‖TV ≥ 1− τ for any τ ∈ (0, 1) and any integer k such that

k ≤ 1
−2 log |β| log

τ |φ(e)|2
4(‖φ‖22 +B2

k)
.

The difficulty in applying this proposition is twofold. First, one must choose
a good eigenfunction φ maximizing the ratio φ(e)2/(‖φ‖22 +B2

k). Second, one
must prove the necessary bound (5.13) with good Bk’s (e.g., Bk uniformly
bounded) and this turns out to be a rather non-trivial task. Indeed, it involves
taking advantage of huge cancellations in Varp(k)(φ) = p(k)(|φ|2)− |p(k)(φ)|2.
In this direction, the following immediate proposition is much more useful
than it might appear at first sight.

Proposition 5.7. Let β, φ be as in Proposition 5.6. Assume that there are
eigenvalues αi and associated eigenfunctions ψi, i ∈ I, relative to p such that

|φ|2 =
∑

i∈I
aiψi.

Then
Varp(k)(φ) =

∑

i∈I
aiα

k
i ψi(e)− |β|2k|φ(e)|2.

The reason this is useful is that, in some cases, expanding |φ|2 along eigen-
functions requires only a few eigenfunctions which, in some sense, are close
to φ. To see how this works, consider the simple random walk on the hyper-
cube G = Z

d
2 equipped with its natural set of generators (ei)d1 where ei is the
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d-tuple with all entries zero except the i-th equal to 1. See [27, pg. 28-29]. To
avoid periodicity, set e0 = (0, . . . , 0) and consider the measure p given by

p(x) =
{

1/(d+ 1) if x = ei for some i ∈ {0, . . . , d}
0 otherwise. (5.14)

Denote by xi the coordinates of x ∈ Z
d
2. Then (−1)xi = 1 − 2xi is an

eigenfunction with eigenvalue 1 − 2/(d + 1) for each i ∈ {1, . . . , d} and so
is φ(x) =

∑d
1(−1)xi = 2|x| − d where |x| =

∑d
1 xi. Now

|φ(x)|2 = d+ 2
∑

1≤i<j≤n
(−1)xi+xj = dψ0(x) + 2ψ2(x)

where ψ0 ≡ 1 and ψ2 =
∑

1≤i<j≤n(−1)xi+xj are eigenfunctions with respec-
tive eigenvalues 1 and 1− 4/(d+ 1). Hence

Varp(k)(φ) = d+ d(d− 1)
(

1− 4
d+ 1

)k
− d2

(
1− 2

d+ 1

)2k

.

By careful inspection, for any integer k, the right-hand side is less than d.
Using this in Proposition 5.6 shows that, for the simple random walk on the
hypercube, ‖p(k) − u‖TV ≥ 1 − τ for k ≤ 1

4d log(τd). This is sharp since the
simple random walk on the hypercube has a cut-off at time td = 1

4d log d. See
Theorem 8.7 below.

The next theorem and its illustrative example are taken from [141]. See
also [126]. Set

∇φ(x) =

(
1
2

∑

y

|f(x)− f(xy)|2p(y)
)1/2

.

Theorem 5.8. Let β, φ be as in Proposition 5.6. Then

Varp(k)(φ) ≤ 2‖∇φ‖2∞
1− |β|2 . (5.15)

Moreover ‖p(k) − u‖TV ≥ 1− τ for all τ ∈ (0, 1) and all k such that

k ≤ 1
2 log |β| log

(
τ(1 − |β|2)|φ(e)|2
4(2 + |β|)‖∇φ‖2∞

)
.

As an example, consider the random adjacent transposition measure pAT, i.e.,
the uniform measure on {e, (1, 2), . . . , (n, n−1)} ⊂ Sn. To find some eigenfunc-
tions, consider how one given card moves, say card 1. It essentially performs
a ±1 random walk on {1, . . . , n} with holding 1/2 at the endpoints. For this
random walk, v(j) = cos[π(j−1/2)/n] is an eigenfunction associated with the
eigenvalue cosπ/n. For � ∈ {1, . . . , n}, let �(x) be the position of card � in
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the permutation x and v�(x) = v(�(x)). Then, each v� is an eigenfunction of
p with eigenvalue 1 − (2/n)(1 − cosπ/n). This is actually the second largest
eigenvalue, see [12]. Obviously, the function

φ(x) =
n∑

�=1

v�(e)v�(x)

is an eigenfunction for the same eigenvalue. Moreover, ‖∇φ‖2∞ ≤ 2π2φ(e)/n3

and φ(e) = n(1+o(1)). Hence for all τ ∈ (0, 1) and k ≤ (1−o(1))π−2n3 log τn,
Theorem 5.8 gives ‖pAT − u‖TV ≥ 1− τ . This is quite sharp since it is known
that T (Sn, pAT) ≤ Cn3 logn. See Sections 4.1, 10 and the discussion in [141].

6 Eigenvalue Bounds Using Paths

This section develops techniques involving the geometric notion of paths. Left-
invariant random walks on finite groups can be viewed as discrete versions of
Brownian motions on compact Lie groups. It is well understood that certain
aspects of the behavior of Brownian motion on a given manifold depend on the
underlying Riemannian geometry and this has been a major area of research
for many years. Many useful ideas and techniques have been developed in
this context. They can be harvested without much difficulty and be brought
to bear in the study of random walks on groups. This has produced great
results in the study of random walks on infinite finitely generated groups.
See [125, 139, 145]. It is also very useful for random walks on finite groups
and, more generally, for finite Markov chains. For the development of these
ideas for finite Markov chains, see [3, 51, 124, 131]. In the finite Markov
chain literature, the use of path techniques is credited to Jerrum and Sinclair.
See [131] for an excellent account of their ideas.

6.1 Cayley Graphs

Fix a finite group G and a finite generating set S which is symmetric, i.e.,
satisfies Σ = Σ−1. The (left-invariant) Cayley graph (G,Σ) is the graph with
vertex set G and edge set

E = {(x, y) ∈ G×G : ∃ s ∈ Σ, y = xs}.

The simple random walk on the Cayley graph (G,Σ) is the walk driven by
the measure p = (#Σ)−11Σ . It proceeds by picking uniformly at random
a generator in Σ and multiplying by this generator on the right.

Define a path to be any finite sequence γ = (x0, . . . , xn) of elements of G
such that each of the pair (xi, xi+1), i = 0, . . . , n− 1 belongs to E, i.e., such
that x−1

i xi+1 ∈ Σ. The integer n is called the length of the path γ and we set
|γ| = n. Denote by P the set of all paths in (G,Σ).
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Definition 6.1. For any x, y ∈ G, set

|x|Σ = min {k : ∃ s1, . . . , sk ∈ Σ, x = s1 . . . sk},

dΣ(x, y) = min {|γ| : γ ∈ P , x0 = x, xn = y},

DΣ = max
x,y∈G

dΣ(x, y).

We call dΣ the graph distance and DΣ the diameter of (G,Σ).

In words, |x|Σ is the minimal number of elements s1, . . . , sk of the generating
set Σ needed to write x as a product x = s1 . . . sk, with the usual convention
that the empty product equals the identity element e. Obviously the graph
distance is left invariant and

dΣ(x, y) = |x−1y|Σ , DΣ = max
x∈G

|x|Σ .

The reference to Σ will be omitted when no confusion can possibly arise.
Babai [8] gives an excellent survey on graphs having symmetries including
Cayley graphs.

6.2 The Second Largest Eigenvalue

Let G be a finite group and p be a probability measure on G whose support
generates G. We assume in this section that p is symmetric, i.e., p = p̌.
Hence the associated operator on L2(G) is diagonalizable with real eigenvalue
1 = β0 ≥ β1 ≥ · · · ≥ β|G|−1 in non-increasing order and repeated according
to multiplicity. We will focus here on bounding β1 from above. The results
developed below can also be useful for non symmetric measure thanks to the
singular value technique of Theorem 5.3. See Section 10.3.

There are a number of different ways to associate to p an adapted ge-
ometric structure on G. For simplicity, we will consider only the following
procedure. Pick a symmetric set of generators Σ contained in the support
of p and consider the Cayley graph (G,Σ) as defined in Section 6.1. In partic-
ular, this Cayley graph induces a notion of path and a left-invariant distance
on G. The simplest result concerning the random walk driven by p and in-
volving the geometry of the Cayley graph (G,Σ) is the following. See, e.g.,
[2, 42].

Theorem 6.2. Let (G,Σ) be a finite Cayley graph with diameter D. Let p be
a probability measure such that p = p̌ and ε = minΣ p > 0. Then the second
largest eigenvalue β1 of p is bounded by β1 ≤ 1− ε/D2.

This cannot be much improved in general as can be seen by looking at the sim-
ple random walk on G = Z

n
2×Z2a with a% n. See [45]. The papers [10, 11, 97]

describe a number of deep results giving diameter estimates for finite Cayley



298 Laurent Saloff-Coste

graphs. These can be used together with Theorem 6.2 to obtain eigenvalue
bounds.

Two significant improvements on Theorem 6.2 involve the following nota-
tion. Recall from Section 6.1 that P denotes the set of all paths in (G,Σ). For
s ∈ Σ and any path γ = (x0, . . . , xn) ∈ P , set

N(s, γ) = #{i ∈ {0, . . . , n− 1} : x−1
i xi+1 = s}. (6.1)

In words, N(s, γ) counts how many times the generator s appears along the
path γ. Let Px,y be the set of all finite paths joining x to y and Px be the set
of all finite paths starting at x. For each x ∈ G, pick a path γx ∈ Pe,x and set

P∗ = {γx : x ∈ G}.

Theorem 6.3 ([42]). Referring to the notation introduced above, for any
choice of P∗, set

A∗ = max
s∈Σ





1

|G|p(s)
∑

γ∈P∗

|γ|N(s, γ)




 .

Then β1 ≤ 1− 1/A∗.

This theorem is a corollary of Theorem 6.4 which is proved below. The nota-
tion A∗ reminds us that this bound depends on the choice of paths made to
construct the set P∗. To obtain Theorem 6.2, define P∗ by picking for each
x a path from e to x having minimal length. Then bound |γx| and N∗(s, γx)
from above by D, and bound p(s) from below by ε.

Making arbitrary choices is not always a good idea. Define a flow to be
a non-negative function Φ on Pe (the set of all paths starting at e) such that,

∀x ∈ G,
∑

γ∈Pe,x

Φ(γ) =
1
|G| .

For instance, for each x, let Ge,x be the set of all geodesic paths (paths of
minimal length) in Pe,x. The function

Φ(γ) =
{ 1

#Ge,x|G| if γ ∈ Ge,x for some x ∈ G

0 otherwise

is a flow.

Theorem 6.4 ([49, 124]). Let Φ be a flow and set

A(Φ) = max
s∈Σ





1

p(s)

∑

γ∈Pe

|γ|N(s, γ)Φ(γ)




 .

Then β1 ≤ 1− 1/A(Φ).
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Proof. The proof is based on the elementary variational inequality (5.5) which
reduces Theorem 6.4 to proving the Poincaré inequality

∀ f ∈ L2(G), Varu(f) ≤ A(Φ)E(f, f). (6.2)

Here we have
Varu(f) =

1
2|G|2

∑

x,y∈G
|f(xy)− f(x)|2 (6.3)

and
E(f, f) =

1
2|G|

∑

x,y∈G
|f(xy)− f(x)|2p(y). (6.4)

The similarity between these two expressions is crucial to the argument below.
For any path γ = (y0, . . . , yn) from e to y of length |γ| = n, set γi = y−1

i yi+1,
0 ≤ i ≤ n− 1 and write

f(xy)− f(x) =
n−1∑

i=0

(f(xyi+1)− f(xyi)) =
n−1∑

i=0

(f(xyiγi)− f(xyi)).

Squaring and using the Cauchy-Schwarz inequality, gives

|f(xy)− f(x)|2 ≤ |γ|
n−1∑

i=0

|f(xyiγi)− f(xyi)|2.

Summing over x ∈ G yields

∑

x∈G
|f(xy)− f(x)|2 ≤ |γ|

n−1∑

i=0

∑

x∈G
|f(xγi)− f(x)|2

≤ |γ|
∑

s∈Σ

∑

x∈G
N(s, γ)|f(xs)− f(x)|2.

Multiplying by Φ(γ), summing over all γ ∈ Pe,y and then averaging over all
y ∈ G yields

Var(f) ≤ 1
2|G|

∑

s∈Σ

∑

x∈G

∑

γ∈Pe

|γ|N(s, γ)Φ(γ)|f(xs)− f(x)|2.

Hence

Var(f) ≤ 1
2|G|

∑

s∈Σ

∑

x∈G





1

p(s)

∑

γ∈Pe

|γ|N(s, γ)Φ(γ)




 |f(xs)− f(x)|2p(s)

≤



max
s∈Σ





1

p(s)

∑

γ∈Pe

|γ|N(s, γ)Φ(γ)








 E(f, f).

This proves (6.2). �
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The next result is a corollary of Theorem 6.4 and use paths chosen uni-
formly over all geodesic paths from e to y.

Theorem 6.5 ([49, 124]). Referring to the setting of Theorem 6.2, assume
that the automorphisms group of G is transitive on Σ. Then

β1 ≤ 1− ε#Σ

D2
.

Let us illustrate these results by looking at the random transposition walk
on the symmetric group Sn defined at (4.1). Thus p(e) = 1/n, p(τ) = 2/n2 if
τ is a transposition and p(τ) = 0 otherwise. From representation theory (see
Section 9.2), we know that β1 = 1−2/n. Here Σ is the set of all transpositions.
Any permutation can be written as a product of at most n− 1 transpositions
(i.e., the diameter is D = n− 1). Thus Theorem 6.2 gives

β1 ≤ 1− 2
n2(n− 1)2

.

When writing a permutation as a (minimal) product of transpositions, any
given transposition is used at most once. Hence N(s, γ) at (6.1) is bounded
by 1. Using this in Theorem 6.3 immediately gives

β1 ≤ 1− 2
n2(n− 1)

.

A more careful use of the same theorem actually yields

β1 ≤ 1− 2
n(n− 1)

.

Finally, as the transpositions form a conjugacy class, it is easy to check that
Theorem 6.5 applies and yields again the last inequality.

6.3 The Lowest Eigenvalue

Let p be a symmetric probability on G and Σ be a finite symmetric generating
set contained in the support of p. Loops of odd length in the Cayley graph
(G,Σ) can be used to obtain lower bounds on the lowest eigenvalue

βmin = β|G|−1.

Denote by L the set of loops of odd length anchored at the identity in (G,Σ).
A loop flow is a non-negative function Ψ such that

∑

γ∈L
Ψ(γ) = 1.

As above, let N(s, γ) be the number of occurrences of s ∈ Σ in γ.
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Theorem 6.6 ([51, 42, 45]). Let Ψ be a loop flow and set

B(Ψ) = max
s∈Σ





1

p(s)

∑

γ∈L
|γ|N(s, γ)Ψ(γ)




 .

Then the smallest eigenvalue is bounded by β|G|−1 ≥ −1 + 2/B(φ).

As a trivial application, assume that p(e) > 0 and that e ∈ Σ. Then we can
consider the loop flow concentrated on the trivial loop of length 1, that is,
γ = (e, e). In this case B(Ψ) = 1/p(e) and we obtain

β|G|−1 ≥ −1 + 2p(e).

This applies for instance to the random transposition measure p defined at
(4.1) and gives β|G|−1 ≥ −1 + 2/n (there is, in fact, equality in this case).

For an example where a non-trivial flow is useful, consider the Borel–
Chéron shuffle of Section 3.1: remove a random packet and place it on top.
This allows for many loops of length 3. Consider the loops γa,b, 2 < a ≤ b ≤ n
and a odd, defined as follows. Remove the packet (a, . . . , b) and place it on top;
remove the packet corresponding to the cards originally in position (a+ 1)/2
through a − 1 and place it on top; remove the packet of the cards originally
in positions 1 through (a− 1)/2 and place it on top. The crucial observation
is that, given one of these moves and its position in the loop, one can easily
recover the two other moves of the loop. Using the flow uniformly supported
on these loops in Theorem 6.6 gives βmin ≥ −(26n+ 2)/(27n) for the Borel–
Chéron shuffle on Sn.

The following result is a corollary of Theorem 6.6 and complements Theo-
rem 6.5. The proof uses the uniform flow on all loops of minimal odd length.

Theorem 6.7. Assume that the automorphism group of G is transitive on Σ.
Then

β|G|−1 ≥ 1− 2ε#Σ

L2

where ε = min{p(s) : s ∈ Σ} and L is the minimal length of a loop of odd
length in (G,Σ).

To illustrate this result, consider the alternating groupAn. In An, consider any
fixed element σ �= e and its orbit Σ under the action of the symmetric group,
that is, Σ = {τ = �σ�−1, � ∈ Sn}. In words, Σ is the conjugacy class of σ
in Sn. One can show that, except when σ is the product of two transpositions
with disjoint supports in A4, the set Σ is a generating set of An. Moreover, in
any such case, the Cayley graph (An, Σ) contains cycles of length three (for
details, see, e.g., [121]). For instance, if σ = c is a cycle of odd length, we have
c−1, c2 ∈ Σ and c−1c−1c2 = e. If σ = (i, j)(k, l) is the product of two disjoint
transpositions, we have [(i, j)(k, l)][(k, i)(j, l)][(k, j)(i, l)] = e. Set

pΣ(τ) =
{

1/|Σ| if τ ∈ Σ
0 otherwise.
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By construction, the automorphism group of An acts transitively on Σ. Hence,
for any Σ as above, Theorem 6.7 shows that the lowest eigenvalue of pΣ is
bounded by βmin ≥ −1 + 2/9 = −7/9.

6.4 Diameter Bounds, Isoperimetry and Expanders

The goal of this section is to describe the relation between eigenvalues of ran-
dom walks, isoperimetric inequalities and the important notion of expanders.

Diameter bounds. Let (G,Σ) be a finite Cayley graph with diameter D
(recall that, by hypothesis, Σ is symmetric). Let p be a probability with
support contained in Σ. For k = *D/2+ − 1, the support of p(k) contains less
than half the elements of G. Hence

D ≤ 2(T (G, p) + 2). (6.5)

This gives an elementary relation between the diameter of (G,Σ) and random
walks. Theorem 6.2 shows how the diameter can be used to control the second
largest eigenvalue of an associated walk. Interestingly enough, this relation can
be reversed and eigenvalues can be used to obtain diameter bounds. The best
known result is the following [22, 117] which in fact holds for general graphs.

Theorem 6.8. Let Σ be a symmetric generating set of a finite group G of
order |G| = N . Let βi, 0 ≤ i ≤ N − 1, be the eigenvalues in non-increasing
order of a random walk driven by a measure p whose support is contained in
{e} ∪Σ and set λi = 1− βi. Then the diameter D of (G,Σ) is bounded by

D ≤ 1 +

 cosh−1(N − 1)

cosh−1
(
λ1+λN−1
λN−1−λ1

)

 ≤ 1 +

 cosh−1(N − 1)

cosh−1
(

2+λ1
2−λ1

)

 .

It is useful to observe that if N = |G| goes to infinity and λ1 goes to zero the
asymptotics of the right most bound is (2λ1)−1/2 log |G|. One can also verify
that, assuming λ1 ≤ 1, the second upper bound easily gives

D ≤ 3λ−1/2
1 log |G|. (6.6)

When λ1 is relatively small, the elementary bound (6.5) often gives better
results than Theorem 6.8. For instance, consider the symmetric group Sn
generated by the set of all transpositions. Let p = pRT be the random trans-
position measure defined at (4.1). The diameter of this Cayley graph is n− 1,
the spectral gap λ1 of pRT is 2/n and T (Sn, pRT) ∼ 1

2n logn. Hence, both (6.5)
and Theorem 6.8 are off but (6.5) is sharper. Theorem 6.8 is of most interest
for families of graphs and random walks having a spectral gap bounded away
from 0. Such graphs are called expanders and are discussed below.



Random Walks on Finite Groups 303

Isoperimetry. Let (G,Σ) be a finite Cayley graph. Recall that the edge set
E of (G,Σ) is E = {(x, y) : x, y ∈ G, x−1y ∈ Σ}. As always, we denote by
u the uniform probability measure on G. We also denote by uE the uniform
probability on E so that for a subset F of E, uE(F ) = |F |/|Σ||G| where |F |
denotes the cardinality of F .

Given a set A ∈ G, define the boundary of A to be

∂A = {(x, y) ∈ G×G : x ∈ A, y ∈ G \A, x−1y ∈ Σ}.

The isoperimetric constants I = I(G,Σ), I ′ = I ′(G,Σ) are defined by

I = min
A ⊂ G

2|A| ≤ |G|

uE(∂A)
u(A)

, I ′ = min
A⊂G

uE(∂A)
2(1− u(A))u(A)

. (6.7)

We have I/2 ≤ I ′ ≤ I. Note that, in terms of cardinalities, this reads

I = min
A ⊂ G

2|A| ≤ |G|

|∂A|
|Σ||A| , I ′ = min

A⊂G

|G||∂A|
2|Σ|(|G| − |A|)|A| .

The following gives equivalent definitions of I, I ′ in function terms. See,
e.g., [124]. For a function f onG and e = (x, y) ∈ E, we set df(e) = f(y)−f(x).

Lemma 6.9. We have

2I = min
f

{
uE(|df |)

u(|f −m(f)|)

}
, 2I ′ = min

f

{
uE(|df |)

u(|f − u(f)|)

}

where m(f) denote an arbitrary median of f .

For sharp results concerning isoperimetry on the hypercube and further dis-
cussion, see [84, 96] and the references therein.

The next result relates I and I ′ to the spectral gap λ1 of random walks
closely related to the graph (G,Σ). This type of result has become known
under the name of a Cheeger inequality. See, e.g., [98, 124, 131]. An interesting
development is in [111]. For the original Chegeer inequality in Riemannian
geometry, see, e.g., [20].

Theorem 6.10. Let G be a Cayley graph and p be a symmetric probability
measure on G with spectral gap λ1 = 1− β1.

– Assume supp (p) ⊂ Σ and set η = maxΣ p. Then λ1 ≤ 2η|Σ|I ′.
– Assume that infΣ p = ε > 0. Then ε|Σ|I2 ≤ 2λ1.
– In particular, if p = pΣ is the uniform probability on Σ, I2 ≤ 2λ1 ≤ 4I ′.

Slightly better results are known. For instance, [110, Theorem 4.2] gives I2 ≤
λ1(2− λ1). See also [111].

The isoperimetric constants I, I ′ can be bounded from below in terms of
the diameter. See, e.g., [9] and [131]. Using the notation of Section 6, we have
the following isoperimetric version of Theorems 6.4, 6.5.
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Theorem 6.11. Let (G,Σ) be a finite Cayley graph. Let Φ be a flow as in
Theorem 6.4. Then 2I ′ ≥ 1/a(Φ) with

a(Φ) = max
s∈Σ




|Σ|
∑

γ∈Pe

N(s, γ)Φ(γ)




 .

In particular, I ≥ I ′ ≥ 1/(2|Σ|D) where D is the diameter of (G,Σ). If we
further assume that the automorphism group of G is transitive on Σ then
I ≥ I ′ ≥ 1/(2D).

Although the notion of isoperimetry is appealing, it is rarely the case that
good spectral gap lower bounds are proved by using the relevant inequality in
Theorem 6.10. See the discussion in [62]. In fact, isoperimetric constants are
hard to compute or estimate precisely and spectral bounds are often useful to
bound isoperimetric constants.

Let us end this short discussion of isoperimetric constants by looking at
the symmetric group Sn equipped with the generating set of all transpositions.
This Cayley graph has diameter n−1 and the automorphism group of Sn acts
transitively on transpositions. Hence Theorem 6.11 gives I ′ ≥ (2(n − 1))−1.
The random transposition walk defined at (4.1) has spectral gap λ1 = 2/n
(See Section 9.2). By Theorem 6.10, this implies (n − 1)−1 ≤ I ′ ≤ I ≤
2(n − 1)−1/2. Using A = {σ ∈ Sn : σ(n) = n} as a test set shows that
I ≤ 2n−1, I ′ ≤ (n− 1)−1. Thus (n− 1)−1 ≤ I ≤ 2n−1 and I ′ = (n− 1)−1.

Expanders. The notion of expander depends on a different definition of the
boundary than the one given above. Namely, for any A ⊂ G, set

δA = {x ∈ G : d(x,A) = 1}

where d is the graph distance introduced in Section 6.1. Define the expansion
constant h = h(G,Σ) by

h = min
A ⊂ G

2|A| ≤ |G|

|δA|
|A| .

By inspection, we have I ≤ h ≤ |Σ|I. A variant of Theorem 6.11 in [9] states
that, for any Cayley graph, h ≥ 2/(2D + 1).

Definition 6.12. A finite Cayley graph (G,Σ) is an (N, r, ε)-expander if
|G| = n, |Σ| = r and h(G,Σ) ≥ ε.

A family ((Gn, Σn)) of finite Cayley graphs is a family of expanders if |Gn|
tends to ∞ and there exists ε > 0 such that h(Gn, Σn) > ε.

Comparing I and h and using Theorem 6.10 yields the following relation
between spectral gap estimates and the notion of expander.

Proposition 6.13. Let ((Gn, Σn)) be a family of finite Cayley graphs such
that |Gn| tends to ∞. Let pn denote the uniform probability on Σn and let
λ1(n) be the spectral gap associated to pn.
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– If there exists ε > 0 such that λ1(n) ≥ ε for all n then (Gn, Σn) is a family
of expanders.

– If there exists r such that |Σn| ≤ r for all n then (Gn, Σn) is a family of
expanders if and only if there exists ε > 0 such that λ1(n) ≥ ε for all n.

Theorem 9.8 in Section 9.4 gives a remarkable application of Proposition 6.13.
In the other direction, Proposition 6.13 shows that the symmetric groupsSn

equipped with the generating setsΣn = {τ, c, c−1} where τ is the transposition
(1, 2) and c the cycle (1, 2, . . . , n) do not form a family of expanders. Indeed, the
diameter D of (Sn, Σn) is of order n2 whereas Proposition 6.13 and Theorem
6.8 shows that any expander graph on Sn has diameter of order n logn at most.
In fact, the present Cayley graph has λ of order 1/n3. See Section 10.

Recall that a finitely generated group Γ has property (T ) (i.e., Kazhdan
property (T )) if there exists a finite set K ⊂ Γ and ε > 0 such that, for
every non-trivial irreducible unitary representation (V, �) of Γ and every uni-
tary vector v ∈ V , ‖�(x)v − v‖ ≥ ε for some x ∈ K. One shows that if
this holds for one finite set K then it holds for any finite generating set Σ
(with different ε > 0). See [98] for an excellent exposition and references con-
cerning property (T ). The groups SLn(Z), n ≥ 3, have property (T ). Non-
compact solvable groups, free groups and SL2(Z) do not have property (T ).
Margulis [108] produced the first explicit examples of families of expanders by
using property (T ) to obtain infinite families of graphs with bounded degree
and spectral gap bounded from below. See also [101] and [115, 146] for recent
advances concerning property (T ).

Theorem 6.14 ([98]). Let Γ be a finitely generated infinite group. Let Hn be
a family of normal finite index subgroups of Γ . Set Gn = Γ/Hn and assume
that |Gn| tends to infinity. Let Σ be a symmetric generating set of Γ and
Σn ⊂ Gn be the projection of Σ.

– Assume that Γ has property (T ). Then ((Gn, Σn)) is a family of expanders.
– Assume that Γ is solvable. Then ((Gn, Σn)) is not a family of expanders.

The condition that the subgroups Hn are normal is not essential. It is added
here simply to have Cayley graphs as quotients. For a proof, see [98, Prop.
3.3.1, 3.3.7]. The following simple result describes what happens for random
walks on expanders. See, e.g., [46, 115].

Theorem 6.15. Fix r > 0. Let (Gn, Σn) be a family of expanders with Σn con-
taining the identity. For each n, let pn be a probability measure on Gn such that
infΣn pn ≥ 1/r, |supp (pn)| ≤ r. Then there are constants C, c > 0 such that

c log |Gn| ≤ T (Gn, pn) ≤ C log |Gn|.

Moreover, the family (Gn, pn) has a precut-off at time log |Gn|.

Proof. For the upper bound, use (5.9) and the fact that the hypotheses and
Proposition 6.13 imply βn,∗ ≤ 1− ε. For the lower bound, use (5.12). �
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The next theorem due to Alon and Roichman [6] says that most Cayley
graphs (G,Σ) with |Σ| % log |G| are expanders.

Theorem 6.16. For every ε > 0 there exists c(ε) > 0 such that, if G is
a group of order n, t ≥ c(ε) log n, T is a uniformly chosen t-subset of G and
Σ = T ∪ T−1 then the Cayley graph (G,Σ) is an (|G|, |Σ|, ε)-expander with
probability 1− o(1) when n tends to infinity.

Next, we describe some explicit examples of expanders. In SLn(Z), con-
sider the matrices

An =





1 1 0 · · · 0
0 1 0 · · · ·
· 0 1 0 · · ·
· · · · · · ·
· · · 0 1 0 0
· · · · 0 1 0
0 · · · · 0 1





, Bn =





0 1 0 · · · 0
· 0 1 0 · · ·
· · 0 1 0 · ·
· · · · · · ·
· · · · 0 1 0
0 · · · · 0 1
j 0 · · · · 0





where j = (−1)n+1. These generates SLn(Z).

Theorem 6.17 ([98]). Fix n ≥ 2. consider the symmetric generating set
Σn = {A±1

n , B±1
n } of SLn(Zq) where q is prime. Let pn denote the uniform

probability on {In, A±1
n , B±1

n }. Then ((SLn(Zq), Σn)) is a family of expanders.
In particular, for fixed n and varying prime q, ((SLn(Zq), pn)) has a precut-off
at time log q.

The proof differs depending on whether n = 2 or n > 2 because, as mentioned
earlier, SL2(Z) does not have property (T ). See [98, 99].

We close our discussion of expanders by stating a small selection of open
problems. See [98, 99] for more.

Problem 6.18. Can one find generating subsets Σn of the symmetric groups
Sn of bounded size |Σn| ≤ r such that (Sn, Σn) form a family of expanders?

In [100, Section 5], Lubotzky and Pak notice that this problem is related to
another open problem, namely, to whether or not the automorphism group of
a regular tree of degree at least 4 has property (T). One can also state Problem
6.18 with the symmetric groups replaced by an infinite family of simple finite
groups.

Problem 6.19. Can one find a family of finite groups Gn and generating sets
Σ1
n, Σ

2
n of bounded size |Σi

n| ≤ r such that ((Gn, Σ1
n)) is a family of expanders

but ((Gn, Σ2
n)) is not?

If Problem 6.18 has a positive answer then the same is true for Problem 6.19
since ((Sn, Σn)) with Σn = {(1, 2), (1, . . . , n)±1} is not a family of expanders
(see, e.g., [115]).
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Problem 6.20. Fix r and let Σp denote an arbitrary generating set of
SL2(Zp), p prime, with |Σp| ≤ r. Is ((SL2(Zp), Σp)) always a family of ex-
panders?

With respect to this last problem, set

Σi
p =

{(
1 i
0 1

)±1

,

(
1 0
i 1

)±1
}
.

Then ((SL2(Zp), Σi
p)) is a family of expanders if i = 1, 2 but it is not known

if the same result holds for i = 3. See [63, 98, 99].

Problem 6.21. Let ((Gn, Σn)) be a family of expanders. Under the as-
sumptions and notation of Theorem 6.15, does the family ((Gn, pn)) admit
a cut-off?

For further information on these problems, see [63, 64, 65, 98, 99].

Ramanujan graphs. Alon and Bopanna (see, e.g., [74, 98, 99, 127, 136]) ob-
served that any infinite family of finite Cayley graphs ((Gn, Σn)) with |Σn| = r
for all n (more generally, r-regular graphs) satisfies

lim inf
n→∞

β1(Gn, pn) ≥
2
√
r − 1
r

.

where pn denotes the uniform probability on Σn.

Definition 6.22. A Cayley graph (G,Σ) is Ramanujan if

β1(G, pΣ) ≤ 2
√
r − 1
r

where pΣ denotes the uniform probability on Σ and r = |Σ|.
Examples of Ramanujan Cayley graphs withG = PGL2(Zq) are given in [127].
See also [25, 98, 101, 136]. For fixed r, asymptotically as the cardinality goes
to infinity, Ramanujan graphs are graphs whose second largest eigenvalue is as
small as possible. By Proposition 6.13, they are expanders, in fact very good
expanders, and have many other remarkable properties. After taking care of
possible periodicity problems, the simple random walks on any infinite family
of Ramanujan Cayley graphs ((Gn, Σn)) have a precut-off at time log |Gn|.

Infinite families of Ramanujan graphs are hard to find and most (if not
all) known examples are obtained by applying rather deep number theoretic
results. See [98, 127]. In particular, the construction of expanders as in The-
orem 6.14 cannot work for Ramanujan graphs [71, 98, 99].

Theorem 6.23. Let Γ be a finitely generated infinite group. Let Hn be a fam-
ily of normal finite index subgroups of Γ . Set Gn = Γ/Hn and assume that
|Gn| tends to infinity. Let Σ be a symmetric generating set of Γ such that the
graph (Γ,Σ) is not a tree. Let Σn ⊂ Gn be the projection of Σ. Then at most
finitely many (Gn, Σn) are Ramanujan.

As in Theorem 6.14, the condition that the subgroups Hn are normal is not
essential.



308 Laurent Saloff-Coste

7 Results Involving Volume Growth Conditions

On a finite group G, consider a symmetric probability p whose support gen-
erates G. Fix a symmetric generating set Σ contained in the support of p and
consider the Cayley graph (G,Σ) as in Section 6.1.

Definition 7.1. Referring to the notation of Section 6.1, set

V (n) = VΣ(n) = #{x ∈ G : |x|Σ ≤ n}.

The function VΣ is called the volume growth function of (G,Σ).

Sections 7.1 and 7.2 below describe results that involve the volume growth
function V and apply to walks based on a bounded number of generators.
Examples include nilpotent groups with small class and bounded number of
generators. Section 7.3 presents contrasting but related results for some fam-
ilies of nilpotent groups with growing class and/or number of generators.

7.1 Moderate Growth

This section gives a large class of finite groups which carry natural random
walks whose behavior is similar to that of the simple random walk on the
finite circle group Zn = Z/nZ. More precisely, on Zn, consider the random
walk which goes left, right or stays put, each with probability 1/3. For this
walk, the spectral gap λ1 = 1 − β1 is of order 1/n2 and there are continuous
positive decreasing functions f, g tending to 0 at infinity such that

f(k) ≤ ‖p(kn2) − u‖TV ≤ g(k).

Thus, there is no cut-off phenomenon in this case: a number of steps equal
to a large multiple of 1/λ1 suffices to reach approximate equilibrium whereas
a small multiple of 1/λ1 does not suffice.

We start with the following definition.

Definition 7.2 ([44, 47]). Fix A, ν > 0. We say that a Cayley graph (G,Σ)
has (A, ν)-moderate growth if its volume growth function satisfies

V (k) ≥ |G|
A

(
k

D

)ν

for all integers k ≤ D where D is the diameter of (G,Σ).

Let us illustrate this definition by some examples.

– The circle group Zn = Z/nZ with Σ = {0,±1} has V (k) = 2k + 1. Here
|G| = n, D = *n/2+. Thus the circle group has moderate growth with
A = 3/2 and ν = 1.
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– The group Zn with Σ = {0,±1,±m} with m ≤ n has diameter D of order
max{n/m,m}. The Cayley graph (Zn, Σ) has moderate growth with A = 5
and ν = 2 although this is not entirely obvious to see.

– Consider the group Z
d
n with Σ = {0,±ei} where ei denotes the element

with all coordinates 0 except the i-th which equals 1. This Cayley graph
has diameter D = d*n/2+. For fixed d, there exists a constant Ad such
that (Zdn, Σ) has (Ad, d)-moderate growth for all n.

– For any odd prime p, consider the affine group Ap which is the set of
all pairs (a, b) ∈ Z

∗
p × Zp with multiplication given by (a, b)(a′, b′) =

(aa′, a′b + b′). Let α be a generator of Z
∗
p, β a generator of Zp, and set

Σ = {(1, 0), (α, 0), (α−1, 0), (1, β), (1,−β)}. This group has diameter D of
order p and it has (6, 2)-moderate growth.

– Let U3(n) be the Heisenberg group mod n, i.e., the group of all 3 by 3
upper diagonal matrices with 1 on the diagonal and integer coefficients
mod n. Let I denote the identity matrix in U3(n). Let Ei,j be the matrix
in U3 whose non-diagonal entries are all 0 except the (i, j) entry which is
1. Then Σ = {I,±E1,2,±E2,3} is a generating set of U3(n). The Cayley
graph (U3(n), Σ) has diameter of order n and (48, 3)-moderate growth.

The next theorem gives sharp bounds under the assumption of moderate
growth.

Theorem 7.3 ([44, 47]). Let (G,Σ) be a finite Cayley graph with diameter D
and such that e ∈ Σ. Let p be a probability measure on G supported on Σ. For
any positive numbers A, d, ε, there exists six positive constants ci = ci(A, d, ε),
1 ≤ i ≤ 6, such that if (G,Σ) has (A, d)-moderate growth and p satisfies
infΣ p ≥ ε then we have

∀ k ∈ N, a1e−a2k/D
2
≤ ‖p(k) − u‖TV ≤ a3e−a4k/D

2

and
∀ k ≥ D2, d2(p(k), u) ≤ a5e−a6k/D

2
.

The condition infΣ p ≥ ε has two different consequences. On the one hand, it
forces p to be, in some sense, adapted to the underlying graph structure. On
the other hand, it implies a uniform control over the size of the generating
set Σ since we have 1 ≥ p(Σ) ≥ ε|Σ|.

Moderate growth was first introduced in [44]. It is related to the following
notion of doubling growth which has been used in many different contexts.

Definition 7.4. Fix A > 0. We say that a Cayley graph (G,Σ) has
A-doubling growth if its volume growth function satisfies

∀k ∈ N, V (2k) ≤ A V (k).

Doubling growth provides a useful way to obtain examples of groups with
moderate growth thanks to the following two propositions. The first is ele-
mentary.
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Proposition 7.5. If the Cayley graph (G,Σ) has A-doubling growth, then it
has (A, d)-moderate growth with d = log2 A.

Let us observe that the notion of doubling growth make sense for infinite
Cayley graphs.

Proposition 7.6. Let (Γ,Σ) be an infinite Cayley graph and assume that
(Γ,Σ) has A-doubling growth. Then, for any quotient group G = Γ/N , N
normal in Γ , the Cayley graph (G,ΣG) where ΣG is the canonical projection
of Σ in G has A2-doubling growth.

We illustrate this with two examples. First, consider Zn with generating set
Σ = {0,±1,±m}, m < n. We can view this Cayley graph as a quotient of
the square grid, i.e., the natural graph on Z

2. Indeed, one can check that
there is a unique surjective group homomorphism π from Z

2 to Zn such that
π((1, 0)) = 1, π((0, 1)) = m (this is because Z

2 is the free abelian group
on two generators). Proposition 7.6 applies and easily shows that (Zn, Σ)
is 5-doubling. As a second example, consider the Heisenberg group U3(n)
with its natural generating set Σ = {I, E1,2, E2,3} as defined above after
Definition 7.2. This is a quotient (simply take all coordinates mod n) of the
infinite discrete Heisenberg group U3, i.e., the group of all 3 by 3 upper-
triangular matrices with entries in Z and 1 on the diagonal. It is well known
(see e.g., [82, Pro. VII.22]) that the volume growth function of this group
satisfies c1n4 ≤ V (n) ≤ c2n

4. Hence (U3(n), Σ) has A-doubling growth with
A = c2c

−1
1 34.

The next result is derived from a deep theorem of Gromov [75].

Theorem 7.7. Given two positive reals C, d, there is a constant A = A(C, d)
such that any finite Cayley graph (G,Σ) satisfying V (n) ≤ Cnd for all inte-
gers n has A-doubling growth.

In contrast to all the other results presented in this survey, there is no known
explicit control of A as a function of C, d.

Doubling growth is a stronger assumption than moderate growth. Under
the latter condition one can complement Theorem 7.3 with the following re-
sult.

Theorem 7.8 ([44, 46]). Let (G,Σ) be a finite Cayley graph with diameter D
and such that e ∈ Σ. Let p be a symmetric probability measure on G supported
on Σ. For any positive numbers A, ε, there exist four positive constants ci =
ci(A, ε), 1 ≤ i ≤ 4, such that if (G,Σ) has A-doubling growth and p satisfies
infΣ p ≥ ε then we have

∀ k ∈ N,
a1|G|
V (k1/2)

e−a2k/D
2
≤ d2(p(k), u) ≤ a3|G|

V (k1/2)
e−a4k/D

2
.

The same upper bound holds for any non-symmetric measure that charges
e and a generating set Σ (which can be non-symmetric). See Theorem 10.8.
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Thus doubling growth gives a very satisfactory control over the behavior of
random walks adapted to the underlying graph structure. The next section
describes a large class of examples with doubling growth.

7.2 Nilpotent Groups

In a group G, let [x, y] = x−1y−1xy denote the commutator of x, y ∈ G. For
A,B ⊂ G, let [A,B] denote the group generated by all the commutators [a, b],
a ∈ A, b ∈ B. The lower central series of a group G is the non-increasing
sequence of subgroups Gk of G defined inductively by G1 = G and Gk =
[Gk−1, G]. A group (finite or not) is nilpotent of class c if Gc �= {e} and
Gc+1 = {e}. See [79, 78, 135]. Abelian groups are nilpotent of class 1. The
group Um(n) of all m by m upper-triangular matrices with 1 on the diagonal
is nilpotent of class m− 1.

Doubling growth for nilpotent groups. The next statement shows that
nilpotent groups give many infinite families of Cayley graphs having A-
doubling growth. See [82, p. 201] and [44].

Theorem 7.9. Given any two integers c, s, there exists a constant A = A(c, s)
such that any Cayley graph (G,Σ) with G nilpotent of class at most c and Σ
of cardinality at most s has A-doubling growth.

The constant A(c, s) can be made explicit, see [44]. Of course, this result
brings Theorem 7.3 and 7.8 to bear. For concrete examples, consider the
group Um(n) of all m by m upper-triangular matrices with 1 on the diagonal
and entries in Zn. We noticed earlier that this group is nilpotent of class
m− 1. Let Ei,j ∈ Um(n) be the matrix with zero non-diagonal entries except
the (i, j)-th which is 1. The set Σ = {I, E±1

1,2 , . . . , E
±1
m−1,m} generates Um(n).

Let pΣ be the uniform probability measure on Σ. For each fixed integer m,
Theorem 7.9 applies uniformly to Um(n), n = 2, 3, . . . . As (Um(n), Σ) has
diameter of order n this shows that, given m, there are positive constants ai
such that, uniformly over all integers n, k, the measure pΣ on Um(n) satisfies

a1e−a2k/n
2 ≤ ‖p(k)

Σ − u‖TV ≤ a3e−a4k/n
2
.

p-groups and Frattini walks. Let p be a prime. A p-group is a group of
order a power of p. Any group of order pa is nilpotent of class at most a− 1
and contains generating sets of size less than or equal to a. In fact, in a group
of order pa, the minimal generating sets (i.e., sets that contains no generating
proper subsets) all have the same size and can be described in terms of the
Frattini subgroup which is defined as the intersection of all subgroups of order
pa−1. By a theorem of Burnside, the quotient of any p-group G by its Frattini
subgroup is a vector space over Zp whose dimension is the size of any minimal
generating set and is called the Frattini rank of G. For instance, the group
Um(p) has order pa with a =

(m
2

)
and the matrices Ei,i+1, 1 ≤ i ≤ m− 1
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form a minimal set of generators. Hence Um(p) has Frattini rank m − 1.
See [79, 78, 135]. The following theorem describes how the results of the
previous two sections apply to this very natural class of examples we call
Frattini walks. Recall that the exponent of a group G is the smallest n such
that gn = e for all g ∈ G.

Theorem 7.10 ([44, 45]). Fix an integer c. Then there exists four positive
constants ai = ai(c) such that, for any p-group G of nilpotency class and
Frattini rank at most c, for any minimal set F of generators of G, we have

a1e−a2k/p
2ω

≤ ‖q(k)F − u‖TV ≤ a3e−a4k/p
2ω

where qF denotes the uniform probability measure on {e} ∪ F ∪ F−1 and pω

is the exponent of G/[G,G].

The proof consists in applying Theorems 7.9, 7.3 and showing that the di-
ameter of (G,Σ) is of order pω, uniformly over the class of group consid-
ered here. Note that, for any fixed a, Theorem 7.10 applies uniformly to all
groups of order pa and their minimal sets of generators since such groups
have nilpotency class and Frattini rank bounded by a. Also, the conclusion of
Theorem 7.10 holds true if we replace the probability qF by any symmetric
probability q such that inf{q(s) : s ∈ {e} ∪ F} ≥ ε for some fixed ε > 0 and
supp(q) ⊂ ({e} ∪ F ∪ F−1)m for some fixed m. Theorem 10.9 extends the
result to non-symmetric walks.

7.3 Nilpotent Groups with many Generators

The results described in the previous sections give a rather complete descrip-
tion of the behavior of simple random walks on Cayley graphs of finite nilpo-
tent groups when the nilpotency class and the number of generators stay
bounded. There are however many interesting examples where one or both of
these conditions are violated. The simplest such example is the hypercube Z

d
2

as d varies. In this case, the class is 1 but the minimal number of generators is
d. Of course, this walk is well understood. If we denote by e1, . . . , ed the natu-
ral generators of Z

d
2 and take p to be the uniform probability on {e, e1, . . . , ed},

then the walk driven by p has a cut-off at time tn = 1
4d log d. See Theorem 8.2.

It seems very likely that the walks described below present a similar cut-off
phenomenon. However, even the existence of a precut-off in the sense of Def-
inition 3.8 is an open problem for these walks. The results presented in this
section are taken from Stong’s work [132, 133, 134]. They are all based on sim-
ilar basic ideas introduced by Stong: using the the action of large abelian sub-
groups and eigenvalue bounds for twisted graphs, i.e., weighted graphs whose
weights can be complex numbers. These techniques lead to sharp bounds on
the second largest eigenvalue β1 in interesting hard problems. Together with
easier bounds on the smallest eigenvalue βmin = β|G|−1, this brings to bear
the simple eigenvalue bound (5.9), that is,
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2‖pk − u‖TV ≤ d2(p(k), u) ≤
√
|G| − 1 βk∗ (7.1)

where β∗ = max{β1,−βmin} as in (5.9).

Random walk on Um(q) as m and q vary. Let q be an odd prime and
recall that Um(q) denotes the group of all m by m upper-triangular matrices
with coefficients mod q and 1 on the diagonal. This group is generated by the
matrix Ei,i+1, 1 ≤ i ≤ m − 1, where Ei,j has all its non-diagonal entries 0
except the (i, j) entry which is 1. We set Σ = {E±1

1,2 , . . . , E
±1
m−1,m} and denote

by p the uniform probability on Σ. It is easy to apply Theorem 6.6 using
a flow equidistributed on the 2(m−1) loops of odd length q defined by E±ji,i+1,
j = 0, 1, . . . , q. This gives βmin ≥ −1 + 2/q2.

Theorem 7.11 ([132]). Referring to the walk driven by p on Um(q) as de-
fined above, there are two constants c1, c2 > 0 such that for any integer m and
any odd prime q, we have

1− c1
mq2

≤ β1 ≤ 1− c2
mq2

.

Ellenberg [56] proved that there are two constants a1, a2 > 0 such that the
diameter D of (Um(q), Σ) satisfies

a1(mq +m2 log q) ≤ D ≤ a2(mq +m2 log q).

Thus the upper bound in Theorem 7.11 is a substantial improvement upon
the bound of Theorem 6.2.

As Um(q) has order qm(m−1)/2, the bound (7.1) shows that k of order
m3q2 log q suffices for p(k) to be close to the uniform distribution on Um(q).
For a lower bound, it is not hard to see that p(k) is far from the uniform
distribution for k < max{n2, q2n}. It would be nice to have a better lower
bound.

The Burnside group B(3, r). Around 1900, Burnside asked whether or
not a finitely generated group G all of whose elements have finite order must
be finite. Golod and Shafarevich proved that the answer is no. Another ver-
sion of this problem is as follows: Given n, is any finitely generated group
of exponent n a finite group? This can be phrased in terms of the Burn-
side groups B(n, r). By definition, the group B(n, r) is the free group of
exponent n with r generators. This means that any group with exponent
n and r generators is a quotient of B(n, r). The group B(n, r) can be con-
structed from the free group Fr on r generators by taking the quotient by
the normal subgroup generated by {gn : g ∈ Fr}. It turns out that for all n
large enough, B(n, r) is infinite. However B(n, r) is finite for n = 2, 3, 4, 6.
At this writing, it is not known if B(5, r) is finite or not. See [78, Chap-
ter 18] and also [82, p. 224] for a short discussion and further references.
When B(n, r) is infinite, the solution of the restricted Burnside problem due
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to Zelmanov asserts that there is a finite group B̃(n, r) which covers all fi-
nite groups generated by r elements and of exponent n. Studying natural
random walks on these groups is a tempting but probably extremely hard
problem.

For n = 2, B(2, r) = Z
r
2. The group B(3, r) has order M = 3N(r) where

N(r) = r+
(r
2

)
+
(r
3

)
and its structure is described in [78, p. 322]. In particular,

it is nilpotent of class 2 and B(3, r)/[B(3, r), B(3, r)] = Z
r
3.

Theorem 7.12 ([133]). Consider the Burnside group B(3, r) and let p denote
the uniform probability on the r canonical generators and their inverses. Then

1− 3
2r
≤ β1 ≤ 1− 1

8r
.

For the walk in Theorem 7.12, Theorem 6.7 easily gives the lower bound
βmin ≥ −7/9. Indeed, by definition of B(3, r), the group of automorphism
acts transitively on the generators and any generator gives an obvious loop
of length 3. Inequality (7.1) shows that p(k) is close to the uniform dis-
tribution on B(3, r) for k of order r4. The elementary lower bound (5.12)
gives that p(k) is not close to the uniform distribution if k is of order
r3/ log r.

Polynomials under composition. Let n be an integer and q an odd
prime. Let Pn,q be the group of all polynomials α1x+ · · ·+ αnx

n mod xn+1

with α1 ∈ Z
∗
q , α2, . . . , αn ∈ Zq. The group law is composition. Let α

be a generator of Z
∗
q . Then Σ = {x, α±1x, (x + x2)±1, . . . , (x + xn)±1}

is a symmetric generating set. This group is not nilpotent but it con-
tains a large normal nilpotent subgroup, namely, the group P 1

n,q of poly-
nomials in Pn,q with α1 = 1. This subgroup has order qn−1. It is proved
in [44] that for fixed n, Pn,q has A-moderate growth uniformly over the
prime q and diameter of order q. Hence, Theorem 7.3 shows that the sim-
ple random walk on (Pn,q, Σ) is close to stationarity after order q2 steps.
In [134], Stong is able to compute exactly the second largest eigenvalue of this
walk.

Theorem 7.13. For the simple random walk on the Cayley graph (Pn,q, Σ)
defined above, the second largest eigenvalue is

β1 = 1− 2
2n+ 1

(
1− cos

2π
q − 1

)
.

The value given above is slightly different than that found in [134] because
we have included the identity element x in Σ to have the easy lower bound
βmin ≥ −1+2/(2N+1) at our disposal. Note that the spectral gap λ1 = 1−β1

is of order 1/(q2n) and that (7.1) shows that order q2n2 log q steps suffices to
be close to stationarity.

The group P 1
n,q is generated by two elements, e.g., x + x2 and x + x3. It

is an interesting open problem to study the random walks on P 1
n,q and Pn,q

associated with such small sets of generators.
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8 Representation Theory for Finite Groups

Representation theory was first developed as a diagonalization tool. As such,
it applies to all convolution operators. On abelian groups, it provides a power-
ful technique to study random walks as witnessed for instance by the classical
proof of the central limit theorem on R. Early references discussing appli-
cations to random walks on finite groups are [70, 81] but the first serious
application of the representation theory of a non-abelian group to a random
walk seems to be in [50] which studies the random transposition walk on the
symmetric group. See also [59]. Useful references are [27, 28, 98, 136].

8.1 The General Set-up

A (finite dimensional) representation of a group G is a group homomorphism �
from G to the group GL(V ) of all linear invertible maps of a (finite dimen-
sional) vector space V over the complex numbers. The dimension of V will
be denoted by d� and is called the dimension of the representation. Here, we
will consider only finite groups and finite dimensional representations. There
always exists on V a Hermitian structure 〈·, ·〉 for which each �(s) is a unitary
operator and we always assume that V is equipped with such a structure. The
trivial representation of G is (�, V ) where V = C and �(s)(z) = z for all s ∈ G
and z ∈ C.

The left regular representation � : s �→ �(s) on L2(G) is defined by
�(s)f(x) = f(s−1x) for all f ∈ L2(G). A representation is irreducible if any
linear subspace W which is invariant by �, i.e., such that �(s)W ⊂ W for all
s ∈ G is trivial, i.e., is equal to either {0} or V . Irreducible representations
are the basic building blocks of Fourier analysis. For instance, if the group G
is abelian, all the unitary operators �(s), s ∈ G, commute. Thus they can
all be diagonalized in the same basis. It follows that any irreducible repre-
sentation must be 1-dimensional. When the group is not abelian, irreducible
representations are typically of dimension greater than 1. Two representa-
tions (�1, V1), (�2, V2) of a group G are equivalent if there exists a unitary
map T : V1 → V2 such that �2(s)◦T = T ◦�1(s). Constructing and classifying
irreducible representations up to equivalence is the basic goal of represen-
tation theory. We denote by Ĝ the set of equivalence classes of irreducible
representations of G. For instance, when G is a finite abelian group, one can
show that Ĝ admits a natural group structure and is isomorphic to G itself.

The famous Shur’s lemma implies the following fundamental orthogonality
relations. Let (�, V ) be an irreducible representation which is not equal to
the trivial representation. Let (ei)1≤i≤d� be a Hermitian basis of V and set
�i,j(s) = 〈�(s)ei, ej〉. The functions �i,j are called the matrix coefficients of �.
For any (i, j) and (k, �) in {1, . . . , d�}2, the functions �i,j and �k,� satisfy

∑

s∈G
�i,j(s)�k,�(s) =

|G|
d�

δ(i,j),(k,�).
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Moreover, for any two inequivalent irreducible representations (�1, V1), (�2, V2),
we have ∑

s∈G
�1
i,j(s)�2

k,�(s) = 0

for any 1 ≤ i, j ≤ d�1 and 1 ≤ k, � ≤ d�2 . Finally, analyzing the left regular
representation, one shows that each irreducible representation � occurs in the
left regular representation exactly as many times as its dimension d�. It follows
that

|G| =
∑

�∈Ĝ

d2
�

and that the normalized matrix coefficients d−1/2
� �i,j , 1 ≤ i, j ≤ d�, � ∈ Ĝ,

form an orthonormal basis of L2(G).
Let p be a measure (a function) on G. Set, for any representation �,

p̂(�) =
∑

s∈G
p(s)�(s).

The linear operator p̂(�) is called the Fourier transform of p at �. If p, q are
two measures, then

p̂ ∗ q(�) = p̂(�)q̂(�).

Hence the Fourier transform turns the convolution product p ∗ q into the
product p̂(�)q̂(�) of two unitary operators (i.e., the product of matrices once
a basis has been chosen in V ). In general, one mostly computes the Fourier
transform at irreducible representations. For instance, for the uniform measure
u(s) = 1/|G|, the orthogonality relations recalled above imply that

û(�) =
{

1 if � = 1 is the trivial representation
0 otherwise. (8.1)

There are straightforward analogs of the Fourier inversion and Plancherel
formula which read

p(s) =
1
|G|

∑

�∈Ĝ

d� tr[p̂(�)�(s−1)],

∑

s∈G
p(s−1)q(s) =

1
|G|

∑

�∈Ĝ

d� tr[p̂(�)q̂(�)]

where |G| is the cardinality of G. Since �(s−1) = �(s)−1 = �(s)† where †
stands for “conjugate-transpose”, we have

∑

s∈G
|p(s)|2 =

1
|G|

∑

�∈Ĝ

d� tr[p̂(�)p̂(�)†] (8.2)
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which is the most important formula for our purpose. Behind this formula is
the decomposition of the left regular representation into irreducible compo-
nents and the fact that each irreducible representation � ∈ Ĝ appears with
multiplicity equal to its dimension d�.

The following lemma follows from (8.1) and (8.2).

Theorem 8.1. Let p be a probability measure on the finite group G and u the
uniform distribution on G. Then, for any integer k,

|G|
∑

s∈G
|p(k)(s)− u(s)|2 =

∑

�∈Ĝ∗

d� tr[p̂(�)k(p̂(�)k)†]

where Ĝ∗ = Ĝ \ {1}.
In principle, the meaning of this lemma for random walks on finite groups is
clear. Using representation theory, one can compute (or estimate) the square
of the L2-distance

d2(p(k), u) = |G|
∑

s∈G
|p(k)(s)− u(s)|2

whenever one can compute (or estimate)
∑

�∈Ĝ∗

d� tr[p̂(�)k(p̂(�)k)†].

This requires having formula for the dimensions d� of all irreducible represen-
tations and being able to compute the powers of the matrices p̂(�). Once these
preliminary tasks have been tackled, one still has to sum over all irreducible
representations.

8.2 Abelian Examples

Let G be a finite abelian group and p a probability measure on G. Viewed
as a convolution operator acting on L2(G), p has adjoint p̌. As G is abelian,
the convolution product is commutative. It follows that p is normal, hence di-
agonalizable. As all the irreducible representations are one dimensional, each
gives rise to exactly one matrix coefficient called the character χ of the repre-
sentation. The characters form an orthonormal basis of L2(G) and they also
form a group, the dual group Ĝ, isomorphic to G. The Fourier transform p̂ at
the character χ (i.e., at the representation with character χ) is given by

p̂(χ) =
∑

s∈G
p(s)χ(s).

The collection (p̂(χ))χ indexed by the characters, is exactly the spectrum of p
viewed as a convolution operator. In this case, the formula of Theorem 8.1
gives

d2(p(k), u)2 = |G|
∑

s∈G
|p(k) − u(s)|2 =

∑

χ∈Ĝ∗

|p(χ)|2k. (8.3)
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The simple random walk on Zn. Consider the group Zn = Z/nZ =
{0, 1, . . . , n− 1}. In this case, the characters are the functions

χ�(x) = e−2iπ�x/n, � = 0, . . . , n− 1.

Let p(+1) = p(−1) = 1/2. Then p̂(χ�) = cos(2π�/n). Hence,

d2(p(k), u) =

(
n−1∑

�=1

| cos(2π�/n)|2k
)1/2

.

If n is even, for � = n/2, we get cosπ = −1 as an eigenvalue. Indeed, the
chain is periodic of period 2 in this case. As a typical careful application of
eigenvalue techniques, we state the following result.

Theorem 8.2. There exist two constants 0 < c1 ≤ C1 <∞ such that, for all
odd integers n = 2m+ 1 and all integers k, we have

2| cos(π/n)|2k
(

1 +
c1n√
k

)
≤ d2(p(k), u)2 ≤ 2| cos(π/n)|2k

(
1 +

C1n√
k

)
.

Proof. Assume that n = 2m+ 1 is odd. Using the symmetries of cos, we get

d2(p(k), u)2 = 2
m∑

�=1

| cos(π�/n)|2k.

Calculus gives

log
cos t
cos s

}
≤ − 1

2 (t2 − s2) for 0 < s < t < π/2
≥ − 2

π (t2 − s2) for 0 < s < t < π/4.

Hence

d2(p(k), u)2 ≥ 2| cos(π/n)|2k



m/2∑

�=1

e−4π(�2−1)k/n2





≥ 2| cos(π/n)|2k
(
1 + c1

√
n2/k

)

where c1 = e−8π. For an almost matching upper bound, write

m∑

�=1

e−2π2(�2−1)k/n2 ≤ 1 +
∞∑

�=1

e−2π2�2k/n2 ≤ 1 +
∫ ∞

0

e−2π2t2k/n2
dt

= 1 + C1

√
n2/k.

with C1 = 1/
√

8π. Hence d2(p(k), u)2 ≤ 2| cos(π/n)|2k
(
1 + C1

√
n2/k

)
. �
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Other random walks on Zn. Let a, b ∈ Zn and let pa,b be the uniform
probability measure on {a, b}, i.e., p(a) = p(b) = 1/2. Thus the measure p
of the previous example is p−1,1 in this notation. Let us look at p0,1. The
associated random walk is not reversible but it is ergodic for all n. Here the
eigenvalues are 1

2 (1 + e2iπ�/n). As |1 + e2iπ�/n|2 = | cos(π�/n)|2, we get

d2(p
(k)
0,1 , u)2 =

n−1∑

1

| cos(π�/n)|2.

Now, if n is odd, one easily checks that

n−1∑

1

| cos(π�/n)|2 =
n−1∑

1

| cos(2π�/n)|2.

This shows that, for all odd n and all k, d2(p
(k)
−1,1, u) = d2(p

(k)
0,1 , u). The fol-

lowing result generalizes this observation.

Theorem 8.3. Let a, b ∈ Zn. Then the random walk driven by the uniform
probability measure pa,b on {a, b} is ergodic if and only if

b− a and n are relatively prime. (8.4)

For any s ∈ [1,∞], any a, b satisfying (8.4) and any integer k, we have

ds(p
(k)
a,b , u) = ds(p

(k)
0,1 , u).

Moreover, there are constants c, C such that for any a, b satisfying (8.4) and
any integer k, we have

2| cos(π/n)|2k
(

1 +
c1n√
k

)
≤ d2(p

(k)
a,b, u)2 ≤ 2| cos(π/n)|2k

(
1 +

C1n√
k

)
.

Proof. The first assertion follows for instance from Proposition 2.3. Given
that (8.4) holds, there is an invertible affine transformation φ : x �→ uz + v
such that φ(a) = 0, φ(b) = 1. Hence, as functions on Zn, pa,b = p0,1 ◦ φ.
Moreover, because φ is affine, for any two probabilities p, q, [p◦φ]∗ [q◦φ](x) =
p ∗ q(φ(x)+ v). Hence, p(k)

a,b(x) = p
(k)
0,1(φ(x)+ (k− 1)v). As z �→ φ(z)+ (k− 1)v

is a bijection, we have ds(p
(k)
a,b , u) = ds(p

(k)
0,1 , u). The last assertion is obtained

as in Theorem 8.2. �


We now consider what happens when p = pΣ is uniform on a subset
Σ of Zn having m > 2 elements where m is fixed. Theorems 7.3, 7.8 and
7.9 apply in this case and show that if Σ is symmetric, and 0 ∈ Σ then
c(m)D2 ≤ T (Zn, pΣ) ≤ C(m)D2 where D is the diameter of the associated
Cayley graph (the condition that Σ be symmetric and contains 0 can be
removed and replaced by the condition that ΣΣ−1 generates). For instance,
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it is not hard to use this to show that, for any fixed m the walk driven by the
uniform measure pΣm on Σm = {0,±1,±*n1/m+, . . . ,±*n(m−1)/m+} satisfies
c(m)n2/m ≤ T (Zn, Σk) ≤ C(m)n2/m (the same is true for the non-symmetric
version of Σm, i.e., Σ′m = {{0, 1, *n1/m+, . . . , *n(m−1)/m+}).

The works [24, 72, 87] contain interesting complementary results derived
through a careful use of representation theory in the spirit of this section.

Theorem 8.4 ([72], see also [87]). Let p be any probability measure on
Zn. Assume that the support of p is of size m + 1 > 2. There exist c =
c(m) and N = N(m) such that, for k < cn2/m and for all n > N , we have
‖p(k) − u‖TV ≥ 1/4.

Call a subset {a0, . . . , am} ⊂ Zm aperiodic if the greater common divisor of
a1 − a0, . . . , am− a0 and n is 1. Let uΣ denote the uniform probability on Σ.

Theorem 8.5 ([24]). Fix m ≥ 2. Let Σ be chosen uniformly at random from
all aperiodic m + 1-subsets of Zn. Let ψ(n) be any function increasing to
infinity and assume that kn ≥ ψ(n)n2/m. Then

E(‖u(kn)
Σ − u‖TV)→ 0 as n→∞

where the expectation is relative to the choice of the set Σ.

When n is prime this can be improved as follows.

Theorem 8.6 ([87]). Fix m ≥ 2 and assume that n is a prime. Let Σ be
chosen uniformly at random from all m+ 1-subsets of Zn. Given ε > 0, there
exist c = c(m, ε) and N = N(m, ε) such that, for all n > N and k > cn2/m,
we have E(‖u(k)

Σ − u‖TV) < ε.

The simple random walk on the hypercube. Let G = Z
d
2 be the hy-

percube and consider the simple random walk driven by the measure p at
(5.14), i.e., the uniform measure on {e0, e1, . . . , ed} where e0 = (0, . . . , 0) and
ei, 1 ≤ i ≤ d are the natural basis vectors of Z

d
2.

The characters of G, indexed by Ĝ = G are given by χy(x) = (−1)x.y

where x.y =
∑d

1 xiyi. Hence, p has eigenvalues p̂(χy) = 1− 2|y|/(d+1) where
|y| =

∑d
1 yi. Now (8.3) becomes

d2(p(k), u)2 =
d∑

1

(
d
j

)(
1− 2j

d+ 1

)2k

.

For k = 1
4 (d+ 1)[log d + c] with c > 0, this yields (see [27, p. 28])

2‖p(k) − u‖TV ≤ d2(p(k), u)2 ≤ 2
(
ee−c − 1

)
.

Together with the lower bound in total variation of Section 5.3, this proves
that the simple random walk on the hypercube has a cut-off at time td =
1
4d log d. By a more direct method, Diaconis, Graham and Morrison prove the
following complementary results.
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Theorem 8.7 ([35]). Referring to the above walk on the hypercube Z
d
2, for

any k = 1
4 (d+ 1)[log d + c], c ∈ R

‖p(k) − u‖TV = 1− 2Φ
(
−e−2c

4

)
+ o(1)

where

Φ(t) =
1
2π

∫ t

−∞
e−s

2/2ds.

Note that the automorphism group of Z
d
2 acts transitively on the set of all

d-tuples that generate Z
d
2 which means that all generating d-tuples are equiv-

alent from our viewpoint.

Other walks on the hypercube. The papers [73, 140] consider what typi-
cally happens for walks on the hypercube driven by the uniform measure uΣ
on a generating set Σ with n > d elements. In particular, [140] proves the
following result. Set

H(x) = x log2 x
−1 + (1− x) log2(1− x)−1.

This function is increasing from H(0) = 0 to H(1/2) = 1. Let H−1 be the
inverse function from [0, 1] to [0, 1/2] and set

T (d, n) =
n

2
log

1
1− 2H−1(d/n)

.

Theorem 8.8 ([140]). Assume that the random walk driven by the uniform
probability uΣ on the set Σ of n elements in Z

d
2 is ergodic. For any ε > 0, for

all d large enough and n > d, we have:

– For any set Σ, if k ≤ (1− ε)T (d, n) then ‖u(k)
Σ − u‖TV > 1− ε.

– For most sets Σ, if k ≥ (1 + ε)T (d, n) then ‖u(k)
Σ − u‖TV < ε.

Thus the lower bound holds for all choices of Σ whereas the upper bounds
holds only with probability 1− ε when the set Σ is chosen at random. Also,
when n is significantly larger than d, the walk is ergodic for most choices of Σ.
The function T (d, n) has the following behavior (see [140]):

T (d, n) ∼ d

4
log

d

n− d
if n− d = o(d)

T (d, n) ∼ d

log2(n/d)
if d/n = o(1).

When n is linear in d then T (d, n) is also linear in d. For instance, T (d, 2d) ∼ ad
with 0.24 < a < 0.25. This leads to the following open question.

Problem 8.9. Find an explicit set of 2d elements in Z
d
2 whose associated walk

reaches approximate stationarity after order d steps.
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The arguments in [140] do not use characters or eigenvalues directly. In fact,
Wilson observes in [140] that for n linear in d the walk driven by uΣ typically
reaches stationarity strictly faster in total variation than in the d2 distance
for which we have the equality (5.8).

Wilson’s result for random subsets contrasts with what is known for ex-
plicit sets. Uyemura-Reyes [138] studies the walk on the hypercube driven by

p(x) =






1/(2d) if x = (0, . . . , ) or (1, . . . , 1)
1/d2 if x =

∑i+j
�=i e�, 1 ≤ i ≤ d, 1 ≤ j < d

0 otherwise

where, in the second line, i + j is understood mod d. For reasons explained
in [138], this is called the random spatula walk. It is proved in [138] that this
walk has a cut-off at time tn = 1

8d log d.

The simple random walk on Z
d
n. In Z

d
n, let e = (0, . . . , 0) and ei have

a single non-zero coordinate, the i-th, equal to 1. Let n be odd and p be the
uniform measure on {±ei : 0 ≤ i ≤ d}. It is noteworthy that obtaining good
uniform bounds over the two parameters n and d for this walk is not entirely
trivial. The eigenvalues are easy to write down. They are

α� =
1
d

(
d∑

1

cos(2π�i/n)

)

with � = (�1, . . . , �d) ∈ {0, . . . , n− 1}d. But bounding d2(p(k), u)2 =
∑
� �=0 α

2k
�

is not an easy task. One way to solve this difficulty is to use the associated
continuous-time measure Ht defined at (2.10) and Theorem 5.1. This tech-
nique works for problems having a product structure similar to the present
example. See [42, Section 5]. The reason this is useful is because Ht turns out
to be a product measure. Namely, if x = (x1, . . . , xd),

Ht(x) =
d∏

1

H1,t/d(xi)

where H1,t corresponds to the random walk on Zn driven by the measure
p1(±1) = 1/2. It follows that (u1 denotes the uniform measure on Zn)

d2(Ht, u)2 =
(
1 + d2(H1,t/d, u1)2

)d − 1.

It is not hard to obtain good upper and lower bounds for

d2(H1,t, u1)2 =
n−1∑

j=1

e−2t[1−cos(2πj/n)].

Namely, setting λ(n) = 1− cos(2π/n) we have



Random Walks on Finite Groups 323

(
1 +

cn√
t

)
e−2tλ(n) ≤ d2(H1,t, u1)2 ≤

(
1 +

Cn√
t

)
e−2tλ(n).

This analysis, the elementary inequalities

∀x > 0, d ∈ N, dx(1 + x/2)d−1 ≤ (1 + x)d − 1 ≤ dx(1 + x)d−1,

and Theorem 5.1 yield the following result.

Theorem 8.10. There are constants c, C ∈ (0,∞) such that, for the simple
random walk on Z

d
n, we have

Fn,d(c, t) ≤ d2(Ht, u)2 ≤ Fn,d(C, t)

with λ(n) = 1− cos(2π/n) and

Fn,d(a, t) = d

(
1 + a

√
dn2

t

)(
1 +

(
1 + a

√
dn2

t

)
e−2tλ(n)/d

)d−1

e−2tλ(n)/d

Moreover, there exists a constant C1 such that, if n is an odd integer, d is
large enough, and

k > 1 +
d log d
2λ(n)

+
dθ

2λ(n)
with θ > 0, then

2‖p(k) − u‖TV ≤ d2(p(k), u) ≤ C1e−θ.

Finally, for any τ > 6/d, we have ‖p(k) − u‖TV ≥ 1− τ if

k <
log(dτ/6)

−2 log(1− λ(n)/d)
.

Note that the discrete time upper bound uses the fact that when n is odd,
the lowest eigenvalue is cos(π/n) whose absolute value is much smaller than
1− λ(n)/d for d large enough (d ≥ 8 suffices). Theorem 8.10 proves a cut-off
at time (d/2λ(n)) log d as long as d tends to infinity (n can be fixed or can
tend to infinity).

8.3 Random Random Walks

In the spirit of Theorem 8.8, consider a group G, an integer m, and pick uni-
formly at random an m-set Σ = {g1, . . . , gm}. Consider the random walk on G
driven by the uniform probability measure uΣ . What is the “typical” behavior
of such a walk? Let E denote the expectation relative to the random choice
of Σ. What can be said about E

(
‖u(k)

Σ − u‖TV

)
? To obtain some meaning-

ful answers, we consider this problem for families of groups (Gn) where the
size of Gn grows to infinity with n as in the following open problem. Recall
that a classical result [52] asserts that the probability that a random pair of
elements of the alternating group An generates An tends to 1 as n tends to
infinity.



324 Laurent Saloff-Coste

Problem 8.11. What is the typical behavior of the random walk driven by
uΣ when Σ is a random pair (more generally a random m-set) in An and n
tends to infinity?

This is a wide open question. However, interesting results have been obtained
in the case where m = m(G) is allowed to grow with the order |G| of G and
this growth is fast enough.

Large random sets. In his unpublished thesis [53], C. Dou proves the fol-
lowing result using Theorem 8.1 and some combinatorics.

Theorem 8.12. Let G be a finite group of order |G|. Let Σ be an m-element
set chosen uniformly at random from G. Then

E
(
‖u(k)

Σ − u‖TV

)
≤ 1

2

(
(2k)2k|G|

mk

)1/2

.

To illustrate this result, fix an integer s and take m ≥ |G|1/s and k = s + 1.
Then the right-hand side is 1

2 [2(s + 1)]2(s+1)|G|−1/s which tends to 0 as |G|
tends to ∞. For instance, most random walks based on sets of size

√
|G|

reach approximate stationarity in 3 steps. As a second example, consider sets
of fixed size m ≥ a(log |G|)2s with a > 4 and s > 1. Then, there exists δ > 0
such that for k = (log |G|)s we have

E
(
‖u(k)

Σ − u‖TV

)
≤ exp(−δ(log |G|)s).

In [54], the approach of [53] is developed further to obtain the following.

Theorem 8.13 ([54]). Let m = *(log |G|)s+ for some fixed s > 1. Let ε > 0
be given. Let Σ be a m-element set chosen uniformly at random in a finite
group G. Then for

k >
s

s− 1
log |G|
logm

(1 + ε)

we have that E
(
‖u(k)

Σ − u‖TV

)
tends to 0 as |G| tends to infinity.

This result cannot be improved as shown by an earlier result of Hildebrand [87]
concerning abelian finite groups. See [54] for a slightly more general result.

Theorem 8.14 ([87]). Let ε > 0 be given. Let G be a finite abelian group.
Let m = *(log |G|)s+ for some fixed s > 1. Let Σ be a m-element set chosen
uniformly at random in a finite abelian group G. Then for

k <
s

s− 1
log |G|
logm

(1− ε)

we have that E
(
‖u(k)

Σ − u‖TV

)
tends to 1 as |G| tends to infinity.

For further results in this direction, see [88, 89, 113, 120].
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9 Central Measures and Bi-invariant Walks

9.1 Characters and Bi-invariance

When the group G is not abelian, e.g., G = Sn, the formula of Theorem 8.1
is often quite hard to use in practice, even when p = p̌ is symmetric. Indeed,
p(x−1y) defines a |G| × |G| matrix whose eigenvalues we would like to find.
What Theorem 8.1 does is to decompose this into |Ĝ| smaller problems, one for
each irreducible representation �. The matrix p̂(�) has size d�×d�. This is very
useful if d� is small. Unfortunately, irreducible representations of non-abelian
finite groups tend to have large dimensions. For instance, for the symmetric
group Sn, it is known that the typical dimension of a representation is

√
n!.

Because of this, Theorem 8.1 is useful mostly in cases where p has further
symmetries. The typical case is when p is a central probability, that is, it
satisfies

∀x, y ∈ G, p(y−1xy) = p(x). (9.1)

Functions (probabilities) with this property are also called class functions
since they are exactly the functions which are constant on conjugacy classes.
Indeed, by definition, the conjugacy classes are exactly the classes of elements
of G for the equivalence relation defined by x ∼ y iff x = z−1xz for some
z ∈ G. When p is central, the associated Markov chain is not only left- but
also right-invariant, that is, satisfies

Pe(Xn = y) = Px(Xn = xy) = Px(Xn = yx)

for all x, y ∈ G. Such random walks are called bi-invariant random walks.
To each representation � of G, one associates its character

χ�(x) = tr(�(x)) =
d�∑

1

�i,i(x).

These functions are all central functions and χ�(s−1) = χ�(s). Moreover
|χ�(s)| is maximum at s = e where χ�(e) = d�. From the orthogonality
relations it follows immediately that the characters of all irreducible repre-
sentations form an orthonormal family in L2(G). Moreover, if p is any central
measure (function) and � is an irreducible representation, then

p̂(�) = λ�(p)Id� , λ�(p) =
1
d�

∑

s∈G
p(s)χ�(s)

where Id� is the d� × d� identity matrix. See, e.g., [27, 28, 59]. It follows
that the irreducible characters, i.e., the characters associated with irreducible
representations, form a basis of the subspace of all central functions in L2(G).
Hence the number of irreducible representations up to equivalence, i.e., |Ĝ|,
equals the number of conjugacy classes inG. This leads to the following general
result. See, e.g., [27, 59].
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Theorem 9.1. Let C1, . . . , Cm be conjugacy classes in G with representatives
c1, . . . cm. Assume that p is a central probability measure supported on ∪m1 Ci.
Then

d2(p(k), u)2 =
∑

�∈Ĝ

d2
�

(
m∑

1

p(Ci)
χ�(ci)
χ�(e)

)2k

. (9.2)

Representation and character theory of finite groups is an important and
well studied subject and there is sometimes enough information on characters
available in the literature to make this theorem applicable. What is needed
are manageable formulas or estimates for the dimensions d� of all irreducible
representations and for the character ratios χ(ci)/χ(e).

Even when such data is available, estimating the sum on the left-hand side
of (9.2) can still be quite a challenge. Indeed, this is a huge sum and it is often
not clear at all how to identify the dominant terms.

9.2 Random Transposition on the Symmetric Group

Representation theory of the symmetric group. We will illustrate
Theorem 9.1 by examples of bi-invariant walks on the symmetric group Sn.
See [27] for a detailed treatment and [31] for a survey of further develop-
ments. The irreducible representations of the symmetric group are indexed
by the set of all partitions λ of n where a partition λ = (λ1, . . . , λr) has
λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and

∑r
1 λi = n. It is useful to picture the partition

λ = (λ1, . . . , λr) as a diagram made of r rows of square boxes, the i-th row
having λi boxes. The rows are justified on the left. See [27, 59] for pointers to
the literature concerning the representation theory on the symmetric group.
For instance, for n = 10 the partition λ = (5, 4, 1) is pictured in Figure 1.

Denote by dλ the dimension of the irreducible representation �λ indexed
by λ. Then dλ equals the number of ways of placing the numbers 1, 2, . . . , n
into the diagram of λ such that the entries in each row and column are in-
creasing. This is by no mean an easy number to compute or estimate.

The partition λ = (n) corresponds to the trivial representation, (dimen-
sion 1). The partition (1, 1, . . . , 1) corresponds to the sign representation (di-
mension 1). The partition (n−1, 1) corresponds to the representation �(n−1,1)

of Sn on V = {(z1, . . . , zn) ∈ C
n :

∑
zi = 0} where �(n−1,1)(σ) is represented

Fig. 1. λ = (5, 4, 1)
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in the canonical basis of C
n by the matrix with coefficients mi,j = δi,σ(j). This

representation �(n−1,1) has dimension dλ = n− 1 (the only free choice is the
number between 2 and n which goes in the unique box on the second row of
the diagram).

The next necessary ingredient in applying Theorem 9.1 are formulas for
character values. Such formulas were given by Frobenius but they become un-
wieldy for conjugacy classes with a complex cycle structure. Which character
values are needed depend on exactly which random walk is considered. The
simplest case concerns the walk called random transposition.

Random transposition. Consider n cards laid out on a table in a row. Let
the right and left hands each pick a card uniformly and independently and
switch the positions of the cards (if both hands pick the same card, the row
of card stays unchanged). This description gives the random transposition
measure pRT on Sn defined at (4.1). Since {e} and T = {τi,j : 1 ≤ i < j ≤ n}
are conjugacy classes, Theorem 9.1 applies. Now, we need the character values
χλ(e) = dλ and χλ(t) where t is any fixed transposition. Frobenius’ formula
gives

χλ(t)
χλ(e)

=
1

n(n− 1)

∑

j

(
λ2
j − (2j − 1)λj

)

from which it follows that the eigenvalues of this walk are

pRT(e) + pRT(T )
χλ(t)
χλ(e)

=
1
n

+
n− 1
n

χλ(t)
χλ(e)

=
1
n

+
1
n2

∑

j

(
λ2
j − (2j − 1)λj

)

with multiplicity d2
λ. With some work, one shows that the second largest

eigenvalue is 1−2/n with multiplicity (n−1)2, attained for λ = (n−1, 1). The
lowest eigenvalue is −1+2/n with multiplicity 1, attained for λ = (1, 1, . . . , 1).

Using the above data and estimates on dλ, Diaconis and Shahshahani
obtained in 1981 the following theorem which gives first precise result about
the convergence of a complex finite Markov chain.

Theorem 9.2 ([50]). For the random transposition walk on the symmetric
group Sn, there exists a constant A such that, for all n and c > 0 for which
k = 1

2n(logn + c) is an integer, we have

2‖p(k)
RT − u‖TV ≤ d2(p

(k)
RT , u) ≤ Ae−c.

Moreover, there exist a function f with limit 0 at ∞ such that for all n > 5
and all c > 0 for which k = 1

2n(log n − c) is an integer,

‖p(k)
RT − u‖TV ≥ 1− 12

(
e−c + n−1 logn

)
.
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This theorem proves that (Sn, pRT) has a total variation cut-off and a L2-cut-
off, both a time 1

2n logn. Let us comment further on the lower bound. It can
be proved ([27, p. 44]) by using Propositions 5.6, 5.7, the fact that

χ2
(n−1,1) = χ(n) + χ(n−1,1) + χ(n−2,2) + χ(n−2,1,1),

and the values of the corresponding eigenvalues and dimensions. This formula
giving χ2

(n−1,1) is a classical result in representation theory. It corresponds to
the decomposition into irreducible components of the tensor product �(n−1,1)⊗
�(n−1,1). Another proof using classical probability estimates can be obtained
by adapting the argument of [27, p. 43].

9.3 Walks Based on Conjugacy Classes of the Symmetric Group

A conjecture. In principle, it is possible to use character bounds to study
any random walk on the symmetric group whose driving measure is central.
However, the computational difficulty increases rapidly with the complexity
of the conjugacy classes involved. To state some results and conjectures, recall
that any conjugacy class C on Sn can be described by the common disjoint
cycle structure of its elements. Thus C = (2) means C is the class of all
transpositions, C = (5, 3, 3, 2, 2, 2, 2) means C is the class of all permutations
that can be written as a product of one 5-cycle, two 3-cycles and four 2-cycles
where the supports of those cycles are pairwise disjoint. It is known (and
not hard to prove) that any odd conjugacy class (i.e., whose elements have
sign −1) generates the symmetric group. However the walk associated to the
uniform measure on an odd conjugacy class is always periodic of period 2. To
cure this parity problem consider, for any odd conjugacy class C on Sn the
probability measure pC defined by

pC(θ) =






1/2 if θ = e

1/[2#C] if θ ∈ C

0 otherwise.

This is sometimes referred to as a lazy random walk because, on average, it
moves only every other steps, see, e.g., [88, 89]. Thus, the walk driven by
p(2) is similar to the random transposition walk except that it stay put with
probability 1/2 instead of 2/n. One can show that Theorem 9.2 applies to the
walk generated by p(2) if k = 1

2n(logn ± c) is changed to k = n(logn ± c).
For C = (c1, c2, . . . , c�), set |C| =

∑�
1 ci. Note that |C| is the size of the

support of any permutation in C, i.e., n minus the number of fixed points.
With this notation one can make the following conjecture.

Conjecture 9.3. There exists a constant A such that, for all n, all odd conju-
gacy classes C with |C| , n, and all c > 0 for which k = (2n/|C|)(logn + c)
is an integer, we have
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2‖p(k)
C − u‖TV ≤ d2(p

(k)
C , u) ≤ Ae−c.

Moreover, there exist two functions f1
C , f

2
C with limit 0 at ∞ such that for

all n and all c > 0 for which k = (2n/|C|)(logn − c) is an integer,

‖p(k)
C − u‖TV ≥ 1− f1

C(c)− f2
C(n).

Any even conjugacy class C of Sn generates the alternating group An
(except for n = 4) and one can consider the random walk on An driven
by the uniform measure on C. Denote by p̃C the uniform measure on the
conjugacy class C viewed as a subset of An. For p̃C it is conjectured that
the statement of Conjecture 9.3 holds with k = (n/|C|)(log n + c) instead of
k = (2n/|C|)(logn + c).

Conjecture 9.3 can be interpreted in various ways depending of what is
meant by |C| , n. It is open even for fixed |C| such as |C| = 20 and n
tending to infinity. The strongest reasonable interpretation is |C| ≤ (1− ε)n,
for some fixed ε > 0. What is known at this writing is described in the next
section.

Small conjugacy classes. For |C| ≤ 6 and n tending to infinity, Conjec-
ture 9.3 (and its even conjugacy class version on An) is proved in [121, 122].
Moreover, [121, 122] shows that the lower bound holds true for all C such that
|C| < n/(1+ logn) (some of the computations in the proof given in [121, 122]
are incorrect but these errors can easily be fixed).

To give an idea of the difficulties that arise in adapting the method used
for random transposition, we give below some explicit character values. The
source is [93] and [121, 122]. For any partition λ = (λ1, . . . , λr) and � =
1, 2, . . . , set

M2�,λ =
r∑

j=1

[
(λj − j)�(λj − j + 1)� − j�(j − 1)�

]

M2�+1,λ =
r∑

j=1

[
(λj − j)�(λj − j + 1)�(2λj − 2j + 1) + j�(j − 1)�(2j − 1)

]
.

For a conjugacy class C, set rλ(C) = χλ(c)/χλ(e) where c is any element of C.
These character ratios are the building blocks needed to apply formula (9.2).
For the conjugacy classes (4), (2, 2) and (6), one has:

rλ((4)) =
(n− 4)!

n!
(M4,λ − 2(2n− 3)M2,λ)

rλ((2, 2)) =
(n− 4)!

n!
(
M2

2,λ − 2M3,λ + 4n(n− 1)
)

rλ((6)) =
(n− 6)!

n!
(M6,λ − (6n− 37)M4,λ

− 3M2,λM3,λ + 6(3n2 − 19n+ 20)M2,λ

)
.
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A weak form of the conjectures stated in the previous section is proved by
Roichman in [119] where interesting uniform bounds for the character ratios
rλ(C) are also derived.

Theorem 9.4 ([119]). Fix η, ε ∈ (0, 1). Then there are constants a,A,N ∈
(0,∞) such that for any n ≥ N , any odd conjugacy class C with |C| ≤ (1−η)n,
we have

2‖p(k) − u‖TV ≤ d2(p
(k)
C , u) ≤ ε for all k ≥ An

|C| logn

whereas
‖p(k)
C − u‖TV ≥ ε for all k ≤ an

|C| logn.

The same result holds on An for even conjugacy classes.

This theorem of Roichman proves the existence of a precut-off at time
(n/|C|) logn for (Sn, pC) when |C| ≤ (1− η)n.

Large conjugacy classes. In his thesis [102], Lulov considers the walks
driven by the uniform measure on the conjugacy classes Cr = (n/r, . . . , n/r),
where r divides n. These are huge conjugacy classes. Consider the case where
Cr is even and the walk is restricted to An. Obviously, p̃Cr is not close to the
uniform distribution on An. However, Lulov uses character ratios estimates
to show that p̃(k)

Cr
is close to uniform on An for k = 3 if r = 2 and for k = 2 if

r ≥ 3. In [103] the authors conjecture that, for conjugacy classes with no fixed
points, it always takes either 2 or 3 steps to reach approximate stationarity.
They also prove the following Theorem by deriving sufficiently good character
ratio estimates.

Theorem 9.5 ([103]). Let Cn be an even conjugacy class in Sn with a single
cycle, i.e., Cn = (rn) and assume that |Cn| = rn > n/2 and n− rn tends to
infinity. Then the sequence (An, p̃Cn) presents a cut-off at time

tn =
logn

log[n/(n− rn)]
.

For the lower bound, [103] refers to [119]. The lower bound in [119] is based
on Propositions 5.6 and 5.7. The proof in [119] needs to be adapted properly
in order to prove the lower bound stated in Theorem 9.5.

The authors of [103] conjecture that the conclusion of Theorem 9.5 is valid
for all sequences Cn of even conjugacy classes whose number of fixed points
n− |Cn| is o(n) and tends to infinity.
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Other walks related to random transposition. Imagine a deck of cards
where each card, in addition to its face value, has an orientation (or spin),
say up or down (think of the faces of the cards being up or down in the deck,
or of the back of each card being marked by an arrow that can be up or
down). A natural generalization of random transposition is as follows. Pick
a pair of positions uniformly at random in the deck. Transpose the cards in
these positions and, at the same time, uniformly pick an orientation for these
cards. This is a random walk on the wreath product Z2 - Sn = (Z2)n � Sn
where the action of Sn is by permutation of the coordinates in Z

n
2 . The above

description generalizes straightforwardly to the case where Z2 is replace by
an arbitrary finite group H . For instance, taking H = Sm, we can think
of the corresponding walk as mixing up n decks of m cards. Here cards of
different decks are never mixed together. What is mixed up is the relative
order of the decks and the cards in each individual deck. Schoolfield [128, 129]
studies such walks and some variants using character theory. He finds that
ae−c ≤ d2(p(k), u) ≤ Ae−c if k = 1

2n log(n
√
|G|) + c, c > 0. Using a stopping

time argument as in Theorem 4.6, he also proves a cut-off in total variation
at tine tn = 1

2 logn. Hence, if G depends on n and |G| grows fast enough with
n then stationarity is reached at different times in total variation and in L2.
See also [58].

9.4 Finite Classical Groups

Together with the symmetric and alternating groups, one of the most natu-
ral families of finite groups is formed by the classical groups over finite fields.
These are groups of matrices resembling the classical real compact Lie groups.
Representation and character theory of these groups are an important domain
of research from several viewpoints but what is known is much less complete
than for the symmetric groups. Many of these groups contains some relatively
small conjugacy classes (or union of conjugacy classes), resembling the class of
all transpostions in Sn, which generates the whole group. This leads to inter-
esting random walks that can, in principle, be studied by using Theorem 9.1,
i.e., character theory. We describe below some of the known results in this
direction.

Random transvection in SLn(Fq). SLn(Fq) is the group of n×n matrices
with determinant 1 over the finite field Fq with q elements (hence q = pn

for some prime p). By definition, a transvection is an element in SLn(Fq)
which is not the identity and fixes all the points of a hyperplane in F

n
q , the

n dimensional vector space over Fq. The transvections generate SLn(Fq) and
form a conjugacy class when n > 2. Good examples of transvections are the
elementary matrices I + aEi,j , a ∈ Fq \ {0}, i �= j, where I is the n × n
identity matrix, and the matrix Ei,j has a unique non-zero entry equal to 1 in
the (i, j)-th position. A general transvection has the form I + uvt where u, v
are two arbitrary non-zero vectors in F

n
q with utv = 0 (an element u of F

n
q is
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a column vector and ut is its transpose). Moreover, uvt = u0v
t
0 if and only if

u = au0, v = a−1v0 for some a ∈ Fq \ {0}. Thus picking u, v independently
and uniformly in F

n
q \ {0} gives a uniformly distributed transvection I + utv.

We denote by p the uniform measure on the set of all transvections and call
the corresponding random walk the random transvection walk. This walk is
studied by Hildebrand in [86] who proves the following remarkable result.

Theorem 9.6 ([86]). For the random transvection measure p on SLn(Fq)
defined above, there are two positive constants A,N such that, for all q ≥ 2,
n ≥ N and k = n+m with m = 1, 2, . . . , we have

d2(p(m), u) ≤ A q−m.

Moreover, for all q and all integers n,m with k = n−m > 0 and m ≥ 3, we
have

‖p(k) − u‖TV ≥ 1− 4q1−m.

The upper bound uses (9.2) and a formula for character ratios that Hilde-
brand obtains from results in McDonald’s book [109]. The task is significantly
harder than for random transposition on Sn. The lower bound follows from
a relatively simple argument concerning the dimension of the space of fixed
vectors by a product of m transvections. Hildebrand’s results demonstrate
that the random transvection walk presents a very sharp cut-off: for random
transvection on SLn(Fq), it takes at least n− 6 steps to reduce the total vari-
ation distance from 1 to 0.9. After that, a fixed number of steps suffices to
drop the variation distance to, say 0.1.

Small conjugacy classes on finite classical groups. In a remarkable
work [67, 68, 69], David Gluck studies in a unified and uniform way a large
class of random walks on the finite classical groups. The results that Gluck ob-
tains are somewhat less precise than Hildebrand’s Theorem 9.6 but they have
the same flavor: for any random walk whose driving measure is central, that
is, constant on conjugacy classes and supported on small conjugacy classes,
convergence to the uniform distribution occurs after order k steps where k is
the rank of the underlying finite classical group. For instance, SLn(Fq) has
rank n − 1 and it follows from Gluck’s results that the random transvection
walk studied by Hildebrand reaches approximate stationarity after order n
steps.

Technically, the results obtained by Gluck are by no means simple general-
izations of the previous results of Diaconis–Shahshahani and Hildebrand. The
exact character formulas used by both Diaconis–Shahshahani and Hildebrand
do not seem to be available for the problems treated by Gluck. Even if they
were, it would be an immense task to obtain Gluck’s results through a case
by case analysis. A massive amount of (very advanced) algebra is at work be-
hind Gluck’s approach. To avoid technicalities, we present below two specific
examples that falls into Gluck’s theory: random symplectic transvection and
random unitary transvection. A friendly reference for basic facts and notation
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concerning these examples is [76]. Let Fq be a finite field with q elements and
consider the vector space F

n
q . For simplicity, we assume that n, q ≥ 4 and q

odd.
Assume that n = 2m and fix a non-degenerate alternating form B (the

choice of the form is irrelevant). A symplectic transformation is any invert-
ible linear transformations of Fnq that preserve B and Spn(Fq) ⊂ SLn(Fq)
is the group of all symplectic transformations. The group Spn(Fq) satisfies
Spn(Fq)′ = Spn(Fq). It has order

|Spn(Fq)| = qm
2
m∏

i=1

(q2i − 1), n = 2m.

To define SUn(Fq), assume that Fq admits an automorphism α such that
α2 = 1 (this implies that q = q20 for some prime power q0). Fix a Hermitian
form B (relative to α)). Again, because we work on finite fields, the precise
choice of B is irrelevant. The special unitary group SUn(Fnq ) is the group of
all invertible linear transformations with determinant 1 which preserve the
Hermitian form B. The group SUn(Fq) satisfies SUn(Fq)′ = SUn(Fq). It has
order

|SUn(Fq)| = qn(n−1)
n∏

j=1

(qj/2 − (−1)j).

A symplectic transvection (resp. unitary transvection) is a transvection
that preserve the Hermitian (resp. unitary) form B. Symplectic (resp. unitary)
transvections are exactly the linear transformations of the form

τu,a : v �→ v + aB(v, u)u

where u ∈ F
n
q \ {0} is a non-zero vector and a ∈ F

∗ is a non-zero scalar (resp.
u ∈ F

n
q \ {0}, B(u, u) = 0, and a ∈ F

∗, a = −α(a)). Both the symplectic
groups and the special unitary groups are generated by transvections.

Note that τu,a = τu0,a0 if and only if there exists b ∈ F
∗ such that u =

bu0, a = b−1a0. Thus we can pick a symplectic (resp. unitary) transformation
uniformly at random by picking uniformly at random u ∈ Fq \ {0} and a ∈ F

∗

(resp. u ∈ Fq \ {0} satisfying B(u, u) = 0 and a ∈ F
∗ satisfying a = −α(a)).

For any symplectic (resp. unitary) transformation σ, and any symplectic
(resp. unitary) transvection τu,a, we have στu,aσ−1 = τσ(u),a. This shows that
the set T of all symplectic (resp. unitary) transvections is a union of conjugacy
classes (it is not, in general, a single conjugacy class). Gluck’s results in [68,
Th. 42 and Cor. 64] specialize to the present examples as follows.

Theorem 9.7 ([68]). Let p denote the uniform measure on symplectic or
unitary transvections in Spn(Fq) or in SUn(Fq), respectively. Assume that q
is odd and n is large enough. Then there exists N such that for k = N(n+ c)
with c > 0, we have

d2(p(k), u) ≤ q−n/4−2c.
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One of the typical character ratio estimates obtained by Gluck [67] says
that there exist a ∈ (0, 1) and M > 0 such that for every finite simple group of
Lie type Gq over the finite field with q elements, for every non-central element
g ∈ Gq, and for every irreducible character χ of G(q),

|χ(g)/χ(e)| ≤ min{a,Mq−1/2}.

This is not enough to prove Theorem 9.7 for which the refinements obtained
in [68] are needed but, as noted in [99], it gives the following result.

Theorem 9.8. Let Gqn be a family of finite groups of Lie type of order
growing to infinity. Let Cn be a non-central conjugacy class in Gqn and
Σn = Cn ∪ C−1

n . Then the Cayley graphs (Gqn , Σn) form a family of ex-
panders.

9.5 Fourier Analysis for Non-central Measures

The extent to which Fourier analysis fails to provide useful results for ran-
dom walks that are not bi-invariant (i.e., driven by non-central measures) is
somewhat surprising. Still, there are cases in which the analysis of Sections
9.1 and 9.2 can be extended but few have been worked out in detail. A typical
example is the transpose top and random shuffle. On Sn, consider the measure

p�(τ)
{

1/n if τ = (1, i), i = 1, . . . , n
0 otherwise, (9.3)

where (1, 1) is the identity and (1, i), i �= 1, is transpose 1 and i. This measure
is not central (see (9.1)) but it is invariant by τ �→ θτθ−1, θ ∈ Sn−1 where
Sn−1 is understood as the subgroup of Sn of those permutations that fix 1.
Because of this property, for any irreducible representation � of Sn, the matrix
p̂�(�) has a relatively small number of distinct eigenvalues and manageable
formulas for the eigenvalues and their multiplicity can be obtained. See [27,
28, 59]. Using this spectral information and (5.8) gives the upper bound in
the following theorem. The lower bound can be obtained by adapting the
argument used for random transposition in [27, p.43].

Theorem 9.9. For transpose top and random, i.e., the walk on Sn driven
by p�, there exists a constant A such that, for all n and c > 0 for which
k = n(logn + c) is an integer, we have

2‖p(k)
� − u‖TV ≤ d2(p

(k)
� , u) ≤ Ae−c.

Moreover, there are two functions f1, f2 with limit 0 at ∞ such that for all n
and all c > 0 for which k = n(log n − c) is an integer,

‖p(k)
� − u‖TV ≥ 1− f1(c)− f2(n).
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10 Comparison Techniques

The path technique used in Section 6 to bound the spectral gap generalizes in
a very useful way to yield comparison inequalities between the Dirichlet form
of different random walks. Such inequalities are important because they lead
to a full comparison of the higher part of the spectrum of the two walks as
sated in the next result.

10.1 The min-max Characterization of Eigenvalues

Dirichlet form comparison leads to spectrum comparison by a simple appli-
cation of the Courant–Fisher min-max characterization of the ordered eigen-
values q0 ≤ q1 ≤ . . . of a self-adjoint linear operator Q on a Hilbert space
(V, 〈·, ·〉) (here, finite dimensional and real). See, e.g., [90, 4.2.11].

Theorem 10.1 ([42]). Let p, p̃ be two symmetric probability measures on a fi-
nite group G with respective Dirichlet forms E , Ẽ and respective eigenvalues,
in non-increasing order βi, β̃i. Assume that there is a constant A such that
Ẽ ≤ AE. Then, for all i = 0, 1, . . . , |G|−1, βi ≤ 1−A−1

(
1− β̃i

)
. In particu-

lar, for the continuous-time random walks associated to p and p̃ as in (2.10),
we have

d2(Ht, u) ≤ d2(H̃t/A, u). (10.1)

The inequality Ẽ ≤ AE does not provide good control on the small positive
eigenvalues and the negative eigenvalues of p. Thus there is no clean statement
in discrete time analogous to (10.1). However, there are various ways to cope
with this difficulty. Often, negative and small positive eigenvalues do not play
a crucial role in bounding d2(p(k), u). In particular, (10.1) and Theorem 5.1
give the following useful result.

Theorem 10.2 ([42]). Referring to the notation of Theorem 10.1, assume
that there is a constant A > 0 such that Ẽ ≤ AE. Then

d2(p(k), u)2 ≤ β2k1
− (1 + d2(H̃k2/A, u)2) + d2(H̃k/A, u)2

and

d2(p(k), u)2 ≤ β2k1
− (1 + |G|e−k2/2A + d2(p̃(�k2/2A�), u)2)

+|G|e−k/2A + d2(p̃(�k/2A�), u)2

where k = k1 + k2 + 1 and β− = max{0,−β|G|−1}.
For best results, one should use the first inequality stated in this theorem since
an extra factor of 2 is lost in bounding d2(H̃t, u) in terms of d2(p̃(k), u). To
use Theorems 10.1, 10.2, one needs a measure p̃ that can be analyzed in terms
of the L2-distance d2. A general scheme that has proved very successful is to
start with a central measure p̃ for which representation theory can be used as
in Theorem 9.1. Then Theorems 10.1, 10.2 can be used to obtain results for
other walks.
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10.2 Comparing Dirichlet Forms Using Paths

We now present some comparison inequalities between Dirichlet forms taken
mostly from [42, 49]. The proofs are similar to the proof of Theorem 6.4 given
in Section 6.2. Fix two probability measures p and p̃ onG. Think of p as driving
the unknown walk we wish to study whereas we already have some information
on the walk driven by p̃. Fix a symmetric generating set Σ contained in
the support of p. We will use the notation introduced in Section 6. Given
a subset T of G, pick a path γx from e to x in the Cayley graph (G,Σ) and
set P∗(T ) = {γx : x ∈ T }.
Theorem 10.3 ([42, 45, 49]). Let T denote the support of p̃. Referring to
the setting and notation introduced above, we have Ẽ ≤ A∗E where

A∗ = max
s∈Σ





1

p(s)

∑

γ∈P∗(T )

|γ|N(s, γ)p̃(γ)






with p̃(γ) = p̃(x) if γ = γx ∈ P∗(T ).

The following result concerns the walks based on fixed subsets of trans-
positions and is obtained by comparison with random transposition [42]. Let
G = (V,E) be a graph with vertex set V = {1, . . . , n} and symmetric edge
set E ⊂ V × V containing no loops ((i, i) �∈ E and (i, j) ∈ E if and only if
(j, i) ∈ E). Consider the walk on the symmetric group driven by the measure

pG(τ) =






1/n if τ = e
2(n− 1)/|E|n if τ = (i, j) with (i, j) ∈ E

0 otherwise.

Thus this walk is based on those transpositions which corresponds to neighbors
in G. It is irreducible if and only if the graph is connected. If G is the complete
graph then pG = pRT is the random transposition measure defined at (4.1). If
G is the line graph 1−2−· · ·−n then pG = pAT is the adjacent transposition
measure. If G is the star graph with center 1 then pG = p� is the transpose
top and random measure defined at (9.3). These walks were introduced in [42].
They are also considered in [80]. To state a general result, for each x, y ∈ V ,
pick paths µx,y from x to y in G of length (i.e number of edges) |µx,y| and set

∆ = max
e∈E

∑

(x, y) ∈ V × V
e ∈ µx,y

|µx,y|.

The quantity ∆ depends on both the length of the paths and the number of
bottlenecks in the family {µx,y : x, y ∈ V } (see, e.g., [51, 57, 42, 43]).

Theorem 10.4 ([42]). Referring to the notation introduced above, there ex-
ists a constant A such that for k > (4(n− 1)−1|E|∆+n)(log n+ c), c > 0, we
have

2‖p(k)
G − u‖TV ≤ d2(p

(k)
G , u) ≤ Ae−c.
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For the star graph and the line graph this theorem gives upper bounds on
T (Sn, p�), T (Sn, pAT) that are of order n logn and n3 logn respectively. Both
capture the right order of magnitude. If G is a two dimensional finite square
grid with side size

√
n, the theorem gives T (Sn, pG) ≤ Cn2 logn. A matching

lower bound is proved in [141]. The bound of Theorem 10.4 is probably not
sharp in general. For instance, assume n = 2d and let G be the hypercube.
In this case, Theorem 10.4 gives T (Sn, pG) ≤ Cn(logn)3. Wilson [141] proves
T (Sn, pG) ≥ cn(logn)2 which is probably sharp.

An interesting example is obtained for E = {(i, j) : |i − j| ≤ �} with
1 ≤ � ≤ n. We call the associated walk the �-adjacent transposition walk and
denote by p�-AT the corresponding measure. For � = 1, this is the adjacent
transposition walk. For � = n, we get random transposition. Durrett [55] uses
Theorem 10.4 and Theorem 5.8 to show that there are constants C, c > 0
such that c(n3/�2) logn ≤ T (Sn, p�-AT) ≤ Cn3/�2) logn (in fact, the walk
considered in [55] is slightly different but the same analysis applies).

Next we describe other examples where comparison with random transpo-
sition gives good results.

– The crude overhand shuffle and the Borel–Chéron shuffle of Section 3.1.
In both cases, comparing with random transposition, the constant A∗ in
Theorem 10.3 stays bounded, uniformly in n. This shows that order n logn
such shuffles suffice to mix up n cards. Details and matching lower bounds
can be found in [42].

– Random insertions. For i < j, the insertion ci,j is the cycle (j, j−1, . . . , j−
i + 1, i) and cj,i = c−1

i,j . The random insertion measure pRI is given by
pRI(e) = 1/n, p(ci,j) = 1/n2 for i �= j. The mixing time T (Sn, pRI) is of
order n logn. See [42, 45] where other insertion walks are also considered.

– Random reversal. A reversal is a transposition that takes a packet and puts
it back in reverse order. Thus for i < j, ri,j = (i, j)(i− 1, j − 1) . . . (*(j −
i)/2+)(.(j − i)/2/) is the reversal corresponding to the i to j packet. The
random reversal measure is pRR given by pRR(e) = 1/n, pRR(ri,j) = 2/n2.
The �-reversal measure p�-RR has p�-RR(e) = 1/n and p�-RR(ri,j) = 1/�(n−
�/2− 1) if i < j with j − i ≤ �. Durrett [55] shows that there exists C, c >
0 such that c(n3/�3) log n ≤ T (Sn, p�-RR) ≤ C(n3/�2) log n. The upper
bound is by comparison with random transposition. The lower bound uses
Theorem 5.8. The walk “reverse top to random” is studied in [42]. It has
a precut-off at time n logn.

– A slow shuffle. Let p be uniformly supported on Σ = {e, τ, c, c−1} where
τ is the transposition (1, 2) and c is the long cycle c = (1, 2, . . . , n). It is
easy to write any transposition using τ, c, c−1. In this case the constant
A∗ is of order n2 and this proves that there is a constant C such that
T (Sn, p) ≤ Cn3 logn, see [42]. A matching lower bound is proved in [142].
Hence this walk has a precut-off at time n3 logn.

– A fast shuffle. This example is taken from [10] and [42]. For any even
integer n, let Sn act by permutation on the n-set Zn−1 ∪ {∞}. Let πi :
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x �→ 2x+ i, mod n− 1, i = 0, 1, and π2 = (0,∞), i.e., transpose 0 and ∞.
Let p be the uniform probability on Σ = {e, π±1

0 , π±1
1 , π2}. The diameter

of (Sn, Σ) is of order n logn (by an obvious counting argument, this is
optimal for a bounded number of generators). Moreover, comparison with
random transposition gives T (Sn, p) ≤ Cn(log n)3, see [42]. It is an open
problem to find a bounded number of generators in Sn such that the mixing
time of the associated walk is of order n logn.

We now give a slightly more sophisticated version of Theorem 10.3 using the
notion of p̃-flow. Let Pe,Pe,x be as defined in Section 6.2. A p̃-flow is a non-
negative function Φ on Pe such that

∑

γ∈Pe,x

Φ(γ) = p̃(x).

Theorem 10.5 ([45]). Referring to the setting and notation introduced above,
let Φ be p̃-flow. Then Ẽ ≤ A(Φ)E where

A(φ) = max
s∈Σ





1

p(s)

∑

γ∈P
|γ|N(s, γ)Φ(γ)




 .

As a corollary, we obtain the following result.

Theorem 10.6. Assume that there is a subgroup H of the automorphism
group of G which is transitive on Σ and such that p̃(hx) = p̃(x) for all x ∈ G

and h ∈ H. Set ε = min{p(s) : s ∈ Σ}. Then Ẽ ≤ AE where

A =
1

ε#Σ

∑

x∈G
|x|2p̃(x).

Proof. Consider the set Ge,x of all geodesic paths from e to x in (G,Σ) and
set

Φ(γ) =
{

(#Ge,x)−1p̃(x) if γ ∈ Ge,x
0 otherwise.

It is clear that this defines a p̃-flow. Moreover, since each γ ∈ Ge,x has length
|γ| = |x|, the constant A(φ) of Theorem 10.5 is bounded by

A(Φ) = max
s∈Σ





1

p(s)

∑

x∈G
|x|

∑

γ∈Ge,x

N(s, γ)
p̃(x)

#Ge,x






≤ ε−1 max
s∈Σ





∑

x∈G
|x|

∑

γ∈Ge,x

N(s, γ)
p̃(x)

#Ge,x




 .

By assumption, the quantity inside the parentheses is independent of s.
Averaging over s ∈ Σ yields the desired bound. �
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As an application of Theorem 10.6, we state the following result for which
the construction of the paths is rather involved. See [49] and the references
cited therein. On SLn(Zm), m prime, let p be the uniform measure on the
the set Σ = {Ei,j : 0 ≤ i, j ≤ n} where Ei,j denotes the elementary matrix
with 1’s along the diagonal, a 1 in position (i, j) and 0’s elsewhere. Let p̃ be
the random transvection measure of Theorem 9.6.

Theorem 10.7 ([49]). Referring to the notation introduced above, there ex-
ists a constant C such that, for any integer n and prime number m,

Ẽ ≤ C[n logm]2E .

In particular, the second largest eigenvalue β1 of p is bounded by

β1 ≤ 1− 1
2C[n logm]2

for all integers n,m large enough, m prime.

10.3 Comparison for Non-symmetric Walks

This section applies Dirichlet form comparison and Theorem 5.4 to study
non-symmetric examples.

Let us start with two examples on the symmetric group Sn. Let τ = (1, 2),
c = (1, 2, . . . , n), c′ = (1, 2, . . . , n − 1) and consider the probabilities p1, p2

defined by
p1(τ) = p1(c) = 1/2, p2(c) = p2(c′) = 1/2.

These are essentially the probabilities corresponding to the slow shuffles dis-
cussed at the end of Section 4.1.

As the walk driven by p1 is periodic if n is even, we assume that n is odd.
It is easy to see (see [45]) that the second largest singular value σ1(1) = σ1 of
p1 is 1 but that the support of q = p

(2)
1 ∗ p̌(2)

1 generates Sn so that σ1(2) < 1.
Comparison between q and random transposition, together with Theorem 5.4,
gives T (Sn, p1) ≤ Cn3 logn. A matching lower bounds is given in [142].

Surprisingly, this argument does not work for the walk driven by p2. In-
deed, the support of p(j)

2 ∗ p̌(j)
2 does not generate Sn unless j ≥ n and it

is not clear how to study the walk driven by p
(n)
2 ∗ p̌(n)

2 using comparison.
See [45]. A coupling argument gives T (Sn, p2) ≤ Cn3 log n, [85]. A matching
lower bounds is given in [142].

The next result shows that non-symmetric walks with significant holding
probability can always be controlled by additive symmetrization.

Theorem 10.8. Let p be a probability measure on a finite group G. let q+ =
1
2 (p + p̌) be the additive symmetrization of p and assume that p(e) = ε > 0.
Then

d2(p(2k), u)2 ≤ d2(Q+
εk, u)2 ≤ |G|e−εk + d2(q

(�εk/2�)
+ , u)2.
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Proof. By assumption q = p∗ p̌ ≥ εq+ leading to an immediate comparison of
the associated Dirichlet forms. For the continuous-time probabilities Qt, Q+

t

associated respectively to q, q+ by (2.10), Theorem 10.1 gives

d2(Qt, u) ≤ d2(Q+
εt, u).

As q has non-negative eigenvalues, Theorem 5.1 gives d2(q(k), u) ≤ d2(Qk, u).
Also, by Theorem 5.4, we have d2(p(2k), u) ≤ d2(q(k), u). Hence,

d2(p(2k), u) ≤ d2(Q+
εk, u).

Using Theorem 5.1 again finishes the proof. �


As a typical application, we consider the Frattini walks on p-groups of
Section 7.2.

Theorem 10.9. Fix an integer c. Then there are positive constants ai =
ai(c), i = 1, 2, such that for any p-group G of nilpotency class and Frattini
rank at most c, for any minimal set F of generators of G, we have

‖q(k)F − u‖TV ≤ a3e−a4k/p
2ω

where qF denotes the uniform probability measure on {e} ∪ F and pω is the
exponent of G/[G,G].

Proof. Use Theorem 10.8 and Theorem 7.10. �
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