
Monoidal Functors, Species and Hopf Algebras

Marcelo Aguiar

Swapneel Mahajan

Department of Mathematics

Texas A&M University

College Station, TX 77843-3368

USA

E-mail address: maguiar@math.tamu.edu

URL: http://www.math.tamu.edu/~maguiar

Department of Mathematics

Indian Institute of Technology Mumbai

Powai, Mumbai 400 076

India

E-mail address: swapneel@math.iitb.ac.in

URL: http://www.math.iitb.ac.in/~swapneel

maguiar@math.tamu.edu
http://www.math.tamu.edu/~maguiar
swapneel@math.iitb.ac.in
http://www.math.iitb.ac.in/~swapneel


2010 Mathematics Subject Classification. Primary 05A30, 16T30, 18D10, 18D35,
20B30, 81R50; Secondary 05A18, 05B35, 05C25, 05E05, 05E45, 06A11, 06A15,

16T25, 18D05, 18D20, 18D25, 18D50, 18G30, 18G35, 20F55, 51E24, 81S05

Key words and phrases. bilax monoidal functor; Fock functor; Hopf algebra; Hopf
monoid; monoidal category; 2-monoidal category; operad; species; symmetric

group; symmetric functions



Contents

List of Tables ix

List of Figures xi

Foreword by Kenneth Brown and Stephen Chase xiii

Foreword by André Joyal xv
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Foreword by Kenneth Brown and Stephen Chase

Ever since they were graduate students at Cornell University, Marcelo Aguiar
and Swapneel Mahajan have shown a remarkable ability to grasp and develop highly
complex and abstract theories without losing sight of their more down-to-earth
aspects. They are able to find unexpected connections between apparently different
subjects which almost always unify them and illuminate their mysteries. And they
are also wonderful communicators, with an ability to find just the right example,
or just the right picture, to explain a complicated idea.

It was, therefore, very gratifying to us, their former thesis advisors, that they
began to combine their talents several years ago. Their first joint publication [12]
uses geometric methods, inspired by Jacques Tits’s projection operators in the
theory of buildings, to study a variety of Hopf algebras arising in combinatorics.
That monograph introduces fundamentally new ideas and obtains many new results,
in addition to unifying and simplifying the earlier theories.

Another giant step towards a deeper understanding of these “combinatorial
Hopf algebras” is taken in the present work. Its heart is Part II, in which the crucial
notion of a Hopf monoid in the monoidal category of linear species is introduced
(a linear species being a functor from finite sets to vector spaces over a field). The
authors give due credit for this concept to others, but by means of their detailed
theory of these objects, and the wealth of examples they construct from geometric
and combinatorial data, they make it their own. Hopf monoids in species appear
to retain some of the information that is lost when one passes directly from these
data to the relevant Hopf algebras; their connection to these Hopf algebras is thus
perhaps reminiscent of that between derived categories and the classical invariants
of homological algebra.

But how does one obtain the combinatorial Hopf algebras from Hopf monoids
in species? It is here that the highly categorical Part I of the monograph plays its
starring role. In it the authors introduce and study in great detail the notion of
a bilax functor on a braided monoidal category; namely, a functor which is both
lax and colax and satisfies appropriate compatibility conditions linking these two
structures. The point is that, just as a (co)lax functor preserves (co)monoids, a
bilax functor preserves bimonoids. In Part III of the monograph the relevant bilax
functors on species—labeled “Fock functors”—are introduced, studied, and applied
to obtain bialgebras (arising as bimonoids in the monoidal category of graded vector
spaces), which are then shown to be the desired Hopf algebras.

The monograph, especially Parts I and III, introduces a wealth of further ideas,
concepts, and results that will undoubtedly exert a strong influence on future re-
search in algebraic combinatorics. In particular, the authors present the notion
of a 2-monoidal category (a category with two monoidal structures linked by an
interchange law), and show that it provides a natural setting for the theory of bilax
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functors; they also prove, and apply, the fact that linear species comprise, in two
different ways, such a 2-monoidal category. Moreover, their theorem in Part I that
the familiar construction of a chain complex from a simplicial module constitutes,
by means of the Alexander–Whitney and Eilenberg–Zilber maps, a bilax functor;
their construction in Part III of important quantum groups from Hopf monoids in
colored species; and many other issues discussed throughout the monograph indi-
cate that it has a reach extending far beyond the combinatorial questions it was
originally intended to address.

It is our great pleasure to introduce you to the exciting world of Monoidal
functors, species, and Hopf algebras.

Ithaca, NY Kenneth S. Brown
March 2009 Stephen U. Chase



Foreword by André Joyal

The theory described in this book is at the crossroads between category theory,
algebra, and combinatorics. Its main goal is to unify and clarify a large number
of constructions of Hopf algebras found in the literature and to reveal many new
connections between them. The book contains a systematic description of the rel-
evant aspects of category theory together with many examples of Hopf algebras.
It includes the tensor algebra, the shuffle algebra, the symmetric algebra, the ex-
terior algebra, the divided power algebra, the algebra of symmetric functions, the
algebra of permutations introduced by Malvenuto and Reutenauer, the algebra of
quasi-symmetric functions introduced by Gessel and the algebra of noncommuta-
tive symmetric functions introduced by Gelfand, Krob, Lascoux, Leclerc, Retakh
and Thibon. It also includes q-deformations of these Hopf algebras as well as
multi-parameters deformations and decorated versions. The book contains other
interesting material which is not discussed in this foreword.

The notions of algebra, coalgebra, bialgebra and Hopf algebras are special cases
of the general notions of monoid, comonoid, bimonoid and Hopf monoid in a mon-
oidal category. The notion of bilax (monoidal) functor plays a central role in the
theory. Its importance arises from the fact that the image of a bimonoid by a bilax
functor is again a bimonoid. A strong braided monoidal functor is bilax, but a bilax
functor may not be strong. For example, in algebraic topology, the chain complex
functor

C : sMod→ dgMod

from the category of simplicial modules to the category of differential graded mod-
ules is bilax but not strong. Its lax structure is given by the Eilenberg–Zilber
map

ϕ : C(X)⊗ C(Y )→ C(X ⊗ Y )

and its colax structure by the Alexander–Whitney map

ψ : C(X ⊗ Y )→ C(X)⊗ C(Y ).

Most bilax functors considered in the book preserve Hopf monoids in addition to
preserving bimonoids. This means that a bilax functor can be used for constructing
new Hopf monoids from old ones. A stronger notion is that of Hopf lax (monoidal)
functor. The image of a Hopf monoid under a Hopf lax functor is always a Hopf
monoid.

The Hopf algebras considered in the book are all constructed from a small
number of primeval Hopf monoids living in the category of vector species Sp. This
generalizes the constructions by Stover of Hopf algebras from twisted Hopf algebras
in the sense of Barratt. If k is a fixed field, then a vector species p is a functor

p[−] : Set× → Vec

xv
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where Set× is the category of finite sets and bijections and Vec is the category of
k-vector spaces and linear maps. The Cauchy product of two vector species p and
q is defined by the formula

(p · q)[I] =
⊕

S⊔T=I

p[S]⊗ q[T ]

where the sum is indexed over all decompositions S ∪ T = I, S ∩ T = ∅. The
category (Sp, ·) of vector species equipped with the Cauchy product is monoidal and
a twisted k-algebra is a monoid in this monoidal category (the authors prefer not to
use this terminology). The category is symmetric monoidal with symmetry β which
interchanges the factors. Most primeval Hopf monoids in the symmetric monoidal
category (Sp, ·, β) can be constructed combinatorially. For example, if L[I] denotes
the set of linear orders on a finite set I, then the functor L: (Set×,⊔)→ (Set,×) is
bilax. Its lax structure

L[S]× L[T ]→ L[S ⊔ T ]

is defined by concatenating (l1, l2) 7→ l1 · l2 and its colax structure

L[S ⊔ T ]→ L[S]× L[T ]

by restricting l 7→ (l|S , l|T ). It then follows by a general result of Chase that the
vector species L = kL has the structure of a bimonoid in (Sp, ·, β) (it is actually a
Hopf monoid). There is a similar Hopf monoid structure on the exponential species
E, the species of partitions Π and the species of compositions (ordered partitions)
Σ. Other examples can be obtained by dualizing, where the dual p∗ of a vector
species p is defined by setting p∗[I] = p[I]∗ for every finite set I. The Hopf monoids
E and Π are self-dual.

For each vector space V , the evaluation functor

eV : Sp→ gVec

defined by setting

eV (p) = p(V ) =
⊕

n

p[n]⊗Sn V
⊗n,

is strong monoidal and braided, where gVec is the category of graded vector spaces.
It thus takes a Hopf monoid h in Sp to a graded Hopf algebra h(V ) which is
commutative (resp. cocommutative) if h is commutative (resp. cocommutative).
For example, the Hopf algebra L(V ) is the tensor algebra T (V ), the Hopf algebra
L∗(V ) is the shuffle algebra T ∨(V ), and the Hopf algebra E(V ) is the symmetric
algebra S(V ).

The functor eV is called the decorated bosonic Fock functor and is denoted KV .
If V = k, it is called the bosonic Fock functor and denoted K. By definition, we
have

K(p) =
⊕

n

p[n]Sn ,

where p[n]Sn denotes the space of Sn-coinvariants of p[n].
The Hopf algebra K(Π) is the algebra of symmetric functions Λ (when k is of

characteristic 0), and it is self dual, since Π is self-dual. The Hopf algebra K(Σ)
is the algebra of noncommutative symmetric functions NΛ and the Hopf algebra
K(Σ∗) is the algebra of quasi-symmetric functions QΛ.
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The full Fock functor K : Sp → gVec and its decorated version KV are respec-
tively defined by setting

K(p) =
⊕

n

p[n] and KV (p) =
⊕

n

p[n]⊗ V ⊗n.

These functors are bilax but not strong monoidal. The Hopf algebra K(L∗) is the
algebra of permutations SΛ.

Other examples of bilax functors can be obtained by dualizing. Every bilax
functor F : Sp→ gVec has a dual F∨ : Sp→ gVec obtained by composing with the
functors

(−)∗ : Sp→ Sp and (−)∗ : gVec→ gVec.

Assume (for simplicity) that each space p[n] is finite-dimensional. By dualizing the
Fock functors K and K we obtain two new bilax functors

K∨(p) =
⊕

n

p[n] and K
∨
(p) =

⊕

n

p[n]Sn ,

where p[n]Sn denotes the space of Sn-invariants in p[n]. Each of these functors has
a decorated version,

K∨
V (p) =

⊕

n

p[n]⊗ V ⊗n and K
∨
V (p) =

⊕

n

(p[n]⊗ V ⊗n)Sn .

The functors KV and K∨
V are isomorphic but they differ by their bilax structure.

For example, KV (E) is the tensor algebra T (V ) while K∨
V (E) is the shuffle algebra

T ∨(V ). The functor K
∨
V is strong monoidal and braided.

A lax or a colax functor can be braided. For example, the chain complex functor
is braided lax, since the Eilenberg–Zilber map preserves the natural symmetry
X ⊗ Y ∼= Y ⊗ X , but it is not braided colax, since the Alexander–Whitney map
does not preserve this symmetry. Dually, a bilax functor can be braided colax
without being braided lax. For example, the functor K is braided colax but it is
not braided lax. This is why the Hopf algebra K(Π) is cocommutative but not
commutative, although the Hopf monoid Π is bicommutative. Similarly, the Hopf
algebra K(L∗) is not commutative although the Hopf monoid L∗ is commutative.

The category of vector species Sp admits another monoidal structure in addition
to the Cauchy product: the Hadamard product p × q of two vector species p and
q is defined by setting

(p× q)[I] = p[I]⊗ q[I]

for every finite set I. It turns out that the Hadamard product functor

× : Sp× Sp→ Sp

is bilax. It follows that the Hadamard product h1×h2 of two Hopf monoids h1 and
h2 is again a Hopf monoid. It follows also that the functor h×− : Sp→ Sp is bilax
for any bimonoid h. In particular, the functor L×− : Sp→ Sp is bilax; hence so is
its composite with the functor K : Sp→ gVec. The obvious natural isomorphism

K(p) ∼= K(L × p)

preserves the bilax structure on these functors. It follows that the Hopf algebra of
permutations

SΛ = K(L∗) ∼= K(L× L∗)
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is self-dual, since the Hopf monoid L× L∗ is self-dual.

The notion of fermionic Fock functor can be obtained by replacing the sym-

metry isomorphism U ⊗ V
≃
−→ V ⊗ U between graded vector spaces with a graded

symmetry

β−1 : U ⊗ V
≃
−→ V ⊗ U

defined by setting

β−1(x⊗ y) = (−1)mn y ⊗ x

for x ∈ Um and y ∈ Vn. This defines a symmetric monoidal category (gVec, β−1).
A commutative monoid in (gVec, β−1) is a graded commutative algebra.

If V is a vector space, let V 〈n〉 denote the graded vector space with V concen-
trated in degree n. We then have an Sn-equivariant isomorphism

V 〈1〉⊗n = E−[n]⊗ V ⊗n〈n〉

in the category (gVec, β−1), where E−[n] denotes the sign representation of Sn. The
functor

e−V : (Sp, β)→ (gVec, β−1)

defined by setting

e−V (p) = p(V 〈1〉) =
⊕

n

p[n]⊗Sn V 〈1〉
⊗n =

⊕

n

(p[n]⊗E−[n]⊗ V ⊗n)Sn

is strong monoidal and braided. It thus takes a Hopf monoid h in Sp to a graded
Hopf algebra h(V 〈1〉) which is graded commutative (resp. cocommutative) if h is
commutative (resp. cocommutative). For example, the Hopf algebra e−V (E) is the
exterior algebra on V .

If V = k, the functor e−V (E) is called the fermionic Fock functor and is denoted

K−1. By definition, we have

K−1(p) =
⊕

n

(p[n]⊗E−[n])Sn .

The dual fermionic functor K
∨
−1 : (Sp, ·)→ (gVec, β−1) defined by setting

K
∨
−1(p) =

⊕

n

(p[n]⊗E−[n])Sn

is also strong monoidal and braided.

Deformation of algebras, coalgebras, bialgebras and Hopf algebras is an impor-
tant topic discussed in the book. If q ∈ k is nonzero and if U and V are graded
k-vector spaces, then the map

βq : U ⊗ V
≃
−→ V ⊗ U,

defined by setting

βq(x⊗ y) = qmn y ⊗ x

for x ∈ Um and y ∈ Vn, is a braiding. This defines a braided monoidal category
(gVec, βq). The braiding βq is a symmetry if q = ±1. If p and q are vector species,
then the map

βq : p · q
≃
−→ q · p,

defined by setting

βq(x⊗ y) = qmn y ⊗ x
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for x ∈ p[m] and y ∈ q[n], is a braiding. This defines a braided monoidal category
(Sp, βq). A Hopf monoid in (Sp, βq) is called a q-Hopf monoid. For example, the
Hopf monoid L admits a q-deformation Lq in which the coproduct δq : L→ L ·L is
defined by setting

δq(l) = qsch(S,T )(l|S , l|T )

for every linear order l on S ⊔ T . Here sch(S, T ) is the distance between the orders
(l|S) · (l|T ) and l. The Hopf monoid Σ has a similar deformation Σq. Other q-Hopf
monoids can be obtained by dualizing.

The Fock functors

KV ,KV : (Sp, βq)→ (gVec, βq)

are respectively braided strong and bilax. They thus take a q-Hopf monoid to a
q-Hopf algebra. For example, KV (L∗

q) is the q-shuffle algebra T ∨
q (V ), a deformation

of the shuffle algebra T ∨(V ). The algebra SΛq = K(L∗
q) is a deformation of the

Hopf algebra of permutations SΛ. More generally, there are deformed Fock functors

Kq,K
∨
q , : (Sp, βp)→ (gVec, βpq)

obtained by respectively deforming the colax structure of the functor K and the
lax structure of the functor K∨. There are also canonical isomorphisms of bilax
functors

Kq ∼= K(Lq ×−) and K∨
q
∼= K

∨
(L∗

q ×−)

and it may be deduced that the q-Hopf algebra

SΛq = K(Lq × L∗)

is self-dual.

The book contains many other interesting subjects not discussed in this fore-
word. For example, it describes the relations between the various Fock functors
using the properties of the norm transformation. It develops a theory of up and
down operators on species and a theory of creation and annihilation operators on
Fock spaces. It introduces the notion of 2-monoidal category and more generally
of n-monoidal category. These are related to a notion introduced by Balteanu,
Fiedorowicz, Schwänzl and Vogt. An example of a 2-monoidal category is provided
by (Sp, ·,×), but many more examples are given in the book.

The book of Aguiar and Mahajan is a quantum leap toward the mathematics
of the future. I strongly recommend it to all researchers in algebra, topology and
combinatorics.

Montréal André Joyal
August 2009





Introduction

This research monograph is divided into three parts. Broadly speaking, Part I
belongs to the realm of category theory, while Parts II and III pertain to alge-
braic combinatorics, although the language of the former is present and apparent
throughout. Four appendices supplement the main text.

In this introduction, we explain informally the main ideas in this monograph
and provide pointers to important results in the text. We also indicate the chapter
most relevant to a particular discussion. More details are given in the introduction
of individual chapters.

Contents of Part I

Part I is of a general nature; it contains the material on monoidal categories on
which the constructions of the later parts are laid out. Except for a few references
to later parts for the purpose of examples, Part I is independent and self-contained.
Our main goal here is to develop the basic theory of bilax monoidal functors. These
are functors between braided monoidal categories which allow for transferring bi-
monoids in one to bimonoids in the other. These functors possess a rich theory,
more so than one may perhaps anticipate. Further, a systematic study of bilax
monoidal functors naturally leads us to the exciting world of higher monoidal cat-
egories. The results here constitute the beginnings of a theory which should find
applications in a variety of settings and which should therefore be of wide interest.

Monoidal categories (Chapter 1). Our starting point is a review of basic notions
pertaining to monoidal category theory. We do not assume any previous knowledge
of the subject. As our goal in Part III is the construction of certain Hopf algebras,
in Chapter 1 there is a special emphasis on the notion of Hopf monoid (and the
related notions of monoid, comonoid, and bimonoid). This notion can be defined
in a braided monoidal category. When the latter is the category of (graded) vector
spaces, one obtains the notion of (graded) Hopf algebra. In Part II we deal with
the category of species, and Hopf monoids therein are our main concern. Chapter 1
thus lays out notions that will occupy us throughout the monograph and sets up
the corresponding notation.

Graded vector spaces (Chapter 2). Our next step is a review of basic notions
pertaining to graded vector spaces. We discuss three monoidal structures on this
category, namely, the Cauchy, Hadamard and substitution products. Our emphasis
is on the Cauchy product since it is Hopf monoids with respect to this product
which yield the notion of graded Hopf algebras. We discuss q-Hopf algebras, a

xxi
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notion obtained by deforming the braiding by a parameter q, and also Q-Hopf alge-
bras, which are higher dimensional generalizations obtained by considering braid-
ings parametrized by a matrix Q. Examples include the Eulerian q-Hopf algebra of
Joni and Rota, and Manin’s quantum linear space.

We discuss basic Hopf algebras such as the tensor algebra, the shuffle alge-
bra, the symmetric algebra and other relatives, and explain how they relate via
symmetrization and abelianization. These relations can be understood via freeness
and cofreeness properties of these Hopf algebras. We also discuss comparatively
less familiar objects such as the tensor algebra on a coalgebra and the quasi-shuffle
bialgebra.

We also consider graded vector spaces with the added structure of boundary
maps. These include chain complexes (which are used later to discuss an impor-
tant example of a bilax monoidal functor) and graded vector spaces with creation-
annihilation operators.

In Part II we are mainly concerned with analogues of these constructions for
species. The link to graded vector spaces is made in Part III, where we study how
monoidal properties of species translate to monoidal properties of graded vector
spaces. Many results of Chapter 2 can then be seen as particular instances of
results on species. Thus, Chapter 2 provides us in a nutshell some of the main
ideas that will occupy us in later parts of this monograph.

Lax and colax monoidal functors (Chapter 3). There are two types of functors
between monoidal categories: lax and colax. A lax monoidal functor F is equipped
with a transformation

ϕA,B : F(A) • F(B)→ F(A •B)

satisfying certain associativity and unital conditions. The transformation ϕ neefd
not be an isomorphism. Colax monoidal functors (F , ψ) are the dual notion. These
notions go back to the dawn of monoidal category theory with Bénabou [36]. Ob-
serve that if one ignores the objects A and B in the above definition, then a lax
monoidal functor specializes to a monoid. This can be stated more precisely: A
monoid is equivalent to a lax monoidal functor from the one-arrow category. In
contrast to monoids, lax monoidal functors can be composed. The composite of lax
monoidal functors is again lax (Theorem 3.21). This implies that a lax monoidal
functor preserves monoids. More precisely, if (A, µ) is a monoid and (F , ϕ) is a lax
monoidal functor, then F(A) is a monoid whose product is given by the composite

F(A) • F(A)
ϕA,A
−−−→ F(A •A)

F(µ)
−−−→ F(A).

Colax monoidal functors correspond to comonoids in the same manner as lax mon-
oidal functors correspond to monoids. A strong monoidal functor is a lax monoidal
functor (F , ϕ) for which the transformation ϕ is an isomorphism. This is the notion
of monoidal functor most frequently used in the literature. In this situation, the
distinction between lax and colax monoidal functors disappears.

We also consider adjunctions between monoidal functors. One of the main
results here states that the right adjoint of a colax monoidal functor carries a
canonical lax structure, and the left adjoint of a lax monoidal functor carries a
canonical colax structure (Proposition 3.84). This, as well as some related results,
can be obtained as special cases of general results of Kelly on adjunctions between
categories with structure [195], but we provide direct proofs.
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In category theory, along with categories and functors, there are natural trans-
formations. This gives rise to the 2-category Cat. In the context of monoidal
categories and (co)lax functors, there is a corresponding notion for natural trans-
formations. We simply call them morphisms between (co)lax functors. This gives
rise to the 2-categories lCat and cCat corresponding to the lax and colax cases re-
spectively. The fact that 1-cells in a 2-category can be composed corresponds to
the fact that the composite of (co)lax monoidal functors is again (co)lax.

Bilax monoidal functors (Chapter 3). If the monoidal category is braided, then
the notions of lax and colax monoidal functor can be combined into that of a bilax
monoidal functor (F , ϕ, ψ), much in the same manner as the notion of bimonoid
combines the notions of monoid and comonoid. Recall that bimonoids are mon-
oids in the category of comonoids (or comonoids in the category of monoids). We
provide a similar characterization of bilax monoidal functors (Proposition 3.77).
Many results for bimonoids carry over to bilax monoidal functors in this manner.
If the transformations ϕ and ψ are isomorphisms, then we say that the functor
is bistrong. Just as for lax and colax monoidal functors, the composite of bilax
monoidal functors is again bilax (Theorem 3.22). Further, just as for monoids and
comonoids, a bimonoid is equivalent to a bilax functor from the one-arrow category.
It then follows that a bilax functor preserves bimonoids.

There are two other types of functors between braided monoidal categories:
braided lax and braided colax. Unlike the bilax case, these have appeared fre-
quently in the literature. They preserve commutative monoids and cocommutative
comonoids respectively. If the underlying lax structure of a braided lax functor is
strong, then we say that the functor is braided strong. It is important to point
out that in the strong situation, the distinction between bilax, braided lax and
braided colax disappears. Thus, a bistrong monoidal functor is the same thing as
a braided strong monoidal functor (Proposition 3.46). This nontrivial result may
explain the lack of references in the literature to the notion of bilax monoidal func-
tors: to encounter this notion one must look beyond the familiar setting of strong
(and braided strong) monoidal functors.

A number of examples of bilax monoidal functors and morphisms between them
are given in the monograph; a summary is provided in Tables 3.1, 3.2 and 3.3.

The op and cop constructions (Chapter 3). Recall that to any monoid A in a
braided monoidal category, one can associate the opposite monoids Aop and opA
by precomposing the product with the braiding or its inverse. Similarly, to any co-
monoid C, one associates the opposite comonoids copC and Ccop by postcomposing
the coproduct with the braiding or its inverse. We refer to these as the op and cop
constructions.

The same construction can be carried out for (co)lax monoidal functors. To
(F , ϕ), we associate (F , ϕb) and (F , bϕ), and similarly to (F , ψ), we associate
(F , ψb) and (F , bψ). These are obtained by conjugating the (co)lax structures
with the braiding or its inverse. For example,

ϕb : F(A) • F(B)
β
−→ F(B) • F(A)

ϕB,A
−−−→ F(B •A)

F(β−1)
−−−−−→ F(A •B).

These constructions can be combined to obtain the following important result. If
(F , ϕ, ψ) is a bilax monoidal functor, then so are (F , ϕb, ψb) and (F , bϕ, bψ) (Propo-
sition 3.16). The images of a bimonoid H under these functors yield bimonoids
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which are related to F(H) via the op and cop constructions. The precise result is
given in Proposition 3.34.

If F is braided lax, then ϕ = ϕb = bϕ. A similar statement holds for braided
colax functors. If a bilax monoidal functor is both braided lax and braided colax,
then we say that it is braided bilax. In this case, conjugation does not yield anything
new.

Normal bilax monoidal functors (Chapter 3). A bimonoid for which the unit
and counit maps are inverses is necessarily trivial (isomorphic to the unit object).
In contrast, there are many interesting bilax functors for which such a property
holds. We refer to them as normal bilax monoidal functors. It is a weakening of the
notion of bistrong functors (Proposition 3.45). The Fock functors which form the
focus of our attention in Part III are normal. We provide other examples as well.

Our terminology is motivated by the normalized chain complex functor dis-
cussed in Chapter 5. Needless to say, the normalized chain complex functor is an
example of a normal bilax functor. The class of normal bilax functors satisfies
some interesting properties (Proposition 3.41). These are related to the notion of
a Frobenius monoidal functor, which has been considered in the literature. Some
of these properties, for the example of the normalized chain complex functor, have
also appeared in the literature.

Hopf lax monoidal functors (Chapter 3). At this point a natural question
presents itself. If lax, colax and bilax monoidal functors correspond to monoids, co-
monoids and bimonoids, then what class of functors corresponds to Hopf monoids?
A starting point is provided by the following result: The image of a Hopf monoid
under a bistrong monoidal functor is again a Hopf monoid, in such a way that the
antipode of the latter is the image of the antipode of the former (Proposition 3.50).

The answer we offer is the following. Between bilax monoidal functors and
bistrong monoidal functors, there is an intermediate class of functors that preserves
Hopf monoids but modifies antipodes in a predictable manner, much as the rest
of the structure is modified by a bilax monoidal functor. We call them Hopf lax
monoidal functors. We show that a normal bilax functor is Hopf lax if and only
if it is bistrong (Proposition 3.60). It is worth pointing out that the analogy of
Hopf lax monoidal functors with Hopf monoids is less straightforward than that
of bilax monoidal functors with bimonoids, and the result on preservation of Hopf
monoids (Theorem 3.70) requires a considerable amount of work. Familiar results
for Hopf monoids admit generalizations to Hopf lax monoidal functors: the antipode
of a Hopf lax monoidal functor is unique (Proposition 3.56), a morphism of bilax
monoidal functors preserves antipodes when they exist (Proposition 3.59).

The antipode of a Hopf lax functor is related to the identity natural transfor-
mation through certain convolution formulas (Propositions 3.62–3.66). They are
further developed from a more abstract point of view in Section D.4 (reviewed
under Monoids and the simplicial category).

The results on Hopf lax functors, though interesting, are less relevant to the
applications in later parts of the monograph. Indeed, the bilax full Fock functors are
not Hopf lax, though they preserve Hopf monoids for other reasons. It is possible
that a yet more general class of functors can be identified, so that it includes our
Hopf lax functors as well as the Fock functors, and so that functors in this class
preserve Hopf monoids.
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The image functor (Chapter 3). Recall that the image of a morphism of bialge-
bras is a bialgebra. More generally, the image of a morphism of bimonoids in an
abelian monoidal category is itself a bimonoid. We extend this result by showing
that the image of a morphism of bilax monoidal functors from a monoidal category
to an abelian monoidal category is itself a bilax monoidal functor (Theorem 3.116).
The diagram below shows the image ℑθ of a transformation θ, and the factorization
of the latter.

F
θ +3

�$
BB

BB
BB

B

BB
BB

BB
B G

ℑθ.

:B}}}}}}}

}}}}}}}

This result finds applications throughout the text. For example, the bosonic and
fermionic Fock functors of Part III arise in this manner.

We obtain a concise proof of the above fact by viewing a morphism between
two bilax monoidal functors from C to D as a bilax monoidal functor from C to the
category of arrows in D (Proposition 3.111). There is another functor called the
image functor which goes from the category of arrows in D to D. It is constructed
by choosing monic-epi factorizations in D. Further, it is bistrong. Composing these
two functors yields the required bilax functor.

Bilax monoidal functors in homological algebra (Chapter 5). The notion of
bilax monoidal functor between braided monoidal categories is of central impor-
tance to this work. Chapter 5 discusses what may be the most classical example of
a bilax monoidal functor in mathematical nature. The familiar construction of a
chain complex out of a simplicial module defines a functor between symmetric mon-
oidal categories. The classical maps of Eilenberg–Zilber and Alexander–Whitney
provide the lax and colax structures that turn it into a bilax monoidal functor
(Theorem 5.6). While not formulated in these exact terms in the literature, this
result pertains to the folklore of simplicial algebra. It was brought to our attention
by Clemens Berger.

It is important to remark that we work with ordinary morphisms of chain com-
plexes, not chain homotopy classes. If we pass to the homotopy category of chain
complexes, then the chain complex functors become bistrong. In this situation the
bilax axiom simplifies, and one does not need to confront it explicitly. In addition,
this suffices for the applications to the construction of products in (co)homology.
This may perhaps explain the lack of treatment in the literature of general bilax
monoidal functors.

We state a number of well-known results which may be seen as consequences
of Theorem 5.6, mainly regarding the existence of products in (co)homology. We
also discuss the possibility of obtaining a one-parameter deformation of the chain
complex functor. This can be done successfully provided that the boundary maps
are set aside (Theorem 5.17).

2-monoidal categories (Chapter 6). A careful analysis of bilax functors shows
that they really belong to the world of higher monoidal categories. More precisely,
they should be viewed as functors not between braided monoidal categories but
rather between 2-monoidal categories, which are more general. The latter are cat-
egories with two compatible tensor products. The braiding is now replaced by an
interchange law, which roughly speaking, specifies a way to interchange the order of
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the two tensor products. The familiar braiding axioms are replaced by a different
set of 12 axioms.

There are many interesting examples of 2-monoidal categories and related ob-
jects ranging from directed graphs to bimodules over commutative algebras to lat-
tices. Numerous other examples, primarily constructed out of species and graded
vector spaces, along with applications are discussed in later parts of the monograph.

The definition of a 2-monoidal category raises a natural question: Despite the
theorems that one may prove with such a definition, how does one know that there
ought to be exactly 12 axioms? We provide an answer to this question by showing
that a 2-monoidal category is an instance of a general notion in higher category
theory, namely, it is a pseudomonoid in a certain monoidal 2-category (Propo-
sition 6.73). This interpretation explains the origin of each axiom, so to speak.
Further support is lent to this idea when one discovers that bilax functors are then
nothing but appropriate morphisms between pseudomonoids (Proposition 6.75).

We mention that there are two other types of functors between 2-monoidal
categories, namely double lax functors and double colax functors. These are gen-
eralizations of the notions of braided lax and braided colax functors. Just as bilax
functors correspond to bimonoids, double (co)lax functors correspond to what we
call double monoids and double comonoids. The latter, as expected, are gener-
alizations of the familiar concepts of commutative monoids and cocommutative
comonoids. Thus there are three different types of functors between 2-monoidal
categories.

The Eckmann–Hilton argument (Chapter 6). The classical Eckmann–Hilton
argument says that if a set has two “mutually compatible” binary operations, then
the two operations coincide and are commutative. This type of argument appears
a number of times in the text; a summary of the results is provided below.

strong 2-monoidal category←→ braided monoidal category (Proposition 6.11)

double monoid←→ commutative monoid (Proposition 6.29)

double lax monoidal functor←→ braided lax monoidal functor (Proposition 6.59)

A 2-monoidal category is said to be strong if the structure morphisms defining it
are all isomorphisms. The first result above is due to Joyal and Street and says
that a strong 2-monoidal category is equivalent to a braided monoidal category.
This may be regarded as a categorical version of the Eckmann–Hilton argument: a
2-monoidal category is a category with two “mutually compatible” products and a
braided monoidal category is a category with a “commutative” product. Working
under this equivalence, double monoids are equivalent to commutative monoids,
and double lax functors are equivalent to braided lax functors. The first of these
results applied to the category of sets is essentially the classical Eckmann–Hilton
argument.

Higher monoidal categories (Chapter 7). The pseudomonoid interpretation for
a 2-monoidal category not only sheds light on the notion of bilax monoidal func-
tors, but also allows us to dive deeper into the world of monoidal categories. There
are two simple constructions related to pseudomonoids in monoidal 2-categories;
namely, the lax and colax constructions. They are discussed separately in Appen-
dix C (reviewed under Pseudomonoids and the looping principle). These construc-
tions allow us to systematically climb up the ladder of higher monoidal categories.
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After 2-monoidal categories, we define 3-monoidal categories, which are mon-
oidal categories with three compatible tensor products: A combination of any two
of these products yields a 2-monoidal category, and further there is a set of 8 ax-
ioms that must be satisfied. Among these axioms there is one that stands out;
we call it the interchange axiom. It is reminiscent of the relations in the standard
presentation of the braid group.

Just as there are two types of monoidal functors between monoidal categories,
and three types of functors between 2-monoidal categories, there are four types
of monoidal functors between 3-monoidal categories. These are straightforward to
define, using the previous definitions.

Higher monoidal categories, contrary to what one may expect, are built out
of 1-, 2- and 3-monoidal categories in a rather straightforward manner, meaning
that, there are no further axioms to worry about. The same is true of the monoidal
functors that relate them. In general, there are n + 1 different types of functors
between two n-monoidal categories. At the level of objects, there are n+1 different
types of monoids in a n-monoidal category, one for each type of functor.

The contragredient construction and self-duality (Chapters 3, 6 and 7). We
provide a framework to deal with the notion of duality for monoidal categories,
monoidal functors and transformations between them. The basic idea is explained
below.

Let C be a category equipped with a contravariant functor (−)∗ : C→ C which
induces an adjoint equivalence of categories. A specific example to keep in mind
is the duality functor on finite-dimensional vector spaces, which sends a space to
its dual. We say that an object V in C is self-dual if V ∼= V ∗. Now let C and D

be categories each equipped with such a functor, and let F : C → D be a functor.
Define the contragredient F∨ to be the composite

C
∗ // C

F // D
∗ // D.

Further, we say that F is self-dual if F∨ ∼= F . Continuing with the above setup, let
F and G be functors from C to D, and let θ : F ⇒ G be a natural transformation.
Define the contragredient θ∨ : G∨ ⇒ F∨ by

G∨(A) = G(A∗)∗
(θA∗ )∗

// F(A∗)∗ = F∨(A).

We say that θ : F ⇒ F∨ is self-dual if θ∨ ∼= θ.
These notions can be extended to monoidal categories, braided monoidal cate-

gories and more generally to higher monoidal categories. This, in particular, allows
us to define a self-dual monoidal category and a self-dual braided monoidal cate-
gory. The contragredient of a lax functor is a colax functor and viceversa, while
the contragredient of a bilax functor is a bilax functor (Proposition 3.102). This
is the categorical version of the familiar statement that the dual of an algebra is
a coalgebra and viceversa, and the dual of a bialgebra is a bialgebra. This setup
allows us to define a self-dual bilax functor, a self-dual transformation between bi-
lax functors, and so on. Further, one can establish results along the lines of: A
self-dual bilax functor preserves self-dual bimonoids (Proposition 3.107).

We encounter plenty of examples of the contragredient construction in later
parts of the monograph. The main examples of self-dual functors are summarized
in Table 3.4.
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Types of monoid and monoidal functors (Chapter 4). The analogies between
the notion of associative monoid and that of lax monoidal functor, and between the
notion of commutative monoid and that of braided lax monoidal functor, which form
the crux of Chapter 3, can be expanded to other types. Just as there are other types
of monoid besides associative and commutative, there are other types of monoidal
functors. This is the subject of Chapter 4. We first provide motivation to these
ideas by explicitly introducing a number of types of monoids in monoidal categories
and monoidal functors between monoidal categories. We then treat these notions
in full generality by making use of the notion of operad. The necessary background
on operads is given in Appendix B. For each operad p, there is a notion of p-
monoid (in a monoidal category) and a notion of p-lax monoidal functor (between
monoidal categories). For general operads p, the monoidal categories are required
to be symmetric and linear.

The question arises as to how monoids (of a given type) transform under mon-
oidal functors (of another type). The answer is contained in Theorem 4.28. It
describes, more generally, the structure on a composite of two monoidal functors of
such general types: if F is p-lax and G is q-lax, then the composite GF is (q×p)-
lax (under minor linearity hypotheses on the functors and categories). Here q× p
stands for the Hadamard product of operads. Transformation of monoids is then a
special case, obtained by viewing monoids as functors from the one-arrow category.

Contents of Part II

The main actors in Part II are Joyal’s species [181]. This part is devoted to a
careful study of the monoidal category of species, Hopf monoids therein, and the
discussion of several examples.

Recall that a Hopf monoid in the category of graded vector spaces is the same
as a graded Hopf algebra. Our ultimate goal is to provide a solid conceptual frame-
work for the study of a large number of Hopf algebras of a combinatorial nature,
which include the Hopf algebra of symmetric functions, quasi-symmetric functions,
noncommutative symmetric functions, and others of prominence in the recent lit-
erature, as well as a host of new ones.

The following principle is central to our approach: A proper understanding
of these objects and their interrelationships requires the consideration of a more
general setting; namely, that of Hopf monoids in the monoidal category of species.
This category is richer than that of graded vector spaces. The precise link between
the two categories is made in Part III.

Species (Chapter 8). Informally, a species is a family p of vector spaces, one
space p[I] for each finite set I, which is natural in I with respect to bijections. By
contrast, a graded vector space is simply a sequence of vector spaces, one space for
each nonnegative integer. There is an alternative definition of a species as follows.
A species is a graded vector space whose degree n component is equipped with an
action of the symmetric group Sn for each n.

We are interested in studying algebraic notions in the category of species, such
as monoids, Hopf monoids, and other related notions. These are the analogues
of graded algebras, graded Hopf algebras, and other familiar objects pertaining to
the category of graded vector spaces. Connected and positive species, which play
a useful role in the theory, are the analogues of connected and positively graded
vector spaces.
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There are various monoidal structures on species. We are mainly interested
in the Cauchy product (the monoids and Hopf monoids alluded above are with
respect to this product), but the Hadamard and the substitution product play an
important role as well. They are written

p · q, p× q, and p ◦ q

respectively. These are analogues of monoidal structures on graded vector spaces
of the same name that are discussed in Chapter 2. The notions of (co)monoids,
bimonoids and Hopf monoids in the monoidal category of species (with respect
to the Cauchy product) can be made explicit. Roughly, a monoid is a species p
equipped with maps

p[S]⊗ p[T ]→ p[I],

one such map for each decomposition I = S⊔T of a finite set I into disjoint subsets
S and T , and dually a comonoid is a species p equipped with maps

p[I]→ p[S]⊗ p[T ].

Similar descriptions hold for bimonoids and Hopf monoids.
Familiar properties of graded bialgebras and Hopf algebras hold also for bimon-

oids and Hopf monoids. For example, one can define the dual p∗ of a species p by
p∗[I] = p[I]∗. This association is natural in p, so it gives rise to a (contravariant)
functor on species. Further, this duality functor is bistrong, so the dual of a Hopf
monoid is again a Hopf monoid.

However, bimonoids possess certain unique features not to be seen for bialge-
bras. The first instance is the compatibility axiom itself (Remark 8.8). Another in-
stance is the interplay between the Cauchy and the Hadamard products on species.
We show that the Hadamard product is a bilax monoidal functor with respect to
the Cauchy product (Proposition 8.58). As a consequence, the Hadamard product
of two Hopf monoids is again a Hopf monoid. In contrast, the Hadamard product
of two graded Hopf algebras fails to be a graded Hopf algebra, in general. This
is significant; we come back to this point at various places in this introduction, in
particular under Hopf algebras from geometry.

Deformations of Hopf monoids (Chapter 9). The standard braiding β on the
monoidal category of species is defined by interchanging the tensor factors. Anal-
ogous to the situation for graded vector spaces, one can deform this braiding as
follows.

p[S]⊗ q[T ]→ q[T ]⊗ p[S] x⊗ y 7→ q|S||T |y ⊗ x.

This defines the braiding βq where q is any scalar. Letting q = 1 recovers the
previous case. Note that this braiding is a symmetry if and only if q = ±1.

A useful way to think about the coefficient in the braiding is as follows. We give
the idea in rough terms. Let S|T be a “state” in which every element of S precedes
every element of T . Let q be the cost of changing the relative order between two
elements. Then the coefficient is the cost of going from state S|T to state T |S.

A Hopf monoid with respect to the braiding βq is called a q-Hopf monoid. The
preceding theory of Hopf monoids in species generalizes in a natural manner to the
deformed setting. For example, duality continues to a bistrong functor. It turns out
that the Hadamard product of a p-Hopf monoid and a q-Hopf monoid is a pq-Hopf
monoid.
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In addition to the above, one can also define a signature functor on species.
It twists the action of the symmetric group by tensoring with its one-dimensional
sign representation. This functor is bistrong provided the braidings are chosen
carefully: if βq is used in the source category, then use β−q in the target category
(Proposition 9.9). As a consequence, the signature functor takes a q-Hopf monoid
to a (−q)-Hopf monoid. In particular, it switches Hopf monoids and (−1)-Hopf
monoids.

The exponential species and the species of linear orders (Chapters 8, 9
and 11). The exponential species E and the species of linear orders L are the sim-
plest interesting and nontrivial examples of Hopf monoids in species. As a species,
E is the graded vector space whose graded components consist of the trivial rep-
resentations of the symmetric groups, while the graded components of L consist
of the regular representations of the symmetric groups. These Hopf monoids ac-
company us through all our constructions. They are basic examples of universal
objects: L is the free monoid on one generator, and E is the free commutative
monoid on one generator. Their products and coproducts are simple to describe.
We also describe their antipodes explicitly, and explain the different ways in which
they can be derived.

Since we have given the rough idea of a monoid and comonoid in species, we
indicate the product and coproduct of the species L. The product is as follows:
given linear orders on S and T , their product is their common extension to S ⊔ T
in which the elements of S precede the elements of T . The coproduct is as follows:
given a linear order on I, its coproduct is its restriction to S tensored with its
restriction to T .

The species L and E can be combined in various ways to obtain new examples
of Hopf monoids. Many of these have a rich geometric flavor as we will see later.
As an example, combining the Hadamard product construction with duality yields
the Hopf monoid L∗ × L. This Hopf monoid is self-dual (isomorphic to its dual).
This follows from the compatibility between duality and the Hadamard product.

The exponential species admits a signed version; we call it the signed expo-
nential species and denote it by E−. As a species, its graded components consist
of the sign representations of the symmetric groups. As a (−1)-Hopf monoid, it is
the free commutative monoid on one generator, where commutative is now to be
interpreted in the graded sense (with respect to the braiding β−1). This object is
intimately tied to the signature functor. The signature functor sends a species p
to p × E−, that is, to its Hadamard product with E−. The bistrong structure of
this functor arises from the bimonoid structure of E− and the bilax structure of
the Hadamard product. Since E is the unit object for the Hadamard product, it
follows from this construction that the signature functor sends E to E−.

The situation for L is even more interesting. It admits a one-parameter de-
formation to a q-Hopf monoid which we denote by Lq. Letting q = 1 recovers L,
while L−1 is the signature functor applied to L. Note that L and L−1 are identical
as species since tensoring the regular representation with the sign representation
again yields the regular representation. However, their Hopf structures are different
and in a sense cannot be compared since one is a Hopf monoid while the other is a
(−1)-Hopf monoid.
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Universal constructions (Chapter 11). The free monoid on a species q is given
by

T (q) = L ◦ q.

This shows that the Cauchy and substitution products are intimately related. (This
relation is encountered again in Section B.4, where the substitution product is
studied in detail.) We refer to T as the free monoid functor; it is the species
analogue of the tensor algebra for graded vector spaces. The space T (q)[I] is
graded over compositions of the set I, much as the degree n component of the
tensor algebra of a graded vector space is graded over compositions of n. Let X be
the species whose value is the base field on singletons and 0 on all other finite sets.
It is the unit object for the substitution product. The species L can be recovered
as L = T (X); a little more loosely, one may say that L is the free monoid on one
generator, as already mentioned.

If q is a positive comonoid, then T (q) can be turned into a Hopf monoid, and
its structure can be explicitly described. In addition, T (q) is the free Hopf monoid
on the positive comonoid q (Theorem 11.9). This result is supplemented with a
discussion of the monoidal properties of the corresponding adjunction.

There are commutative versions of these constructions. The free commutative
monoid (Hopf monoid) on a positive species (comonoid) q is

S(q) = E ◦ q.

The species E can be recovered as E = S(X).
Since examples of both free or cofree Hopf monoids arise naturally, it is worth

considering the dual constructions to those mentioned above. Thus we also discuss
the cofree comonoid (Hopf monoid) on a positive species (monoid), and their co-
commutative versions. The corresponding functors are denoted T ∨ and S∨. The
former is the species analogue of the tensor coalgebra functor for graded vector
spaces.

Interestingly, the functor T admits a one-parameter deformation, which we
denote by Tq. It takes values in the category of q-Hopf monoids. Further, if q is a
positive comonoid, then Tq(q) is the free q-Hopf monoid on q. The deformation Lq
can be recovered as Lq = Tq(X). The commutative version of this construction for
q = 1 is the functor S. Similarly, there is an interesting commutative version of this
construction for q = −1. We call the corresponding functor Λ. It takes values in
the category of (−1)-Hopf monoids. Further, if q is a positive comonoid, then Λ(q)
is the free commutative (−1)-Hopf monoid on q. The signed exponential species
E− can be recovered as E− = Λ(X). We also discuss the dual functors T ∨

q and Λ∨.
We briefly touch upon related functors such as the free Lie algebra functor,

the universal enveloping algebra functor and the primitive element functor for
species, along with the Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems
for species which appear in the works of Joyal and Stover. We describe the coradi-
cal filtrations and primitive elements of the Hopf monoids which arise as values of
the functors T ∨, S∨ and Λ∨.

The Coxeter complex. The break, join, and projection maps (Chapter 10).
Symmetries of a set (bijections from the set to itself), or equivalently, the symmetric
groups play a pivotal role in the theory of species. Recall that symmetric groups are
Coxeter groups of type A. It turns out that key features of the theory of Coxeter
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groups when specialized to the example of type A can be formulated in the language
of species.

To any Coxeter group is associated a simplicial complex which is called the
Coxeter complex. We highlight three important properties of these objects.

• The join of Coxeter complexes is a Coxeter complex.
• The star of any face in a Coxeter complex is a Coxeter complex.
• The set of faces of a Coxeter complex is a monoid, whose product is given

by the projection maps of Tits.

A set species is a family P of sets, one set P[I] for each finite set I, which is natural
in I with respect to bijections. The family of Coxeter complexes of type A can be
assimilated into one object which we denote by Σ. It is a set species with added
structure. The component Σ[I] is the set of faces of the Coxeter complex associated
to the symmetric group on |I| letters. An important observation specific to type
A is as follows. The star of a vertex in a Coxeter complex of type A is isomorphic
to the join of two smaller Coxeter complexes of type A. More precisely, for a
decomposition I = S ⊔ T , there is a canonical identification

Star(S|T ) ∼= Σ[S]× Σ[T ]

between the star of the vertex S|T in Σ[I] and the join of the complexes Σ[S] and
Σ[T ]. We use

Star(S|T )
bS|T

//
Σ[S]× Σ[T ]

jS|T

oo

to denote the inverse isomorphisms of simplicial complexes. We refer to bS|T and
jS|T as the break and join maps, respectively. Further, for any vertex S|T of Σ[I],
there is a map

pS|T : Σ[I]→ Star(S|T )

which sends a face to its projection on the vertex S|T . It is called the Tits projection.
These maps may be used to turn Σ[I] into a monoid.

The break, join and projection maps are at the basis of the understanding of a
number of combinatorial Hopf algebras. This geometric point of view was advocated
in our previous work [12]. The compatibilities between these maps were listed as a
set of coalgebra and algebra axioms [12, Sections 6.3.1 and 6.6.1]. These maps as
well as their compatibilities find their most natural expression in this monograph,
in the context of species.

Hopf monoids from geometry (Chapter 12). In this chapter, we construct many
examples of Hopf monoids in species and analyze them in considerable detail. Their
nature is primarily geometric: they are associated to the Coxeter complex of type A
in various ways. For this reason they admit explicit descriptions in terms of familiar
combinatorial objects. The geometry of the complex, through the break, join and
projection maps, is at the basis of the understanding of the algebraic structure of
these objects, as evidenced by the results we present. These Hopf monoids arise
by combining the species X, E, and L in various ways. They can be related by
morphisms of Hopf monoids as indicated in diagram (0.1). The duality functor acts
on this diagram by reflection across the diagonal.
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T (E∗
+) //
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T (L∗
+) // L∗ × L

∼=

%%J
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L× L∗
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S(X∗) //

∼=

%%K
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S(E∗
+) //

∼=

%%J
JJJJJJJJJJJJJJJJJJJJJ

S(L∗
+)

RRRR
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��

S∨(L+) //

��

T ∨(L+)

��

S∨(E+) //

��

T ∨(E+)

��

S∨(X) // T ∨(X)

Each of these Hopf monoids admits an explicit description in terms of familiar
combinatorial objects. For instance, according to the definition of substitution,
T (E∗

+) is the species of set compositions. The product of this Hopf monoid is
concatenation and the coproduct is dual to the quasi-shuffle of set compositions.
Similarly, S(L∗

+) is the species of linear set partitions. The other species and their
products and coproducts can be described in similar combinatorial terms.

Some of the morphisms in (0.1) arise simply from functoriality; this is the case
of the map T (E∗

+)→ T (L∗
+), for instance. Some, like the map L× L∗ → T ∨(L+)

(which relates pairs of linear orders to linear set compositions) arise from universal
constructions (cofreeness of T ∨(L+) in this case). Others, like the map T (E∗

+)→
S∨(L+) (which relates set compositions to linear set partitions), are specific to the
species under consideration. In these cases, a combinatorial description can be of
limited use.

Our main point in this chapter is that, in spite of their combinatorial appear-
ance, proper understanding of these Hopf monoids and the morphisms among them
demands the consideration of their geometric nature. Each of these species arises
from the Coxeter complex of type A, and the products and coproducts that turn
them into Hopf monoids can always be expressed in terms of the break, join and
projection maps. For instance, set compositions correspond to faces of the complex,
and linear set partitions to directed flats. Table 12.1 summarizes the combinatorial
and geometric description of these species.

A bilinear form on chambers. Varchenko’s result (Chapter 10). Consider
a hyperplane arrangement in which each hyperplane is assigned a weight. For any
pair of chambers (top-dimensional faces) C andD in the arrangement, define 〈C,D〉
to be the product of the weights of the hyperplanes which separate C and D. This
defines a bilinear form on the space spanned by chambers. Varchenko obtained a
factorization of the determinant of this bilinear form, see equation (10.129). The
special case when the hyperplane arrangement is the braid arrangement and all
weights are equal was treated earlier by Zagier.
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It follows from Varchenko’s result that for generic weights on the hyperplanes
the bilinear form on chambers is nondegenerate. There is a useful generalization
of this result in which one puts weights on half-spaces instead of hyperplanes
(Lemma 10.27). We use this result to deduce rigidity results of a very general
kind in two different contexts. The first context is that of the norm transformation
between Tq and T ∨

q and its higher dimensional generalization. The second con-
text is that of the norm transformation between the deformed full Fock functors of
Part III. This is explained in more detail below, under Relations among the uni-
versal objects. The norm transformation and Relations among the Fock functors.
The norm transformation.

Hopf monoids from combinatorics (Chapter 13). In this chapter, we discuss
Hopf monoids that are based on combinatorial structures such as relations, pre-
posets, posets, graphs, rooted forests, planar rooted forests, set-graded posets, clo-
sure operators, matroids and topologies. The origin of many of these ideas can be
found in the paper of Joni and Rota [179]. The emphasis of this chapter is on the
construction of interesting morphisms from these objects to objects such as T ∨(E+)
and T ∨(X) which occur to the bottom right of diagram (0.1). By the universal
constructions of Chapter 11, the latter are cofree objects, hence morphisms of the
above kind can be constructed by minimal principles.

Many of these combinatorial objects can be interpreted geometrically. For ex-
ample, posets can be viewed as appropriate unions of chambers (top-dimensional
cones, to be precise) in the Coxeter complex of type A. This interpretation ex-
tends to preposets. This forges a link with the ideas of Chapters 10 and 12. We
then observe that the morphisms relating the Hopf monoid of posets to the Hopf
monoids based on linear orders, linear set partitions and set compositions, initially
constructed using purely combinatorial or algebraic motivations, have simple geo-
metric descriptions. The distinction between combinatorics and geometry (reflected
in our chapter titles) is mainly for organizational purposes. The above examples
reinforce the fact that either viewpoint may be used profitably according to the
situation.

Relations among the universal objects. The norm transformation (Chap-
ter 11). To understand the relations between various universal objects (for example,
to relate L and E), one needs to properly understand how the functors Tq, T

∨
q , S

and S∨, Λ and Λ∨ relate to one another. We now explain this.
First of all, the functors Tq and T ∨

q , as well as S and S∨, and Λ and Λ∨

are related through duality. Second, there are natural transformations π : T ⇒
S and π∨ : S∨ ⇒ T ∨ (projection onto coinvariants and inclusion of invariants).
The former is called the abelianization and the latter is its dual. Similarly, there
are natural transformations π−1 : T−1 ⇒ Λ and π∨

−1 : Λ∨ ⇒ T ∨
−1 called the signed

abelianization and its dual.
It is not possible to relate the functors Tq and T ∨

q in general since they take
values on different type of objects. The former is defined on positive comonoids
while the latter is defined on positive monoids. However, one can restrict both
functors to the category of positive species, and in that case, there is a natural
transformation

κq : Tq ⇒ T
∨
q .
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This is called the q-norm transformation (for its relation to the norm map in group
theory). As mentioned under The image functor, transformations can be factored.
The factorization of the q-norm can be explicitly understood for q = ±1. It is as
follows.

T
κ +3

π

��

T ∨

S
id

+3 S∨

π∨

KS T−1
κ−1 +3

π−1

��

T ∨
−1

Λ
id

+3 Λ∨

π∨
−1

KS

Thus, in the restricted setting of positive species, the functors S and S∨ are identical
and equal to the image of the norm. Similarly, the functors Λ and Λ∨ are identical
and equal to the image of the signed norm.

Applying the diagram on the left to the species X yields a commutative diagram
of Hopf monoids relating L, its dual L∗, and E. In particular, the dual of E is itself.
This can also be checked directly. Similarly, applying the diagram on the right to
the species X yields a commutative diagram of (−1)-Hopf monoids relating L−1,
its dual L∗

−1, and E− (which is self-dual).
The generic case of the q-norm is quite different. In fact, we deduce from Var-

chenko’s result that κq is an isomorphism if q is not a root of unity (Theorem 11.35).
Under this hypothesis, for any positive species q, the q-Hopf monoids Tq(p) and
T ∨
q (p) are isomorphic. It follows by letting p = X that the q-Hopf monoid Lq is

self-dual (Proposition 12.6).
An interesting situation is q = 0. In this case, κ0 is the identity and T0 = T ∨

0 .
It follows that the 0-Hopf monoid L0 is self-dual in a canonical manner.

The Schubert cocycle (Chapters 9 and 11). Let l be a linear order on I, and let
I = S ⊔ T be a decomposition of I into disjoint subsets S and T . Let

schS,T (l) := |{(i, j) ∈ S × T | i > j according to l}|.

We call this the Schubert cocycle. If we view l as a list, then schS,T (l) counts the
number of minimum adjacent transpositions required to bring the elements of S to
the beginning of the list.

The Schubert cocycle is equivalent to a standard combinatorial statistic, which
we call the Schubert statistic. Our interest in this notion stems from its relevance
to deformation theory. In this regard, the following two properties of the Schubert
cocycle are significant.

For any decomposition I = R ⊔ S ⊔ T , and for any linear order l on I,

schR,S⊔T (l) + schS,T (l|S⊔T ) = schR⊔S,T (l) + schR,S(l|R⊔S),

where the vertical bar denotes restriction of the linear order. This is the cocycle
condition. It can be understood as follows. Both sides count the number of mini-
mum adjacent transpositions required to rearrange the list l so that elements of R
are at the beginning, followed by elements of S, followed by elements of T .

Now consider a pair of decompositions I = S⊔T = S′⊔T ′ into disjoint subsets
and let A, B, C, and D be the resulting intersections:

A = S ∩ S′, B = S ∩ T ′, C = T ∩ S′, D = T ∩ T ′.
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Then for any linear order l on S, and linear order m on T ,

schS′,T ′(l ·m) = schA,B(l) + schC,D(m) + |B||C|,

where l ·m denotes the common extension of l and m to I in which the elements
of l precede the elements of m. This is the multiplicative property of the cocycle.
Note that the last term on the right is precisely the exponent of the coefficient of
βq (under Deformations of Hopf monoids).

The q-Hopf monoid Lq can be constructed by deforming L via the Schubert
cocycle: Keep the product the same as before, but modify the coproduct by multi-
plying it by the coefficient

qschS,T (l).

The fact that Lq is coassociative is equivalent to the cocycle condition. The product-
coproduct compatibility is equivalent to the multiplicative property of the cocycle.

This idea is the driving force behind a very general construction, namely, the
construction of the functor Tq by deforming T . For this construction, one extends
the Schubert cocycle to set compositions (which are more general combinatorial
objects than linear orders), and then proceeds in the same way as above. The
situation for Lq can be seen as a special case by specializing the general construction
to the species X.

Cohomology of comonoids in species (Chapter 9). An important cohomology
theory for associative algebras is Hochschild cohomology. The coefficients for this
theory can be chosen to be in any bimodule over that algebra. Dually, there is a
Hochschild cohomology for coalgebras with coefficients in a bicomodule.

Cohomology of a comonoid in species with coefficients in a bicomodule can be
defined in the same manner. We are interested in the special case when the co-
monoid is the exponential species E and the bicomodule is any linearized comonoid
(this roughly means that the coproduct is well-behaved on a basis). We develop
this theory in explicit terms with emphasis on low-dimensional cocycles. If, in ad-
dition, we have a linearized bimonoid (as opposed to just a comonoid), then we
can also define the notion of multiplicative cocycles. We explain how the given
linearized comonoid can be deformed using a 2-cocycle on it. If we are in the setup
of linearized bimonoids, then the same deformation can be carried out provided the
2-cocycle is multiplicative.

The bimonoid of linear orders L is linearized. As indicated by the terminol-
ogy, the Schubert cocycle is a 2-cocycle on L. Further, it is multiplicative. These
facts follow from the properties of the Schubert cocycle mentioned earlier. In fact,
the Schubert cocycle is the unique multiplicative cocycle (of twist 1) on L (The-
orem 9.27). We mentioned earlier how Lq can be constructed from L using the
Schubert cocycle. This can now be seen as an instance of a general construction.

Antipode formulas (Chapter 11). Recall that a Hopf monoid is a bimonoid with
an antipode. As for graded vector spaces, a connected bimonoid in species is au-
tomatically a Hopf monoid. The antipode can be expressed as an alternating sum,
where each summand is a composite of an iterated coproduct with an iterated
product. This is the species analogue of Takeuchi’s antipode formula for connected
Hopf algebras. Since the sum is alternating, cancellations may take place (and in
concrete examples, many often do). By contrast, we would like an explicit formula
for the structure constants of the antipode on a given basis. Obtaining such a
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formula requires understanding of these cancellations; this is often a challenging
combinatorial problem.

We solve this problem for any Hopf monoid which is a universal object, that is,
for any Hopf monoid which is the image under either of the functors Tq or S or Λ
or their duals (Theorems 11.38–11.43). It may be surprising to note that the can-
cellations hinge on a simple result related to Tits projection maps (Lemma 11.37).
Though our treatment of the functors T , S and Λ and their duals is largely combi-
natorial, it is clear that projection maps do play a central role in their construction.

Instances of the antipode formulas for universal objects include antipode for-
mulas for all objects in (0.1) except for L×L∗ and its dual. For example, consider
the six objects in the top left of this diagram. The first two are the exponential and
linear order species; thus the general result recovers the antipodes of these basic
objects. The antipode formulas for the remaining four objects are explicitly written
down in Theorems 12.21, 12.34, 12.44 and 12.51.

We also provide cancellation-free antipode formulas for some other Hopf mon-
oids which do not fit the above framework; see Theorems 12.17 and 12.18 for the
Hopf monoid L× L∗, and Theorems 13.4 and 13.5 for the Hopf monoids of planar
rooted forests and rooted forets. The proof is very similar to the one employed
for universal objects suggesting that there may be a more general framework for
writing down antipode formulas which includes these examples as well.

Colored species and Q-Hopf monoids (Chapter 14). Colored species are higher
dimensional analogues of species. They are also called multisort species. Roughly,
an r-colored species associates a vector space to each ordered decomposition I =
S1⊔· · ·⊔Sr of a finite set I. We view the category of colored species as an analogue
of the category of multigraded vector spaces.

There is a higher dimensional generalization of the preceding theory in which
species are replaced by colored species. This context provides more flexibility for
the definition of braidings and bilax structures. For each square matrix Q of size
r, we define a braiding βQ on r-colored species. A Hopf monoid in this braided
monoidal category is called a Q-Hopf monoid.

A matrix Q is called log-antisymmetric if

qijqji = 1 for 1 ≤ i, j ≤ r,

where qij denotes the ij-th entry of Q. The significance of these matrices is as
follows. The braiding βQ is a symmetry if and only if Q is log-antisymmetric. Note
that the only log-antisymmetric matrices of size one are [1] and [−1].

One can construct a colored version of the functor T ; we denote it by TQ.
It takes values in the category of Q-Hopf monoids. Further, if q is a positive
colored comonoid, then TQ(q) is the free Q-Hopf monoid on q. Setting Q = [q]
recovers the functor Tq. Similarly, one can construct a functor SQ whenever Q is
log-antisymmetric. This recovers S when Q = [1] and Λ when Q = [−1]. If q is
a positive colored comonoid, then SQ(q) is the free commutative Q-Hopf monoid
on q. We provide antipode formulas for these Q-Hopf monoids in Theorems 14.18
and 14.20. The functors TQ, SQ and their duals fit into the following commutative
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diagram (if one restricts them to positive colored species).

TQ
κQ +3

πQ

��

T ∨
Q

SQ
id

+3 S∨Q

π∨
Q

KS

The top horizontal transformation κQ is the colored norm. The vertical transfor-
mations are the colored abelianization and its dual. Thus, SQ is the image of the
colored norm κQ.

Let X(r) be the colored species which is nonzero (and equal to the base field)
only if the ordered decomposition is into singletons. This is a colored version of X.
Then

LQ = TQ(X(r)) and EQ = SQ(X(r))

yields colored analogues of the linear order species and the exponential species (the
latter for Q log-antisymmetric). These may be regarded as the simplest interest-
ing Hopf monoids in the category of r-colored species. We also consider colored
analogues of some of the other Hopf monoids occurring in diagram (0.1).

There is a colored analogue of the signature functor for any log-antisymmetric
matrix Q. It sends a colored species p to p×EQ, its Hadamard product with the
colored exponential species. This functor continues to be bistrong.

The generic case of the Q-norm is quite different from the log-antisymmetric
case. We deduce from Varchenko’s result that κQ is an isomorphism if no monomial
in the qij ’s equals one (Theorem 14.17).

Contents of Part III

In Part II, we systematically studied the monoidal category of species and
Hopf monoids therein along with plenty of interesting examples constructed from
combinatorial or geometric data. The goal of this part is to link the setting of Hopf
monoids in species with that of graded Hopf algebras. This connection is made by
means of certain bilax monoidal functors which we term Fock functors. The theory
of bilax monoidal functors presented in Part I is extensively applied to understand
how concepts involving species and graded vector spaces relate to one another via
the Fock functors. This means that instead of looking at properties specific to Hopf
monoids and Hopf algebras we study the Fock functors themselves. This is another
principle which is central to our approach.

Sets versus numbers. A graded vector space is a family of vector spaces indexed
by nonnegative integers. Recall that a species is a family of vector spaces indexed
by finite sets (with further compatibilities). Thus species correspond to sets in the
same way as graded vector spaces correspond to numbers. The passage from species
to graded vector spaces via the Fock functors in the most naive sense amounts to
replacing a set by its cardinality.

The Fock functors retain a lot of information, which is why their study is im-
portant, but at the same time, they forget or lose some information, which is why
species are nicer to work with than graded vector spaces. There are a number of
operations on sets for which there may or may not be any analogue for numbers.
For example, disjoint union of sets corresponds to addition of numbers. This is
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significant because the former corresponds to the Cauchy product on species while
the latter corresponds to the Cauchy product on graded vector spaces. However,
note for example that intersection of sets has no analogy for numbers. Some inter-
esting examples of well-known objects associated to numbers and the corresponding
objects associated to sets can be found in Table 13.4.

Fock functors (Chapter 15). The parallel between the categories of species and
of graded vector spaces is reinforced by the existence of several functors between
the two:

K and K∨, and K and K
∨
.

We refer to them collectively by the term Fock functors. For further distinction, we

refer to K and K∨ as full Fock functors and to K and K
∨

as bosonic Fock functors.
The construction of these functors and the study of their properties and the relations
among them constitute the main results of this chapter. The motivation for the
terminology comes from Fock spaces which are studied in physics. A connection
with these spaces is made later in Chapter 19 when we consider decorated versions
of the Fock functors.

We show that the full Fock functors are bilax, while the bosonic Fock functors
are bistrong (Theorems 15.3 and 15.6). By applying the Fock functors, one obtains
four graded Hopf algebras out of each Hopf monoid in species (Theorem 15.12).
These constructions of Hopf algebras were introduced by Stover [346] and further
studied by Patras et al, without reference to monoidal functors. The categorical
formulation is more general (for it allows the construction of other type of alge-
bras from the corresponding type of monoids in species) and allows for a better
understanding of the transfer of properties from one context to the other. Consider
for instance the fact that if h is a commutative Hopf monoid, then of the graded
Hopf algebras K(h) and K∨(h) only the latter is necessarily commutative. This is
understood as follows: the lax monoidal functor K∨ is braided, but the functor K
is not (Propositions 15.26 and 15.28). The statement for functors is more general:
it implies not only that K∨ preserves commutative monoids, but also Lie monoids
(and in fact any type of monoid defined from a symmetric operad, according to the
results of Section 4.4). There are two other reasons why the categorical formula-
tion is important. First, it allows us to formalize the relations between the various
constructions in terms of morphisms of monoidal functors. Second, it is ripe for
far-reaching generalizations, as witnessed by the results of Chapters 19 and 20.

The functors K and K both associate a graded vector space to a species in a
very simple manner: the degree n component of K(p) is p[n], where [n] denotes
the set {1, . . . , n}, and that of K(p) is p[n]Sn , the space of coinvariants under the
action of the symmetric group Sn. Thus, roughly, the first functor forgets the
action of the symmetric group while the second mods it out. The interest is in
the bilax structure of K and K. This is constructed out of the functoriality of
species with respect to bijections together with two basic ingredients: the unique
order-preserving bijections

{1, . . . , t}
∼=−→ {s+ 1, . . . , s+ t} and S

∼=−→ {1, . . . , s},

where S is a set of integers of cardinality s. These combinatorial procedures are
called shifting and standardization; they interact precisely as prescribed by the
axioms of bilax monoidal functors. This provides a conceptual explanation for the
repeated occurrence of shifting and standardization in the construction of Hopf
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algebras in combinatorics. Shifting gives rise to the lax structure of K and K and
standardization to their colax structure. Their roles can be switched; this gives rise

to the other bilax functors K∨ and K
∨
. The degree n component of K∨(p) is p[n]

and that of K
∨
(p) is p[n]Sn , the space of invariants.

We study abstract properties of the Fock functors, with emphasis on the im-
plications to the Hopf algebra constructions. We show that the full Fock functors
do not preserve duality whereas the bosonic Fock functors do (at least in charac-
teristic 0) (Corollary 15.25). We study how (co)commutativity transfers from the
context of species to that of graded vector spaces. We show that K is braided as
a colax monoidal functor, but not as a lax monoidal functor (Proposition 15.26).
As a consequence, the Hopf algebra K(h) associated to a Hopf monoid h will be
cocommutative if so is h, but may not be commutative even when h is. An inter-
esting example is that of the commutative Hopf monoid L∗: the Hopf algebra of
permutations, which is the corresponding object under the functor K, is far from
commutative (Example 15.17). Commutativity is preserved by the functor K in a
weaker sense, however. There is an isomorphism of bilax monoidal functors

(K, ϕb, ψb)⇒ (K, ϕ, ψ)

given by the half-twist transformation (Proposition 15.30). The lax and colax
structures of the functor on the left are obtained from those of K by conjugation
with the braidings of species and graded vector spaces (the general construction is
discussed in Chapter 3). As a consequence, while the Hopf algebras K(hop) and
K(h)op may not be equal, they are always canonically isomorphic. In particular, if h
is commutative, the Hopf algebra K(h) is endowed with a canonical anti-involution.
This feature has been observed for several combinatorial Hopf algebras on a case
by case basis. It finds now a unified explanation.

We also study how the Fock functors interact with the primitive element func-
tors P on both contexts (from Hopf monoids to Lie monoids and from graded Hopf
algebras to graded Lie algebras). It is convenient to work with the functor K∨ since
being braided lax it preserve Lie monoids. We show that

K∨
(
P(h)

)
⊆ P

(
K∨(h)

)
and K

∨(
P(h)

)
= P

(
K

∨
(h)
)

as graded Lie algebras (Proposition 15.35).
The Fock functor K∨ is Zinbiel-lax monoidal (Proposition 15.40). This pro-

vides a concrete example for the operad-lax monoidal functors of Chapter 4. This
property is responsible for the existence of Zinbiel and dendriform structures on
algebras constructed from associative or commutative monoids in species via K∨.
This includes some important examples of such algebras in the literature (Proposi-
tion 15.41, Examples 15.42 and 15.43).

Deformations of the Fock functors (Chapter 16). The theory of Chapter 15
can be greatly generalized. The first step involves the introduction of a parameter q
and the construction of q-deformations of all the objects; we explain this presently.
The next step involves a further generalization to colored species and is the topic
of Chapter 20.

The key idea here is to directly deform the Fock functors, rather than each
object individually. We regard this as one of the main strengths of our functorial
approach. This is achieved with the aid of the Schubert statistic. It is used to
twist the lax or colax structure of the functors with appropriate powers of q in
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much the same way as the Hopf monoid of linear orders was deformed using the
Schubert cocycle. The resulting bilax monoidal functors Kq and K∨

q map from the
braided monoidal category of species to the braided monoidal category of graded
vector spaces (Theorems 16.1 and 16.2). The braidings are deformed by powers of
p and pq respectively. One may choose not to deform the braiding on the category
of species at all; this amounts to putting p to be 1. For simplicity of exposition, we
work in this setup for the present discussion.

The deformed Fock functors applied to a Hopf monoid produce q-Hopf alge-
bras, which for q = 1 recover the Hopf algebras produced by the undeformed Fock
functors. Thus functoriality of the construction guarantees that every Hopf algebra
arising from a Hopf monoid in species can be coherently deformed. We offer this
as an answer to a question raised by Thibon (in personal conversations and talks),
that all “combinatorial Hopf algebras” should be the limiting case of a “quantum
group”.

Recall that the functor K is braided colax. However, its deformation Kq is not
braided colax in general. We show that conjugating the colax structure of Kq with
the braidings yields the functor Kq−1 (Proposition 16.26). This is again a result of
a very general nature, and explains the nature of cocommutativity present in the
q-Hopf algebras associated to Kq.

The bosonic Fock functors admit signed analogues which we refer to as fermi-
onic Fock functors. They are denoted by

K−1 and K
∨
−1.

We describe them briefly. The degree n component of K−1(p) is p[n]Sn , where
coinvariants are now taken under a twisted action of the symmetric group Sn:
tensor the usual action with the one-dimensional sign representation. The other

functor K
∨
−1 is defined similarly by using invariants instead of coinvariants. The

bilax structures of the fermionic Fock functors are related to those of K−1 and K∨
−1

and involve the Schubert statistic.
The bosonic and fermionic Fock functors are related to each other by the signa-

ture functor on species. This provides an important link between the bosonic and
fermionic worlds, and results in one can be transferred to the other via properties
of the signature functor. For example, since the signature functor and the bosonic
Fock functor are both bistrong, it follows that so is the fermionic Fock functor.

Relations among the Fock functors. The norm transformation (Chap-
ters 15 and 16). The Fock functors in general are distinct. There are however
various relations among these functors that allow us to relate the corresponding
Hopf algebras in a natural manner. First of all, the functors Kq and K∨

q , as well as

K and K
∨
, and K−1 and K

∨
−1 are related through the contragredient construction

(Propositions 15.8 and 16.3). Thus,

K∨
q (−) = Kq

(
(−)∗

)∗
,

and similarly for the other pairs of functors. Second, there are natural trans-

formations K ⇒ K and K
∨
⇒ K∨ (projection onto coinvariants and inclusion

of invariants). These are morphisms of bilax monoidal functors (Theorems 15.3
and 15.6). Similarly, there are morphisms of bilax monoidal functors K−1 ⇒ K−1

and K
∨
−1 ⇒ K

∨
−1. Third, there are isomorphisms of bilax monoidal functors as
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follows

Kq ∼= K
(
Lq × (−)

)
and K∨

q
∼= K

∨(
L∗
q × (−)

)
.

This result is given in Proposition 16.6; its signed analogue involving the fermionic
Fock functor is given in Proposition 16.22. The special case q = 1 is discussed
earlier in Propositions 15.9 and 15.10. There is thus no reason to view either one of

K, K and K−1 (or one of K∨, K
∨

and K
∨
−1) as more fundamental than the others.

There is yet another relation among the functors that is particularly important
in regard to later generalizations. Namely, there is a morphism of bilax monoidal
functors

κq : Kq ⇒ K
∨
q

(Proposition 16.15). This is called the q-norm transformation. For a species p, the
map (κq)p : Kq(p)→ K∨

q (p) is the action of the elements

∑

σ∈Sn

qinv(σ)σ

on each space p[n], where inv(σ) denotes the number of inversions of the permu-
tation σ. For the species of linear orders, this map has been studied by several
authors in a variety of contexts (see the references in Example 16.17). The result
of Zagier or of Varchenko mentioned earlier implies that it is generically invertible,
and from here we deduce that over a field of characteristic 0 and if q is not a root
of unity, the q-norm transformation is an isomorphism of bilax monoidal functors
(Theorem 16.18). This is a rigidity result of a very general nature. The isomor-
phism between the tensor algebra of a vector space and the q-shuffle algebra of
Duchamp, Klyachko, Krob, and Thibon, is one very special case (Example 16.31).
Theorem 16.18 gives such a result for every Hopf algebra arising from a Hopf mon-
oid in species. When the above hypotheses fail, the image of the transformation
κq is truly a new bilax monoidal functor ℑq, which we call the anyonic Fock func-
tor. Its study appears very intriguing. A first connection with Nichols algebras is
encountered at this point.

The parameter values ±1 are quite interesting. The q-norm in this case is given
by symmetrization or antisymmetrization. So it is indeed an instance of the norm
map in group theory. Hence, the image in this situation can be understood in terms
of invariants and coinvariants. Recall that the bosonic and fermionic functors are
defined precisely in this manner. This leads to the following diagrams.

K
κ +3

��

K∨

K κ
+3 K

∨

KS
K−1

κ−1 +3

��

K∨
−1

K−1 κ−1

+3 K
∨
−1.

KS

In characteristic 0, the induced transformations κ and κ−1 are isomorphisms. Thus,

in this case, one may view the isomorphic functors K and K
∨

as naturally associated
to κ: they are the coimage and image of this morphism, respectively. The same
statement holds for κ−1. To summarize, in characteristic 0, for the values ±1, the
anyonic Fock functor ℑq specializes to the bosonic and fermionic Fock functors.
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The free Fock functor and 0-bialgebras (Chapter 16). As already mentioned,
the Fock functors Kq and K∨

q are duals (contragredients) of each other. An inter-
esting phenomenon occurs at q = 0, namely, these two functors coincide. In other
words, K0 = K∨

0 ; thus this resulting functor, which we call the free Fock functor, is
self-dual. Further, its lax structure coincides with that of K and its colax structure
coincides with that of K∨. These results are summarized in Proposition 16.4.

By the preceding theory, the free Fock functor sends p-Hopf monoids to 0-Hopf
algebras. A rigidity result of Loday and Ronco says that any connected 0-bialgebra
is free as a graded algebra and cofree as a graded coalgebra. The free Fock functor
applied to any connected p-bimonoid h yields a connected 0-bialgebra K0(h). As
lax functors, K0 = K, and as colax functors K∨

0 = K∨. It follows that K(h) is
a free graded algebra and K∨(h) is a cofree graded coalgebra, for any connected
p-bimonoid h (Proposition 16.11). Results of this kind have been recently obtained
by Livernet [233] and our functorial approach serves to further clarify them.

Hopf algebras from geometry (Chapter 17). Many of the Hopf algebras asso-
ciated to the Hopf monoids in (0.1) are familiar and have received a great deal of
attention in the recent literature. For simplicity, let us work over a field of char-
acteristic 0 and concentrate on the following small portion of diagram (0.1), which
gives rise to the most familiar Hopf algebras.

T (E∗
+) //

��

L× L∗

��

S(E∗
+) // T ∨(E+)

Applying each of the functors K, K, K∨, and K
∨

one obtains a commutative square
of graded Hopf algebras. In view of the natural transformations K ⇒ K and

K
∨
⇒ K∨, these four squares can be assembled into two commutative cubes.

NΠ //

||yy
yy

yy
yy

��

SΠ

||yy
yy

yy
yy

��

NΛ //

��

SΛ

��

Π //

}}{{
{{

{{
{{

{
QΠ

}}{{
{{

{{
{{

Λ // QΛ

QΠ∗ //

��

SΠ∗

��

NΛ

<<yyyyyyyy
//

��

SΛ

��

<<yyyyyyyyy

Π∗ // NΠ∗

Λ

<<yyyyyyyyy
// QΛ

<<yyyyyyyy

The above mentioned natural transformations are responsible for the morphisms
between the back and front faces. As already mentioned, in characteristic 0, the

functors K and K
∨

are naturally isomorphic. This explains the common face of
the cubes. The duality between the back faces is due to the corresponding relation
between K and K∨.

We have used the notation of [12], where all these objects are studied. Thus Λ,
NΛ, QΛ, and SΛ are the Hopf algebras of symmetric functions, noncommutative
symmetric functions, quasi-symmetric functions, and permutations, respectively,
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while Π is the Hopf algebra of symmetric functions in noncommuting variables.
They provide examples of how graded Hopf algebras can be obtained through a
combination of the functors T or S, the Hadamard product, and duality, with the
Fock functors.

Since the Hadamard product on graded vector spaces is not bilax, the Hopf
algebras associated to the Hopf monoid L × L∗ via the Fock functors cannot be
described in terms of the Hopf algebras associated to L∗ and L. This provides
evidence for our claim that proper understanding of these Hopf algebras requires
the consideration of Hopf monoids in species.

The claim is further substantiated by the fact that many of the Hopf monoids
we consider are universal, that is, they are special values of the functors T , S, or
their duals, on the category of species. Depending on which Fock functors we use,
these universal properties may be lost in the passage from Hopf monoids to Hopf
algebras and therefore can never be fully appreciated if one is confined to the world
of graded vector spaces and graded Hopf algebras. For instance, the species L is the
free monoid on one generator, and can therefore be regarded as an analogue of the
polynomial algebra in one variable. By contrast, the Hopf algebra of permutations
which is its image under one of the full Fock functors has no analogous property.

Duality is another property that may be lost in the passage from Hopf monoids
to Hopf algebras. For example, T (E∗

+) are T ∨(E+) are dual as Hopf monoids, but
NΠ and QΠ (which are their images under K) are not dual as graded Hopf algebras.

Two questions regarding graded Hopf algebras are often interesting and diffi-
cult: the determination of a linear basis of the space of primitive elements and the
determination of the structure constants of the antipode. For most of the Hopf
algebras associated to the Hopf monoids in (0.1), the first question was answered
in [12]. In Part II, we consider the same questions directly for the Hopf monoids,
which are more fundamental objects. In view of the results of Chapter 15, the
answers to these questions for a Hopf algebra of the form K(h) can be told from
the answers for the Hopf monoid h.

Hopf algebras from combinatorics (Chapter 17). The Hopf monoids of Chap-
ter 13 give rise to another long list of Hopf algebras. Several of these Hopf algebras
have received much attention in the recent literature. We mention in particu-
lar work of Gessel and Malvenuto in connection to the Hopf algebras of posets;
of Ehrenborg in connection to the Hopf algebras of set-graded posets; of Sagan,
Schmitt, and Stanley in connection to the Hopf algebras of graphs; of Connes–
Kreimer and Grossman–Larson in connection to the Hopf algebras of forests; of
Crapo and Schmitt in connection to the Hopf algebras of matroids. Similarly, the
morphisms arising from universal constructions yield well-known generating func-
tions for the corresponding combinatorial objects. They include the enumerator
of poset partitions, the enumerator of descents, the chromatic function for graphs
and its variant for labeled graphs, the quasi-symmetric flag function, a generating
function for matroids, and so on.

Adjoints of the Fock functors (Chapter 18). This chapter is devoted to the
construction of the various adjoints of the Fock functors. We view each of K, K,

K∨, and K
∨

as a functor at three levels: one from species to graded vector spaces,
another from monoids to graded algebras, and another from comonoids to graded
coalgebras. A complete analysis of the left and right adjoints of each of these
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functors (which may exist or not) is presented. This includes important notions
such as the free monoid on a graded algebra (relative to each of the four functors).
These notions are related through composition of adjunctions. A summary of the
results is given in Tables 18.1 and 18.2. The free monoid on a graded algebra is not
to be confused with the free monoid on a species discussed earlier. This chapter also
serves to formalize the analogy between the tensor and symmetric algebra functors
on graded vector spaces and the corresponding functors T and S on species.

Decorated Fock functors (Chapter 19). The Fock functors as discussed thus
far admit a decorated version: one can define a Fock functor for each vector space
V , with V = k recovering the undecorated case (Theorems 19.2 and 19.33). We
denote them by adding a subscript V to the previous notation. In a sense, one
may view the result of applying a decorated Fock functor, say KV , to a species
p as a version of the graded vector space K(p) in which the given combinatorial
structure determined by the species p has been decorated with elements of the
vector space V .

The exponential species E admits a decorated version which we denote by EV .
It recovers E for V = k and retains all its important features. For example, it is the
free commutative monoid as well as the cofree cocommutative comonoid on XV .
The latter is the species which is V on singletons and 0 otherwise. Further, the dual
of EV is EV ∗ . In particular, if V is finite-dimensional, then EV is self-dual (the
self-duality depending on a choice of an isomorphism V ∼= V ∗). The significance of
the decorated exponential species in the present context is brought about by the
relation

KV (−) = K
(
(−)×EV

)

This allows us to quickly generalize the theory of undecorated Fock functors to the
decorated setting. For instance, the bilax structure of KV arises from that of the
Hadamard product plus the bimonoid structure of EV . A similar relation holds for
the other decorated functors as well.

The decorated Fock functors give a systematic procedure of decorating any
graded Hopf algebra that arises from a Hopf monoid in species.

Fock spaces. Up-down and creation-annihilation operators (Chapter 19).
Fix a vector space V . Classical full Fock space is the underlying space of the tensor
algebra on V . Similarly, bosonic Fock space is the underlying space of the symmetric
algebra on V , while fermionic Fock space is the underlying space of the exterior
algebra on V . In physical terms, V stands for the quantum states of a single
particle, while the Fock spaces describe quantum states with a variable number
of particles. The terms bosonic and fermionic are used depending on whether
the particles are bosons or fermions. These spaces carry certain operators called
creation and annihilation. The former increases the number of particles by 1, while
the latter decreases the number of particles by 1. Further, these operators satisfy
canonical commutation relations, see equations (19.4) and (19.6).

The first observation is that bosonic and fermionic Fock spaces are the values
of the decorated bosonic and decorated fermionic Fock functors respectively on
the exponential species. The second observation is that the exponential species is
naturally equipped with what we call up-down operators. The third observation is
that Fock functors convert up-down operators on species to creation-annihilation
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operators on graded vector spaces. This explains the existence of such operators
on Fock spaces.

Following Guţă and Maassen [158] and Bożejko and Guţă [64], we define gen-
eralized Fock spaces to be the values of the decorated Fock functors on any species
with up-down operators. In particular, we add to their constructions by paying
attention to the monoidal properties of the functors. Propositions 19.16, 19.21
and 19.38 serve to illustrate this point.

We then introduce the notion of a species with balanced operators. It is a
species with up-down operators in which the operators are required to satisfy fur-
ther compatibilities. The motivating example is that of the exponential species.
The point is that the decorated bosonic and fermionic Fock functors convert a
species with balanced operators to a graded vector spaces with creation-annihilation
operators which satisfy the canonical commutation relations (Propositions 19.27
and 19.39). We illustrate this on a number of examples including the species of
rooted trees and the species of elements.

Colored Fock functors (Chapter 20). There is a higher dimensional general-
ization of the preceding theory in which species are replaced by colored species,
and graded vector spaces by multigraded vector spaces. Recall from Graded vector
spaces and Colored species and Q-Hopf monoids that for each square matrix Q of
size r, one can define a braiding on r-colored species as well as on Nr-graded vector
spaces. We construct bilax monoidal functors KQ and K∨

Q from the category of

r-colored species to the category of Nr-graded vector spaces (Theorem 20.1). The
Fock functors as well as their q-deformations occur as special cases when Q = [q] is
a matrix of size 1. The braidings are to be chosen as follows. If the square matrix
P is used for r-colored species, then the matrix P ×Q (the Hadamard product of
P and Q) is to be used for Nr-graded vector spaces. It follows that these func-
tors take P -Hopf monoids to (P × Q)-Hopf algebras. The constructions of these
Nr-graded Hopf algebras with respect to nontrivial braidings are now considerably
more general than those of Chapter 15.

Recall that the braiding βQ is a symmetry if and only if Q is log-antisymmetric.
In this situation, the symmetric groups act via the braiding on appropriate compo-
nents of a colored species (Proposition 20.3). By taking invariants and coinvariants
with respect to this action, one obtains bistrong functors

KQ and K
∨
Q.

The bosonic and fermionic Fock functors correspond to the log-antisymmetric ma-
trices Q = [1] and Q = [−1] respectively.

We construct a higher dimensional version of the norm transformation

κQ : KQ ⇒ K
∨
Q

and show that it is a morphism of bilax functors (Proposition 20.9). The image of
κQ is a new bilax monoidal functor ℑQ from r-colored species to Nr-graded vector
spaces. This functor is the multivariate version of the anyonic Fock functor. If
the characteristic of the field is 0 and Q is log-antisymmetric, then ℑQ coincides

with KQ and K
∨
Q. If Q has generic entries, then the norm κQ is an isomorphism

(Theorem 20.11). This is again an application of Varchenko’s result.
As an example, we consider a colored analog of the Hopf monoid E which we

denote by E(r). The functors KQ and K∨
Q applied to E(r) yield the Hopf algebra of
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noncommutative polynomials in r variables and the quantum shuffle algebra respec-
tively. The Hopf algebra ℑQ(E(r)), on the other hand, is the quantum symmetric
algebra associated to the matrix Q. The terminology Nichols algebra of diagonal
type is used for this object in the theory of abstract Hopf algebras. Further, spe-
cial choices of Q lead to Manin’s quantum linear spaces or to the nilpotent part of
quantum enveloping algebras. The explicit calculation of Nichols algebras is widely
regarded as a difficult problem, intimately related to the classification of pointed
Hopf algebras. One may therefore expect the calculation of explicit values of the
functor ℑQ to be similarly challenging and interesting.

The question of what Hopf algebras may arise when other colored species are
considered is a completely open avenue. As another example, we mention that
the functor KQ applied to the colored linear order species yields a Q-Hopf algebra
indexed by r-signed permutations.

Yang–Baxter deformation of decorated Fock functors (Chapters 19 and 20).
Let R be a Yang–Baxter operator on the space of decorations V . In this setting, one
can define functors KV,R and K∨

V,R along with a norm transformation between them.
The image of the norm yields a functor denoted ℑV,R. These functors are not bilax
in the usual sense. Just as bilax functors are the functorial analogues of bialgebras,
these are the functorial analogues of braided bialgebras [356, Definition 5.1]. The
Yang–Baxter operator plays a role in the lax and colax structures of these functors
as well as in the braiding axiom. Applying ℑV,R to the exponential species E yields
the Nichols algebra associated to R (also known as the quantum symmetric algebra).

By letting R to be the operator which switches the two tensor factors, one
recovers the decorated Fock functors KV , K∨

V and ℑV . By fixing a scalar q and
letting R to be the operator

v ⊗ w 7→ q w ⊗ v,

one obtains one-parameter deformations of the decorated Fock functors. It turns
out that these are bilax in the usual sense. Thus we have KV,q and K∨

V,q, which
deform the decorated full Fock functors, a decorated q-norm

κq : KV,q ⇒ K
∨
V,q

which is a morphism of bilax monoidal functors, and ℑV,q, which is the image of
κq. By letting V = k, we recover the deformed Fock functors Kq, K∨

q and ℑq.
Let Q be a square matrix of size r, where r is the dimension of V . Fix a basis

x1, x2, . . . , xr of V , and consider the Yang–Baxter RQ operator on V :

V ⊗ V → V ⊗ V, xi ⊗ xj 7→ qji xj ⊗ xi

where i and j vary between 1 and r, and qji denotes the entries of the matrix
Q. The functors KV,RQ , K∨

V,RQ
and ℑV,RQ are closely related to the colored Fock

functors KQ, K∨
Q and ℑQ. The precise relation is given in Theorem 20.19.

The theory of creation-annihilation operators can also be developed in the set-
ting of Yang–Baxter operators. They satisfy appropriately deformed commutation
relations (Propositions 19.41 and 19.48).

Appendices

Four appendices supplement the text. Appendix A reviews some basic no-
tions from category theory, including adjunctions, equivalences, and colimits. The
contents of Appendices B, C and D are summarized below.
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Operads (Appendix B). Operads are monoids in the monoidal category of species
under substitution. These objects have been at the focus of intense activity in
recent times, though not often from this point of view.

We have mentioned a variety of tensor products on species, centering primarily
on the Cauchy product. Of these, the substitution product is the most subtle,
and a definition in full generality requires some care. When the species do not
vanish on the empty set, two different versions of substitution arise. One notion of
substitution (B.9) gives rise to the general notion of operad and the other (B.15)
to the general notion of cooperad. We provide a complete proof of associativity for
the former version of substitution (Lemma B.14) and also describe its internal Hom
(Proposition B.26). Further, we explain how a proper understanding of the latter
version of substitution requires a more general setup, which is that of lax monoidal
categories.

The main use for operads in this monograph occurs in Chapter 4, as already
mentioned. To each operad corresponds a type of monoid (in a monoidal category)
and a type of monoidal functor (between monoidal categories). Types of monoids
may also be understood in terms of modules over operads. The two notions are
equivalent (Proposition B.27).

The substitution and Hadamard products define a 2-monoidal structure on the
category of species (Propositions B.31 and B.35). This provides a context for the
notion of Hopf operad.

Pseudomonoids and the looping principle (Appendix C). The notion of pseu-
domonoid is a 2-dimensional analogue of the notion of monoid in a monoidal cat-
egory. We provide a complete definition, following work of Day, McCrudden, and
Street among others. The context is that of monoidal 2-categories (not to be con-
fused with 2-monoidal categories). A pseudomonoid possesses a product that is
associative up to a 2-cell. A monoidal category is an example of a pseudomonoid
(in the 2-category Cat, which is monoidal under Cartesian product). Our main
interest in pseudomonoids stems from a result we prove in Proposition 6.73, which
states that a 2-monoidal category can be viewed as a pseudomonoid in two differ-
ent monoidal 2-categories. These are the 2-categories lCat and cCat whose objects
are monoidal categories and whose arrows are respectively lax and colax monoidal
functors. This and other examples of pseudomonoids are summarized in Table C.1.

The passage from Cat to lCat and cCat is an instance of the lax and colax
constructions. They are discussed in Section C.2.3. They play an important role
in connection to the notion of higher monoidal categories, as already mentioned.

The set of endomorphisms of an object in a category is an ordinary monoid
under composition. This is a first instance of the looping principle which is the
subject of Section C.4. We are mainly interested in a 2-dimensional version of the
principle which relates pseudomonoids (in a monoidal 2-category) to bicategories
(enriched in the same monoidal 2-category). We arrive at this in Section C.4.4,
after discussing simpler instances of the looping principle. We also discuss how
some important examples of 2-monoidal categories arise in this manner, as loops in
bicategories enriched by either lCat or cCat.

Monoids and the simplicial category (Appendix D). We discuss two general-
izations of the notion of monoid in a monoidal category: lax monoids and homotopy
monoids. They are due to Day and Street [94] and Leinster [229], respectively. We
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are mainly interested in two special instances of these notions: lax monoidal cat-
egories, and a particular homotopy monoid that we construct in the context of
natural transformations between monoidal functors.

The key notion on which the generalizations are based is Mac Lane’s simplicial
category. This category plays a universal role in connection to monoids (Proposi-
tion D.2). Relaxing the conditions in this result leads to the notions of lax monoids
and homotopy monoids.

We explain the notion of a lax monoidal category in some detail (Defini-
tion D.3). This is an example of a lax monoid. It, however, plays only a minor
role in this monograph. It is required for a proper understanding of the second
substitution product on species, as already mentioned.

We explore a notion of convolution for natural transformations from a colax
monoidal functor F to a lax monoidal functor G. This may be regarded as an
analogue of the convolution operation on the set Hom(C,A) of maps from a co-
monoid C to a monoid A. More precisely: The role of the set Hom(C,A) is played
by a certain contravariant functor NF ,G on Mac Lane’s simplicial category, that is,
by an augmented simplicial set. An n-simplex in this simplicial set is a natural
transformation from Fn to Gn, where

Fn(A1, . . . , An) := F(A1 • · · · •An)

is a functor from the n-fold Cartesian product of the source category of F with itself
to its target category (with • denoting the tensor product of the source category).
Convolution of natural transformations turns NF ,G into a lax monoidal functor
(Theorem D.9). This is an example of a homotopy monoid. We apply these ideas
to Hopf lax functors, see Proposition D.12 and the discussion following it.

Related work

Several references to related work in the literature are given in the text. Of
these, Joyal’s work on braided monoidal categories and on species [181, 184] has
been the most influential. We would like to view our work as a contribution to his
ideas.

We would also like to highlight the work of the following authors. Schmitt and
Stover, independently and at about the same time, were the first to describe con-
structions of Hopf algebras from Hopf monoids in species [322, 346]. The connection
to combinatorial Hopf algebras was brought forth by Patras and Reutenauer [291].
Patras and Schocker [292, 293], Patras and Livernet [234] and Livernet [233] have
further advanced the subject.

Our interest in Hopf monoids in species developed from a lecture by Sagan in
Montréal in 2001 on the algebra Π. In trying to understand the Hopf algebras Π
and QΠ from the point of view of universal properties, as had been done for QΛ
in [10], we were led to the consideration of species.
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in Montréal for the invitation to publish in this series.

Aguiar was supported by NSF grants DMS-0302423 and DMS-0600973. Maha-
jan was supported by grant 07IR013 from Indian Institute of Technology Mumbai,
Powai, India.

li





Part I

Monoidal Categories





CHAPTER 1

Monoidal Categories

In this chapter we review some basic notions related to monoidal categories.
These include braided monoidal categories, bimonoids and Hopf monoids, Lie mon-
oids, unbracketed and unordered tensor products, and the internal Hom functor.
We provide a number of results, particularly on antipodes, which require some care
when the braiding is not assumed to be a symmetry.

The exposition makes use of some standard notions from category theory such
as products, limits and equivalence of categories. These are reviewed in Appen-
dix A.

1.1. Braided monoidal categories

A detailed discussion of braided and symmetric monoidal categories can be
found in the paper of Joyal and Street [184] and in the books by Kassel [191, Chap-
ters XI and XIII], Kock [203, Chapter 3], Leinster [226, Chapter 3], Mac Lane [250,
Chapters VII and XI], Street [348], and Yetter [379, Chapters 3 and 5].

1.1.1. Monoidal categories. Some of the earliest papers on monoidal categories
are those of Bénabou [36], Mac Lane [248], and Kelly [194].

Definition 1.1. A monoidal category (C, •) is a category C with a functor

• : C× C→ C,

together with a natural isomorphism

αA,B,C : (A •B) • C
∼=
−−→ A • (B • C)

which satisfies the pentagon axiom:

(1.1)

(A •B) • (C •D)

αA,B,C•D

##H
HHHHHHHHHHHHHHHHHH

((A •B) • C) •D

αA,B,C•idD

��
44

44
44

44
44

44
44

αA•B,C,D

;;wwwwwwwwwwwwwwwwwww
A •

(
B • (C •D)

)

(
A • (B • C)

)
•D
αA,B•C,D

// A •
(
(B • C) •D

)
.

idA•αB,C,D

DD														

3



4 1. MONOIDAL CATEGORIES

Further, C has a distinguished object I with natural isomorphisms

λA : A→ I •A, and ρA : A→ A • I,

which satisfy the triangle axiom:

(1.2)

(A • I) •B
αA,I,B

// A • (I •B)

A •B.

ρA•idB

aaCCCCCCCC idA•λB

=={{{{{{{{

It follows [184, Proposition 1.1] that

(1.3) λI = ρI ,

and the following diagrams commute.

(I •A) •B
αI,A,B

// I • (A •B)

A •B

λA•idB

``BBBBBBBB λA•B

>>||||||||

(A •B) • I
αA,B,I

// A • (B • I)

A •B

ρA•B

``BBBBBBBB idA•ρB

>>||||||||
(1.4)

We refer to A •B as the tensor product of A and B and to I as the unit object
of C. The natural isomorphism α above is called the associativity constraint and
λ and ρ are called the unit constraints. A monoidal category is called strict, if the
associativity and unit constraints are identities.

We often omit α from the notation and identify the objects (A • B) • C and
A•(B•C). The identification is denoted A•B•C and referred to as the unbracketed
tensor product of A, B and C; details are provided in Section 1.4. We often omit
the subindexes A, B, C from α, λ and ρ if they can be told from the context.

Sometimes we writeM for the functor • : C× C→ C, so that

M(A,B) = A •B.

We call it the tensor product functor.
Let Cop denote the opposite category of C; these categories have the same

objects, and

HomCop(A,B) := HomC(B,A).

If (C, •) is monoidal, then so is (Cop, •).
The transpose of (C, •) is the monoidal category (C, •̃) where

A •̃B := B •A.

If C and C′ are monoidal categories, then so is C× C′ with tensor product

(A,A′) • (B,B′) := (A •B,A′ •B′).

1.1.2. Braided monoidal categories. Braided monoidal categories were intro-
duced by Joyal and Street [183, 184]. They generalize symmetric monoidal cate-
gories which were introduced by Mac Lane [248]. Some of the first papers on the
subject are by Bénabou [37], Kelly [194], and Eilenberg and Kelly [117, Chapter III].

Definition 1.2. A braided monoidal category is a monoidal category (C, •) together
with a natural isomorphism

βA,B : A •B → B •A,
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which satisfies the axioms

B •A • C
idB•βA,C

$$I
IIIIIIII

A •B • C

βA,B•idC
::uuuuuuuuu

βA,B•C

// B • C •A

A • C •B
βA,C•idB

$$J
JJJJJJJJ

A •B • C

idA•βB,C
::uuuuuuuuu

βA•B,C

// C •A •B.

(1.5)

The natural isomorphism β is called a braiding. We often omit the subindexes A
and B from β if they can be told from the context.

A monoidal category is symmetric if it is equipped with a braiding β which
satisfies β2 = id. In this case β is called a symmetry.

It follows from the axioms that the following diagrams commute [184, Propo-
sition 2.1].

A •B • C
idA•βB,C

//

βA,B•idC

��

A • C •B
βA,C•idB

// C •A •B

idC•βA,B

��

B •A • C
idB•βA,C

// B • C •A
βB,C•idA

// C •B •A

(1.6)

A • I
βA,I

// I •A

A

ρA

bbEEEEEEEE λA

<<yyyyyyyy

I •A
βI,A

// A • I

A

λA

bbEEEEEEEE ρA

<<yyyyyyyy

(1.7)

It follows from (1.3) and (1.7) that

(1.8) βI,I = idI•I .

If β is a braiding for (C, •), then so is its inverse β−1 defined by

(β−1)A,B := (βB,A)−1 : A •B → B •A.

The monoidal category (Cop, •) is braided, with the opposite braiding defined by

(βop)A,B := βB,A,

as is the category (C, •̃), with the transpose braiding

(βt)A,B := βB,A.

If C and C′ are braided monoidal categories with braidings β and β′, then so is
C× C′ with braiding

(A,A′) • (B,B′) //________ (B,B′) • (A,A′)

(A •B,A′ •B′)
(βA,B ,β

′
A′,B′)

// (B •A,B′ •A′).

Example 1.3. The smallest symmetric monoidal category is the one-arrow cat-
egory (I, •). It has one object and one morphism with the tensor product and
braiding defined in the obvious manner. This example plays a useful role in the
general theory.
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Other basic examples of symmetric monoidal categories are (Set,×), the cate-
gory of sets under Cartesian product, and (Vec,⊗), the category of vector spaces
under tensor product. For the unit objects we choose the one-element set {∅} and
the base field k, respectively. The braiding is given by switching the tensor factors
in both cases.

The following symmetric monoidal categories play a central role in this mono-
graph: the category gVec of graded vector spaces equipped with the graded tensor
product, also called the Cauchy product, and the category Sp of species equipped
with the Cauchy product. These categories admit a number of other interesting
tensor products as well; details are given in Sections 2.1 and 8.1.

Example 1.4. Let C be a category with finite products (Section A.1.1). Then
(C,×, J) is a symmetric monoidal category: A×B is a chosen product of A and B
and J is a chosen terminal object in C. The associativity, unit constraints, and the
braiding are defined via the universal property for products. We say in this case
that the monoidal category C is cartesian. This example is also discussed in [250,
Proposition III.5.1, Exercise III.5.2] and [226, Example 1.2.7].

Similarly, any category with finite coproducts (Section A.1.2) is symmetric
monoidal, with the monoidal structure given by a choice of coproduct and the
unit given by a chosen initial object. Such monoidal categories (C,∐, I) are called
cocartesian.

Finally, suppose that C has finite biproducts (Section A.1.3). In this situation,
the monoidal categories (C,∐, I) and (C,×, J) are isomorphic by means of the
canonical map (A.1). We may thus identify them and write (C,⊕, Z), where ⊕
stands for either ∐ or ×, and Z for either I or J . Such monoidal categories are
called bicartesian.

1.1.3. Lax braided monoidal categories. In deriving the commutativity of di-
agrams (1.7) from Definition 1.2, the invertibility of β is used. There is a generaliza-
tion of the notion of braided monoidal category in which the natural transformation
β is not required to be an isomorphism, but the commutativity of (1.7) is. It is as
follows.

Definition 1.5. A lax braided monoidal category is a monoidal category (C, •)
together with a natural transformation

βA,B : A •B → B •A,

which satisfies the axioms (1.5) and (1.7). The natural transformation β is called
a lax braiding.

Such β have been considered in the literature: briefly by Yetter in [378, Defini-
tion 1.12], who calls them pre-braidings, and in more depth by Day, Panchadcharam,
and Street in [91, Section 1], whose terminology we follow. They also appear in the
work of Kapranov and Voevodsky [188, Definition 3.1].

1.1.4. Linear and abelian monoidal categories. Let k be a commutative ring.

Definition 1.6. A category C is k-linear if each set Hom(A,B) is a k-module and
composition of arrows

Hom(A,B) ×Hom(B,C)→ Hom(A,C)

is k-bilinear. A functor between such categories is k-linear if it induces morphisms
of k-modules on each Hom set.
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A k-linear category is the same thing as a category enriched by the monoidal
category of k-modules (Modk,⊗k) [277, Section 11]. We discuss enriched categories
in Section C.3.

Mac Lane calls Z-linear categories preadditive or Ab-categories [250, Section I.8],
while Mitchell calls them additive [277, Section 1]. We do not employ either termi-
nology. When the base ring k is understood, we speak simply of linear categories.

Proposition 1.7. If C and C′ are k-linear, then so is C× C′ by

(f, f ′) + (g, g′) := (f + g, f ′ + g′) and c(f, f ′) := (cf, cf ′).

A monoidal category (C, •) is k-linear if the category C is k-linear and in
addition tensoring is a bilinear operation over k

Hom(A1, A2)×Hom(B1, B2)→ Hom(A1 •B1, A2 •B2).

A k-linear monoidal category is symmetric if the underlying monoidal category is
symmetric.

For the definition of abelian category, see [250, Section VIII.3].

Definition 1.8. We say that a monoidal category (D, •) is abelian if the category
D is abelian and for each object A the functors

A • (−) and (−) •A

are exact.

1.2. Hopf monoids

A monoidal category allows one to define monoids and comonoids; if the cat-
egory is braided, then one can also define bimonoids and Hopf monoids as well as
different types of monoids. These objects along with their notations are summarized
in Table 1.1.

1.2.1. Monoids and comonoids.

Definition 1.9. A monoid in a monoidal category (C, •) is a triple (A, µ, ι) where

µ : A •A→ A and ι : I → A

Table 1.1. Categories of “monoids” in monoidal categories.

Category Description Category Description

Mon(C) Monoids Bimonco(C) Com. bimonoids

Comon(C) Comonoids coBimon(C) Cocom. bimonoids

Bimon(C) Bimonoids coBimonco(C) Com. & cocom. bimonoids

Hopf(C) Hopf monoids Hopfco(C) Com. Hopf monoids

Monco(C) Com. monoids coHopf(C) Cocom. Hopf monoids
coComon(C) Cocom. comonoids coHopfco(C) Com. & cocom. Hopf monoids
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(the product and the unit) satisfy the associativity and unit axioms, which state
that the following diagrams commute.

A •A •A
id•µ

//

µ•id

��

A •A

µ

��

A •A µ
// A

I •A
ι•id // A •A

µ

��

A • I
id•ιoo

A

ρ

∼=

;;wwwwwwwwwwwww
λ

∼=

ccGGGGGGGGGGGGG

A morphism (A, µ, ι) → (A′, µ′, ι′) of monoids is a map A → A′ which commutes
with µ and µ′, and ι and ι′.

Similarly a comonoid in a monoidal category (C, •) is a triple (C,∆, ǫ) where

∆: C → C • C and ǫ : C → I

(the coproduct and the counit) satisfy the coassociativity and counit axioms. These
are obtained from the monoid axioms by replacing µ by ∆ and ι by ǫ, and reversing
the arrows with those labels. A morphism (C,∆, ǫ) → (C′,∆′, ǫ′) of comonoids is
a map C → C′ which commutes with ∆ and ∆′, and ǫ and ǫ′.

We denote the categories of monoids and of comonoids in (C, •) by Mon(C) and
Comon(C) respectively. The notions of monoid and comonoid are dual in the sense
that Mon(C) is equivalent to Comon(Cop)op.

A nonunital monoid is defined as in Definition 1.9, but omitting all references
to the unit object I of C. Noncounital comonoids are the dual notion. These
notions can be defined in any nonunital monoidal category (omit all references to
I in Definition 1.1). These objects are encountered in a small number of occasions
in this monograph.

1.2.2. Bimonoids.

Definition 1.10. A bimonoid in a lax braided monoidal category (C, •, β) is a
quintuple (H,µ, ι,∆, ǫ) where (H,µ, ι) is a monoid, (H,∆, ǫ) is a comonoid, and
the two structures are compatible in the sense that the following four diagrams
commute.

H •H •H •H
id•β•id

// H •H •H •H

µ•µ

��

H •H µ
//

∆•∆

OO

H
∆

// H •H

(1.9)

H •H
ǫ•ǫ //

µ

��

I • I

λ−1
I

��

H ǫ
// I

I

λI

��

ι // H

∆

��

I • I ι•ι
// H •H

(1.10)
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H
ǫ

��
??

??
??

??

I

ι

??��������
I

(1.11)

A morphism of bimonoids is a morphism of the underlying monoids and comonoids.

In a braided monoidal category (C, •, β), if (A1, µ1) and (A2, µ2) are monoids,
then so is A1 •A2, with structure maps

(1.12)
A1 •A2 •A1 •A2

id•β•id
// A1 •A1 •A2 •A2

µ1•µ2 // A1 •A2

I
λI=ρI // I • I

ι1•ι2 // A1 •A2.

Dually, if (C1,∆1) and (C2,∆2) are comonoids, then so is C1 • C2.
In this manner, Mon(C) and Comon(C) are monoidal categories. One can then

give the following alternative description for bimonoids.

Proposition 1.11. A bimonoid is an object H in a braided monoidal category with
maps

µ : H •H → H ∆: H → H •H

ι : I → H ǫ : H → I

such that (H,µ, ι) is a monoid, (H,∆, ǫ) is a comonoid, and µ and ι are morphisms
of comonoids, or equivalently, ∆ and ǫ are morphisms of monoids.

We denote the category of bimonoids in (C, •, β) by Bimon(C).

1.2.3. Modules and comodules.

Definition 1.12. Let (A, µ, ι) be a monoid in (C, •). A left A-module is a pair
(M,χ) where

χ : A •M →M

satisfies the usual associativity and unit axioms. A right A-module is defined simi-
larly in terms of a structure map M •A→M .

A morphism (M,χ) → (M ′, χ′) of left A-modules is a map M → M ′ which
commutes with χ and χ′. We denote the category of left A-modules in (C, •) by
ModA(C).

Given two monoidsA1 andA2 in (C, •), anA1-A2-bimodule is a triple (M,χ1, χ2)
where (M,χ1) is a left A1-module, (M,χ2) is a right A2-module, and in addition

A1 •M •A2
χ1•id //

id•χ2

��

M •A2

χ2

��

A1 •M χ1

// M

commutes. We refer to A-A-bimodules simply as A-bimodules.

Assume now that (C, •, β) is a braided monoidal category. Let Ai be a monoid
in (C, •), i = 1, 2, and consider the monoid A1 •A2 defined in (1.12). If (Mi, χi) is
a left Ai-module, then M1 •M2 is a left A1 •A2-module with structure map

A1 •A2 •M1 •M2
id•β•id

// A1 •M1 •A2 •M2
χ1•χ2 // M1 •M2.
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It follows that if H is a bimonoid, and (M1, χ1) and (M2, χ2) are left H-modules,
then so is M1 •M2, with structure map

H •M1 •M2
∆•id•id // H •H •M1 •M2

id•β•id
// H •M1 •H •M2

χ1•χ2 // M1 •M2.

In addition, the unit object I is a left H-module with structure map

H • I
ρ−1
H // H

ǫ // I.

In this manner, the category ModH(C) is monoidal. A monoid in ModH(C) is called
an H-module-monoid. A comonoid in ModH(C) is called an H-module-comonoid.

Let C be a comonoid. Dualizing the above definitions, we obtain the notions
of left C-comodule, right C-comodule, and C-D-bicomodule, where D is another
comonoid. Let ComodC(C) be the category of left C-comodules. If H is a bimonoid,

ComodH(C) is monoidal, and one has the notions of H-comodule-monoid and H-
comodule-comonoid.

1.2.4. Convolution monoids. Let (C, •) be a monoidal category.

Definition 1.13. For C a comonoid and A a monoid in C, define the convolution
monoid as the set Hom(C,A) of all maps in C from C to A with the following
product.

For f, g ∈ Hom(C,A), we let the product f ∗ g be the composite morphism

C
∆ // C • C

f•g
// A •A

µ
// A.

This is an associative product called convolution. The map ιǫ : C → A serves as
the unit for this product and is called the convolution unit. The set Hom(C,A) is
thus an ordinary monoid, that is, a monoid in the monoidal category (Set,×) of
sets with Cartesian product.

If C is a linear monoidal category, then Hom(C,A) has the structure of an
(associative) algebra. This is called the convolution algebra.

Proposition 1.14. Let C and C′ be comonoids and A and A′ be monoids in C.
Let

j : C′ → C and k : A→ A′

be a morphism of comonoids and a morphism of monoids, respectively. Then the
maps

Hom(C,A)→ Hom(C′, A), f 7→ fj

and

Hom(C,A)→ Hom(C,A′), f 7→ kf

are morphisms of convolution monoids.

The proof is straightforward.
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1.2.5. Hopf monoids. Let (C, •, β) be a lax braided monoidal category. For a
bimonoid H in C, consider the convolution monoid End(H) := Hom(H,H).

Definition 1.15. A Hopf monoid in C is a bimonoid H for which the identity map
id: H → H is invertible in the convolution monoid End(H). Explicitly, there must
exist a map s : H → H such that

H •H
id•s // H •H

µ

��

H ǫ
//

∆

OO

I ι
// H

H •H
s •id // H •H

µ

��

H ǫ
//

∆

OO

I ι
// H

(1.13)

commute. The map s is the antipode of H .

The antipode of a bimonoid H may exist or not, but if it does, then it is unique
(and H is a Hopf monoid).

Proposition 1.16. Let H and H ′ be Hopf monoids. A morphism of bimonoids
H → H ′ necessarily commutes with the antipodes and the convolution units.

Proof. We prove the first claim. Let k : H → H ′ be a morphism of bimonoids.
According to Proposition 1.14, we have morphisms of convolution monoids

Hom(H ′, H ′)→ Hom(H,H ′), f 7→ fk

and

Hom(H,H)→ Hom(H,H ′), f 7→ kf.

It follows that both s′ k and k s are the inverse of k in Hom(H,H ′), so they must
coincide. �

A morphism of Hopf monoids H → H ′ is defined to be a morphism of the
underlying bimonoids. In view of Proposition 1.16, such morphisms preserve the
extra structure present in a Hopf monoid.

We denote the category of Hopf monoids in (C, •, β) by Hopf(C).

1.2.6. Commutative monoids. In addition to playing a role in the definition
of bimonoids, the braiding in a braided monoidal category is related to another
aspect: the possibility of defining different types of monoids. Presently, we discuss
the well-known example of commutative monoids. Lie monoids are discussed in
Section 1.2.10.

Definition 1.17. A commutative monoid (resp. cocommutative comonoid) in a
braided monoidal category (C, •, β) is a monoid A (resp. comonoid C) such that
the left-hand (resp. right-hand) diagram below commutes.

A •A
β

//

µ
""E

EE
EE

EE
EE

A •A

µ
||yy

yy
yy

yy
y

A

C • C
β

// C • C

C

∆

<<xxxxxxxx
∆

bbFFFFFFFF

A morphism of commutative monoids (resp. cocommutative comonoids) is a mor-
phism of the underlying monoids (resp. comonoids).
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We denote the category of commutative monoids and cocommutative comon-
oids in (C, •, β) by Monco(C) and coComon(C) respectively. The definition implies
that they are full subcategories of Mon(C) and Comon(C) respectively.

We say that a bimonoid or Hopf monoid is (co)commutative if its underlying
(co)monoid is (co)commutative. Following the above notation, this defines cate-
gories Bimonco(C), coBimon(C) and coBimonco(C) and three more with bimonoids
replaced by Hopf monoids as shown in Table 1.1.

1.2.7. Iterations of the monoid and comonoid constructions. Let (C, •, β)
be a braided monoidal category. As mentioned in Section 1.2.2, the categories
Mon(C) and Comon(C) are themselves monoidal, and so we may consider monoids
and comonoids therein. We have

(1.14)

Mon(Comon(C)) ∼= Bimon(C) ∼= Comon(Mon(C)),

Mon(Mon(C)) ∼= Monco(C),

Comon(Comon(C)) ∼= coComon(C).

The equivalences on the first row follow from Proposition 1.11. The other two
follow from the Eckmann–Hilton argument. We prove more general results later
(Propositions 6.29 and 6.36). This provides alternative descriptions of bimonoids
and (co)commutative (co)monoids.

However, the monoidal categories Mon(C) and Comon(C) may fail to be braided,
and the category Bimon(C) may fail to be monoidal.

On the other hand, suppose that β is a symmetry. In this case, if A and B
are monoids, then βA,B : A • B → B • A is a morphism of monoids with respect
to the monoid structure (1.12). It follows that Mon(C) is a symmetric monoidal
category. Dually, Comon(C) is a symmetric monoidal category. Iterating these
results and applying (1.14), we deduce that Bimon(C), Monco(C), and coComon(C)
are symmetric monoidal categories as well. In particular, the tensor product of two
bimonoids is again a bimonoid, and the tensor product of two (co)commutative
(co)monoids is again (co)commutative. These statements can also be deduced from
later results on monoidal properties of the tensor product functor (Propositions 3.74
and 3.75) plus Propositions 3.31 and 3.37.

For a nonsymmetric braiding β on C, these assertions fail in general. In the
symmetric case the monoid and comonoid constructions can be further iterated, but
no new categories are obtained beyond those of (co)commutative (co, bi)monoids.

We now extend the above considerations to Hopf monoids. Let (C, •, β) be a
braided monoidal category. In general, Hopf(C) fails to be a monoidal category.
However, if β is a symmetry, then the tensor product A • B of two Hopf monoids
A and B s another Hopf monoid. The bimonoid structure is as in Section 1.2.2
and the antipode is sA • sB. This follows from later results on monoidal properties
of the tensor product functor (Propositions 3.74 and 3.75) plus Proposition 3.50,
but it can also be checked directly. It follows that if C is a symmetric monoidal
category, then so is Hopf(C).

1.2.8. Examples. This monograph contains many examples of Hopf monoids.
Here we list a few basic examples with pointers to more.

Example 1.18. Consider the symmetric monoidal categories in Example 1.3. A
monoid in (Set,×) is a monoid (as defined in any elementary algebra class). A
monoid in (Vec,⊗) is an algebra. The category of graded vector spaces and (co,
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bi)monoids therein along with related categories are discussed in Chapter 2. The
analogous discussion for species is given in Chapter 8.

Example 1.19. Let (C,×, J) be a cartesian monoidal category, as in Example 1.4.
It is easy to see that every object C of C has a unique comonoid structure with
respect to ×. Indeed, the counit ǫ : C → J is the unique map to the terminal
object J , and the coproduct ∆: C → C × C is the diagonal : in the notation of
Section A.1.1,

∆ = (idC , idC).

Moreover, (C,∆, ǫ) is cocommutative.
Dually, any object in a cocartesian monoidal category (C,∐, I) has a unique

monoid structure, and any object in a bicartesian monoidal category (C,⊕, Z) has
a unique bimonoid structure.

This yields equivalences of categories

coComon(C,×) ∼= Comon(C,×) ∼= C,
coBimon(C,×) ∼= Bimon(C,×) ∼= Mon(C,×),

Monco(C,∐) ∼= Mon(C,∐) ∼= C,

Bimonco(C,∐) ∼= Bimon(C,∐) ∼= Comon(C,∐),
coBimonco(C,⊕) ∼= Bimon(C,⊕) ∼= C.

1.2.9. The opposite monoid. We now show how a braiding can be used to
twist the (co)product of a (co)monoid. This provides a more general context for
the preceding discussion on commutativity.

Proposition 1.20. Let (C, •, β) be a braided monoidal category. If A = (A, µ, ι) is
a monoid in (C, •), then so are

Aop := (A, µβ, ι) and opA := (A, µβ−1, ι).

Similarly, if C = (C,∆, ǫ) is a comonoid in (C, •), then so are

Ccop := (C, β−1∆, ǫ) and copC := (C, β∆, ǫ).

One verifies that (A, µβ, ι) is a monoid directly. The other assertions then
follow by passing to the braided monoidal categories

(C, •, β−1), (Cop, •, (β−1)op), or (Cop, •, βop).

The four statements in each set below are clearly equivalent.

(1.15)

A is a commutative monoid;
id: A→ Aop is a morphism of monoids;
id: A→ opA is a morphism of monoids;
µ = µβ.

(1.16)

C is a cocommutative comonoid;
id: C → Ccop is a morphism of comonoids;
id: C → copC is a morphism of comonoids;
∆ = β∆.

In the context of bimonoids, these constructions can be combined as follows.
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Proposition 1.21. Let H = (H,µ, ι,∆, ǫ) be a bimonoid in (C, •, β). Then

Hcop := (H,µ, ι, β−1∆, ǫ) and opH := (H,µβ−1, ι,∆, ǫ)

are bimonoids in (C, •, β−1), and

Hop,cop := (H,µβ, ι, β−1∆, ǫ) and op,copH := (H,µβ−1, ι, β∆, ǫ)

are bimonoids in (C, •, β).

We refer to these collectively as the op and cop constructions. Note that ap-
plying the op(−) construction to the bimonoid Hcop in (C, •, β−1) yields Hop,cop.
Thus, formally,

Hop,cop = op(Hcop) and op,copH = (opH)cop.

If β is a symmetry, then
op,copH = Hop,cop;

this is the case most often considered in the literature [191, Proposition III.2.3].

Proposition 1.22. Let H be a bimonoid in (C, •, β).

(i) All three convolution products on the space

End(H) = End(Hop,cop)op = End(op,copH)op

coincide.
(ii) If one of H , Hop,cop, or op,copH is a Hopf monoid, then so are the other

two, and all three share the same antipode.
(iii) Assume H is a Hopf monoid. Then the antipode is a morphism of Hopf

monoids in two ways : s : H → Hop,cop and s : op,copH → H.

Proof. The first statement is straightforward, and the second follows. For the
third statement, we check below that s : H → Hop is a morphism of monoids. From
here, passing to the category (Cop, •, βop) we deduce that s : copH → H is a mor-
phism of comonoids. Then, the naturality of β allows us to deduce that s : opH → H
is a morphism of monoids and s : H → Hcop is a morphism of comonoids. This will
complete the proof.

We now prove that s : H → Hop is a morphism of monoids. We need to show
that

sµ = µβ(s • s) and s ι = ι.

By Proposition 1.11, µ : H•H → H and ι : I → H are morphisms of comonoids.
Hence, by Proposition 1.14,

Hom(H,H)→ Hom(H •H,H), f 7→ fµ,

and

Hom(H,H)→ Hom(I,H), f 7→ fι,

are morphisms of convolution monoids. Therefore, sµ is the convolution inverse
of µ in Hom(H •H,H), and s ι is the convolution inverse of ι in Hom(I,H). The
latter statement implies s ι = ι, since ι is the unit element of Hom(I,H), and hence
is its own inverse. The former implies that to obtain sµ = µβ(s • s), it suffices to
check that (

µβ(s • s)
)
∗ µ = ι(ǫ • ǫ).
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This follows from the commutativity of the following diagram.

H4

βid2

++WWWWWWWWWWWWWWWWWWWWWWWW

H4

s2 id2

88qqqqqqqqqqq βid2

// H4
s2 id2

//

s id3
NNN

NN

''NNN
NN

H4

µ2

++VVVVVVVVVVVVVVVVVVVVVVV

idµid
NNN

NN

''NNN
NN

H4

idβid

OO

βH2,H id
qqqq

88qqqq

H4

id s id2
ooooo

77ooooo

H3

µid

��

H2

µ

��

H3

id∆id

OO

s id2
// H3

id∆id

OO

idǫid // HIH

idιidpppp

77ppppp

ρ−1id
NNN

N

''NNNN

H3

∆id2

OO

βidqqqq

88qqqq

id s id // H3

βidppppp

77ppppp

ǫid2
//

idµ
NNN

NN

''NNN
NN

IHH

βidoooo

77oooo

λ−1id=λ−1
//

idµ
OOOO

''OOOOO

H2

µ
MMMMM

&&MMMMM

H2

id∆

OO

idǫ //

ǫ2
++VVVVVVVVVVVVVVVVVVVVVVV HI

idι //

ǫid

''NNNNNNNNNNNN H2
ǫid // IH

λ−1
// H

II

idι

77oooooooooooo

λ−1

// I

ι

88qqqqqqqqqqqq

Above, the tensor product has been omitted from the notation. Thus, H3 stands
for H • H • H , and similarly for the rest. For the commutativity of the various
smaller diagrams, we employ the associativity (twice) and unitality of µ and ι
(Definition 1.9), one of the antipode axioms (the second diagram in (1.13), twice),
part of the braiding axioms (the first diagram in (1.5) and the second in (1.7)), the
first diagram in (1.4), plus naturality of the braiding and functoriality of the tensor
product. This completes the proof. �

Proposition 1.23. Suppose both bimonoids H and opH are Hopf monoids. Let s

and s be the respective antipodes. Then s and s are inverse maps (with respect to
composition):

s s = id = s s .

The same result holds replacing opH with Hcop.

Proof. By Proposition 1.22, s : opH → H is a morphism of monoids. Hence,
by Proposition 1.14, the map

Hom(opH, opH)→ Hom(opH,H), f 7→ s f

is a morphism of convolution monoids. This map sends idopH to s and s to s s.
Therefore, s and s s are convolution inverses in Hom(opH,H). But opH = H as
comonoids, so Hom(opH,H) = Hom(H,H) as convolution monoids. Thus, s s is
the convolution inverse of s in Hom(H,H), and so

s s = id.

Using that op(opH) = H , we deduce s s = id. �

Corollary 1.24. Let H be a Hopf monoid which is either commutative or co-
commutative. Then the antipode s is an involution with respect to composition:
s s = id.
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Proof. Suppose H is commutative. Then H = opH , so opH is a Hopf monoid
with antipode s = s. By Proposition 1.23, s is its own inverse.

The cocommutative case follows similarly, using Hcop. �

1.2.10. Lie monoids. After monoids and commutative monoids, we turn our at-
tention to Lie monoids. The words commutative, associative and Lie go hand
in hand. A simple connection between the three is given by (1.17) below. An-
other well-known connection is provided by the Cartier–Milnor–Moore theorem
(Section 11.9).

Definition 1.25. Let (C, •, β) be a linear symmetric monoidal category (possibly
without a unit). A Lie monoid in (C, •, β) is a pair (L, γ) where

γ : L • L→ L

satisfies
γ + γβL,L = 0 and γ(γ • id)(id + ξ + ξ2) = 0

where ξ denotes the composite

L • L • L
id•βL,L

// L • L • L
βL,L•id

// L • L • L.

A morphism (L, γ)→ (L′, γ′) is a map L→ L′ which commutes with γ and γ′.

Let Lie(C) denote the category of Lie monoids in C. Note that C is assumed to
be symmetric.

Proposition 1.26. Let (C, •, β) be as before and let (A, µ) be a monoid (not nec-
essarily unital). Let

γ := µ− µβA,A : A •A→ A.

Then (A, γ) is a Lie monoid.

More precisely, one has the diagram of functors

(1.17) Monco(C)→ Mon(C)→ Lie(C).

In particular, every commutative monoid is a monoid and every monoid is a Lie
monoid.

Remark 1.27. Definition 1.25 can be stated in any linear braided monoidal cat-
egory, not necessarily symmetric. Note that Proposition 1.26 fails at this level of
generality. For this and other reasons, we restrict the consideration of Lie monoids
to the context of linear symmetric monoidal categories.

1.3. The internal Hom functor

Let (C, •) be a monoidal category. An internal Hom for (C, •) is a functor

H• : Cop × C→ C

such that for any objects A, B, and C in C, there is a natural bijection

(1.18) HomC(A •B,C) ∼= HomC

(
A,H•(B,C)

)
.

If we let A be the unit object, then we obtain

HomC(B,C) ∼= HomC

(
I,H•(B,C)

)
.

This explains the motivation behind the internal Hom terminology. Thus in many
cases, the left hand side above leads to a description of the internal Hom.
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The following is a list of examples considered in this monograph. The first two
illustrate the preceding point.

- For the category (Set,×), the internal Hom H×(X,Y ) is the set of all
maps from X to Y .

- For the category (Vec,⊗), the internal Hom H⊗(V,W ) is the space of all
linear maps from V to W . This follows from (A.6).

- Internal Hom for monoidal categories related to graded vector spaces are
discussed in Section 2.1.5.

- Internal Hom for monoidal categories related to species are discussed in
Sections 8.11.2, 8.13.3 and B.5.2.

Proposition 1.28. For any M , the object

E•(M) := H•(M,M)

is a monoid in (C, •). If A is a monoid, then a A-module structure on an object M
is equivalent to a morphism of monoids

A→ E•(M).

Monoids and modules over a monoid are defined in Section 1.2.1. The proof of
this proposition is standard [259, pp. 26–27]. Some details are given below.

Proof. By letting A = E•(M) and B = C = M in (1.18), the identity mor-
phism on E•(M) yields a morphism

E•(M) •M →M.

By tensoring on the left by E•(M), we obtain

E•(M) • E•(M) •M → E•(M) •M →M.

Now applying (1.18) with A = E•(M) • E•(M) and B = C = M , we obtain

E•(M) • E•(M)→ E•(M).

The unit constraint I •M →M , by applying (1.18), yields a morphism

I → E•(M).

One checks that the above structure maps turn E•(M) into a monoid.
By letting B = C = M in (1.18), we see that there is a correspondence

A •M →M ←→ A→ E•(M).

The second claim can be verified using this correspondence. �

1.4. Coherence

Let (D, •) be a monoidal category and V1, V2, . . . , Vk a sequence of k objects
in D. Their unbracketed tensor product, denoted

V1 • V2 • · · · • Vk,

is an object in D that is canonically isomorphic to any object obtained by first
bracketing the k objects in the sequence in a meaningful manner and then tensoring
them together. Moreover, if two such bracketed tensor products are related by
applications of the associativity constraint, the corresponding isomorphisms must
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be likewise related. For instance, the unbracketed tensor product of 4 objects fits
in a commutative cone based on the pentagon (1.1), as follows:

(V1 • V2) • (V3 • V4)

αV1,V2,V3•V4

##G
GGGGGGGGGGGGGGGGGGGGGGGGGGG

∼=

��

((V1 • V2) • V3) • V4

∼= //

αV1,V2,V3•idV4

��
44

44
44

44
44

44
44

44
44

44
4

αV1•V2,V3,V4

;;xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
V1 • V2 • V3 • V4 V1 •

(
V2 • (V3 • V4)

)∼=oo

(
V1 • (V2 • V3)

)
• V4

∼=

EE






















αV1,V2•V3,V4

// V1 • ((V2 • V3) • V4).

∼=

YY444444444444444444444

idV1•αV2,V3,V4

DD






















We explain this in more detail next.
Consider the following graph. There is one vertex for each meaningful bracket-

ing of k ordered variables. There is an edge between two vertices if their bracketings
differ by a single application of the transformation

(1.19) (A •B) • C  A • (B • C),

where A, B, and C are bracketed substrings of variables. The resulting graph is
connected. It is the 1-skeleton of a polytope of dimension k − 2 known as the
associahedron. For k = 4, this yields the pentagon of (1.1).

Let K be the indiscrete category on the vertices of the associahedron of dimen-
sion k− 2 (Section A.3.2). In other words, the objects are the vertices and there is
a unique morphism between any two objects. It follows that every morphism is an
isomorphism.

Define a functor K → D as follows. The functor sends a vertex to the corre-
sponding bracketed tensor product of V1, V2, . . . , Vk. To define it on the unique
morphism from vertex a to vertex b, choose an arbitrary path from a to b on the
1-skeleton of the associahedron. Going from a to b along this path, each edge is
traversed either in the direction of the transformation (1.19) or in the opposite di-
rection. In the first case, we label the edge by a bracketed tensor product of identity
maps and the associativity constraint αA,B,C . In the other case, we label it with
the inverse map. On the unique morphism from a to b, the value of the functor
is the composite in D of the labels of the edges along this path, in the order the
edges are traversed. The resulting map is unique in view of Mac Lane’s coherence
theorem [250, Section VII.2], [184, Corollary 1.4], so the functor is well-defined.

The unbracketed tensor product of V1, V2, . . . , Vk is defined to be the colimit of
this functor. Since K is an indiscrete category, the colimit exists, and is isomorphic
to the value of the functor on any particular object.
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Notation 1.29. Whenever we write a tensor product of three or more objects
without specifying brackets, it stands for the unbracketed tensor product of the
objects. The first instance of this can be found in Definition 1.2.

Now let (D, •, β) be a symmetric monoidal category. For any permutation σ on
k letters, there is a well-defined isomorphism

V1 • V2 • · · · • Vk
∼=
−−→ Vσ(1) • Vσ(2) • · · · • Vσ(k)

between unbracketed tensor products, defined using the symmetry β. Let I be a
finite set (not necessarily ordered) and {Vi}i∈I a family of objects in D indexed
by I. Their unordered tensor product, denoted

•
i∈I
Vi,

is an object in D such that for any linear order i1, i2, . . . , ik on the elements of I,
there is an isomorphism

Vi1 • Vi2 • · · · • Vik
∼=−−→ •

i∈I
Vi

which commutes with the isomorphisms relating different choices of linear orders
on I.

More precisely, the unordered tensor product on I is the colimit of a functor
whose source category has linear orders on I for its objects and a unique morphism
between any two objects. This morphism can be interpreted as the unique bijection
on I which takes one linear order to the other. The functor sends each linear order
to the corresponding unbracketed tensor product. Since the source category is
indiscrete, the colimit exists.

Note that any unordered tensor product is a fortiori unbracketed.
A bijection between sets I and J induces an isomorphism

•
i∈I
Vi

∼=
−−→ •

j∈J
Vj .

By convention, the unbracketed or unordered tensor product over the empty
set is the unit object in D.

Example 1.30. Unbracketed and unordered tensor products are frequently used,
though often only implicitly. On (Vec,⊗) we deal with such products with the aid
of the following universal property, just as we do with the familiar tensor product
V1 ⊗ V2 of two vector spaces.

Let

HomVec(V,W )

denote the space of linear functions from V to W . Given a family of vector spaces
{Vi}i∈I , consider the Cartesian product

∏

i∈I

Vi :=

{
f : I →

⋃

i∈I

Vi

∣∣∣∣ f(i) ∈ Vi for all i ∈ I

}
.

Note this involves no ordering or bracketing. A function T :
∏
i∈I Vi → W to

another vector space W is multilinear if for each f ∈
∏
i∈I Vi and each j ∈ I, the

function

Vj
fj
−→

∏

i∈I

Vi
T
−→ W
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is linear, where for each v ∈ Vj and i ∈ I,

fj(v)(i) :=

{
f(i) if i 6= j,

v if i = j.

Let
MulVec({Vi}i∈I ,W )

denote the set of such multilinear functions. Then ⊗
i∈I
Vi is characterized by the

existence of a bijection

HomVec

(
⊗
i∈I
Vi,W

)
∼= MulVec({Vi}i∈I ,W )

natural in W .



CHAPTER 2

Graded Vector Spaces

The category of graded vector spaces serves to illustrate the theory of Chap-
ter 1. In this chapter, we discuss this category along with related ones, such as the
category of chain complexes. Each of these categories carries a monoidal structure
which we call the Cauchy product. (Co, Bi)monoids with respect to this structure
are familiar objects such as graded (co, bi)algebras, or variations on them.

Section 2.1 is basic and deals purely with graded vector spaces; the ideas and
notations introduced here are frequently used in the later parts of this monograph.
In Section 2.2 we introduce the Schubert statistic and related combinatorial notions
such as the q-binomial coefficients. The Schubert statistic plays important roles in
Chapters 9, 10, 12, and 14.

In Section 2.3 we continue to deal with graded vector spaces; however we deform
the braiding by a parameter q. This leads to the notion of q-Hopf algebras. Higher
dimensional versions of these notions are discussed in Section 2.4.

Section 2.5 is of a different nature. It discusses basic notions from group repre-
sentation theory with special emphasis on the norm map, which relates coinvarians
to invariants.

Section 2.6 explains the constructions of the tensor, shuffle, and symmetric
algebras. They are related by symmetrization, which is an instance of the norm
map. We also discuss universal properties and q-deformations of these objects.
Several ideas in this section play an important role in later chapters. For example,
the approach to tensor, shuffle, and symmetric algebras and their deformations is
paralleled by the theory of Fock functors in Chapters 15 and 16, while the universal
properties are paralleled by the constructions of Chapter 11 in the context of species.

Sections 2.7, 2.8 and 2.9 deal with graded vector spaces with the added structure
of boundary maps. They are needed mainly in Chapters 5 and 19, and their reading
may be safely postponed if desired.

2.1. Graded vector spaces

In this section, apart from the usual Cauchy product, we discuss two other ten-
sor products on graded vector spaces, namely, the Hadamard and the substitution
product. Monoids with respect to the substitution product, for example, are less
familiar and known as nonsymmetric operads. We also discuss the internal Homs
for each of these tensor products.

2.1.1. Monoidal structures. Let gVec be the category of graded vector spaces
over a field k. An object in this category is a sequence V = (Vn)n≥0 of vectors spaces
Vn over k. A morphism f : V →W is a sequence of linear maps fn : Vn →Wn.

21
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We refer to Vn as the component of degree n of V . We often identify

(2.1) V ←→
⊕

n≥0

Vn and f ←→
⊕

n≥0

fn.

In addition, we often assume that each component is finite-dimensional, particularly
in any discussion involving duality.

Warning. We make no notational distinction between the category of all graded
vector spaces and the full subcategory of graded spaces with finite-dimensional
components. The notation gVec refers to either one or the other depending on the
context.

Let ⊗ denote the usual tensor product of vector spaces (over the base field).

Definition 2.1. Given graded vector spaces V and W , new graded vector spaces
V ·W , V ×W and V ◦W are defined by

(V ·W )n :=

n⊕

i=0

Vi ⊗Wn−i(2.2)

(V ×W )n := Vn ⊗Wn(2.3)

(V ◦W )n :=
⊕

k≥0

Vk ⊗

( ⊕

i1+···+ik=n

Wi1 ⊗ · · · ⊗Wik

)
.(2.4)

In (2.4), the sums are over all k ≥ 0 and all sequences (i1, . . . , ik) of nonnegative
integers whose sum is n. In particular,

(V ◦W )0 =
⊕

k≥0

Vk ⊗W
⊗k
0 .

More generally, it follows from (2.2) and (2.4) that

(2.5) (V ◦W )n =
⊕

k≥0

Vk ⊗ (W ·k)n,

where W ·k is the Cauchy product of W with itself k times. Explicitly,

(2.6) (W ·k)n =
⊕

i1+···+ik=n

Wi1 ⊗Wi2 ⊗ · · · ⊗Wik ,

where the sum is over all sequences (i1, . . . , ik) of nonnegative integers of length k
whose sum is n.

We refer to the operations V ·W , V ×W and V ◦W as the Cauchy, Hadamard,
and substitution products of graded vector spaces respectively.

Table 2.1. Monoidal structures on graded vector spaces.

Name Tensor product Unit

Cauchy · 1

Hadamard × E

Substitution ◦ X
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The Cauchy, Hadamard, and substitution products give rise to three monoidal
categories (gVec, ·), (gVec,×), and (gVec, ◦), as shown in Table 2.1. The unit objects
are 1, E, and X respectively, where

(2.7) 1n :=

{
k if n = 0,

0 otherwise,
En := k, Xn :=

{
k if n = 1,

0 otherwise.

Note that under the identification in (2.1), V · W agrees with the usual tensor
product of vector spaces and the unit object 1 with the base field k. The unit
object E can be identified with the space k[x] of polynomials in one variable. In
this manner, the unit object X is identified with kx, the one-dimensional space
spanned by the variable x inside the space of polynomials.

The monoidal categories (gVec, ·) and (gVec,×) are symmetric. For the braiding
β : V ·W →W · V , we choose the map

(2.8) v ⊗ w 7→ w ⊗ v

which interchanges the tensor factors. This braiding is a symmetry. The braiding
for the Hadamard product is defined similarly.

The tensor products defined above also interact with one another in many
interesting ways. These interactions belong to the realm of 2-monoidal categories
and are discussed in Chapter 6; see Examples 6.22 and 6.23.

2.1.2. Generating functions. To each graded vector space V one can associate
a formal power series; namely, the generating function for the dimensions of the
components Vn (assuming they are finite-dimensional):

fV (x) :=
∑

n≥0

dim(Vn)xn.

Under the association V 7→ fV (x), the products of Definition 2.1 correspond to
familiar operations among formal power series: the usual product, the Hadamard or
componentwise product, and the substitution of power series. These are respectively
defined as follows. Given

f(x) =
∑

n≥0

anx
n and g(x) =

∑

n≥0

bnx
n,

we have

(f · g)(x) :=
∑

n≥0

( n∑

i=0

aibn−i

)
xn

(f × g)(x) :=
∑

n≥0

(anbn)x
n

(f ◦ g)(x) :=
∑

n≥0

( n∑

k=0

ak

( ∑

i1+···+ik=n

bi1 · · · bik

))
xn.

The last operation is only defined if b0 = 0 (and the inner sum is over all
sequences (i1, . . . , ik) of positive integers whose sum is n).

These facts motivate the notation and terminology employed in Section 2.1.1.
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Table 2.2. Categories of “monoids” in (graded) vector spaces.

Category Description Category Description

Alg Algebras gAlg Graded algebras

Coalg Coalgebras gCoalg Graded coalgebras

Lie Lie algebras gLie Graded Lie algebras

Hopf Hopf algebras gHopf Graded Hopf algebras

Algco Comm. algebras gAlgco Graded comm. algebras

2.1.3. Graded Hopf algebras. We now consider the various types of monoids
with respect to each of the above tensor products.

Let us begin with the Hadamard product. A (co, bi, Hopf) monoid in (gVec,×, β)
is a graded vector space (Vn)n≥0 such that each graded component Vn is a (co, bi,
Hopf) algebra. Similarly, a (commutative, Lie) monoid is a graded vector space
such that each graded component is a (commutative, Lie) algebra.

The monoidal category (gVec, ◦) is not braided. Therefore, it makes sense to
consider monoids (or comonoids) in this category but not commutative monoids
or bimonoids. Monoids are called nonsymmetric operads; these objects are briefly
discussed in Section B.7.

We now turn to the Cauchy product. A (co, bi, Hopf) monoid in (gVec, ·, β)
is a graded (co, bi, Hopf) algebra. Similarly, a commutative monoid is a graded
commutative algebra, in the sense that all elements commute regardless of their de-
grees, and dually for comonoids. A Lie monoid in (gVec, ·, β) is a graded Lie algebra
(in which the Lie algebra axioms are not affected by the degree of the elements).
Table 2.2 shows the notations that we will employ to denote the corresponding
categories.

For information on the history of the notion of Hopf algebras and its origins in
connection to the work of Heinz Hopf [172], see [21].

2.1.4. Duality. Recall the notion of monoidal category with (left) duals [191,
Chapter XIV]). A symmetric monoidal category with duals is called compact closed
in the work of Kelly and Laplaza [198]. In the latter context (which is of interest
to us), left duals imply right duals and viceversa.

The contragredient or dual V ∗ of a graded vector space V is defined by

(V ∗)n := (Vn)
∗.

Let gVecop denote the opposite category of gVec. Duality is a functor

(−)∗ : gVecop → gVec.

For the rest of this section, we assume that all graded vector spaces have finite-
dimensional components. In this situation, there are canonical morphisms of graded
vector spaces

E → V × V ∗ and V ∗ × V → E

that turn (gVec,×, ∗) into a monoidal category with duals.

Proposition 2.2. For any graded vector spaces V and W , there are natural iso-
morphisms

(V ×W )∗ ∼= V ∗ ×W ∗ and (V ∗)∗ ∼= V.
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The duality functor also behaves well with respect to the Cauchy product,
namely, we have canonical isomorphisms

(2.9) (V ·W )∗ ∼= V ∗ ·W ∗.

Further, these isomorphisms commute with the braiding. In the language of mon-
oidal functors (which is developed in detail in Chapter 3), this is equivalent to
saying that (2.9) turns

(2.10) (−)∗ : (gVecop, ·, βop)→ (gVec, ·, β)

into a bistrong monoidal functor.
This allows us to conclude that (−)∗ maps graded algebras to graded coalge-

bras and viceversa, and graded Hopf algebras to graded Hopf algebras preserving
antipodes. If V is a Hopf algebra, the resulting Hopf algebra V ∗ is called the dual
of V .

Example 2.3. Consider the polynomial algebra k[x] in the variable x with coprod-
uct

∆(xn) =
n∑

s=0

(
n

s

)
xs ⊗ xn−s.

This is the Hopf algebra of polynomials in one variable. Its dual, denoted k{x} is
called the divided power Hopf algebra; see [283, Sections III and XI], [1, Exam-
ple 2.6], or [279, Example 5.6.8]. We recall it below. It has a linear basis consisting
of symbols x(n), n ≥ 0, and the structure is

x(s) · x(t) :=

(
s+ t

s

)
x(s+t), ∆(x(n)) :=

∑

s+t=n

x(s) ⊗ x(t).

The element x(n) has degree n and k{x} and k[x] are dual as graded Hopf algebras
via 〈x(n), xm〉 = δn,m. Further, the map

(2.11) k[x]→ k{x}, xn 7→ n!x(n),

is a morphism of Hopf algebras. Note that it is an isomorphism if and only if the
field has characteristic sero. It follows that under this hypothesis, k[x] is a self-dual
Hopf algebra.

In characteristic p, the image of the above map is spanned by x(i), for i ranging
from 0 to p− 1. This image is isomorphic to the quotient by the kernel which is

k[x]/(xp).

It follows that this is a p-dimensional self-dual Hopf algebra.

2.1.5. Internal Homs. The notion of internal Hom in monoidal categories was
discussed in Section 1.3. Let

H·,H×,H◦ : gVecop × gVec→ gVec

be the functors defined by

H·(V,W )k :=
⊕

n≥0

HomVec(Vn,Wk+n),

H×(V,W )k := HomVec(Vk,Wk),

H◦(V,W )k :=
⊕

n≥0

HomVec

(
(V ·k)n,Wn

)
,
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where (V ·k)n is as in (2.6). The following result says that these functors are the
internal Homs for the Cauchy, Hadamard and substitution products respectively.

Proposition 2.4. For any graded vector spaces U , V and W , there are natural
isomorphisms

HomgVec(U · V,W ) ∼= HomgVec

(
U,H·(V,W )

)

HomgVec(U × V,W ) ∼= HomgVec

(
U,H×(V,W )

)

HomgVec(U ◦ V,W ) ∼= HomgVec

(
U,H◦(V,W )

)
.

Proof. The first two claims follow directly from the definitions, while the
third claim follows from (2.5). �

If V is finite-dimensional, there is a natural isomorphism

H×(V,W ) ∼= V ∗ ×W.

For the monoidal properties of the functor H× with respect to the Cauchy product,
see Remark 8.65.

2.2. The Schubert statistic

In this section, we study the Schubert statistic which, given a subset S of a
linearly ordered set (list), counts the number of minimum adjacent transpositions
required to bring the elements of S to the beginning of the list. We also discuss
its relation with the Schubert decomposition of the Grassmannian. This is our
motivation for the chosen terminology. An interpretation of the statistic in terms
of the gallery metric on the Coxeter complex of type A is given in Section 10.13.

The Schubert statistic plays an important role in deformation theory. It is used
in Part III in the construction of the deformed Fock functors, and their decorated
and colored versions. Consequently, it appears in the definitions of many interesting
deformed Hopf algebras, some of which are discussed later in this chapter.

The Schubert statistic also plays a role in Part II where it is regarded as a
2-cocycle and then used to construct deformed Hopf monoids in species.

Notation 2.5. We write |S| for the cardinality of the set S. We write [s] for the
set {1, . . . , s} and [s + 1, s + t] for the set {s + 1, . . . , s + t}. There is a unique
order-preserving map between two n-sets of integers. We denote this map by cano,
as a short form for “canonical”. For example, the map cano: [t] → [s + 1, s + t]
shifts the entries in [t] by s; while if S is a set of integers, the map cano: S → [|S|]
standardizes the entries of S to the initial segment [1, |S|]. We sometimes refer to
these two instances of the cano maps as shifting and standardization.

2.2.1. Definition. Given a subset S of [n], let

(2.12) Schn(S) := {(i, j) ∈ [n]2 | i ∈ S, j ∈ T, i > j}.

The Schubert statistic is the cardinality of this set:

(2.13) schn(S) := |Schn(S)|.

Write S = {i1, . . . , is} ⊆ [n]. We have the explicit formula

schn(S) =

s∑

j=1

(ij − j) =
∑

i∈S

i−
s(s+ 1)

2
.
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Figure 2.1. The Schubert statistic as the area under a lattice path.

Consider paths in the integer lattice based at the origin and consisting of unit
steps which are either horizontal or vertical. If we represent S as the path whose
i-th step is horizontal if and only if i ∈ S, then Schn(S) is in bijection with the set
of unit squares that lie between the path and the x-axis. Thus, schn(S) is the area
of this region. This is illustrated in Figure 2.1, where sch9({1, 4, 5, 7, 9}) = 11.

2.2.2. Elementary properties. The Schubert statistic satisfies the following
properties.

(2.14) schn(∅) = schn([n]) = 0.

Let S ⊔ T = [n] be a decomposition with cardinalities s and t. That is, S and T
are disjoint subsets of [n] with cardinalities s and t respectively whose union is [n].
Then

(2.15) schn(S) + schn(T ) = st.

Let ωn be the permutation on n letters which sends i to n+ 1− i for each i. If S′

denotes the image of S under the map ωn, then

(2.16) schn(S
′) = schn(T ).

Let R⊔ S ⊔ T = [n] be a decomposition with cardinalities r, s, and t. Let R̄ and S̄
be the images of R and S under the maps

cano: R ⊔ S → [r + s] and cano: S ⊔ T → [s+ t],

respectively. Then

(2.17) schn(R ⊔ S) + schr+s(R̄) = schn(R) + schs+t(S̄).

Let A ⊔ B = [s] and C ⊔D = [t] be two decompositions with cardinalities a, b, c,
and d. Let C̄ be the image of C under the map

cano: C ⊔D → [s+ 1, s+ t].

Then

(2.18) schs(A) + scht(C) + bc = schs+t(A ⊔ C̄).
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These assertions are well-known. Many can be proved using the description of the
statistic in terms of areas. For instance, formula (2.18) has the following graphic
proof.

0 a a+ c

b

b+ d

r
r
r
r

r r r r r
schs(A)

scht(C)

bc

=

a a+ c

r
r
r
r

r r r r r
schs+t(A ⊔ C̄)

2.2.3. Inversions of a permutation and shuffles. The Schubert statistic can
also be interpreted as the number of inversions of a permutation. Details follow.
Let Sn denote the symmetric group on n letters. The inversion set of a permutation
σ ∈ Sn is

(2.19) Inv(σ) := {(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}.

Let

(2.20) inv(σ) := |Inv(σ)|

denote the number of inversions of σ. This is also the length of σ, denoted l(σ),
which is the minimum number of elementary transpositions required to express σ.

Let s+ t = n. Define the set of (s, t)-shuffle permutations to be

(2.21) Sh (s, t) := {ζ ∈ Sn | ζ(1) < ζ(2) < · · · < ζ(s), ζ(s + 1) < · · · < ζ(s+ t)}.

Recall that these are coset representatives for Ss × St as a subgroup of Sn, so that
for any ρ ∈ Sn there are unique permutations σ ∈ Ss, τ ∈ St, and ζ ∈ Sh (s, t) such
that

(2.22) ρ = ζ · (σ × τ),

where σ × τ ∈ Sn is defined by

(2.23) (σ × τ)(i) :=

{
σ(i) if 1 ≤ i ≤ s,

s+ τ(i− s) if s+ 1 ≤ i ≤ s+ t.

It then follows that

(2.24) inv(ρ) = inv(ζ) + inv(σ) + inv(τ).

Also, for any σ ∈ Sn,

(2.25) inv(σ) = inv(σ−1).

For more precise statements involving inversion sets, see [14, Lemmas 2.4 and 2.6].
Given a decomposition S ⊔ T = [n] with |S| = s and |T | = t, let ζ ∈ Sn be the

unique permutation which sends [s] to S and [s+1, s+t] to T in an order-preserving
manner. It is in fact an (s, t)-shuffle permutation. Then

(2.26) schn(S) = inv(ζ) = l(ζ).
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This follows from the definitions.

2.2.4. q-binomial coefficients. Let k be a commutative ring and let q ∈ k be a
scalar. The q-binomial coefficients are the scalars defined by

(2.27)

(
n

s

)

q

:=
∑

S⊆[n],|S|=s

qschn(S).

These coefficients satisfy Pascal’s recursion [16, Section 1.6] or [191, Proposi-
tion IV.2.1]:

(2.28)

(
n

s

)

q

=

(
n− 1

s− 1

)

q

+ qs
(
n− 1

s

)

q

(
n

n

)

q

=

(
n

0

)

q

= 1.

There is also a formula for the q-binomial coefficients in terms of q-factorials:
Let

(2.29) (n)q! :=
∑

σ∈Sn

qinv(σ) =

n−1∏

i=1

(1 + q + · · ·+ qi)

be the q-factorials. Then

(n)q! =

(
n

s

)

q

(s)q !(n− s)q!.

This formula implies:

Lemma 2.6. If k is an integral domain and q is a primitive n-th root of unity,
then

(
n
s

)
q

= 0 for s = 1, . . . , n− 1.

Remark 2.7. The above result is not true for general commutative rings. For
example, suppose k = Z8 (integers modulo 8) and q = 3. Then q2 = 1 but(
2
1

)
q

= 1 + q = 4 6= 0.

Suppose Z ⊆ k. The numbers
(
n
s

)
1

are the usual binomial coefficients:
(
n

s

)

1

= |{S ⊆ [n], |S| = s}|.

The numbers
(
n
s

)
−1

are also nonnegative; indeed one has

(2.30)

(
n

s

)

−1

=

{
0 if n is even and s is odd,(⌊n/2⌋
⌊s/2⌋

)
1

otherwise,

where ⌊x⌋ denotes the biggest integer smaller than or equal to x. One may derive
this formula by invoking Pascal’s recursion twice, which leads to

(
n

s

)

−1

=

(
n− 2

s− 2

)

−1

+

(
n− 2

s

)

−1

.

The Grassmannian of s-planes in n-space admits a CW-complex structure in
which for each subset S of [n] of cardinality s there is a cell of dimension equal to
schn(S). These are the Schubert cells. More details can be found in Example 13.16
and [275, §6]. It follows from here that

(
n
s

)
q

is the Poincaré polynomial of the

complex (which counts cells according to their dimension). In particular,
(
n
s

)
−1

is

the Euler characteristic of the real Grassmannian, and if q is a prime power, then
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(
n
s

)
q

is the cardinality of the Grassmannian over the finite field Fq (the number of

s-dimensional subspaces of Fnq ).
Formula (2.30) is a special case of known formulas for the Euler characteristics

of more general Grassmann manifolds, as given in [276, p. 393]. The number
(
n
s

)
−1

is also the signature of the complex Grassmannian viewed as a Kähler manifold,
and as such formula (2.30) is a special case of the formula given in [310, Theorem 1].

We thank Ryan Budney, Allen Hatcher, and Vic Reiner for help with these
references.

2.2.5. Square matrices. We set up some terminology to deal with square matri-
ces of size r. A general square matrix of size r is denoted:

Q := (qij)1≤i,j≤r .

Let 0r,r be the matrix all of whose entries are 0, 1r,r be the matrix all of whose
entries are 1, and Ir,r be the identity matrix. For r = s+ t, let

(2.31) 1(s, t) :=

(
1s,s 1s,t
1t,s −1t,t

)

where 1s,t stands for the s× t matrix all of whose entries are 1.
Let P and Q be square matrices of size r. Let P ×Q be the matrix obtained by

multiplying the corresponding entries of P and Q. This is the Hadamard product
on matrices [173]. The unit element for this product is the matrix 1r,r. A matrix Q
is invertible with respect to this product if and only if each entry of Q is nonzero.
In this case, the inverse if obtained by inverting each entry of Q. We denote the
inverse by Q−.

Let Qt denote the transpose of Q and let Q−t := (Qt)− be its inverse with
respect to the Hadamard product. Explicitly, it is obtained by taking the transpose
of Q and inverting each entry.

We say Q is log-antisymmetric if

(2.32) qijqji = 1 for 1 ≤ i, j ≤ r.

Equivalently, Q is log-antisymmetric if Q = Q−t, or equivalenly, if Q and Qt are
inverses with respect to the Hadamard product. In particular, the diagonal entries
of a log-antisymmetric matrix are either 1 or −1. A log-antisymmetric matrix is
symmetric if and only if the matrix entries are either 1 or −1. An explicit example
of a log-antisymmetric matrix is the matrix 1(s, t) of (2.31).

Let A be an integer square matrix of size r and let q be an invertible scalar.
Define Q by

(2.33) qij := qaij

where qij and aij refer to the ij-th entries of Q and A respectively. If A is anti-
symmetric, then the resulting Q is log-antisymmetric (and all diagonal entries are
1). If q is not a root of unity, then the converse holds as well.

2.2.6. The weighted Schubert statistic. Fix any square matrix A of size r:

A := (aij)1≤i,j≤r ,

and a function f : [n] → [r]. We say that f(i) is the color of i. Now list the
elements of [n] in their canonical linear order. Given a subset S of [n], the weighted
(additive) Schubert statistic is a weighted sum indexed by the set of minimum
adjacent transpositions required so that the elements of S appear at the beginning
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Figure 2.2. The weighted Schubert statistic as a weighted area.

of the list. The weight is calculated by looking at the colors of the elements that
are being switched and using the matrix A. More precisely:

Let A be a matrix of size r, f : [n] → [r] be a function, and S be a subset of
[n]. The weighted additive Schubert statistic is

(2.34) schAn (S, f) :=
∑

(i,j)∈Schn(S)

af(i)f(j)

where Schn(S) is as in (2.12).
If all the entries of A are 1, then

schAn (S, f) = schn(S),

where the latter is the Schubert statistic. In particular, this holds if r = 1 and
A = [1].

Recall that the Schubert statistic schn(S) is the area of the region under a lattice

path. Similarly, the weighted Schubert statistic schAn (S, f) can be interpreted as
an area, in which the unit square labeled (i, j) has area af(i)f(j). For example, for
S = {1, 4, 5, 7, 9} and f : [9]→ [2] which sends odd numbers to 1 and even numbers
to 2, the squares along with their weights are shown in Figures 2.1 and 2.2. It
follows that

schA9 ({1, 4, 5, 7, 9}, f) = 3a11 + 6a12 + a21 + a22.

One can define a multiplicative version of this statistic by replacing addition
by multiplication. To keep the notation distinct from the additive case, we denote
the fixed matrix by Q.

Let Q be a matrix of size r, f : [n] → [r] be a function, and S be a subset of
[n]. The weighted multiplicative Schubert statistic is

(2.35) schQn (S, f) :=
∏

(i,j)∈Schn(S)

qf(i)f(j).

If A and Q are related as in (2.33), then

schQn (S, f) = qsch
A
n (S,f).

Continuing with the above example,

schQ9 ({1, 4, 5, 7, 9}, f) = q311 q
6
12 q21 q22.
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Convention 2.8. It is to be understood that schAn (S, f) denotes the weighted

(additive) Schubert statistic, while schQn (S, f) denotes the weighted multiplicative
Schubert statistic. No further distinction is made in the two notations. We follow
the same convention in all related contexts (for example, for the weighted inversion
statistic of Section 2.2.9).

2.2.7. The braid coefficients. We now introduce the braid coefficients which
are closely related to the present discussion. The motivation for this terminology
is made clear in Section 2.4, where we use these coefficients to construct braidings
on multigraded vector spaces.

Let d = (d1, . . . , dr) and e = (e1, . . . , er) be two r-tuples of nonnegative integers.
Define

(2.36) brdAd,e :=
∑

1≤i,j≤r

aijd
jei and brdQd,e :=

∏

1≤i,j≤r

(qij)
djei .

We refer to these as the additive and multiplicative braid coefficients. If A and Q
are related by (2.33), then

brdQd,e = qbrdAd,e .

It also follows that

(2.37) brdAd,e = brdA
t

e,d and brdQd,e = brdQ
t

e,d .

Suppose r = 1, A = [1], Q = [q], d = (s) and e = (t). Then

brdAd,e = st and brdQd,e = qst.

2.2.8. Properties of the weighted Schubert statistic. Let I be any finite set.
Given a function f : I → [r], let

(2.38) d(f) := (|f−1(1)|, . . . , |f−1(r)|)

be the sequence of cardinalities of its fibers.
The weighted analogues of (2.14)–(2.18) can be established along similar lines

and are given below. We point out that the braid coefficients appear in two of
the identities. This was also true in the unweighted case; however, due to their
simplicity in dimension one, we did not have to confront them explicitly then.

Let A and Q be matrices of size r and let f : [n]→ [r].

(2.39)
schAn (∅, f) = schAn ([n], f) = 0,

schQn (∅, f) = schQn ([n], f) = 1.

Let S ⊔ T = [n] be a decomposition. Then

(2.40)
schA

t

n (S, f) + schAn (T, f) = brdAd(f |S)d(f |T ),

schQ
t

n (S, f) schQn (T, f) = brdQ
d(f |S)d(f |T ),

where f |S denotes the restriction of f to the subset S.
Let ωn be the permutation which sends i to n+ 1− i for each i. If S′ denotes

the image of S under the map ωn, then

(2.41)
schAn (S′, f) = schA

t

n (T, fωn),

schQn (S′, f) = schQ
t

n (T, fωn).
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Let R ⊔ S ⊔ T = [n] be a decomposition with cardinalities r, s, and t. Let R̄
and S̄ be the images of R and S under the maps

cano: R ⊔ S → [r + s] and cano: S ⊔ T → [s+ t],

respectively. Then

(2.42)
schAn (R ⊔ S, f) + schAr+s(R, f |R⊔S) = schAn (R, f) + schAs+t(S, f |S⊔T ),

schQn (R ⊔ S, f) schQr+s(R, f |R⊔S) = schQn (R, f) schQs+t(S, f |S⊔T ),

where

f |R⊔S = f |R⊔S cano−1 and f |S⊔T = f |S⊔T cano−1 .

Let A ⊔B = [s] and C ⊔D = [t] be two decompositions with cardinalities a, b,
c, and d. Let C be the image of C under the map

cano: C ⊔D → [s+ 1, s+ t].

In addition, let g : [s]→ [r] and h : [t]→ [r] be functions. Then

(2.43)
schAs (A, g) + schAt (C, h) + brdAd(g|B)d(h|C) = schAs+t(A ⊔C, g ⊔ h),

schQs (A, g) schQt (C, h) brdQ
d(g|B)d(h|C) = schQs+t(A ⊔C, g ⊔ h),

where h = h cano−1 and g ⊔ h is the function on [s+ t] whose restriction to [s] is g,
and whose restriction to [s+ 1, s+ t] is h.

2.2.9. The weighted inversion statistic. Let Inv(σ) be the inversion set of a
permutation σ ∈ Sn as defined in (2.19). For a fixed matrix A and a function
f : [n]→ [r], we assign an additive statistic to this set:

(2.44) invAf (σ) :=
∑

(i,j)∈Inv(σ)

af(j)f(i).

Similarly, for a fixed matrix Q of size r and a function f : [n] → [r], we assign a
multiplicative statistic to this set:

(2.45) invQf (σ) :=
∏

(i,j)∈Inv(σ)

qf(j)f(i).

We refer to these as the weighted inversion statistics, the first being the additive
version and the second being the multiplicative version. If Q and A are related
by (2.33), then

invQf (σ) = qinvAf (σ).

In the special case, when all entries of A are 1 and all entries of Q are q, we have

invAf (σ) = inv(σ) and invQf (σ) = qinv(σ).

Given a decomposition S⊔T = [n] with |S| = s and |T | = t, let ζ ∈ Sn be the unique
(s, t)-shuffle permutation such that ζ([s]) = S and (hence) ζ([s + 1, s + t]) = T .
Then

(2.46) invAf (ζ−1) = schAn (S, f) and invQf (ζ−1) = schQn (S, f).

This generalizes (2.26). Similarly,

(2.47) invAf (σ−1) = invA
t

fσ(σ) and invQf (σ−1) = invQ
t

fσ(σ).

This generalizes (2.25).
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Continuing with the same general setup as above, let g = f |S and h = f |T .
Define g and h by

S
cano //

g
��

>>
>>

>>
>>

[s]

g
����

��
��

�

[r]

T
cano //

h
��

>>
>>

>>
>>

[t]

h����
��

��
�

[r]

(2.48)

Let ρ, σ, τ and ζ be as in (2.22). Then

(2.49)
invAf (ρ−1) = invAf (ζ−1) + invAg (σ−1) + invA

h
(τ−1),

invQf (ρ−1) = invQf (ζ−1) invQg (σ−1) invQ
h

(τ−1).

This generalizes (2.24). It is important that in the above identities we use the
inversion statistic for the inverse of the permutations. This was not crucial in the
one-dimensional theory since σ and σ−1 have the same number of inversions. In
the higher dimensional theory, the relation between the inversion statistic for σ and
σ−1 is more complicated and is given by (2.47).

2.3. q-Hopf algebras

One can perform a one-parameter deformation of the braidings on the category
of graded vector spaces equipped with the Cauchy product (2.2). In this section,
we discuss q-Hopf algebras, which are Hopf monoids in this deformed monoidal
category. We also discuss more specialized notions such as connected and positive
q-Hopf algebras.

In this section, k is a field and q ∈ k denotes a fixed scalar, possibly zero.

2.3.1. A deformation of the braiding and q-Hopf algebras. We endow the
monoidal category (gVec, ·) of graded vector spaces with a twist map that depends
on q. Let βq : V ·W →W · V be the map

(2.50) v ⊗ w 7→ qstw ⊗ v,

where v ∈ V and w ∈ W are homogeneous elements of degrees s and t. We have
β1 = β, as defined in (2.8). Note that β0 is not invertible, hence it is not a braiding;
however it is a lax braiding. If q is nonzero, then βq is indeed a braiding. The inverse
braiding is βq−1 , so βq is a symmetry if and only if q = ±1.

Now consider the lax braided monoidal category (gVec, ·, βq). We write lax
braided instead of braided to include the case q = 0. (Co)monoids in this category
are graded (co)algebras as before since these notions do not depend on the braiding.
Bimonoids and Hopf monoids in this category are known as q-bialgebras and q-Hopf
algebras respectively.

The isomorphisms (2.9) continue to commute with the braidings βq. In other
words, the duality functor on the category of graded vector spaces with finite-
dimensional components

(2.51) (−)∗ : (gVecop, ·, βop
q )→ (gVec, ·, βq)

is a bistrong monoidal functor. This generalizes (2.10). Hence the duality functor
maps q-Hopf algebras to q-Hopf algebras preserving antipodes.
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Example 2.9. Consider the polynomial algebra in the variable x with coproduct

∆(xn) =

n∑

s=0

(
n

s

)

q

xs ⊗ xn−s,

where the coefficient in front is the q-binomial coefficient (2.27). This is the Eulerian
q-Hopf algebra kq[x] of Joni and Rota [179, Section VIII].

The classical cases are q = ±1 and q = 0. The q = 1 case was treated in
Example 2.3. Some information about the binomial coefficients at q = −1 is given
in Section 2.2.4. In particular, using (2.30), one can deduce that k−1[x] is cocom-
mutative. For q = 0, the binomial coefficients are all 1 and the above coproduct
becomes the deconcatenation coproduct. This yields a 0-Hopf algebra, which in
our notation is denoted k0[x].

The dual of the Eulerian q-Hopf algebra is a q-analogue of the divided power
Hopf algebra. We denote it by kq{x}. It has a linear basis consisting of symbols

x(n), n ≥ 0, and the structure is

x(s) · x(t) :=

(
s+ t

s

)

q

x(s+t), ∆(x(n)) :=
∑

s+t=n

x(s) ⊗ x(t).

The element x(n) has degree n and kq{x} and kq[x] are dual as q-Hopf algebras via

〈x(n), xm〉 = δn,m. Further, the map

(2.52) kq[x]→ kq{x}, xn 7→ (n)q!x
(n),

where (n)q! is the q-factorial (2.29), is a morphism of q-Hopf algebras. It is an
isomorphism if q is not a root of unity. It follows that under this hypothesis, kq[x]
is a self-dual q-Hopf algebra.

Let us now apply the op and cop constructions (Section 1.2.9) to the Eulerian
q-Hopf algebra. Applying the cop construction, we obtain a q−1-Hopf algebra which
we claim is:

(2.53) kq[x]cop = kq−1 [x].

This follows from the following computation.

∆cop(xn) =

n∑

s=0

q−s(n−s)
(
n

s

)

q

xn−s ⊗ xs =

n∑

s=0

(
n

s

)

q−1

xs ⊗ xn−s.

Now applying the op construction yields kq[x]op,cop which is a q-Hopf algebra: the
coproduct is ∆cop while the product is given by

µop(xi ⊗ xj) = qij xi+j .

One can check that if q 6= 0, then

(2.54) kq[x]→ kq[x]op,cop, xn 7→ q(
n
2)xn,

is an isomorphism of q-Hopf algebras.
Note that the op and cop constructions are not interesting for q = 1 since k[x]

is both commutative and cocommutative.
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2.3.2. Connected q-bialgebras. A connected graded vector space is a graded
vector space with a specified isomorphism from the degree zero component to the
base field. A morphism of connected graded vector spaces is a map of graded vector
spaces which commutes with the specified isomorphisms in degree zero. We denote
the category of connected graded vector spaces by gVeco. The Cauchy product and
the lax braiding βq defined as before turn it into a lax braided monoidal category
(gVeco, ·, βq).

A connected q-bialgebra is defined to be a bialgebra in (gVeco, ·, βq). Now let H
be a connected q-bialgebra. The axioms imply that the unit and counit of H define
inverse isomorphisms H0

∼= k which further agree with the specified isomorphism.
It follows from here that a connected q-bialgebra is equivalent to a q-bialgebra
whose component of degree zero is of dimension 1,

A graded Hopf algebra H is equivalent to a graded bialgebra H for which H0

is a Hopf algebra. This result follows from a result of Takeuchi [354, Lemma 14].
More generally, a q-Hopf algebra H is equivalent to a q-bialgebra H for which H0 is
a Hopf algebra. In particular, a connected q-bialgebra is always a q-Hopf algebra.
The latter result is due to Milnor and Moore [274, Proposition 8.2] (in the case
q = −1). We expand on these results next.

2.3.3. Antipode formulas of Takeuchi and of Milnor and Moore. We first
discuss a general formula for the antipode of a graded connected Hopf algebra due
to Takeuchi (see the proof of [354, Lemma 14] or [279, Lemma 5.2.10]). The same
formula is valid for a connected q-Hopf algebra, so we directly work in this setting.

Let H be a connected q-Hopf algebra. Let H+ be the part of positive degree
of H . It is an ideal of H ; let µ+ : H+ ·H+ → H+ be the restriction of the product
µ, and let ∆+ : H+ → H+ ·H+ be

∆+(x) := ∆(x) − 1⊗ x− x⊗ 1.

On H+, the antipode is given by the formula

(2.55) s =
∑

k≥0

(−1)k+1µ
(k)
+ ∆

(k)
+ ,

where µ
(k)
+ and ∆

(k)
+ are obtained from µ+ and ∆+ by iteration, with µ

(0)
+ = ∆

(0)
+ =

id.
We emphasize that, in general, the interest is in finding an explicit formula for

the structure constants of the antipode in a given basis. This requires further work
since many cancellations often take place in Takeuchi’s formula.

Remark 2.10. Note that according to our definition, a connected q-bialgebra is in
particular graded. Takeuchi’s formula holds for a more general class of connected
bialgebras which are not necessarily graded. We do not define this class in this
monograph.

There is also a recursive expression for the antipode of a connected q-Hopf
algebra, due to Milnor and Moore [274, Proposition 8.2] (their work is in the setting
q = −1, but the same result holds for general q).

Let H be a connected q-bialgebra. Define maps s and s′ by induction on the
degree n of an element h as follows. Let

s(1) = s′(1) = 1,
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and for n > 0,

(2.56)
s(h) := −h− µ+(id⊗ s)∆+(h),

s′(h) := −h− µ+(s′⊗id)∆+(h).

Then

s = s′

and this map is the antipode of H .

2.3.4. Positive q-bialgebras. A positively graded vector space is a graded vector
space whose degree zero component is zero. The full subcategory of gVec consisting
of positively graded vector spaces is denoted gVec+. The Cauchy product of two
positively graded vector spaces is again positively graded. This yields a nonunital
monoidal category (gVec+, ·). The following modified Cauchy product

V ⊙W := V ⊕W ⊕ V ·W

turns gVec+ into a monoidal category. The zero space serves as the unit object.
We observe that a nonunital (co)monoid in (gVec+, ·) is equivalent to a (co)monoid
in (gVec+,⊙).

We proceed with (gVec+,⊙). The map

βq : V ⊕W ⊕ V ·W →W ⊕ V ⊕W · V

which interchanges the first two terms and uses the twist map βq for the Cauchy
product on the third term, is a lax braiding. This yields a lax braided mon-
oidal category (gVec+,⊙, βq). A positive q-bialgebra is defined to be a bialgebra in
(gVec+,⊙, βq).

2.3.5. Interaction between connected and positive q-bialgebras. Consider
the functor (−)o : gVec+ → gVeco which sends W to W o where

(2.57) (W o)n :=

{
k if n = 0,

Wn otherwise,

with the zero component identified with k via the identity. In other words, W o =
1⊕W .

Consider the functor (−)+ : gVeco → gVec+ which sends W to W+ where

(2.58) (W+)n :=

{
0 if n = 0,

Wn otherwise.

One can check that (−)o and (−)+ define equivalences between gVec+ and gVeco.
Further, they respect the monoidal structures, that is, there are natural isomor-
phisms

(V ·W )+ ∼= V+ ⊙W+ and (1⊕ V ) · (1⊕W ) ∼= 1⊕ (V ⊙W )

which commute with the braidings. It follows that there is an equivalence of cate-
gories

Bimon(gVeco, ·, βq) ∼= Bimon(gVec+,⊙, βq).

In particular, we note that a connected q-bialgebra is equivalent to a positive q-
bialgebra. The same statement holds with Hopf algebras instead of bialgebras.
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2.3.6. 0-Hopf algebras. We now look at the case q = 0 in more detail. We have
already seen an example of a 0-Hopf algebra, namely, the polynomial algebra k0[x]
in one variable with the deconcatenation coproduct (Example 2.9). We now give
explicit descriptions for connected 0-bialgebras and positive 0-bialgebras (these are
equivalent notions) and state a rigidity result due to Loday and Ronco.

Proposition 2.11. A positive 0-bialgebra is a triple (V, µ,∆) such that V is a
positively graded vector space, (V, µ) is a nonunital algebra, (V,∆) is a noncounital
coalgebra (with respect to the Cauchy product) and the following compatibility holds

∆(ab) = ab(1) ⊗ b(2) + a(1) ⊗ a(2)b+ a⊗ b.

In the above equation, the product µ(a, b) is denoted by ab and Sweedler ’s notation
is used for the coproduct: ∆(a) = a(1) ⊗ a(2).

This result is given in [9, Remark A.3].

Proposition 2.12. A connected 0-bialgebra is a quintuple (V, µ, ι,∆, ǫ) such that
(V, µ, ι) is a algebra, (V,∆, ǫ) is a coalgebra, dimV0 = 1 and ι and ǫ define inverse
isomorphisms of bialgebras k ∼= V0, and the following compatibility holds

∆(ab) = ab(1) ⊗ b(2) + a(1) ⊗ a(2)b− a⊗ b

with a and b as in Proposition 2.11.

The notion of 0-Hopf algebras is closely related to the notion studied in [239,
244, 241]. In the terminology of Loday [241, Section 4.2.1], a connected unital
infinitesimal bialgebra in gVec is the same as a connected 0-bialgebra in our sense,
and a nonunital infinitesimal bialgebra in gVec+ is the same as a positive 0-bialgebra
in our sense. In this monograph, we reserve the infinitesimal terminology for the
objects to be discussed in Example 6.47.

Theorem 2.13 (Loday–Ronco). Any connected 0-bialgebra is free as a graded
algebra and cofree as a graded coalgebra.

The above rigidity result is the graded version of [244, Theorem 2.6] and follows
from it. In Theorem 11.49 we provide an analogous result for species.

2.3.7. Graded commutative and Lie algebras. A commutative monoid in
(gVec, ·, βq) is a graded algebra A where

ab = qstba

for a ∈ As and b ∈ At. We briefly discuss the case q = −1. A commutative monoid
in (gVec, ·, β−1) is a graded algebra in which pairs of elements of odd degrees anti-
commute and all other pairs of elements commute (these objects are also sometimes
called graded commutative algebras).

A Lie monoid in this category is a graded Lie algebra in which the Lie algebra
axioms are twisted by a sign according to the degree of the elements, as in [274,
Proposition 5.2], or [157, Section 2.2], or [149, Definition 5.22], or [357, Example 3.7,
p. 327].
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2.3.8. Super vector spaces. A super vector space is a Z2-graded vector space.
Let sVec denote the category of super vector spaces. There is an obvious functor
from graded to super vector spaces: Lump the even degree pieces in one part and
the odd degree pieces in the other part.

Let V and W be super vector spaces. Their Cauchy product is the super vector
space whose even and odd parts are

V0 ⊗W0 ⊕ V1 ⊗W1 and V1 ⊗W0 ⊕ V0 ⊗W1

respectively. This defines the monoidal category (sVec, ·). However, in contrast to
graded vector spaces, only β and β−1 yield braidings.

A monoid in sVec is a Z2-graded algebra, which is commonly known as a su-
per algebra. Commutative and Lie monoids in (sVec, ·, β−1) are known as super
commutative and super Lie algebras respectively. They have essentially the same
descriptions as their graded counterparts discussed above.

2.4. Multigraded vector spaces and Q-Hopf algebras

In this section, we briefly touch upon a generalization of the preceding theory
to higher dimensions.

2.4.1. Multigraded vector spaces. Let N denote the monoid of nonnegative
integers under addition, and

Nr := N× · · · × N︸ ︷︷ ︸
r

.

This is a monoid under coordinatewise addition (the free commutative monoid on
r generators). A typical element of Nr is denoted by d = (d1, . . . , dr).

Let gVec(r) be the category of Nr-graded vector spaces over the field k. An
object in this category is a sequence V = (Vd)d∈Nr of vectors spaces Vd over k and a
morphism f : V →W is a sequence of linear maps fd : Vd →Wd. We often identify

V ←→
⊕

d∈Nr

Vd and f ←→
⊕

d∈Nr

fd.

If v ∈ Vd we may write |v| = d and say that v is homogeneous of multidegree d.
An Nr-graded vector space has an underlying N-grading for which an element of
multidegree (d1, . . . , dr) has degree d1 + · · ·+ dr. More formally, there is a functor

gVec(r) → gVec.

2.4.2. The Cauchy product for multigraded vector spaces. The Cauchy
product V ·W of two Nr-graded vector spaces is defined by

(2.59) (V ·W )d :=
⊕

d1+d2=d

Vd1 ⊗Wd2 ,

where ⊗ denotes the usual tensor product of spaces. The unit object I is defined
by

Id =

{
k if d = 0,

0 otherwise,

where 0 = (0, . . . , 0) denotes the unit element of the monoid Nr.
Note that for r = 1, one recovers the Cauchy product of graded vector spaces

given in (2.2).
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2.4.3. Braidings for the Cauchy product. We now make use of the braid
coefficients introduced in Section 2.2.7 to define braidings on multigraded vector
spaces.

Let Q be a square matrix of size r. Define a map βQ : V ·W →W · V by

(2.60) v ⊗ w 7→ brdQd,e w ⊗ v,

where v and w are homogeneous elements with multidegrees d and e respectively,

and brdQd,e is the braid coeffcient (2.36).
Similarly, for an integer square matrix A and a nonzero scalar q, define a map

βA,q : V ·W →W · V by

(2.61) v ⊗ w 7→ qbrdAd,e w ⊗ v.

Since the multiplicative case includes the additive case via (2.33), we proceed with
the multiplicative case.

The map βQ is a lax braiding (Definition 1.5). It is a braiding precisely if all
entries of Q are nonzero. In this case,

(2.62) (βQ)−1 = βQ−t ,

with notations as in Section 2.2.5. It follows that βQ is a symmetry precisely if Q
is log-antisymmetric (2.32).

Note that for r = 1 and Q = [q], the braiding βQ coincides with the braiding
βq on graded vector spaces given in (2.50).

2.4.4. The duality functor. One can define the dual of any multigraded vector
space in the usual manner: take the dual of each component. This gives rise to the
multivariate version of the duality functor on graded vector spaces.

The duality functor on the category of multigraded vector spaces with finite-
dimensional components

(2.63) (−)∗ : ((gVec(r))op, ·, βop
Q )→ (gVec(r), ·, βQt)

is bistrong. This generalizes the assertion made for (2.10) and (2.51). Note that in
the above result one uses Q for one lax braiding and Qt for the other lax braiding.
This feature is not visible in the one-dimensional theory since matrices of size 1 are
always symmetric.

2.4.5. Q-Hopf algebras. We continue to assume that Q is a square matrix of

size r. Consider the lax braided monoidal category (gVec(r), ·, βQ). (We write lax
braided instead of braided to include the case when one or more entries of Q are
zero.) Bimonoids and Hopf monoids in this category are known as Q-bialgebras and
Q-Hopf algebras respectively.

As for graded bialgebras (Section 2.3.2), a Q-bialgebra for which the component
of degree 0 is a Hopf algebra is automatically a Q-Hopf algebra. In particular, a
connected Q-bialgebra (defined in the obvious manner) is always a Q-Hopf algebra.
In this case, the antipode is still given by (2.55).

The notion of Q-Hopf algebras is well-known, although the terminology is not
standard. They are a special kind of braided Hopf algebras [356, Definition 5.1].
Certain Q-Hopf algebras known as Nichols algebras of diagonal type are central to
the construction by Lusztig and by Rosso of quantum enveloping algebras (quantum
groups) [246, 316], and play a key role in the classification of pointed Hopf algebras
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by Andruskiewitsch and Schneider [20, 22, 23, 24, 25]. We say more about these
objects in Sections 19.9 and 20.5.

We now discuss some elementary examples.

Example 2.14. Consider the free associative algebra on r generators:

k〈x1, . . . , xr〉.

It is Nr-graded: A monomial in which xi occurs di times, i = 1, . . . , r, has multi-
degree (d1, . . . , dr).

We proceed to turn it into a Q-Hopf algebra. Note that a monomial of length
n is equivalent to a function f : [n] → [r]. More precisely, f corresponds to the
monomial

xf := xf(1) · · ·xf(n).

The product of two monomials is given by concatenation. This is the same as the
product in the free algebra. The coproduct is given by

∆(xf ) =
∑

S⊔T=[n]

schQn (S, f)xf |S ⊗ xf |T ,

where schQn (S, f) is the weighted Schubert statistic (2.35), and

xf |S := xf(i1) · · ·xf(ik)

where S = {i1, . . . , ik} and i1 < · · · < ik. For example,

∆(x1x3x2) = 1⊗ x1x3x2 + x1 ⊗ x3x2 + q31 x3 ⊗ x1x2 + q21q23 x2 ⊗ x1x3

+ q31q21 x3x2 ⊗ x1 + q23 x1x2 ⊗ x3 + x1x3 ⊗ x2 + x1x3x2 ⊗ 1.

Example 2.15. Let Q be a log-antisymmetric matrix (2.32). Consider the follow-
ing quotient of the free associative algebra.

k〈x1, . . . , xr〉/(xixj − qjixjxi),

where 1 ≤ i, j ≤ r. This is known as Manin’s quantum linear space [258]. Note
that i and j can be equal, in which case we obtain the relation x2

i = 0 if qii = −1,
and no relation if qii = 1. The canonical quotient map from the free associative
algebra (viewed as a Q-Hopf algebra as in the previous example) to the quantum
linear space turns the latter into a Q-Hopf algebra.

For r = s + t, let 1(s, t) be as in (2.31). Observe that for Q = 1(s, t), the
quantum linear space is

k[x1, . . . , xs]⊗ k{xs+1, . . . , xs+t},

namely, the tensor product of the symmetric algebra on x1, . . . , xs (free commu-
tative algebra) and the exterior algebra on xs+1, . . . , xs+t. For s = t, this is the
algebra of differential forms.

Let us now go back to the general case. Let xf be a monomial in the free
associative algebra and let x[f ] denote its image under the canonical quotient map.
It is convenient to write x[f ] as a wedge of variables:

x[f ] := xf(1) ∧ · · · ∧ xf(n).

Interchanging two adjacent variables in the wedge incurs a scalar. For example, for
r = 2,

x1 ∧ x2 ∧ x1 = q12 x1 ∧ x1 ∧ x2.
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This is an element of multidegree (2, 1). We provide examples to show how the
product and coproduct works in the wedge notation.

(x2 ∧ x1)⊗ x1 7→ x2 ∧ x1 ∧ x1.

x2 ∧ x1 7→ 1⊗ (x2 ∧ x1) + x2 ⊗ x1 + q12 x1 ⊗ x2 + (x2 ∧ x1)⊗ 1.

2.5. The norm map

Let k be a commutative ring and G be a finite group. In this section, we discuss
the norm map on kG-modules. We state the results under very general hypotheses,
though we are mainly interested in the case when k is a field. We thank Ken Brown
and Steve Chase for help with this discussion.

2.5.1. Invariants and coinvariants. Let k be a commutative ring, G a finite
group, and V a kG-module. Let

V G := {x ∈ V | gx = x for all g ∈ G}.

This is the space of G-invariants of V . Let VG be the quotient of V modulo the
subspace spanned by

{x− gx | g ∈ G, x ∈ V }.

This is the space of G-coinvariants of V .

A kG module is free if it is of the form kG⊗ V0 for some vector space V0, with
G acting on the first coordinate.

Lemma 2.16. Let V = kG⊗ V0 be a free kG-module. Then,

VG ∼= V0
∼= V G.

Proof. The following maps are bijective:

V0 → (kG⊗ V0)G, v 7→ 1⊗ v;

V0 → (kG⊗ V0)
G, v 7→

∑

g∈G

g ⊗ v. �

In particular, if V = kG, then VG is spanned by g for any g ∈ G, and V G is
spanned by

∑
g∈G g.

Lemma 2.17. Let V and W be two kG-modules. Let G act diagonally on V ⊗W .
If one of the two is free, then so is V ⊗W .

Proof. It suffices to prove the claim when the free module is of rank one, and
we may assume this is the case for V . Let Wt denote the vector space W viewed
as a trivial kG-module. In this situation, the map

kG⊗W → kG⊗Wt, g ⊗ w 7→ g ⊗ g−1 · w

is an isomorphism of kG-modules, with inverse g ⊗ w 7→ g ⊗ g · w. �

The previous result does not need the hypothesis that G be finite.

Lemma 2.18. Let V be a kG-module. Let G act diagonally on kG⊗ V . Then,

(kG⊗ V )G ∼= V ∼= (kG⊗ V )G.

Proof. Combine Lemmas 2.16 and 2.17. �
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Combining the proofs of the preceding lemmas we obtain the following explicit
form for the isomorphisms of Lemma 2.18:

V → (kG⊗ V )G, v 7→ 1⊗ v;

V → (kG⊗ V )G, v 7→
∑

g∈G

g ⊗ g · v.

2.5.2. The norm map. We begin by recalling some facts about projective and
flat modules. A projective module is flat but the converse is not true in general.
However, if k is a field (of arbitrary characteristic), then the group ring kG satisfies
the descending chain condition on principal (right) ideals and hence, by a theorem of
Bass [218, Theorem 24.25], projective and flat (left) kG-modules coincide. Further,
if k is a field and the characteristic of k does not divide the order of G, then all
modules over kG are projective, or equivalently, flat.

Let V continue to denote a kG-module. The map

NV : V → V, v 7→
∑

g∈G

g · v

is called the norm map [69, Section III.1, Example 2] (and sometimes also the trace
map [221, Chapter XX, Exercises on finite groups]).

Example 2.19. Suppose E ⊇ K is a Galois extension of fields. Let G be the Galois
group. Then E is a vector space over K (under addition) and a KG-module, and
NE is the classical trace of Galois theory. In addition, E× := E \ {0} is an abelian
group (under multiplication) and a ZG-module, and NE× is the classical norm of
Galois theory. See [221, Chapter VI, §5].

The norm map factors through the quotient space VG of coinvariants and its
image is contained in the subspace V G of invariants. The induced map

NV : VG → V G, v 7→
∑

g∈G

g · v,

is also called the norm map. There is a commutative diagram

(2.64)

V
NV //

����

V

VG
NV

// V G
?�

OO

Lemma 2.20. Consider the following hypotheses.

(i) The order of G is invertible in the ring k.
(ii) The kG-module V is flat.

Under either hypothesis, the norm map NV is an isomorphism

VG ∼= V G.

If k is a field and the characteristic of k does not divide the order of G, then all
the above hypotheses are satisfied. In particular, the norm map is an isomorphism
in this case.
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Proof. Let |G| denote the order of G. If |G| is invertible in k, then the inverse
of NV is simply given by

v 7→
1

|G|
v.

Consider the second hypothesis. By Lazard’s theorem [61, Chapitre X, §1, No 6,
Théorème 1] or [221, Chapter XVI, Exercise 13], any flat module is a direct limit
of free modules. Since coinvariants and invariants commute with direct limits (the
former by [250, Theorem V.3.1] and the latter by [250, Theorem IX.2.1]) and the
norm map is natural, it is enough to prove the result when V is free. In this case,
the result follows from Lemma 2.16. �

We remark that in the projective case, the proof of Lemma 2.20 is simpler and
does not require the use of Lazard’s theorem. This applies if we are working over
a field.

2.5.3. The dual of the norm map. Let V ∗ := Homk(V, k) be the dual of V ,
with the usual kG-module structure:

(g · f)(v) := f(g−1 · v)

for g ∈ G, f ∈ V ∗, v ∈ V .

Lemma 2.21. Let k, G, and V be as above.

(a) There is a canonical isomorphism

(VG)∗ ∼= (V ∗)G.

(b) Consider the following hypotheses.
(i) The order of G is invertible in the ring k.
(ii) The ring k is self-injective (that is, k is injective as a k-module).
(iii) The kG-modules V and V ∗ are flat.
Under either hypothesis, there is a canonical isomorphism

(V ∗)G ∼= (V G)∗.

If k is a field of arbitrary characteristic, then (ii) holds. In particular, the above
map is an isomorphism in this case.

Proof. Recall the tensor-Hom adjunction [318, Theorem 2.11]:

HomS(L⊗RM,N) ∼= HomR

(
L,HomS(M,N)

)
,

where L is a right R-module, M is an R-S-bimodule, and N is a right S-module.
Choosing S = k, R = kG, L = k (as a trivial R-module), M = V , N = k, we
obtain the isomorphism in (a).

There is a canonical map

HomS(L,M)⊗R N → HomS(HomR(N,L),M),

where L is an R-S-bimodule, M is a right S-module, and N is a left R-module.
Rotman [318, Lemmas 3.59 and 3.60] gives certain conditions under which this map
is an isomorphism. Let us choose S = k, R = kG, L = V , M = k, and N = k (as
trivial R-module). The above isomorphism, when valid, becomes the isomorphism
in (b). Now let us relate the hypotheses in (b) to the conditions in Rotman.

If (i) holds, then the augmentation ǫ : kG → k, ǫ(g) = 1 for all g ∈ G, splits.
Hence, k is projective as kG-module, and [318, Lemma 3.59] applies.

If (ii) holds, then [318, Lemma 3.60] applies.
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It remains to discuss hypothesis (iii). In this case, both NV ∗ and (NV )∗ are
isomorphisms, by Lemma 2.20. Since the canonical map (V ∗)G → (V G)∗ and the
isomorphism (VG)∗ ∼= (V ∗)G fit in the following commutative diagram,

(V ∗)G

��

NV ∗
// (V ∗)G

(V G)∗
(NV )∗

// (VG)∗

∼=

OO

it follows that (V ∗)G → (V G)∗ is an isomorphism as well. �

Consider the dual of diagram (2.64). The dual of NV : V → V is NV ∗ : V ∗ →
V ∗. The proof of Lemma 2.21 shows that, under any of the hypotheses in (b), we
may also identify NV ∗ with (NV )∗. Hence we obtain the following result.

Lemma 2.22. Under any of hypotheses (i), (ii) or (iii) of Lemma 2.21, the dual
of diagram (2.64) for V is diagram (2.64) for V ∗.

In particular, if k is a field, then the conclusion of the lemma holds.

2.6. The tensor algebra and its relatives

This section focuses on a number of important Hopf algebras associated to a
vector space, including the tensor algebra, the shuffle algebra, and the symmetric
algebra. The latter are related through symmetrization, a special instance of the
norm map of Section 2.5, as shown in (2.66). This diagram provides the guiding
philosophy for the universal constructions on species in Chapter 11 and also for the
construction of the Fock functors in Chapter 15.

We present these Hopf algebras explicitly and briefly discuss certain universal
properties that characterize them. We also discuss a number of variants including
q-deformations and the quasi-shuffle product.

2.6.1. The tensor, shuffle and symmetric algebras. Let V be a vector space
over the field k. The tensor algebra of V is

T (V ) :=
⊕

k≥0

V ⊗k.

The product is concatenation of tensors. Consider the left action of the symmetric
group Sk on V ⊗k: For σ ∈ Sk,

V ⊗k → V ⊗k, v1 ⊗ · · · ⊗ vk 7→ vσ−1(1) ⊗ · · · ⊗ vσ−1(k).

The symmetric algebra of V is

S(V ) :=
⊕

k≥0

(V ⊗k)Sk ,

where (−)Sk denotes the space of Sk-coinvariants (Section 2.5.1). It is a quotient
algebra of T (V ). Both T (V ) and S(V ) are graded connected Hopf algebras: the
coproduct is determined by declaring that the elements of V are primitive. In more
explicit terms, it is given by deshuffling [191, Theorem III.2.4]. If the characteristic
of k is 0, then the space of primitive elements of T (V ) is Lie(V ), the free Lie algebra
on V [311, Section 1.3]. The space of primitive elements of S(V ) is V .
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A related construction is that of the shuffle Hopf algebra of a vector space,

T ∨(V ) :=
⊕

k≥0

V ⊗k.

It has the same underlying vector space as T (V ), but a different Hopf algebra
structure: the product is given by shuffling and the coproduct by deconcatena-
tion. Related references are [244, Section 1.3], [307], [311, Section 1.4], or [350,
Chapter XII]. The counterpart of the symmetric algebra is

S∨(V ) :=
⊕

k≥0

(V ⊗k)Sk ,

where (−)Sk denotes the space of Sk-invariants (Section 2.5.1). It is a Hopf subal-
gebra of T ∨(V ). Both T ∨(V ) and S∨(V ) are graded connected Hopf algebras.

The norm map (Section 2.5) corresponding to the action of Sk on V ⊗k is the
symmetrization

V ⊗k → V ⊗k, v1 ⊗ · · · ⊗ vk 7→
∑

σ∈Sk

vσ−1(1) ⊗ · · · ⊗ vσ−1(k).

Adding over all k ≥ 0, we obtain a map

(2.65) κ : T (V )→ T ∨(V )

which turns out to be a morphism of graded Hopf algebras. It is far from being
an isomorphism; in fact, it factors through invariants and coinvariants to yield the
following commutative diagram of graded Hopf algebras.

(2.66)

T (V )
κ //

����

T ∨(V )

S(V )
κ

// S∨(V )
?�

OO

If the characteristic of k is 0, then κ̄ is an isomorphism. This follows from Lem-
ma 2.20. If V = k, then diagram (2.66) reduces to the map (2.11).

2.6.2. The deformed tensor and shuffle algebras and the exterior algebra.
The tensor and shuffle Hopf algebras can be deformed using a parameter q: Tq(V ) is
the usual tensor algebra on V endowed with a q-version of the deshuffle coproduct
constructed using the Schubert statistic, while T ∨

q (V ) is the q-shuffle algebra of
Duchamp, Klyachko, Krob, and Thibon [108, Section 4.1] (a special case of the
quantum shuffle algebras as defined by Green [152] and Rosso [316, Proposition 9])
with the deconcatenation coproduct.

The symmetrization map κ (2.65) can be deformed as well to obtain the q-
symmetrization

(2.67) κq : Tq(V )→ T ∨
q (V ), v1 ⊗ · · · ⊗ vk 7→

∑

σ∈Sk

qinv σvσ−1(1) ⊗ · · · ⊗ vσ−1(k).

The deformed objects Tq(V ) and T ∨
q (V ) are q-Hopf algebras (Section 2.1.3), while

κq is a morphism of q-Hopf algebras. If the characteristic of k is 0 and q is not
a root of unity, then κq is in fact an isomorphism. This result appears in [108,
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Proposition 4.5], where it is deduced from Zagier’s formula [380, Theorem 2]. It is
greatly generalized in Theorem 16.19; also see Example 16.31.

If q = 0, then T0(V ) = T ∨
0 (V ), with the product given by concatenation and

the coproduct given by deconcatenation. Further, note that the 0-symmetrization
κ0 is the identity.

If q is a root of unity, then the image of κq may be considered as a deformation
of the symmetric algebra. These objects are special instances of Nichols algebras.
(We say more about Nichols algebras in Sections 19.9 and 20.5.) The case q = −1
yields the exterior algebra Λ(V ), which we describe next.

The symmetric algebra S(V ) has a signed analogue called the exterior algebra,
denoted Λ(V ). It is obtained by taking Sk-coinvariants with respect to the action:

V ⊗k → V ⊗k, v1 ⊗ · · · ⊗ vk 7→ (−1)invσvσ−1(1) ⊗ · · · ⊗ vσ−1(k).

This is the usual action tensored with the sign representation.
The exterior algebra is a (−1)-Hopf algebra; the coproduct is determined by

declaring that the elements of V are primitive. There is a similar signed analogue of
S∨(V ) which we denote by Λ∨(V ). The following is the signed analogue of (2.66).

(2.68)

T−1(V )
κ−1

//

����

T ∨
−1(V )

Λ(V )
κ−1

// Λ∨(V )
?�

OO

The map κ−1 is antisymmetrization. If the characteristic of k is 0, then κ̄−1 is an
isomorphism.

2.6.3. Duality. Let V be a finite-dimensional vector space, and let V ∗ denote its
dual. Then (V ∗)∗ ∼= V canonically. This induces isomorphisms

(2.69) Tq(V )∗ ∼= T ∨
q (V ∗), S(V )∗ ∼= S∨(V ∗), and Λ(V )∗ ∼= Λ∨(V ∗),

where the duals on the right refer to the graded duals. The isomorphisms are of
q-Hopf algebras, Hopf algebras and (−1)-Hopf algebras respectively. We say that
T ∨
q is the contragredient (dual) of Tq, and so forth. Further, if the characteristic of

k is 0 and q is not a root of unity, then

Tq ∼= T
∨
q , S ∼= S∨ and Λ ∼= Λ∨.

The condition on q is only relevant to the first isomorphism. These isomorphisms
are induced by the (q) symmetrization. Further, T0 ∼= T ∨

0 regardless of the charac-
teristic. Since these functors are isomorphic to their contragredients, we say that
they are self-dual (under the stated conditions).

Now choose an isomorphism V ∼= V ∗, and let F stand for either Tq, or S or Λ.
Then

F(V )∗ ∼= F∨(V ∗) ∼= F(V ∗) ∼= F(V ).

The first isomorphism follows from the contragredient property, the second follows
from self-duality of the functor, and the third follows from the chosen isomorphism
between V and its dual. This shows that F(V ) is self-dual (isomorphic to its dual).
The self-duality is noncanonical because it depends on a choice.
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To summarize: if the characteristic of k is 0 and q is not a root of unity, then
Tq(V ) is a self-dual q-Hopf algebra; if the characteristic of k is 0, then S(V ) is a
self-dual Hopf algebra and Λ(V ) is a self-dual (−1)-Hopf algebra. Finally, T0(V ) is
a self-dual 0-Hopf algebra, regardless of the characteristic.

2.6.4. Freeness and cofreeness. The tensor algebra T (V ) is the free algebra on
V . In other words, given an algebra A and a linear map ζ : V → A, there is a

unique morphism of algebras ζ̂ : T (V )→ A such that

T (V )
ζ̂

// A

V

ζ

>>}}}}}}}}

bbDDDDDDDD

commutes, where the map on the left is the canonical inclusion. Explicitly,

ζ̂(v1 · · · vn) = ζ(v1) · · · ζ(vn).

This is an instance of the general construction of Section 6.10.1.
The coalgebra T ∨(V ) satisfies the following universal property. Let (C,∆, ǫ)

be a coalgebra and ζ : C → V a linear map such that given c ∈ C, there exists
k ≥ 1 with

ζ⊗k∆(k−1)(c) = 0.

In this situation, there exists a unique morphism of coalgebras ζ̂ : C → T ∨(V ) such
that

C
ζ̂

//

ζ
!!C

CC
CC

CC
CC

T ∨(V )

||xx
xx

xx
xx

x

V

commutes, where the map on the right is the canonical projection. Explicitly,

ζ̂(c) = ǫ(c) +
∑

k≥1

ζ⊗k∆(k−1)(c).

The coalgebra T ∨(V ) is at times mistaken with the cofree coalgebra on (the
projection to) V . The latter is a more complicated object; see [55, 133, 162].

Similarly, S(V ) is the free commutative algebra on V , and S∨(V ) satisfies an
analogous property to that of T ∨(V ) but among cocommutative coalgebras.

It can also be shown that S∨(V ) is the free algebra with divided powers on V .
For information on algebras with divided powers, see [136, Section 1.2.2] and [137,
Proposition 1.2.15]; this structure is not essential for our purposes.

Remark 2.23. The symmetrization map (2.65) can be obtained from either the
universal property of T (V ) or that of T ∨(V ). Namely, it is the unique morphism
of algebras (coalgebras) which makes the left (right) diagram below commute.

T (V )
κ //_______ T ∨(V )

V

<<xxxxxxxxx

bbDDDDDDDD

T (V )
κ //_______

""D
DD

DD
DD

D
T ∨(V )

||xx
xx

xx
xx

x

V
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2.6.5. The tensor algebra on a coalgebra. Let (C,∆, ǫ) be a coalgebra. We
may use freeness of the tensor algebra T (C) to extend the structure maps of C

C
∆
−→ C ⊗ C ⊆ T (C)⊗ T (C) and C

ǫ
−→ k

to morphisms of algebras

∆̂ : T (C)→ T (C)⊗ T (C) and ǫ̂ : T (C)→ k.

The map ∆̂ coincides with ∆ on the space C which generates T (C), hence ∆̂ is
coassociative. For a similar reason, it is counital with respect to ǫ̂. This turns the
tensor algebra T (C) into a bialgebra.

The bialgebra T (C) satisfies the following universal property. Given a bialgebra
B and a morphism of coalgebras ζ : C → B, there exists a unique morphism of

bialgebras ζ̂ : T (C)→ B such that

T (C)
ζ̂

// B

C

ζ

>>}}}}}}}}

bbDDDDDDDD

commutes. In other words, T (C) is the free bialgebra on the coalgebra C. This is
an instance of the general construction of Section 6.10.2.

The bialgebra T (C) is not a Hopf algebra in general. The free Hopf algebra on
C is a more complicated object; see [354].

The usual grading of T (C) is not compatible with the above coalgebra structure.
On the other hand, if C = ⊕k≥0Ck is a graded coalgebra (Section 2.1.3), then T (C)
inherits a grading in which the elements of Ck1⊗· · ·⊗Ckn have degree k1 + · · ·+kn,
and which makes it a graded bialgebra.

There is a variant of the above construction that allows us to turn T (C) into a
bialgebra in a different manner. The coproduct is defined by the universal property
as before, but applying it now to the map

C → (k⊗ C)⊕ (C ⊗ C)⊕ (C ⊗ k) ⊆ T (C)⊗ T (C), c 7→ 1⊗ c+ ∆(c) + c⊗ 1.

The counit is the canonical projection

T (C) = ⊕
k≥0

C⊗k
։ k

onto the first component. This construction yields a bialgebra structure on T (C) for
any coalgebra (C,∆), not necessarily counital. This bialgebra satisfies a universal
property analogous to the preceding one, in which B is a (unital and counital)
bialgebra and the map ζ is a morphism of noncounital coalgebras.

If C is a graded coalgebra, then T (C) is a graded bialgebra, as above. If in
addition C0 = 0, then T (C) is a graded connected bialgebra, and hence a Hopf
algebra.

If V is a vector space, we may endow it with the trivial coproduct (the zero
map V → V ⊗ V ). In this case, the elements of V are primitive in T (V ), and we
recover the graded Hopf algebra structure mentioned in Section 2.6.1.



50 2. GRADED VECTOR SPACES

2.6.6. The quasi-shuffle bialgebra. We are interested in a construction dual to
the last construction of Section 2.6.5.

Let A be an algebra, not necessarily unital. Consider the map

(k⊗A)⊕ (A⊗A)⊕ (A⊗ k)→ A, x⊗ y 7→ xy.

Composing with the canonical projection we obtain a map

T ∨(A)⊗ T ∨(A)։ (k⊗A)⊕ (A⊗A)⊕ (A⊗ k)→ A

which vanishes on A⊗n ⊗A⊗m if n = m = 0 or if n > 1 or m > 1. It is possible to
apply the universal property of the coalgebra T ∨(A) to this map (Section 2.6.4),
to obtain a morphism of coalgebras

T ∨(A) ⊗ T ∨(A)→ T ∨(A).

It can be shown that this product turns T ∨(A) into a bialgebra with unit 1 ∈ k ⊆
T ∨(A). This construction is incorrectly formulated in [240, Proposition 1.3].

Endowed with this structure, T ∨(A) is known as the quasi-shuffle bialgebra.
The quasi-shuffle product admits the following explicit description.

Given nonnegative integers p and q, consider the set L(p, q) of lattice paths
from (0, 0) to (p, q) consisting of unit steps which are either horizontal, vertical,
or diagonal (sometimes called Delannoy paths). An element of L(p, q) is thus a
sequence L = (ℓ1, . . . , ℓs) such that each ℓi is either (1, 0), (0, 1), or (1, 1), and∑
ℓi = (p, q).
Given tensors α = a1 ⊗ · · · ⊗ ap ∈ A⊗p, β = b1 ⊗ · · · ⊗ bq ∈ A⊗q, and a

path L ∈ L(p, q), we label each step of L according to its horizontal and vertical
projections, as indicated in the example below (p = 5, q = 4):

(0, 0)

(p, q)

a1 a2 a3 a4 a5

b1

b2

b3

b4

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r

t

t

�
�

�
�

�
�

L

a1
b1

a2b2

a3
a4b3

b4

a5

r
r

r r
r
r

t

t

�

�
�

�

Then we obtain a tensor γL(α, β) by reading off the labels along the path L in
order. When a step is diagonal, we read off the product of the labels in the algebra
A. In the example above,

γL(α, β) = a1 ⊗ b1 ⊗ (a2b2)⊗ a3 ⊗ (a4b3)⊗ b4 ⊗ a5.

The tensor γL(α, β) is the quasi-shuffle of α and β corresponding to L. If L does
not involve diagonal steps, then γL(α, β) is an ordinary shuffle.

The quasi-shuffle product of the tensors α and β is given by

α · β =
∑

L∈L(p,q)

γL(α, β).
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The quasi-shuffle product appears in less explicit forms in the work of Haze-
winkel [161] and Hoffman [169], with some precedent in the work of Cartier [76].
The above description in terms of lattice paths is due to Fares [124].

The bialgebra T ∨(A) satisfies the following universal property. Let B be a
(unital and counital) bialgebra and ζ : B → A a morphism of nonunital algebras
such that given b ∈ B, there exists k ≥ 1 with

ζ⊗k∆(k−1)(b) = 0.

Then there exists a unique morphism of bialgebras ζ̂ : B → T ∨(A) such that

B
ζ̂

//

ζ
!!C

CC
CC

CC
CC

T ∨(A)

||xxxxxxxx

A

commutes.

If A = ⊕k≥0Ak is a graded algebra (Section 2.1.3), then T ∨(A) inherits a
grading in which the elements of Ak1 ⊗ · · · ⊗ Akn have degree k1 + · · · + kn, and
which makes it a graded bialgebra. If A0 = 0, then T ∨(A) is a graded connected
Hopf algebra.

If V is a vector space, we may endow it with the trivial product (the zero map
V ⊗V → V ). In this case we recover the shuffle Hopf algebra T ∨(V ) of Section 2.6.1.

2.7. Chain complexes

In this section, we review (co)chain complexes, which constitute the basic ob-
jects of homological algebra. Our goal is to recall that familiar objects such as dif-
ferential graded algebras are monoids in the category of chain complexes equipped
with the Cauchy product. This discussion is taken up and developed further in
Chapter 5.

2.7.1. Homogeneous maps between graded vector spaces. In order to define
chain complexes, we need to allow more morphisms among graded vector spaces
than the degree-preserving maps.

Let K and L be graded vector spaces, and k ∈ Z. A homogeneous map f : K →
L of degree k is a family of linear maps

fn : Kn → Ln+k,

one for each n ≥ 0. We make the convention that Kn = 0 for any n < 0.
Note that k is independent of n. Thus homogeneous maps of degree k alter the

degree by an arbitrary (but constant) amount k ∈ Z. Homogeneous maps of degree
0 are morphisms of graded vector spaces.

The Cauchy product of a homogeneous map f : K → L of degree k with a
homogeneous map g : M → N of degree h is the homogeneous map K ·M → L ·N
of degree k + h whose n-component is the sum of the maps

Ki ⊗Mj
fi⊗gj
−−−−→ Li+k ⊗Nj+h

for i+ j = n.
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The dual of a homogeneous map f : K → L of degree k is the homogeneous
map f∗ : L∗ → K∗ of degree −k with components

(f∗)n : (L∗)n
(fn−k)

∗

−−−−−→ (K∗)n−k.

2.7.2. Chain complexes. A chain complex is a graded vector spaceK = (Kn)n≥0

equipped with a homogeneous map of degree −1

∂ : K → K

such that ∂2 = 0. In other words, there are linear maps

∂n : Kn → Kn−1 such that ∂n−1∂n = 0

for every n ≥ 1. The maps ∂n are called boundary maps. We often use the same
notation ∂ to denote the boundary maps of different chain complexes. We also
define ∂0 := 0, for convenience.

A cochain complex is a graded vector space K = (Kn)n≥0 equipped with a
homogeneous map of degree +1

d : K → K

such that d2 = 0. In other words, there are linear maps

dn : Kn → Kn+1 such that dn+1dn = 0

for every n ≥ 0. The maps dn are called coboundary maps.
A morphism of chain complexes f : K → L is a map of the underlying graded

vector spaces commuting with the boundary maps, that is such that

Kn
∂n //

fn

��

Kn−1

fn−1

��

Ln
∂n

// Ln−1

commutes for every n ≥ 1. This defines the category dgVeca of chain complexes.
The category dgVecc of cochain complexes is defined similarly.

The maps ∂ or d are also referred to as the differential. Consequently (co)chain
complexes are also called differential graded vector spaces ; hence the notation. The
subscript and superscript are used to distinguish between the two cases. They stand
for annihilation and creation, as in Section 2.8.

2.7.3. The Cauchy product. The Cauchy product of two chain complexes K
and L is the chain complex, whose underlying graded vector space is K · L and
whose boundary maps are defined by

(2.70) ∂n(a⊗ b) := ∂i(a)⊗ b+ (−1)i a⊗ ∂j(b)

for a ∈ Ki, b ∈ Lj . The unit object is 1, that is, the graded vector space k
concentrated on degree 0, equipped with the zero map. The symmetry β−1 consists
of the maps

(2.71) Ki ⊗ Lj → Lj ⊗Ki, a⊗ b 7→ (−1)ij b⊗ a.

In other words, the braiding is as in (2.50) with q = −1. This turns dgVeca into a
symmetric monoidal category.

The same construction as above applies to dgVecc.
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2.7.4. Monoids and comonoids. A monoid in (dgVeca, ·) is a differential graded
algebra with a differential of degree −1. More explicitly, it is a graded algebra
(K,µ, ι) equipped with a graded derivation ∂ : K → K of degree −1. In other
words, ∂ is a homogeneous map of degree −1 and the following diagram commutes.

(2.72)

Ki ⊗Kj

µ

��

∂i⊗id+(−1)iid⊗∂j
// Ki−1 ⊗Kj ⊕Ki ⊗Kj−1

µ

��

Ki+j
∂i+j

// Ki+j−1

Similarly, a comonoid in (dgVeca, ·) is a differential graded coalgebra with a dif-
ferential of degree −1, that is, a graded coalgebra with a graded coderivation of
degree −1. A bimonoid in (dgVeca, ·, β−1) is a differential graded bialgebra with a
differential of degree −1. The differential is a derivation with respect to the algebra
structure and a coderivation with respect to the coalgebra structure.

(Co, Bi)monoids in (dgVecc, ·) have a similar description with the degree of the
differential being +1.

If K is a chain complex, its dual K∗ is the cochain complex with

(K∗)n := Homk(Kn, k) and dn := Homk(∂n+1, k).

Duality exchanges monoids and comonoids as usual.

2.7.5. Homotopy and homology. We recall the notions of chain homotopy,
homology, and cohomology.

Two morphisms of complexes f, g : K → L are said to be chain homotopic if
there exists a sequence of maps sn : Kn → Ln+1 such that

fn − gn = ∂n+1sn + sn−1∂n

Kn+1
∂n+1

//

fn+1

��

gn+1

��

Kn
∂n //

fn

��

gn

��

sn

yyttttttttttttttt
Kn−1

fn−1

��

gn−1

��

sn−1

yytttttttttttttttt

Ln+1
∂n+1

// Ln
∂n

// Ln−1

Chain homotopy is an equivalence relation on the set of morphisms from K
to L in dgVeca and it is compatible with the category structure. The homotopy
category dgVeca of chain complexes has the same objects as the category dgVeca

(chain complexes) and a morphism from K to L in dgVeca is a chain homotopy class
of morphisms from K to L in dgVeca. It is also a symmetric monoidal category
via (2.70) and (2.71). The same construction applies to dgVecc. This yields functors

(2.73) dgVeca → dgVeca and dgVecc → dgVecc

which are the identity on objects and which send a morphism to its chain homotopy
class.

The homology of a chain complex K is the graded k-module with components

Hn(K) := ker(∂n : Kn → Kn−1)/im(∂n+1 : Kn+1 → Kn).
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Similarly, the cohomology of a cochain complex K is the graded k-module H•(K)
with components

Hn(K) := ker(dn : Kn → Kn+1)/im(dn−1 : Kn−1 → Kn).

A morphism of chain complexes f : K → L gives rise to a map

Hn(f) : Hn(K)→ Hn(L),

and two chain homotopic morphisms induce the same maps in homology. The same
statement holds for cochain complexes. This defines functors

(2.74) H• : dgVeca → gVec and H• : dgVecc → gVec.

We call them the homology and cohomology functors respectively. Their monoidal
properties are discussed in Section 5.5.3.

2.7.6. Cohomology of algebras and coalgebras. We conclude by recalling the
notions of Hochschild cohomology for algebras and the dual version for coalgebras.

Let A be a k-algebra and M an A-bimodule (Section 1.2.3). For each n ≥ 0,
let

Cn(A,M) := Homk(A
⊗n,M).

We identify it with the space of all multilinear maps from A×n to M . In particular,
C0(A,M) = M .

Define also

dn : Cn(A,M)→ Cn+1(A,M)

by

dn(f)(a1, . . . , an+1) := a1 · f(a2, . . . , an)

+

n∑

i=1

(−1)if(a1, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

+ (−1)n+1f(a1, . . . , an) · an+1,

for f : A×n → M and ai ∈ A. The bimodule structure is used in the first and last
terms, and the algebra structure in the middle terms.

Then d2 = 0 and the graded vector space C(A,M) is a cochain complex
equipped with the differential d. The cohomology of this complex is the Hochschild
cohomology of the algebra A with coefficients in the bimodule A. It was introduced
by Hochschild [168]. For modern treatments, see [237] or [372].

Let C be a k-coalgebra and M a C-bicomodule with structure maps

χ1 : M → C ⊗M and χ2 : M →M ⊗ C

(Section 1.2.3). For each n ≥ 0, let

Cn(C,M) := Homk(M,C⊗n).

Define

dn : Cn(C,M)→ Cn+1(C,M)

by

dn(f) := (id⊗f)◦χ1 +

n∑

i=1

(−1)i(id⊗(i−1)⊗∆⊗ id⊗(n−i))◦f+(−1)n+1(f ⊗ id)◦χ2,
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for f : M → C⊗n. We obtain a cochain complex C(C,M) with differential d. The
resulting coalgebra cohomology, or related notions, appear in work of Adams [4]
and Cartier [75]. A more recent treatment is given by Doi [100].

2.8. Graded vector spaces with creation-annihilation operators

We now discuss a variation of (co)chain complexes where the nilpotency con-
dition on the (co)boundary maps is dropped. Such objects are known as graded
vector spaces with creation or annihilation operators. This terminology comes from
physics. The present discussion is continued and related to species in Chapter 19.
The motivation for our terminology is made clearer at that point.

2.8.1. Creation-annihilation operators. A graded vector space with creation
operators is a graded vector space V with a homogeneous map of degree +1

c : V → V.

A graded vector space with annihilation operators is a graded vector space V with
a homogeneous map of degree −1

a : V → V.

A morphism of graded vector spaces with creation operators (V, c) → (W,d) is a
morphism of graded vector spaces V → W that intertwines c with d. This defines
the category gVecc of graded vector spaces with creation operators. The categories
gVeca of graded vector spaces with annihilation operators and gVecc

a of graded
vector spaces with creation-annihilation operators are defined similarly.

2.8.2. The Cauchy product. Define the Cauchy product of two graded vector
spaces with creation operators (V, c) and (W,d) to be (V ·W, e) where

(2.75) e : V ·W
c·id+id·d
−−−−−−→ V ·W.

Note that e is a homogeneous map of degree +1.
This turns gVecc into a symmetric monoidal category which we denote by

(gVecc, ·, β). The unit object is 1, that is, the graded vector space k concentrated on
degree 0, equipped with the zero map. The symmetry β is given by interchanging
the tensor factors.

Let q ∈ k be a fixed scalar. The q-deformed Cauchy product of (V, c) and
(W,d) is defined to be (V ·W, e) where e is given by the formula

e(v ⊗ w) := c(v)⊗ w + qiv ⊗ d(w)

for v ∈ Vi, w ∈Wj . Define also a map τ : V → V by

(2.76) τ(v) := qiv

for every v ∈ Vi. The definition of the creation operator of V ·W can be rewritten
as:

(2.77) e = c · id + τ · d.

To emphasize the dependence on q, we write ·q for the deformed Cauchy product.
This defines a monoidal category (gVecc, ·q).

We point out that we do not have a braided monoidal category in this generality.
This point is discussed in more detail in the next section. From this point of view,
along with q = 1, the case q = −1 is of interest. Here we do obtain a symmetric
monoidal category which we denote by (gVecc, ·−1, β−1), with braiding as in (2.71).
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The above constructions apply to gVeca and gVecc
a as well.

2.8.3. Monoids and comonoids. A monoid in (gVecc, ·) is a graded algebra
(A, µ, ι) equipped with a derivation c : A→ A of degree +1. In other words, c is a
homogeneous map of degree +1 and the following diagram commutes.

(2.78)

A ·A

µ

��

c·id+id·c
// A ·A

µ

��

A c
// A

It follows from (2.78) plus unitality of µ that c(1) = 0.
A comonoid in (gVecc, ·) is a graded coalgebra (C,∆, ǫ) equipped with a coder-

ivation c : C → C of degree +1.
For describing (co)monoids in (gVeca, ·), one uses (co)derivations of degree −1,

all other things being same.
For describing (co)monoids with respect to the tensor product ·q, one needs a

q-version of (co)derivations. These are obtained by replacing the map

c · id + id · c by c · id + τ · c

in the usual definition, with τ as in (2.76). We have already seen the q = −1 case
before in (2.72). It is customary to call q-(co)derivations as skewed (co)derivations
and (−1)-(co)derivations as graded (co)derivations.

The dual (V ∗, c∗) of a graded vector space (V, c) with creation operators is a
graded vector space with annihilation operators, and viceversa. Duality exchanges
monoids and comonoids as usual.

2.9. N-complexes

In this section, we discuss N -complexes. These generalize chain complexes in a
natural way and provide the basic objects for a q-analogue of homological algebra.
These ideas can be traced to Mayer [263] and Spanier [334]. More recent work onN -
complexes can be found in the papers of Kapranov [187], Dubois-Violette [104, 105],
Kassel and Wambst [192], and references therein.

We return to N -complexes only in Chapter 5. However, they do serve a purpose
at this juncture as well. Namely, they provide a unifying framework for graded
vector spaces, chain complexes, as well as graded vector spaces with annihilation
operators. This serves to clarify the similarities as well as the differences between
the three situations discussed in the previous sections.

2.9.1. N-complexes. Let N be a positive integer or ∞. An N -complex [187] is
a graded vector space K equipped with a homogeneous map of degree −1

∂ : K → K

that is nilpotent of order at most N :

∂N = 0.

When N =∞, we interpret this condition as vacuous.
A morphism of N -complexes is a map of the underlying graded vector spaces

commuting with the boundary maps. Let dgVecN denote the resulting category.
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Table 2.3. Monoidal categories related to graded vector spaces.

Present notation Alternative notation Description

dgVec1 = dgVec1 gVec Graded vector spaces

dgVec2 dgVeca Chain complexes

dgVec2 dgVecc Cochain complexes

dgVec∞ gVeca Annihilation operators

dgVec∞ gVecc Creation operators

The category dgVecN is defined similarly using maps of degree 1. For simplicity of
exposition, we only deal with dgVecN .

Note that a 1-complex is simply a graded vector space and a 2-complex is
a chain complex. At the opposite end, an ∞-complex is a graded vector space
equipped a homogeneous map of degree −1, without further requirements. This is
precisely, a graded vector space with annihilation operators. Thus, N -complexes
provide a unified framework for the objects considered earlier in this chapter. These
observations are summarized in Table 2.3.

2.9.2. The Cauchy product. Given two ∞-complexes K and L, on the tensor
product K · L of the underlying graded vector spaces we define a new boundary
map by the formula

∂n(a⊗ b) := ∂i(a)⊗ b + qi a⊗ ∂j(b)

for a ∈ Ki, b ∈ Lj, where q ∈ k is the parameter that has been fixed from the start.
The definition of the boundary map of K · L can be rewritten as follows:

(2.79) ∂K·L = ∂K · idL + τK · ∂L,

where τ is as defined in (2.76). Since the boundary map is of degree −1, we have

∂KτK = q τK∂K .

It follows from the quantum binomial theorem [191, Proposition IV.2.2] that

(∂K·L)N =

N∑

i=0

(
N

i

)

q

(τK)i(∂K)N−i · (∂L)i,

where
(
N
i

)
q

is the q-binomial coefficient (2.27).

Suppose now that the following hypotheses are satisfied:

(2.80) 2 ≤ N <∞ and q ∈ k is a primitive N -th root of unity.

In this case Lemma 2.6 says that
(
N
i

)
q

= 0 for all i = 1, . . . , N − 1. As a result,

(∂K·L)N = (∂K)N · id + (τK)N · (∂L)N .

It follows that the the tensor product of two N -complexes is another N -complex.
This assertion is clearly true if N = ∞ or N = 1, for any q. For N = 1, the
boundary maps are always zero and the tensor product is independent of q.

When we need to emphasize the role of q in the above definition, we use K ·q L
to denote the tensor product of two N -complexes K and L. To summarize:
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Proposition 2.24. For N =∞ or N = 1 and q arbitrary, or for 2 ≤ N <∞ and
q as in (2.80),

(dgVecN , ·q, 1)

is a monoidal category. The unit object 1 is defined as for chain complexes.

Remark 2.25. We have been working under the assumption that k is a field.
However, it is useful to note that the above result is true in greater generality: for
N = ∞ or N = 1, if k is any commutative ring, and for 2 ≤ N < ∞, if k is an
integral domain.

2.9.3. Braided monoidal categories of N-complexes. We saw above condi-
tions under which dgVecN is a monoidal category. Now we would like to view
it as a braided monoidal category under the morphism of graded vector spaces βq
of (2.50). However, this is not possible. In this regard, we have the following result.

Proposition 2.26. Suppose that N =∞ or N = 1, or else that hypotheses (2.80)
are satisfied, so that dgVecN is a monoidal category by Proposition 2.24. Let K and
L be two N -complexes. Suppose q is invertible in k. The map

βq : K ·q L→ L ·q−1 K

is an isomorphism of N -complexes.

Proof. We have to check that βq commutes with the boundary maps. This
follows from the commutativity of the following two diagrams, in view of (2.79).

Ki ⊗ Lj
∂⊗id

//

βq

��

Ki−1 ⊗ Lj

βq

��

Lj ⊗Ki
τ−1⊗∂

// Lj ⊗Ki−1

Ki ⊗ Lj
τ⊗∂

//

βq

��

Ki ⊗ Lj−1

βq

��

Lj ⊗Ki
∂⊗id

// Lj−1 ⊗Ki

Take a⊗ b ∈ Ki ⊗ Lj . Both sides of the first diagram lead to

q(i−1)j b ⊗ ∂(a)

and both sides of the second diagram lead to

qij ∂(b)⊗ a.

Thus, both diagrams commute. �

Proposition 2.27. For (dgVecN , ·q, βq) to be a braided monoidal category, it has
to be one of

(gVec, ·, βq), (dgVeca, ·, β−1), (gVeca, ·, β), or (gVeca, ·−1, β−1).

Proof. For N = 1, the tensor product is independent of q, thus from Propo-
sition 2.26 we see that βq is a candidate for braiding for all q. The braiding
axioms (1.5) are easily verified and one obtains the braided monoidal category
(gVec, ·, βq).

In the remaining cases, q must satisfy q2 = 1; thus q = ±1. For N = ∞,
both choices work and one obtains (gVeca, ·, β) and (gVeca, ·−1, β−1). For 2 ≤ N <
∞, q must be a primitive N -th root of unity, which forces N = 2. This yields
(dgVeca, ·, β−1). �
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All of these examples have been considered in earlier sections, so we do not
get anything new; however, we do see how they fit together in the theory of N -
complexes.

Remark 2.28. Let us now see how Proposition 2.27 works for more general scalars.
This complements the discussion in Remark 2.25.

- The N = 1 case works the same way even if k is a commutative ring.
- The N = ∞ case may be different: If k is a commutative ring, then
q2 = 1 may have solutions other than ±1. Any such q yields a symmetric
monoidal category (gVeca, ·q, βq).

- The 2 ≤ N < ∞ case works the same way: If k is an integral domain,
then q2 = 1 implies q = ±1.

Remark 2.29. The calculations in [329] indicate that if q2 6= 1, one cannot hope to
turn dgVecN into a braided monoidal category with tensor product ·q, not even a 2-
monoidal category with tensor products ·q and ·q−1 . The latter concept generalizes
a braided monoidal category and is discussed in Chapter 6.





CHAPTER 3

Monoidal Functors

The main goal of this chapter is to study appropriate notions of functors be-
tween monoidal categories.

Complementing the classical notions of lax and colax monoidal functors, we
provide a definition of bilax monoidal functors between braided monoidal categories
(Section 3.1). The Fock functors which occupy us throughout Part III of this
monograph are all examples of bilax monoidal functors. Another very important
example, this one of a classical nature, is the object of Chapter 5. A summary
of these examples is given in Section 3.2. This section also discusses some other
interesting examples.

An important property of bilax monoidal functors is that they preserve bi-
monoids. More generally, the composite of two bilax monoidal functors is again
bilax monoidal. These properties are discussed in Sections 3.3 and 3.4. Additional
properties of bilax monoidal functors are studied in Section 3.5; these involve a
normalization condition with interesting consequences. Monoidal functors admit a
strong version, in which the structure transformations are required to be invertible.
These are studied in Section 3.6. Section 3.7 deals with Hopf lax functors. These
are bilax monoidal functors with additional properties that ensure that they pre-
serve Hopf monoids. We know that a bimonoid can be viewed as a monoid in a
category of comonoids and viceversa. A similar interpretation for bilax monoidal
functors is given in Section 3.8. We study adjunctions in the context of monoidal
categories in Section 3.9. Section 3.10 discusses a construction which, in a certain
context, allows us to dualize monoidal categories and functors.

In an abelian category, any morphism admits a monic-epi factorization. This
idea can be expanded in various ways in the context of abelian monoidal categories.
In particular, a morphism between (co, bi) lax monoidal functors can be similarly
factorized. This gives rise to a new monoidal functor, the image of the given
morphism. This important construction is the object of Section 3.11.

3.1. Bilax monoidal functors

Two kinds of morphisms one can consider between monoidal categories are the
lax and colax monoidal functors introduced by Bénabou [36]. We follow the termi-
nology of Kelly and Street [199, pp. 83–84]; see also Leinster [226, Definition 1.2.10]
and Yetter [379, Definition 3.11]. We recall these notions below. Moreover, if the
categories are braided, then one can define the notion of bilax monoidal functor,
which appropriately combines the notions of lax and colax monoidal functors. This
concept is very natural; however, it seems hard to find a reference where it is dis-
cussed. It is of central importance to our work in the rest of the monograph. We
provide a definition in this section. The rest of the chapter is devoted to the study
of basic properties of lax, colax and bilax monoidal functors.

61
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Lax, colax and bilax monoidal functors may be regarded as analogues of mon-
oids, comonoids and bimonoids, respectively. We make this analogy precise in
Section 3.4.

3.1.1. Lax, colax, and bilax monoidal functors. Let (C, •) and (D, •) be two
monoidal categories and F be a functor from C to D. We denote the unit object in
both categories by I and writeM for the tensor product functors. Let

(3.1) F2 :=M◦ (F × F) and F2 := F ◦M;

they are functors from C× C to D. Let I be the one-arrow category and let

(3.2) F0 : I→ D and F0 : I→ D

be the functors that send the unique object of I to I and F(I) respectively.

Definition 3.1. We say that a functor F : C → D is lax monoidal if there is a
natural transformation

(3.3) F(A) • F(B)
ϕA,B

// F(A •B)

from the functor F2 to the functor F2 and a map

(3.4) ϕ0 : I → F(I)

in D such that the conditions below are satisfied. Observe that one may view ϕ0

as a natural transformation between F0 and F0.

Associativity. The transformation ϕ is associative, in the sense that the following
diagram commutes.

(3.5)

F(A) • F(B) • F(C)

ϕA,B•id

��

id•ϕB,C
// F(A) • F(B • C)

ϕA,B•C

��

F(A •B) • F(C) ϕA•B,C

// F(A •B • C)

Unitality. The transformation ϕ is left and right unital, in the sense that the
following diagrams commute.

I • F(A)

ϕ0•id

��

F(A)
λF(A)

oo

F(λA)

��

F(I) • F(A) ϕI,A
// F(I •A)

F(A) • I

id•ϕ0

��

F(A)
ρF(A)

oo

F(ρA)

��

F(A) • F(I) ϕA,I
// F(A • I)

(3.6)

The above three diagrams are the analogues of the associativity and unit axioms
for a monoid.

Definition 3.2. We say that a functor F : C → D is colax monoidal if there is a
natural transformation

(3.7) F(A •B)
ψA,B

// F(A) • F(B)

and a map

(3.8) ψ0 : F(I)→ I
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satisfying axioms dual to those in Definition 3.1. Namely, one replaces ϕ by ψ and
reverses the arrows with those labels in diagrams (3.5) and (3.6).

Definition 3.3. Let (C, •, β) and (D, •, β) be two braided monoidal categories. We
say that a functor F : C→ D is bilax monoidal if there are natural transformations
ϕ and ψ,

(3.9) F(A) • F(B)

ϕA,B
%%

ψA,B

ee F(A •B),

between the functors F2 and F2 defined in (3.1), and morphisms

(3.10) ϕ0 : I → F(I) and ψ0 : F(I)→ I

in D such that (F , ϕ) is lax, (F , ψ) is colax and the conditions below are satisfied.
Note that ϕ0 and ψ0 are natural transformations between the functors F0 and F0

defined in (3.2).

Braiding. The following hexagon commutes.

(3.11)

F(A •B) • F(C •D)

ψA,B•ψC,D

%%K
KKKKKKKKKKKKKK

ϕA•B,C•D

{{ww
www

ww
ww

ww
ww

w

F(A •B • C •D)

F(id•β•id)

��

F(A) • F(B) • F(C) • F(D)

id•β•id

��

F(A • C •B •D)

ψA•C,B•D

##G
GG

GG
GG

GG
GG

GG
G

F(A) • F(C) • F(B) • F(D)

ϕA,C•ϕB,D

yysssssssssssssss

F(A • C) • F(B •D)

where β denotes the braiding in either category.

Unitality. The following diagrams commute.

I

λI

��

ϕ0 // F(I)
F(λI)

// F(I • I)

ψI,I

��

I • I ϕ0•ϕ0

// F(I) • F(I)

I F(I)
ψ0

oo F(I • I)
F(λ−1

I )
oo

I • I

λ−1
I

OO

F(I) • F(I)
ψ0•ψ0

oo

ϕI,I

OO

(3.12)

F(I)
ψ0

!!C
CC

CC
CC

C

I

ϕ0

=={{{{{{{{
I

(3.13)
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The above four diagrams are the analogues of the compatibility axioms for a
bimonoid given in Definition 1.10. In (3.12), we may write ρI instead of λI , in view
of (1.3).

Notation 3.4. For the sake of brevity we may sometimes omit the word “monoidal”
and refer to the above classes of functors simply as lax, colax, or bilax. Suppose
that F is a lax functor with structure maps ϕA,B and ϕ0, as in Definition 3.1. In
order to denote this lax functor we may use (F , ϕ, ϕ0), or (F , ϕ), or simply F , if
the structure maps are understood. A similar convention applies to colax and bilax
functors.

Definition 3.5. Let F : C→ D be a functor, ϕ and ψ be transformations as in (3.3)
and (3.7), and ϕ0, and ψ0 maps as in (3.4) and (3.8). We say that (F , ϕ) is strong
if it is lax and ϕ and ϕ0 are invertible. We say that (F , ψ) is costrong if it is colax
and ψ and ψ0 are invertible. We say that (F , ϕ, ψ) is bistrong if it is bilax and ϕ,
ψ, ϕ0 and ψ0 are all invertible.

Note that (F , ϕ) is strong if and only if (F , ϕ−1) is costrong. Strong functors
are studied in more depth in Section 3.6. In Proposition 3.45 we show that if
(F , ϕ, ψ) is bistrong, then ϕ = ψ−1.

We turn to basic constructions involving monoidal functors.

Proposition 3.6. If (F , ϕ) : C → D and (F ′, ϕ′) : C′ → D′ are lax (resp. colax ),
then so is

(
F × F ′, ϕ× ϕ′

)
: C× C′ → D× D′.

Further, if (F , ϕ, ψ) : C→ D and (F ′, ϕ′, ψ′) : C′ → D′ are bilax, then so is

(
F × F ′, ϕ× ϕ′, ψ × ψ′

)
: C× C′ → D× D′.

The above result is a straightforward consequence of the definitions.

Proposition 3.7. Let (Cop, •, βop) denote the opposite category of (C, •, β). If
(F , ϕ) : C → D is lax (resp. colax ) monoidal, then (F , ϕ) : Cop → Dop is colax
(resp. lax ) monoidal. Further, if (F , ϕ, ψ) : C → D is bilax monoidal, then so is
(F , ψ, ϕ) : Cop → Dop.

Proof. For the first assertion, observe that reversing the arrows labeled ϕ in
the diagrams for a lax functor yield the diagrams for a colax functor and viceversa.
The diagrams for a bilax functor are preserved by switching ϕ with ψ, and reversing
the arrows with those labels. This proves the second assertion. �

Thus passing to the opposite categories transforms a lax functor to a colax
functor and viceversa, and preserves bilax functors.

3.1.2. Morphisms between monoidal functors.

Definition 3.8. Let (C, •) and (D, •) be two monoidal categories, and (F , ϕ) and
(G, γ) be lax monoidal functors from C to D. A morphism from F to G of lax
monoidal functors is a natural transformation θ : F ⇒ G such that both diagrams
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below commute.

F(A) • F(B)

θA•θB

��

ϕA,B
// F(A •B)

θA•B

��

G(A) • G(B) γA,B
// G(A •B)

F(I)

θI

��

I

ϕ0
88ppppppp

γ0 &&NNNNNNN

G(I)

(3.14)

Let (F , ψ) and (G, δ) be colax monoidal functors from C to D. A morphism from
F to G of colax monoidal functors is a natural transformation θ : F ⇒ G such that
both diagrams below commute.

F(A •B)

θA•B

��

ψA,B
// F(A) • F(B)

θA•θB

��

G(A •B)
δA,B

// G(A) • G(B)

F(I)

θI

��

ψ0

&&NNNNNNN

I

G(I)
δ0

88ppppppp

(3.15)

A morphism of (co)strong monoidal functors is a morphism of the underlying (co)lax
monoidal functors.

Definition 3.9. Let (C, •, β) and (D, •, β) be two braided monoidal categories, and
F ,G : C → D be bilax monoidal functors. A morphism from F to G is a natural
transformation θ : F ⇒ G such that diagrams (3.14) and (3.15) commute. In other
words, a morphism of bilax functors is a morphism of the underlying lax and colax
functors.

A morphism of bistrong monoidal functors is a morphism of the underlying
bilax monoidal functors.

The following is straightforward.

Proposition 3.10. The composite of two morphisms of lax (colax, bilax ) monoidal
functors is again a morphism of lax (colax, bilax ) monoidal functors.

Thus for two fixed monoidal categories, we have the categories of lax and colax
functors between them. Similarly for two fixed braided monoidal categories, we
have the category of bilax functors between them. We elaborate on this point in
Section 3.3.3.

3.1.3. Braided bilax monoidal functors. We now define the notion that plays
the role of commutativity for a bilax monoidal functor.

Definition 3.11. A lax (resp. colax) monoidal functor (F , ϕ) between two braided
monoidal categories (resp. (F , ψ)) is braided if the right-hand (resp. left-hand)
diagram below commutes.

(3.16)

F(A •B)

F(β)

��

ψA,B
// F(A) • F(B)

β

��

ϕA,B
// F(A •B)

F(β)

��

F(B •A)
ψB,A

// F(B) • F(A) ϕB,A
// F(B •A)
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A morphism of braided lax (colax) monoidal functors is a morphism of the under-
lying lax (colax) monoidal functors.

Example 3.12. The functor Hom in Example 3.17 is a braided lax monoidal
functor from Cop×C to Set, where the former category is endowed with the braiding(
(β−1)op, β

)
.

Definition 3.13. A bilax monoidal functor (F , ϕ, ψ) is braided if both the diagrams
in (3.16) commute, or equivalently, if (F , ϕ) and (F , ψ) are braided lax and colax
monoidal functors, respectively.

A morphism of braided bilax monoidal functors is a morphism of the underlying
bilax monoidal functors.

Thus for two fixed braided monoidal categories, we have the categories of
braided lax, braided colax and braided bilax functors between them. They are
full subcategories respectively of the categories of lax, colax and bilax functors.

Definition 3.14. Let (C, •, β) and (D, •, β) be two braided monoidal categories
and ϕ and ψ be as in (3.9). Define natural transformations ϕb, bϕ, ψb and bψ as
the following composites.

ϕb : F(A) • F(B)
β
−→ F(B) • F(A)

ϕB,A
−−−→ F(B •A)

F(β−1)
−−−−−→ F(A •B),

bϕ : F(A) • F(B)
β−1

−−→ F(B) • F(A)
ϕB,A
−−−→ F(B •A)

F(β)
−−−→ F(A •B),

ψb : F(A •B)
F(β)
−−−→ F(B •A)

ψB,A
−−−→ F(B) • F(A)

β−1

−−→ F(A) • F(B),

bψ : F(A •B)
F(β−1)
−−−−−→ F(B •A)

ψB,A
−−−→ F(B) • F(A)

β
−→ F(A) • F(B).

We state analogues to Propositions 1.20 and 1.21. The proofs are straightfor-
ward.

Proposition 3.15. If (F , ϕ) (resp. (F , ψ)) is a lax (resp. colax ) monoidal functor
from (C, •) to (D, •), then so are (F , ϕb) and (F , bϕ) (resp. (F , ψb) and (F , bψ)).

Proposition 3.16. Let (F , ϕ, ψ) be a bilax monoidal functor from (C, •, β) to
(D, •, β). Then

(F , ϕ, ψb) and (F , bϕ, ψ)

are bilax monoidal functors from (C, •, β−1) to (D, •, β−1). Therefore,

(F , ϕb, ψb) and (F , bϕ, bψ)

are bilax monoidal functors from (C, •, β) to (D, •, β).

In analogy with (1.15)–(1.16), we have equivalences among the four statements
in each set below.

(F , ϕ) is a braided lax monoidal functor;
id: (F , ϕ)⇒ (F , ϕb) is a morphism of lax monoidal functors;
id : (F , ϕ)⇒ (F , bϕ) is a morphism of lax monoidal functors;
ϕ = ϕb.

(3.17)

(F , ψ) is a braided colax monoidal functor;
id: (F , ψ)⇒ (F , ψb) is a morphism of colax monoidal functors;
id : (F , ψ)⇒ (F , bψ) is a morphism of colax monoidal functors;
ψ = ψb.

(3.18)
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3.1.4. The convolution comma category. Let A,B and C be monoidal cate-
gories,

(F , ψ) : (A, •)→ (C, •)

a colax monoidal functor, and

(G, ϕ) : (B, •)→ (C, •)

a lax monoidal functor. Consider the comma category F ↓ G, as in Section A.5; its
objects are triples (A, γ,B) with

γ : F(A)→ G(B)

an arrow in C.
Given arrows γi : F(Ai)→ G(Bi) in C, i = 1, 2, we may form the composite

F(A1 •A2)
ψA1,A2−−−−−→ F(A1) • F(A2)

γ1•γ2
−−−−→ G(B1) • G(B2)

ϕB1,B2−−−−−→ G(B1 •B2).

We may also consider the composite

F(IA)
ψ0
−−→ IC

ϕ0
−→ G(IB),

where IA, IB and IC are the unit objects of each category. This allows us to turn
F ↓ G into a monoidal category, as follows. The tensor product on objects is

(A1, γ1, B1) • (A2, γ2, B2) := (A1 •A2, ϕB1,B2(γ1 • γ2)ψA1,A2 , B1 •B2).

It is defined similarly on morphisms. The unit object is (IA, ϕ0ψ0, IB). Associa-
tivity follows from (3.5) and unitality from (3.6) (and the dual diagrams).

Suppose all the given data is braided (the monoidal categories A,B and C, the
colax monoidal functor (F , ψ) and the lax monoidal functor (G, ϕ)). It then follows
from (3.16) that the pair (βA1,A2 , βB1,B2) defines a morphism from

(A1, γ1, B1) • (A2, γ2, B2)→ (A2, γ2, B2) • (A1, γ1, B1)

in the comma category F ↓ G. It follows that in this situation the monoidal category
(F ↓ G, •) is braided.

3.2. Examples of bilax monoidal functors

In this section, we provide pointers to the main examples of bilax and bistrong
monoidal functors and morphisms between them which are discussed in this mono-
graph. We also provide some other basic examples.

3.2.1. Classical example from homological algebra. In Chapter 5, we discuss
what may be the most classical bilax monoidal functor: the chain complex functor
from simplicial modules to chain complexes. In this example, the transformations
ϕ and ψ are the Eilenberg–Zilber and Alexander–Whitney maps. It turns out that
the associated chain complex functor from simplicial modules to the homotopy
category of chain complexes is bistrong.

The interested reader may enjoy going over Chapter 5 at this point; the dis-
cussion there uses some of the terminology developed so far and some results from
later sections in this chapter.
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3.2.2. The image of a morphism of bilax monoidal functors. A general pro-
cedure to factorize a morphism of bilax functors from a braided monoidal category
to an abelian braided monoidal category is given in Section 3.11. In particular, this
yields a new bilax functor, which is the image of the morphism. Our method makes
use of the existence of monic-epi factorizations in abelian categories and a related
bistrong functor called the image functor.

3.2.3. Examples related to species and Fock functors. The main examples
of bilax monoidal functors in this monograph are the Fock functors from species to
graded vector spaces. They are the object of study of Chapters 15 and 16. Deco-
rated and colored versions of these functors are discussed in Chapters 19 and 20.
Other examples of bilax monoidal functors include the Hadamard functor and the
Hom functor on species. A summary is provided in Table 3.1.

The main examples of bistrong monoidal functors are summarized in Table 3.2.
They include the duality functor on species and on graded vector spaces, the signa-
ture functor on species, and the bosonic and fermionic Fock functors from species
to graded vector spaces.

Several morphisms of bilax monoidal functors play an important role in this

monograph. The main ones are the morphisms K ⇒ K and K
∨
⇒ K∨ relating the

full Fock functors with the bosonic Fock functors, similar morphisms with fermionic
replacing bosonic, and the norm and half-twist transformations that relate the
full Fock functors. These are summarized in Table 3.3. Generalizations of these
morphisms are discussed in Chapters 19 and 20.

Table 3.1. Bilax monoidal functors.

Bilax monoidal functors

Chain complex functor Section 5.4

Hadamard functor and the Hom functor Sections 8.13 and 9.4

Full Fock functors Section 15.1

Deformed full Fock functors Section 16.1

Decorated Fock functors Table 19.1

Colored Fock functors Table 20.1

Table 3.2. Bistrong monoidal functors.

Bistrong monoidal functors Section

Image functor 3.11.4

Chain complex (up to homotopy) functors 5.5

Duality functor on species 8.6

Signature functor 9.4

Bosonic Fock functors 15.1

Fermionic Fock functors 16.3
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Table 3.3. Morphisms between bilax monoidal functors.

Morphism Sections

Monic-epi factorization 3.11.5

Between full Fock and bosonic Fock functors 15.1

Between full Fock and fermionic Fock functors 16.3

Norm transformation 15.4 and 16.2

Half-twist transformation 15.5 and 16.4

3.2.4. Some other examples. In the remainder of this section, we discuss some
other interesting examples.

Example 3.17. Let (Set,×) be the symmetric monoidal category of sets under
Cartesian product, as in Example 1.3. The unit object is the one-element set {∅}.
For any monoidal category (C, •), the functor

Hom: Cop × C→ Set

is a lax monoidal functor with the map

ϕ(A,C),(B,D) : Hom(A,C)×Hom(B,D)→ Hom(A •B,C •D)

which sends (f, g) to f • g, and the map

ϕ0 : {∅} → Hom(I, I)

which sends ∅ to the identity morphism from the unit object I to itelf.
If (C, •) is a linear monoidal category (Definition 1.6), then one similarly obtains

a lax monoidal functor
(Hom, ϕ) : Cop × C→ Vec.

If C is the category of finite-dimensional vector spaces under ordinary tensor prod-
uct, then the map ϕ is an isomorphism. By letting ψ = ϕ−1, one obtains a colax
functor (Hom, ψ). Moreover, the two structures are compatible and we obtain a
bilax functor (Hom, ϕ, ψ), which is in fact bistrong by construction.

The situation concerning Hom is more delicate for graded vector spaces and for
species; see Proposition 8.58, Proposition 8.64, and Remark 8.65.

Example 3.18. Let CN be the category whose objects are nonnegative integers
and whose morphisms are

HomCN
(n,m) :=

{
idn if n = m,

∅ if n 6= m.

This is the discrete category on N. It is a symmetric monoidal category under

n⊗m := n+m and βn,m = idn+m.

In addition, CN is strict, that is, the associative and unit constraints are all identi-
ties.

Given a functor F : CN → Vec, let

|F| :=
⊕

n∈N

F(n).

Then |F| is a graded vector space. If x ∈ F(n) we write |x| = n.
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Suppose F is a lax monoidal functor with structure maps

ϕn,m : F(n)⊗F(m)→ F(n+m).

Defining

x · y := ϕ|x|,|y|(x⊗ y)

on homogeneous elements x and y endows |F|with the structure of a graded algebra.
The unit element is ϕ0(1) ∈ F(0).

If F is a colax monoidal functor, then we may similarly use the structure maps

ψn,m : F(n+m)→ F(n)⊗F(m)

to turn |F| into a graded coalgebra; the coproduct is

∆(x) =
∑

n+m=|x|

ψn,m(x)

on homogeneous elements x ∈ |F| and the counit is defined in terms of ψ0.
The above constructions define equivalences between the category of functors

(resp. lax monoidal functors, colax monoidal functors) CN → Vec and the category
of graded vector spaces (resp. graded algebras, graded coalgebras).

One may expect a similar result for bilax monoidal functors and graded bial-
gebras, but it turns out that these two notions are not equivalent. Indeed, if
F : CN → Vec is a bilax monoidal functor and we view |F| as an algebra and as a
coalgebra as above, then diagram (3.11) leads to the following relation between the
product and coproduct of |F|:

(3.19) ψn,m(x · y) = ψa,b(x)ψc,d(y)

whenever a, b, c, and d are related to n, m, and the degrees of x and y by

(3.20) a+ c = n, b+ d = m, a+ b = |x|, c+ d = |y|, n+m = |x|+ |y|.

On the other hand, the definition of graded bialgebra would instead require the
following compatibility condition between the product and coproduct of |F|:

(3.21) ψn,m(x · y) =
∑

a,b,c,d

ψa,b(x)ψc,d(y),

the sum being over all a, b, c, and d subject to the conditions (3.20). Condi-
tions (3.19) and (3.21) are distinct in general. Specifically, consider the case of the
graded bialgebra of polynomials k[t], where

∆(tn) =
∑

k

(
n

k

)
tk ⊗ tn−k.

Take x = ti and y = tj . The right-hand side of (3.19) is
(
i

a

)(
j

c

)
ta+c ⊗ tb+d,

while the left-hand side of (3.19) is
(
i+ j

n

)
tn ⊗ tm.

(This agrees with the right-hand side of (3.21) by Vandermonde’s identity for bi-
nomial coefficients.)
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In summary, a bilax monoidal functor CN → Vec is equivalent to a graded
vector space endowed with a structure of graded algebra and of graded coalgebra,
linked by (3.19) (plus standard conditions involving the unit and counit), and this
is not a graded bialgebra.

This flaw is rectified if one replaces graded vector spaces by species. In Propo-
sition 8.35 we show how an analogous construction for species does lead to an
equivalence between bimonoids in species and certain bilax monoidal functors.

There is a different way in which graded bialgebras may be seen as bilax mon-
oidal functors. This in fact holds for bimonoids in an arbitrary braided monoidal
category and is explained in Section 3.4.1.

Example 3.19. This example was proposed by George Janelidze. Throughout this
discussion, we employ the terminology and notations of Section A.1.

Let C and D be categories with finite products. Consider the corresponding
cartesian monoidal categories (C,×, J) and (D,×, J) as in Example 1.4.

Let F : C→ D be an arbitrary functor. Given objects A and B of C, let

ψA,B :=
(
F(πA),F(πB)

)
: F(A×B)→ F(A)×F(B),

and let

ψ0 : F(J)→ J

be the unique such arrow in D. Then (F , ψ, ψ0) is a colax monoidal functor. Indeed,
both composites in the dual of diagram (3.5) coincide with the arrow

(
F(πA),F(πB),F(πC)

)
.

The other diagrams in Definition 3.1 can be verified similarly. Note that the functor
is costrong if and only if F preserves products.

Thus, any functor between categories with finite products carries a canonical
colax monoidal structure. Moreover, this structure is braided (Definition 3.11).

Dually, any functor F : C→ D between cocartesian monoidal categories carries
a canonical braided lax monoidal structure. The structure maps are

ϕA,B :=

(
F(ιA)
F(ιB)

)
: F(A) ∐ F(B)→ F(A ∐B)

and

ϕ0 : I → F(I).

Suppose now that C has finite biproducts. Consider the corresponding bicarte-
sian monoidal category (C,⊕, Z) of Example 1.4. Let D be another such category.
By the above, any functor F : C → D carries a canonical lax structure ϕ and a
canonical colax structure ψ. It turns out that

(F , ϕ, ψ) : (C,⊕, Z)→ (D,⊕, Z)

is bilax monoidal. Indeed, the composites along both sides of diagram (3.11) are
equal to
(
F
(
ιA⊕C
A πA⊕B

A

)
F
(
ιB⊕D
B πA⊕B

B

)

F
(
ιA⊕C
C πC⊕D

C

)
F
(
ιB⊕D
D πC⊕D

D

)
)

: F(A⊕B)⊕F(C⊕D)→ F(A⊕C)⊕F(B⊕D)

and so the braiding axiom is satisfied. The other axioms can be verified similarly.
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Thus, any functor between bicartesian monoidal categories carries a canonical
braided bilax monoidal structure. As an example, we may choose C = D = Vec,
the category of vector spaces (under direct sum), and

F(V ) := V ⊗ V.

This functor is not bistrong.

3.3. Composites of bilax monoidal functors

Monoidal functors exhibit an interesting feature which is not visible for mon-
oids. Namely, it is meaningful to ask whether the composite of monoidal functors
is again monoidal. The first result in this direction is by Bénabou who showed that
the composite of lax monoidal functors is again lax monoidal [36, Proposition 5].

In this section, we show that the same assertion also holds for bilax monoidal
functors. This includes Bénabou’s result. We also briefly explain how this leads to
2-categories based on (co,bi)lax monoidal functors.

3.3.1. Composites of bilax monoidal functors.

Definition 3.20. Let (F , ϕ) : (C, •) → (D, •), where ϕ : F2 ⇒ F2 and ϕ0 : I →
F(I) are as in (3.3) and (3.4). Similarly, let (G, γ) : (D, •)→ (E, •) with γ : G2 ⇒ G2

and γ0 : I → G(I). Now let

(GF , ϕγ) : (C, •)→ (E, •),

where the functor GF : C→ E is the composite of F and G, and the transformations

ϕγ : (GF)2 ⇒ (GF)2 and (ϕγ)0 : I → GF(I)

are defined as follows.

GF(A) • GF(B)
(ϕγ)A,B

//________

γF(A),F(B)

%%L
LLLLLLLLLLL

GF(A •B)

G
(
F(A) • F(B)

)
G(ϕA,B)

::vvvvvvvvvvv

I

γ0

��
??

??
??

??
?

(ϕγ)0
//________ GF(I)

G(I)

G(ϕ0)

==zzzzzzzzzz

Similarly for the dual situation, given (F , ψ) and (G, δ), we define (GF , δψ), where
δψ and (δψ)0 are obtained from the above by switching ϕ with ψ, and γ with δ, and
reversing the arrows. Combining the two situations, given (F , ϕ, ψ) and (G, γ, δ),
we define (GF , ϕγ, δψ).

Theorem 3.21. If (F , ϕ) : C → D and (G, γ) : D → E are lax monoidal, then the
functor (GF , ϕγ) : C→ E is lax monoidal. Similarly, if (F , ψ) and (G, δ) are colax,
then so is (GF , δψ).

If F ⇒ F ′ is a morphism of (co)lax monoidal functors, then the induced natural
transformation GF ⇒ GF ′ is also a morphism of (co)lax monoidal functors.

If G ⇒ G′ is a morphism of (co)lax monoidal functors, then the induced natural
transformation GF ⇒ G′F is also a morphism of (co)lax monoidal functors.

Proof. We prove the first statement (for lax functors). The statement for co-
lax follows by passing to the opposite categories (Proposition 3.7) and the remaining
assertions can be shown similarly.
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The associativity axiom for (GF , ϕγ) follows by the commutativity of the fol-
lowing diagram.

GFA • GFB • GFC
id•γFB,FC

//

γFA,FB•id

��

GFA • G(FB • FC)
id•G(ϕB,C)

//

γFA,FB•FC

��

GFA • GF(B • C)

γFA,F(B•C)

��

G(FA • FB) • GFC
γFA•FB,FC

//

G(ϕA,B)•id

��

G(FA • FB • FC)
G(id•ϕB,C)

//

G(ϕA,B•id)

��

G
(
FA • F(B • C)

)

G(ϕA,B•C)

��

GF(A •B) • GFC γF(A•B),FC

// G(F(A •B) • FC)
G(ϕA•B,C)

// GF(A •B • C)

The top left diagram is the associativity of γ, while the bottom right diagram is the
functor G applied to the associativity of ϕ. The remaining two diagrams commute
by the naturality of γ.

The left unitality axiom for (GF , ϕγ) follows by the commutativity of the fol-
lowing diagram.

I • GF(A)
γ0•id

ttiiiiiiiii
GF(A)

λGF(A)
oo

G(λF(A))ttiiiiiiiiii

GF(λA)

��

G(I) • GF(A) γI,F(A)

//

G(ϕ0)•id

��

G
(
I • F(A)

)

G(ϕ0•id)

��

GF(I •A)

GF(I) • GF(A)
γF(I),F(A)

// G
(
F(I) • F(A)

) G(ϕI,A)

44iiiiiiiii

The oblique squares commute by the left unitality of γ and the functor G applied
to the left unitality of ϕ, while the third square commutes by the naturality of γ.

The verification of the right unitality axiom is similar. This proves that the
composite functor (GF , ϕγ) is lax. �

Theorem 3.22. If (F , ϕ, ψ) : C→ D and (G, γ, δ) : D→ E are bilax monoidal, then
so is (GF , ϕγ, δψ).

In addition, pre or post composing by a bilax monoidal functor preserves mor-
phisms between bilax monoidal functors.

Proof. In view of Theorem 3.21, one only needs to prove the commutativity
of diagrams (3.11), (3.12) and (3.13) for (GF , ϕγ, δψ).
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The commutativity of (3.11) follows from that of the following diagram. For
simplicity of notation, the tensor product symbol has been suppressed.

GF(AB)GF(CD)
G(ψA,B)G(ψC,D)

//

γF(AB),F(CD)

��

G(FAFB)G(FCFD)
δFA,FBδFC,FD

//

γFAFB,FCFD

��

(GFA)(GFB)(GFC)(GFD)

idβ id

��
G(F(AB)F(CD))

G(ψA,BψC,D)
//

G(ϕAB,CD)

��

G(FAFBFCFD)

G(id β id)

��

(GFA)(GFC)(GFB)(GFD)

γFA,FCγFB,FD

��
GF(ABCD)

GF(idβ id)

��

G(FAFCFBFD)
δFAFC,FBFD

//

G(ϕA,CϕB,D)

��

G(FAFC)G(FBFD)

G(ϕA,C)G(ϕB,D)

��
GF(ACBD)

G(ψAC,BD)
// G(F(AC)F(BD))

δF(AC),F(BD)

// GF(AC)GF(BD)

The squares commute by the naturality of γ and δ, while the hexagons commute
by the braiding axiom (3.11) for (G, γ, δ) and the functor G applied to the same
axiom for (F , ϕ, ψ).

The first axiom in (3.12) follows from the commutativity of the following dia-
gram.

I
γ0

//

λI

��

G(I)
G(ϕ0)

//

G(λI )

  B
BB

BB
BB

BB
BB

BB
GF(I)

GF(λI )
// GF(I • I)

G(ϕI,I )

$$I
IIIIIIIIIIIIII

G(I • I)
G(ϕ0•ϕ0)

//

δI,I

��

G
(
F(I) • F(I)

)

δF(I),F(I)

��

I • I γ0•γ0
// G(I) • G(I)

G(ϕ0)•G(ϕ0)
// GF(I) • GF(I)

The pentagons commute by the first axiom in (3.12) for (G, γ, δ) and the functor G
applied to the same axiom for (F , ϕ, ψ). The square commutes by the naturality
of δ.

The proof for the second axiom in (3.12) can be obtained from the above by
reversing the appropriate arrows. Axiom (3.13) follows directly. �

An alternative proof of Theorem 3.22 is given in Remark 3.78. It is also clear
that if F , G and H are composable bilax monoidal functors, then

H(GF) ∼= (HG)F

as bilax monoidal functors.
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3.3.2. Composites of braided bilax monoidal functors. We now turn our
attention to the interaction between composites and the constructions of Defini-
tion 3.14.

Proposition 3.23. We have

(ϕγ)b = ϕbγb b(ϕγ) = (bϕ)(bγ) (δψ)b = δbψb b(δψ) = (bδ)(bψ).

This is an easy consequence of the definitions. Thus, the composition of lax,
colax, and bilax monoidal functors is compatible with conjugation by the braid-
ings, and hence compatible with the constructions in Propositions 3.15 and 3.16.
Combining Proposition 3.23 with (3.17) and (3.18) one obtains the following result.

Proposition 3.24. The composite of two braided lax (colax, bilax ) monoidal func-
tors is again braided lax (colax, bilax ) monoidal.

Further, pre or post composing by a braided lax (colax, bilax) monoidal functor
preserves morphisms between braided lax (colax, bilax) monoidal functors.

3.3.3. 2-categories arising from monoidal functors. The preceding results
can be succintly expressed using the notion of 2-category (Section C.1.1). Let Cat be
the 2-category whose 0-cells, 1-cells, and 2-cells are respectively categories, functors,
and natural transformations. Together with Proposition 3.10, the preceding results
say that lax monoidal functors are the 1-cells of a 2-category whose objects are
monoidal categories and whose 2-cells are morphisms of lax monoidal functors. We
call this 2-category lCat. The same construction with colax replacing lax yields cCat.
Similarly, there is a 2-category whose 0-cells, 1-cells, and 2-cells are respectively
braided monoidal categories, bilax monoidal functors, and their morphisms.

Further, there are braided versions of all these: Braided lax (colax, bilax)
monoidal functors are the 1-cells of a 2-category whose objects are braided monoidal
categories and whose 2-cells are morphisms of braided lax (colax, bilax) monoidal
functors. We return to these ideas in Sections 6.11 and 7.9.

3.4. A comparison of bimonoids and bilax monoidal functors

The discussion in Section 3.1 reveals a parallel between the notions of monoid,
comonoid, bimonoid, and those of lax, colax, and bilax monoidal functor, respec-
tively. These notions are connected in this section in two different ways. First we
show that any bimonoid may be seen as a special case of a bilax monoidal functor,
then we deduce that the image of a bimonoid under a bilax monoidal functor is
again a bimonoid. Similar results connect monoids to lax monoidal functors and
comonoids to colax monoidal functors.

3.4.1. Bimonoids as bilax monoidal functors. Monoids may be viewed as lax
monoidal functors. We recall this construction of Bénabou [38, Section 5.4.1] and
then give the corresponding result for bimonoids.

Let (A, µ, ι) be a monoid in a monoidal category (C, •) with unit object I. Let
(I, •) be the one-arrow category and let

FA : I→ C

be the functor that sends the unique object ∗ of I to A. Next, we define a trans-
formation ϕ and a map ϕ0 in order to turn FA into a lax monoidal functor (Defi-
nition 3.1). Since there is only one object and one morphism in the category I, ϕ
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consists of only one map, which is ϕ∗,∗; also, ϕ0 is a map I → F(∗). We let

FA(∗) • FA(∗)
ϕ∗,∗:=µ

// FA(∗ • ∗) and I
ϕ0:=ι

// FA(∗).

Then

(3.22) (FA, ϕ, ϕ0) : (I, •)→ (C, •)

is a lax monoidal functor. Associativity of µ translates into associativity of ϕ (3.5)
and similarly for unitality (3.6).

Similarly, given a comonoid (C,∆, ǫ) in (C, •), define a colax monoidal functor

(FC , ψ, ψ0)

by FC(∗) := C,

FC(∗ • ∗)
ψ∗,∗:=∆

// FC(∗) • FC(∗) and FC(∗)
ψ0:=ǫ

// I.

Proposition 3.25. The above construction defines an equivalence from the cate-
gory of (co)monoids in (C, •) to the category of (co)lax monoidal functors from
(I, •) to (C, •).

Proof. Given a monoid (A, µ, ι), we send it to the lax functor (FA, ϕ, ϕ0)
defined above. Conversely, given a lax functor (F , ϕ, ϕ0) : (I, •) → (C, •), we send
it to (F(∗), ϕ∗,∗, ϕ0). One can check directly that this is a monoid. These corre-
spondences define the equivalence. The case of comonoids is similar. �

Combining the two situations above, given a bimonoid (H,µ, ι,∆, ǫ) we con-
struct

(3.23) (FH , ϕ, ϕ0, ψ, ψ0).

This is a bilax monoidal functor: the four compatibility diagrams for a bimonoid
(Definition 1.10) correspond to the four compatibility diagrams for a bilax monoidal
functor (Definition 3.3).

Proposition 3.26. Let (C, •, β) be a braided monoidal category. The above con-
struction defines an equivalence from the category of bimonoids in (C, •, β) to the
category of bilax monoidal functors from (I, •, β) to (C, •, β).

Proof. As for Proposition 3.25. �

This discussion shows that a bilax monoidal functor need not be braided and
a braided (co)lax monoidal functor need not be bilax.

3.4.2. Commutative monoids as braided lax monoidal functors. Recall
that the (co)product of a (co)monoid can be twisted by the braiding to yield its
opposite (co)monoid (Section 1.2.9). Recall that in much the same way, the struc-
ture of a (co)lax monoidal functor can be twisted to yield its conjugate (co)lax
monoidal functor (Definition 3.14). We now make the analogy between these two
constructions precise using the preceding discussion.

If the monoid A = (A, µ, ι) corresponds to the lax monoidal functor (FA, ϕ),
then the opposite monoid Aop = (A, µβ, ι) corresponds to the conjugate lax mon-
oidal functor (FA, ϕb), and similarly, opA = (A, µβ−1, ι) corresponds to (FA, bϕ).
This is clear from the definitions.
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Similarly, if the comonoid C = (C,∆, ǫ) corresponds to the colax monoidal
functor (FC , ψ), then the opposite comonoid Ccop = (C, β−1∆, ǫ) corresponds to
the conjugate colax monoidal functor (FC , ψb), and similarly, copC = (C, β∆, ǫ)
corresponds to (FC , bψ).

In addition, it is clear from (1.15) and (1.16), and (3.17) and (3.18) that

A is a commutative monoid⇐⇒ (FA, ϕ) is a braided lax monoidal functor

C is a cocommutative comonoid⇐⇒ (FC , ψ) is a braided colax monoidal functor.

The preceding statements can be phrased as follows.

Proposition 3.27. The category of (co)commutative (co)monoids in (C, •, β) is
equivalent to the category of braided (co)lax monoidal functors from (I, •, β) to
(C, •, β).

3.4.3. Bilax monoidal functors preserve bimonoids. A significant property
of lax, colax and bilax monoidal functors is that they preserve monoids, comonoids
and bimonoids respectively. The assertions for lax (and colax) monoidal functors
appear in [38, Proposition 6.1] and are also given below (Proposition 3.29).

Definition 3.28. Let (F , ϕ) : (C, •) → (D, •), where ϕ : F2 ⇒ F2 and ϕ0 : I →
F(I) are as in (3.3) and (3.4). Also consider (A, µ, ι) where A is an object and
µ : A •A→ A and ι : I → A are morphisms in C. Then define the triple

(F(A), µϕ, ιϕ0),

where µϕ and ιϕ0 are given by the following composites.

F(A) • F(A)
ϕA,A

// F(A •A)
F(µ)

// F(A)

I
ϕ0 // F(I)

F(ι)
// F(A)

Similarly for the dual situation, given (F , ψ) and (C,∆, ǫ), we define the triple

(F(C), ψ∆, ψ0ǫ),

where ψ∆ and ψ0ǫ are given by the following composites.

F(C) • F(C) F(C • C)
ψC,C

oo F(C)
F(∆)

oo

I F(I)
ψ0oo F(C)

F(ǫ)
oo

Combining the two situations, given (F , ϕ, ψ) and (H,µ, ι,∆, ǫ), we can consider
the quintuple

(F(H), µϕ, ιϕ0, ψ∆, ψ0ǫ).

Proposition 3.29. If F is a (co)lax monoidal functor from (C, •) to (D, •) and H
is a (co)monoid in (C, •), then F(H) is a (co)monoid in (D, •) with the (co)product
and (co)unit as in Definition 3.28.

Moreover, if f : H → H ′ is a morphism of (co)monoids in (C, •), then the
induced morphism F(f) : F(H)→ F(H ′) is a morphism of (co)monoids in (D, •).

Proof. We explain the case of monoids. Recall that associated to a monoid H
there is the lax monoidal functor FH of (3.22). We have the following commutative
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diagram of functors.

I

FH
��

==
==

==
==

FF(H)
// D

C

F

??�������

Since F and FH are lax monoidal functors, so is FF(H), by Theorem 3.21. Hence,
by Proposition 3.25, F(H) is a monoid in (D, •), and further this monoid structure
coincides with that in Definition 3.28. The assertion about morphisms follows
similarly. �

Proposition 3.30. A morphism of (co)lax monoidal functors θ : F ⇒ G yields a
morphism of (co)monoids θH : F(H) → G(H) in (D, •), when H is a (co)monoid
in (C, •).

Proof. We explain the case of monoids. Let FH be the lax monoidal functor
of (3.22). By precompsing θ with FH , as shown below

I
FH // C

F
))

G

55 D,

and applying Theorem 3.21, we obtain a morphism FF(H) → FG(H) of lax mon-
oidal functors. Equivalently, from Proposition 3.25, this yields the morphism
θH : F(H)→ G(H) of monoids. �

The above results imply that lax and colax monoidal functors from C to D

induce functors

Mon(C)→ Mon(D) and Comon(C)→ Comon(D)

respectively, and that a morphism between two (co)lax monoidal functors yields a
natural transformation between the induced functors on (co)monoids.

Proposition 3.31. If (F , ϕ, ψ) is a bilax monoidal functor from (C, •, β) to (D, •, β)
and H is a bimonoid in (C, •, β), then F(H) is a bimonoid in (D, •, β) with structure
maps as in Definition 3.28.

Moreover, if f : H → H ′ is a morphism of bimonoids in (C, •, β), then the
induced morphism F(f) : F(H)→ F(H ′) is a morphism of bimonoids in (D, •, β).

Proof. Argue as in the proof of Proposition 3.29, using Theorem 3.22 and
Proposition 3.26. �

Proposition 3.32. A morphism of bilax monoidal functors from θ : F → G yields
a morphism of bimonoids θH : F(H) → G(H) in (D, •) when H is a bimonoid in
(C, •).

Proof. This follows from Proposition 3.30. �

3.4.4. Braided lax functors preserve commutative monoids. Braided lax
monoidal functors preserve commutative monoids, and there are dual results for
braided colax monoidal functors. These and related results are discussed next.

Recall the discussion in Section 3.4.2 which relates the opposite construction
on (co)monoids to the conjugate construction on (co)lax monoidal functors. This
used in conjunction with Proposition 3.23 yields the following.
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Proposition 3.33. Let (F , ϕ) be a lax monoidal functor. The images of a monoid
A under the lax monoidal functors (F , ϕb) and (F , bϕ) are respectively

F(opA)op and opF(Aop).

Let (F , ψ) be a colax monoidal functor. The images of a comonoid C under the
colax monoidal functors (F , ψb) and (F , bψ) are respectively

F(copC)cop and copF(Ccop).

Proposition 3.34. Let (F , ϕ, ψ) be a bilax monoidal functor (C, •, β) → (D, •, β)
and let H be a bimonoid in (C, •, β). The image of Hcop under the bilax monoidal
functor (F , ϕ, ψb) is

F(H)cop

and the image of opH under the bilax monoidal functor (F , bϕ, ψ) is

opF(H).

The images of H under the bilax monoidal functors (F , ϕb, ψb) and (F , bϕ, bψ) are
respectively

F(op,copH)op,cop and op,copF(Hop,cop).

Proof. This follows from Proposition 3.33. Alternatively, it may also be de-
duced directly from Proposition 3.23. �

We emphasize a small point here. For the bilax functor (F , ϕ, ψb), the correct
braiding to use on C is β−1 rather than β. Hence in the statement above, this
functor is applied to Hcop and not H . A similar remark applies to the bilax functor
(F , bϕ, ψ).

Proposition 3.35. Let F be a braided lax (resp. colax ) monoidal functor. Then
for A a monoid (resp. C a comonoid), we have

F(opA) = opF(A) and F(Aop) = F(A)op

as monoids (resp.

F(copC) = copF(C) and F(Ccop) = F(C)cop

as comonoids).

Proposition 3.36. Let F be a braided bilax monoidal functor. Then for H a
bimonoid, we have

F(Hcop) = F(H)cop, F(opH) = opF(H),

F(op,copH) = op,copF(H) and F(Hop,cop) = F(H)op,cop

as bimonoids.

The above results follow from Propositions 3.33 and 3.34.

Proposition 3.37. A braided (co)lax monoidal functor preserves (co)commuta-
tivity of (co)monoids and morphisms between (co)commutative (co)monoids.

Proof. The first assertion follows by combining Proposition 3.35 with (1.15)
and (1.16). It may also be viewed as a special case of Proposition 3.24. The second
assertion follows from the fact that the category of (co)commutative (co)monoids
is a full subcategory of the category of (co)monoids. �
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The above result says that braided lax and braided colax monoidal functors
induce functors

Monco(C)→ Monco(D) and coComon(C)→ coComon(D)

respectively.

Proposition 3.38. A morphism of braided (co)lax monoidal functors θ : F → G
yields a morphism of (co)commutative (co)monoids θH : F(H) → G(H) in (D, •)
when H is a (co)commutative (co)monoid in (C, •).

Proof. This follows from Proposition 3.30. �

3.4.5. The convolution monoid revisited. Recall the construction of the con-
volution monoid from Definition 1.13. This construction can be understood in terms
of monoidal functors as follows.

A monoid (C,A) in Cop×C is the same as a comonoid C and a monoid A in C.
The convolution monoid Hom(C,A) then arises as the image of the monoid (C,A)
under the lax monoidal functor Hom: Cop × C→ Set of Example 3.17. In fact, we
saw in Example 3.12 that this functor is braided; so it preserves commutativity. A
commutative monoid (C,A) in Cop × C is the same as a cocommutative comonoid
C and a commutative monoid A in C. Thus, in this case the convolution monoid
Hom(C,A) is commutative.

The convolution monoid arises in yet another manner. Consider the functors

FC : I→ C and FA : I→ C,

as in Section 3.4.1. The former is colax monoidal and the latter is lax monoidal.
We may thus consider the convolution comma category FC ↓ FA of Section 3.1.4.
This is a monoidal category. The objects are arrows C → A in C, and the only
morphisms are identities. In other words, it is the discrete category corresponding
to the set Hom(C,A). Further, the monoidal structure of FC ↓ FA boils down to
the monoid structure of Hom(C,A).

3.5. Normal bilax monoidal functors

In this section, we discuss normal bilax monoidal functors. The terminology
is motivated by the example of the normalized chain complex functor, which is
discussed in Section 5.4.

Definition 3.39. A bilax monoidal functor (F , ϕ, ψ) is called normal if

(3.24) ϕ0ψ0 = id.

Note that a bilax functor always satisfies the condition ψ0ϕ0 = id, by (3.13).
Thus, if it is normal, then ϕ0 and ψ0 are inverse maps. The Fock functors we
consider in Part III are normal. However, not every bilax functor is normal. An
example of a class of bilax functors that are not normal is given below.

Remark 3.40. Let H be a bimonoid and FH be the corresponding bilax functor
of (3.23). The bilax functor FH is normal if and only if ι : I → H and ǫ : H → I
are inverse maps. Thus, FH is normal if and only if H is the trivial bimonoid. In
particular, not every bilax functor is normal.

Normal bilax functors satisfy some interesting properties which we discuss next.
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Proposition 3.41. Let (F , ϕ, ψ) be a normal bilax monoidal functor. Then the
following properties hold for any objects A,B,C.

(1) The maps ϕA,I and ψA,I are inverse, and so are the maps ϕI,A and ψI,A.
(2) ψA,BϕA,B = id.
(3) The following diagram commutes.

(3.25)

F(A) • F(B)
ϕA,B

//

β

��

F(A •B)

F(β)

��

F(B) • F(A) F(B •A)
ψB,A

oo

This is equivalent to ψ(bϕ) = id and also to (ψb)ϕ = id.
(4) The following diagrams commute.

F(A) • F(B • C)
id•ψB,C

//

ϕA,B•C

��

F(A) • F(B) • F(C)

ϕA,B•id

��

F(A •B • C)
ψA•B,C

// F(A •B) • F(C)

(3.26)

F(A •B) • F(C)
ψA,B•id

//

ϕA•B,C

��

F(A) • F(B) • F(C)

id•ϕB,C

��

F(A •B • C)
ψA,B•C

// F(A) • F(B • C)

(3.27)

Proof. The right diagram in (3.6) tells us that

ϕA,I = F(ρA)ρ−1
F(A)(id • ϕ

−1
0 ),

while the dual diagram tells us that

ψA,I = (id • ψ−1
0 )ρF(A)F(ρA)−1

Since ϕ0 = ψ−1
0 , we have ϕA,I = ψ−1

A,I . One checks similarly that ϕI,A and ψI,A are
inverse maps. This proves the first property.

The second property follows by the commutativity of the diagram below. For
simplicity of notation, we omit the tensor product symbols. We write I for the unit
object in both the source and the target category. The composite map on the top
side of the big square is ψA,BϕA,B and the composite obtained by following the
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other three sides is the identity, since βI,I = id.

FAFB
ϕA,B

//

F(ρA)F(λB)

��
::

::
::

::
::

::
::

::
::

::
::

::
::

::

ρFAλFB

��

F(AB)
ψA,B

//

F(ρAλB)

��

F(ρAλB)

yyrrrrrrrrrrrrrrrrrr
FAFB

F(AIIB)
id βI,I id

// F(AIIB)

ψAI,IB

%%K
KKKKKKKKKKKKKKKK

F(AI)F(IB)

ϕAI,IB

OO

ψA,IψI,B

��

F(AI)F(IB)

F(ρ−1
A )F(λ−1

B )

OO

FAFIFIFB
id βFI,FI id

//

idψ0ψ0 id

xxrrrrrrrrrrrrrrrrrr
FAFIFIFB

ϕA,IϕI,B

99rrrrrrrrrrrrrrrrrr

idψ0ψ0 id

��

(FA)II(FB)
id βI,I id

// (FA)II(FB)

idϕ0ϕ0 id

TT

ρ−1
FAλ

−1
FB

// FAFB

F(ρA)F(λB)

OO

The hexagon in the center commutes since F satisfies the braiding axiom (3.11).
The other smaller diagrams, starting from the top left corner and going in coun-
terclockwise direction, commute by the naturality of ϕ, the unitality of ψ, the
naturality of β, the hypothesis ϕ0ψ0 = id, the unitality of ϕ and the naturality of
ψ respectively.

For the third property, we may proceed directly as in the above proof. Alter-
natively, we may use Proposition 3.16 to first deduce that (F , bϕ, ψ) and (F , ϕ, ψb)
are bilax monoidal functors. Note that ϕ0 and ψ0 do not change during this con-
struction. Now applying the second property to each of these functors, we ob-
tain ψ(bϕ) = id and (ψb)ϕ = id, which are both equivalent to the commutativity
of (3.25).

For the fourth property, diagram (3.26) commutes by the commutativity of
the diagram below. One can then use symmetry to deduce that diagram (3.27)
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commutes as well.

FAF(BC)
idψB,C

//

F(ρA) id

��
77

77
77

77
77

77
77

77
77

77
77

ϕA,BC

��

FAFBFC

id

��

idλFB id

����
��

��
��

��
��

��
��

��
��

��

F(AI)FBFC

F(ρ−1
A ) id id

44iiiiiiiiiiiiiiiiiiiiiiiiii

ψA,I id id

��
F(AI)F(BC)

idψB,C

99ssssssssssssss ψA,IψB,C
//

ϕAI,BC

��

FAFIFBFC
idψ0 id id

//

id βFI,FC id

��

(FA)I(FB)FC

id βI,FC id

��
F(AIBC)

F(idβI,B id)

��

FAFBFIFC

id idψ0 id
..

id idϕI,C
LLLLLL

%%LLLLLLϕA,BϕI,C

��

FA(FB)I(FC)
id ρ−1

FB id
//

id idϕ0 id
mm FAFBFC

ϕA,C id

��

id idF(λC)

yytttttttttttttt

F(ABIC)
ψAB,IC

// F(AB)F(IC)

idF(λ−1
C )

**UUUUUUUUUUUUUUUUUUUUUUUUU FAFBF(IC)
ϕA,C id
oo

F(ABC)

F(ρA id id)

CC����������������������
F(id idλC)

::uuuuuuuuuuuuuu

ψAB,C

// F(AB)FC

The outside square is the diagram we want. The hexagon in the center commutes
since F satisfies the braiding axiom (3.11). The other smaller diagrams commute
by the naturality and unitality of ϕ and ψ, the naturality of β and its compatibility
with the unit (1.7), and the hypothesis ϕ0ψ0 = id. �

We give an example below which shows that the converse to Proposition 3.41
is false. For a related result, see Proposition 3.46.

Example 3.42. Let G be a finite group and let ModG be the symmetric monoidal
category of left G-modules. Consider the functor

(−)G : ModG → Vec

which sends a module M to MG, the space of G-invariants of M (Section 2.5.1).
Define natural transformations ϕ and ψ as in (3.9) to be

MG ⊗NG

ϕM,N
%%

ψM,N

ee (M ⊗N)G,
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where ϕ is the natural inclusion and ψ is given by either of the following expressions

ψ

(
∑

i

mi ⊗ ni

)
=

1

|G|

∑

g∈G

∑

i

g ·mi ⊗ ni

=
1

|G|

∑

h∈G

∑

i

mi ⊗ h · ni

=
1

|G|2

∑

g,h∈G

∑

i

g ·mi ⊗ h · ni.

Define the morphisms ϕ0 and ψ0 as in (3.10) to be the identity maps.
One has ϕ0ψ0 = id and can show that

(
(−)G, ϕ, ψ

)
satisfies all the properties in

Proposition 3.41; however, it is not bilax. In fact, one may check that the braiding
axiom (3.11) does not hold.

Remark 3.43. Functors (F , ϕ, ψ) satisfying (3.26) and (3.27) have been considered
in the literature; they are called Frobenius monoidal functors [92, 265, 352, 353].
A Frobenius functor is said to be separable if in addition it satisfies

ϕA,BψA,B = idF(A•B).

Note the difference with condition (ii) in Proposition 3.41. McCurdy and Street
[265, Proposition 3.10] show that a separable Frobenius functor necessarily satisfies
the braiding axiom (3.11). By contrast, the conditions in Proposition 3.41 do not
suffice to imply (3.11), as Example 3.42 shows.

3.6. Bistrong monoidal functors

Strong, costrong and bistrong monoidal functors were introduced in Defini-
tion 3.5. In this section, we study these notions in more detail.

Recall that a strong monoidal functor is a lax monoidal functor (F , ϕ) for which
the transformation ϕ is invertible. In this case, the functor (F , ϕ−1) is colax, and
so it is natural to wonder whether (F , ϕ, ϕ−1) may be bilax. In Proposition 3.46
we show that this is the case if and only if the lax monoidal functor (F , ϕ) is
braided. This is an important difference with the general case, in which a braided
lax monoidal functor may not be bilax, and a bilax monoidal functor may not be
braided.

Recall that a bistrong monoidal functor is a bilax monoidal functor (F , ϕ, ψ)
for which ϕ and ψ are invertible. In Proposition 3.45 we show that in this case
necessarily ψ = ϕ−1. It then follows that bistrong and braided strong are equivalent
notions.

Another significant property of bistrong monoidal functors is that they preserve
Hopf monoids. This is shown in Proposition 3.50. We mention that a general
setup for dealing with the problem of preservation of Hopf monoids is considered in
Section 3.7; see Proposition 3.60 and Remark 3.71 for the relevance to the present
discussion.

3.6.1. Strong and bistrong monoidal functors. Throughout this discussion, C

and D are monoidal categories, F : C→ D is a functor between them, ϕ : F2 ⇒ F2

and ψ : F2 → F2 are natural transformations as in (3.3) and (3.7), and finally
ϕ0 : I → F(I) and ψ0 : F(I)→ I are maps in D.

The following result is immediate from Definition 3.5.
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Proposition 3.44. Assume that ϕ and ϕ0 are invertible. Define ψ = ϕ−1 and
ψ0 = ϕ−1

0 . Then

(F , ϕ) is strong ⇐⇒ (F , ψ) is costrong.

Thus, strong and costrong are equivalent notions.

Recall the notion of normal bilax monoidal functors from Definition 3.39.

Proposition 3.45. Let (F , ϕ, ψ) be a bistrong functor. Then ψ0 = ϕ−1
0 and ψ =

ϕ−1. In particular, F is normal. Conversely, if (F , ϕ, ψ) is a normal bilax monoidal
functor such that ϕψ = id, then (F , ϕ, ψ) is bistrong.

Proof. From (3.13) we know that ψ0ϕ0 = id. But since under the present
hypothesis these maps are invertible (Definition 3.5), we have that ψ0 = ϕ−1

0 , that
is, F is normal. It follows from Proposition 3.41 that ψϕ = id, and again since
these maps are invertible we have that ψ = ϕ−1.

Conversely, if F is normal, then ψ0 and ϕ0 are inverse maps. Further, Propo-
sition 3.41 gives ψϕ = id, which with the hypothesis says that ψ and ϕ are inverse
maps. Hence F is bistrong. �

Proposition 3.46. The following are equivalent.

(i) (F , ϕ, ψ) is bistrong.
(ii) (F , ϕ) is braided strong, ψ = ϕ−1, and ψ0 = ϕ−1

0 .

(iii) (F , ψ) is braided costrong, ϕ = ψ−1, and ϕ0 = ψ−1
0 .

Proof. It is clear that braided strong is equivalent to braided costrong. The
nontrivial part is to show the equivalence between bistrong and braided strong.
Suppose (F , ϕ, ψ) is bistrong. By Proposition 3.45, it is normal and ψ = ϕ−1. We
may then use Proposition 3.41, part (iii), to deduce that diagram (3.25) commutes,
which since ψ = ϕ−1 is equivalent to (F , ϕ) being braided.

For the converse implication, we first note that for a braided strong functor
(F , ϕ), diagram (3.16) and the associativity of ϕ imply that diagrams (3.25), (3.26)
and (3.27) commute. The braiding axiom (3.11) for (F , ϕ, ψ) then follows from the
commutativity of the diagram below (in which tensor product symbols are omitted).

F(AB)F(CD)
ψA,BψC,D

//

idψC,D
''NNNNNNNNNNNN

ϕAB,CD

��

FAFBFCFD

id βB,C id

''NNNNNNNNNNNNN

idϕB,C id
wwppppppppppppp

F(AB)FCFD

ψA,B id

33gggggggggggggggggggggg

ϕAB,C id

��

FAF(BC)FD

idF(βB,C) id
''NNNNNNNNNNNN FAFCFBFD

ϕA,CϕB,D

��

ϕA,C id

����
��

��
��

��
��

��
��

��
�

F(ABC)FD

ψA,BC id

77pppppppppppp
FAF(CB)FD

idψC,B id

77pppppppppppp

ϕA,CB id

wwpppppppppppp

F(ABCD)

ψABC,D

77pppppppppppp

F(id βB,C id)
''NNNNNNNNNNNN F(ACB)FD

ψAC,B id
//

ϕACB,D

wwpppppppppppp
F(AC)FBFD

idϕB,D
''NNNNNNNNNNNN

F(ACBD)
ψAC,BD

//F(AC)F(BD)
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The two triangles commute by construction, the hexagon commutes by the natu-
rality of ϕ or ψ (here we use ψ = ϕ−1), and the remaining five squares commute
by diagrams (3.25), (3.26) and (3.27).

Since ψ = ϕ−1, the two diagrams in (3.12) are essentially the same. Their
commutativity follows by setting A = I in the unitality axiom (3.6) for (F , ϕ). The
commutativity of (3.13) follows since ψ0 = ϕ−1

0 . This verifies the unitality axioms
for (F , ϕ, ψ) and completes the proof. �

Remark 3.47. The same proof essentially as above, but with a new perspective,
is given in Chapter 6. It works as follows. There is an equivalent way to define a
braided (co)lax functor which is closer to the definition of a bilax functor. In fact,
by reversing some arrows, one can pass back and forth between the two definitions.
The above result then follows, since all arrows are invertible, For more details,
see Example 6.64. To summarize, in the strong situation, the distinction between
braided lax and bilax disappears.

3.6.2. Bistrong functors preserve Hopf monoids and antipodes. Below
(Proposition 3.50) we show that the image of a Hopf monoid under a bistrong
monoidal functor is again a Hopf monoid, and that the antipode of the former is
the image of the antipode of the latter.

Proposition 3.48. A bilax monoidal functor F : C → D is bistrong if and only if
the natural transformation

HomC(−,−) =⇒ HomD

(
F(−),F(−)

)

which sends f to F(f) is a morphism of lax monoidal functors.

The second functor is the composite of the lax functors

Cop × C
F×F

// Dop × D
Hom // Set.

For the lax structure on F × F , one uses the colax structure of F on the first
component and the lax structure on the second component. The lax structure of
Hom is described in Example 3.17.

Proof. The natural transformation

HomC(−,−) =⇒ HomD

(
F(−),F(−)

)

is a morphism of lax functors if and only if the following diagrams commute.

Hom(A,C)×Hom(B,D) //

��

Hom
(
F(A),F(C)

)
×Hom

(
F(B),F(D)

)

��

Hom
(
F(A) • F(B),F(C) • F(D)

)

ϕC,D◦−◦ψA,B

��

Hom(A •B,C •D) // Hom
(
F(A •B),F(C •D)

)
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Hom(I, I)

ϕ0◦−◦ψ0

��

{∅}

66mmmmmmmm

((PPPPPPPP

Hom
(
F(I),F(I)

)

This is equivalent to the commutativity of the diagrams

F(A •B)
F(f•g)

//

ψA,B

��

F(C •D)

F(A) • F(B)
F(f)•F(g)

// F(C) • F(D)

ϕC,D

OO
F(I)

id //

ψ0

��

F(I)

I
id

// I

ϕ0

OO

for any morphisms f : A→ C and g : B → D.
For the forward implication, we note that if F is bistrong, then the left diagram

commutes by the naturality of ψ or ϕ (since ϕ = ψ−1) and the right diagram
commutes since ϕ0 = ψ−1

0 .
For the backward implication, assume that the above diagrams commute. Set-

ting A = C and B = D and f and g to be identities, we conclude that ϕψ = id and
ϕ0ψ0 = id. Then Proposition 3.45 implies that F is bistrong. �

Let A be a monoid andC be a comonoid in C. As mentioned in Section 3.4.5, the
convolution monoid Hom(C,A) arises as the image of the monoid (C,A) in Cop×C

under the lax monoidal functor Hom: Cop × C→ Set. Therefore, Propositions 3.30
and 3.48 imply:

Proposition 3.49. For F a bistrong monoidal functor from (C, •) to (D, •) and C
a comonoid and A a monoid in (C, •), there is a morphism of convolution monoids

Hom(C,A) // Hom
(
F(C),F(A)

)

which sends f to F(f).

It follows that a bistrong monoidal functor preserves antipodes. In more detail,
we have:

Proposition 3.50. If F is a bistrong monoidal functor from (C, •) to (D, •) and H
is a Hopf monoid in (C, •) with antipode s : H → H , then F(H) is a Hopf monoid
in (D, •) with antipode F(s) : F(H)→ F(H).

In addition, if f : H → H ′ is a morphism of Hopf monoids in (C, •), then
F(f) : F(H)→ F(H ′) is a morphism of Hopf monoids in (D, •).

Since a morphism of Hopf monoids is a morphism of the underlying bimonoids,
Proposition 3.32 implies:

Proposition 3.51. A morphism of bistrong monoidal functors from F to G yields
a morphism of Hopf monoids F(H) → G(H) in (D, •) when H is a Hopf monoid
in (C, •).

Example 3.52. Let k be a commutative ring. Consider the linearization functor

k(−) : (Set,×, {∗}) −→ (Modk,⊗, k),
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which sends a set to the free k-module with basis the given set. This functor is
bistrong. Below we discuss three implications of this statement.

• Every set X carries a unique comonoid structure in (Set,×, {∗}). The
coproduct ∆ : X → X ×X is ∆(x) = (x, x) and the counit ǫ : X → {∗}
is ǫ(x) = ∗.

It follows that kX is a coalgebra in which all elements of X are group-
like, that is, ∆(x) = x ⊗ x and ǫ(x) = 1 for x ∈ X . This is the coalgebra
of a set [1, Example 2.1] or [350, Section 1.0, Example 1].
• If the set X is a monoid (in the usual sense), then it is canonically a

bimonoid in (Set,×, {∗}), and hence kX is a bialgebra.
• A monoid X is a Hopf monoid precisely if X is a group. (The antipode

sends an element to its inverse.) Hence for any groupX , the group algebra
kX is a Hopf algebra. Its antipode is the linearization of the map of x 7→
x−1. See [191, Section III.3, Example 2] or [350, Section 4.0, Example 1].

3.7. Hopf lax monoidal functors

We know that a bilax monoidal functor preserves bimonoids. In addition, we
have seen that bistrong monoidal functors preserve Hopf monoids and antipodes
(Proposition 3.50). However, an arbitrary bilax monoidal functor need not preserve
Hopf monoids or antipodes. In other words: If H is a Hopf monoid in C with
antipode s : H → H , and if F is a bilax monoidal functor from C to D, then F(H)
need not be a Hopf monoid, and even if it is, the antipode of F(H) need not be
F(s).

We provide a simple example. Consider the one-arrow category I. Then its
unique object ∗ is a Hopf monoid, whose antipode is the identity. Associated to
any bimonoid H there is the bilax monoidal functor FH of (3.23), and FH(∗) = H ,
which may be a Hopf monoid or not. Even when this is the case, the antipode of
H need not be the identity.

Numerous examples with these features appear in the later parts of the mono-
graph. To give one concrete example, consider the Hopf monoid L∗ of linear orders
in the category of species (Example 8.24). Call its antipode s. Applying the full
Fock functor K to L∗ yields the Hopf algebra of permutations SΛ (Example 15.17),
whose antipode is not K(s).

The goal of this section is to show that there is an intermediate class of functors
between bilax and bistrong that preserves Hopf monoids but modifies antipodes in
a predictable manner, much as the rest of the structure is modified by a bilax mon-
oidal functor. We call them Hopf lax monoidal functors. They have an interesting
basic theory which we now present.

Notation 3.53. For (F , ϕ) lax, we write

ϕA,B,C : F(A) • F(B) • F(C)→ F(A •B • C)

for the map obtained by following the two directions in diagram (3.5). Note that we
are not specifying brackets here; the objects are to be interpreted as the unbracketed
tensor products.

Similarly for (F , ψ) colax, we write

ψA,B,C : F(A •B • C)→ F(A) • F(B) • F(C).
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Suppose (F , ϕ, ψ) and (G, γ, δ) are composable functors, as in Definition 3.20.
Then,

(3.28)
(ϕγ)A,B,C = G(ϕA,B,C)γFA,FB,FC

(δψ)A,B,C = δFA,FB,FCG(ψA,B,C).

These identities follow from the proof of Theorem 3.21.

3.7.1. Hopf lax monoidal functors. Let (C, •, β) and (D, •, β) be braided mon-
oidal categories.

Definition 3.54. A Hopf lax monoidal functor (F , ϕ, ψ,Υ) consists of a bilax
monoidal functor (F , ϕ, ψ) from C to D and a natural transformation Υ: F ⇒ F
such that the following diagrams commute.

F(A) • F(B) • F(C)
idA•ΥB•idC // F(A) • F(B) • F(C)

ϕA,B,C

��

F(A •B • C)
idA•B•C

//

ψA,B,C

OO

F(A •B • C)

(3.29)

F(A) • F(B) • F(C)
ΥA•idB•ΥC // F(A) • F(B) • F(C)

ϕA,B,C

��

F(A •B • C)
ΥA•B•C

//

ψA,B,C

OO

F(A •B • C)

(3.30)

F(I) • F(I)
idI•ΥI // F(I) • F(I)

ϕI,I

��

F(I • I)

ψI,I

OO

F(I • I)

F(ρ−1
I )

��

F(I)
ϕ0ψ0

//

F(ρI)

OO

F(I)

F(I) • F(I)
ΥI•idI // F(I) • F(I)

ϕI,I

��

F(I • I)

ψI,I

OO

F(I • I)

F(ρ−1
I )

��

F(I)
ϕ0ψ0

//

F(ρI)

OO

F(I).

(3.31)

We say that F is a Hopf lax monoidal functor with antipode Υ.

We give a reformulation of axiom (3.31). Recall that the unit object I of
a braided monoidal category C is a bimonoid. Suppose that (F , ϕ, ψ) is a bilax
functor from C to D and Υ: F ⇒ F is a natural transformation. Then F preserves
bimonoids by Proposition 3.31. By construction, the coproduct and product of
F(I) are the composites of the vertical maps in (3.31) and the counit and unit are
ψ0 and ϕ0 respectively. In this situation,

(3.32) F satisfies axiom (3.31) ⇐⇒ F(I) is a Hopf monoid with antipode ΥI .

In particular, if (F , ϕ, ψ,Υ) is Hopf lax, then F(I) is a Hopf monoid with an-
tipode ΥI .
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Lemma 3.55. The antipode of a Hopf lax functor F is determined by its value on
the unit object, in the sense that the following diagram commutes.

(3.33)

F(I) • F(A) • F(I)
ΥI•idA•ΥI // F(I) • F(A) • F(I)

ϕI,A,I

��

F(I •A • I)

ψI,A,I

OO

F(I •A • I)

∼=

��

F(A)

∼=

OO

ΥA
// F(A).

Proof. The vertical maps near the bottom are the canonical isomorphisms
constructed from the unit constraints. The diagram can be divided in two by
inserting ΥI•A•I in the middle. The top half commutes by (3.30) and the bottom
half by naturality of Υ. �

Proposition 3.56. The antipode of a Hopf lax functor is unique.

Proof. Let F be a Hopf lax functor. We know from (3.32) that F(I) is a
Hopf monoid with antipode ΥI . Hence ΥI is unique. Then ΥA is determined
by (3.33). �

Definition 3.57. Let F be a Hopf lax functor. Define natural transformations
υ : F ⇒ F and υ′ : F ⇒ F by

F(A) • F(I)
idA•ΥI // F(A) • F(I)

ϕA,I

��

F(A • I)

ψA,I

OO

F(A • I)

F(ρ−1
A )

��

F(A) υA
//_______

F(ρA)

OO

F(A)

F(A) • F(I)
ΥA•idI // F(A) • F(I)

ϕA,I

��

F(A • I)

ψA,I

OO

F(A • I)

F(ρ−1
A )

��

F(A)
υ′
A

//_______

F(ρA)

OO

F(A).

(3.34)

We say that υ and υ′ are the convolution units associated to F .

There is an alternative way to define υ and υ′; see Remark 3.67.

3.7.2. Morphisms of Hopf lax monoidal functors.

Definition 3.58. A morphism of Hopf lax monoidal functors is a morphism of the
underlying bilax monoidal functors (Definition 3.9).

Next we show that such a morphism necessarily preserves antipodes and the
associated convolution units, thus justifying the terminology.

Proposition 3.59. Let (F , ϕ, ψ,Υ) and (G, γ, δ,Ω) be Hopf lax functors from C to
D. Let υ and υ′ be the convolution units associated to F , as in (3.34), and ω and
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ω′ those associated to G. Let θ : F → G be a morphism of bilax functors. Then the
following diagrams commute, for any object A.

F(A)
ΥA //

θA

��

F(A)

θA

��

G(A)
ΩA

// G(A)

F(A)
υA //

θA

��

F(A)

θA

��

G(A) ωA
// G(A)

F(A)
υ′
A //

θA

��

F(A)

θA

��

G(A)
ω′
A

// G(A).

(3.35)

Proof. Applying the forward direction of (3.32), F(I) and G(I) are Hopf
monoids with antipodes ΥI and ΩI , respectively. By Proposition 3.32, θI : F(I)→
G(I) is a morphism of bimonoids, and hence, by Proposition 1.16, it preserves
the antipodes. Thus, the first diagram in (3.35) commutes when A = I. The
general case follows by using diagrams (3.14) and (3.15), since ΥA is determined
by ΥI (3.33).

The commutativity of the other diagrams follows similarly, using that υA and
υ′A are determined by Υ by means of (3.34). �

3.7.3. Bistrong versus Hopf lax. Bistrong monoidal functors (Definition 3.5)
are always Hopf lax. The converse implication holds provided the functor is in
addition normal (Definition 3.39). In other words:

Proposition 3.60. Let (F , ϕ, ψ) be a bilax monoidal functor. Then

F is bistrong ⇐⇒ F is Hopf lax and normal.

In this case, the antipode is Υ = id.

Proof. If F is bistrong, the transformations ϕA,B and ψA,B are inverse. It
follows that so are ϕA,B,C and ψA,B,C . Hence diagrams (3.29)–(3.30) commute
with Υ = id. Since ϕ0 and ψ0 are inverse, diagrams (3.31) commute too. Thus, F
is Hopf lax and normal.

Assume now that F is Hopf lax and normal. Proposition 3.41 implies ψϕ = id,
so we only need to show ϕψ = id.

Proposition 3.41 also tells us that ϕI,I and ψI,I are inverse maps. Therefore,
diagrams (3.31) commute when ΥI is replaced by idI . By uniqueness of antipodes
for the Hopf monoid F(I), we must have ΥI = idI . Now considering diagram (3.29)
with B = I we deduce

ϕA,I,CψA,I,C = id.

But the diagram below shows that ϕA,I,C identifies with ϕA,C by composing with
ϕ0:

F(A) • F(I) • F(C)
id•ϕI,C

//

ϕA,I,C

**

F(A) • F(I • C)
ϕA,I•C

// F(A • I • C)

F(A) • I • F(C)

id•ϕ0•id

OO

F(A) • F(C)
id•λF(C)

oo

id•F(λC)

OO

ϕA,C
// F(A •C).

F(id•λC)

OO
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The diagram commutes by (3.5), (3.6), and the naturality of λ. Similarly, ψA,I,C
identifies with ψA,C by composing with ψ0. Therefore,

ϕA,CψA,C = id. �

The main examples of bilax functors discussed in this monograph that are not
bistrong turn out not to be Hopf lax either. The reason is that they are normal.

3.7.4. Convolution of natural transformations. The antipode of a Hopf mon-
oid is the inverse of the identity map in the convolution monoid (Definition 1.15).
The situation is somewhat different for bilax monoidal functors; nevertheless, there
is an operation between natural transformations that plays the role of convolution;
it is defined in (3.37). The convolution identities in this context involve another
operation that has no analogue for Hopf monoids; it is defined in (3.36).

Recall from (3.1) that if F is a functor between monoidal categories C and D,
then F2 : C× C→ D is the functor

F2(A,B) := F(A •B).

Suppose that G : C → D is another functor and θ : F ⇒ G is a natural transforma-
tion. We let

θ(2) : F2 ⇒ G2

be the natural transformation

(3.36) θ
(2)
A,B : F(A •B)

θA•B−−−→ G(A •B).

Now assume that (F , ψ) is a colax monoidal functor and (G, γ) is a lax monoidal
functor. Given natural transformations σ and τ : F ⇒ G, we define their convolu-
tion

σ ∗ τ : F2 ⇒ G2

as the natural transformation

(3.37) (σ∗τ)A,B : F(A•B)
ψA,B
−−−→ F(A)•F(B)

σA•τB−−−−→ G(A)•G(B)
γA,B
−−−→ G(A•B).

We study the behavior of morphisms of lax and colax functors (Definition 3.8) with
respect to convolution of natural transformations.

Proposition 3.61. Let (F , ψ) and (F ′, ψ′) be colax functors and (G, γ) and (G′, γ′)
be lax functors, all from C to D. Let

θ : (F ′, ψ′)⇒ (F , ψ) and κ : (G, γ)⇒ (G′, γ′)

be a morphism of colax functors and a morphism of lax functors, respectively. Then,
for any natural transformations σ, τ : F ⇒ G, we have

(σθ) ∗ (τθ) = (σ ∗ τ)θ(2) and (κσ) ∗ (κτ) = κ(2)(σ ∗ τ).

This is the analogue of Proposition 1.14. The proof is straightforward.
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3.7.5. Convolution identities. We now establish some familiar convolution iden-
tities in the context of Hopf lax functors. The transformations that play the role of
the convolution unit are defined in (3.34). Here we take the most direct approach
to establishing these identities in order to quickly build up to Theorem 3.70. A
more in-depth study of convolution of natural transformations is carried out in
Section D.4.

Throughout this discussion, (F , ϕ, ψ,Υ) denotes a Hopf lax functor.

Proposition 3.62. We have υI = υ′I = ϕ0ψ0.

Proof. This follows from definition (3.34) and axiom (3.31). �

Let id1 denote the identity natural transformation of F and id2 that of F2.

Proposition 3.63. We have υ ∗ id1 = id1 ∗ υ′ = id2.

Proof. The proof of the identity υ ∗ id1 = id2 follows from the commutativity
of the diagram below. The proof of the other identity is similar.

F(A)F(B)
υA idB //

F(ρA) idB

##H
HH

HH
HH

HH
F(A)F(B)

ϕA,B

��

F(AI)F(B)

ψA,I idB

%%KKKKKKKKKK F(AI)F(B)

F(ρ−1
A ) idB

;;vvvvvvvvv

ϕAI,B

��

F(A)F(I)F(B)
idA ΥI idB// F(A)F(I)F(B)

ϕA,I idB
99ssssssssss

ϕA,I,B
%%KKKKKKKKKK

F(AIB)

ψAI,B

OO

ψA,I,B

99ssssssssss

idAIB

// F(AIB)

F(ρ−1
A id) ##H

HH
HH

HH
HH

F(AB)

ψA,B

OO

F(ρA id)

;;vvvvvvvvv

idAB

// F(AB)

The hexagon commutes by the definition of υ, the square in the center commutes
by axiom (3.29) and the remaining three squares commute by naturality of ψ, id,
and ϕ. �

Proposition 3.64. We have Υ ∗ υ = υ′ ∗Υ = Υ(2).
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Proof. The proof of the identity υ′∗Υ = Υ(2) follows from the commutativity
of the diagram below. The proof of the other identity is similar.

F(A)F(B)
υ′
AΥB

//

F(ρA) idB

##H
HH

HH
HH

HH
F(A)F(B)

ϕA,B

��

F(AI)F(B)

ψA,I idB

%%KKKKKKKKKK F(AI)F(B)

F(ρ−1
A ) idB

;;vvvvvvvvv

ϕAI,B

��

F(A)F(I)F(B)
ΥA idI ΥB// F(A)F(I)F(B)

ϕA,I idB
99ssssssssss

ϕA,I,B
%%KKKKKKKKKK

F(AIB)

ψAI,B

OO

ψA,I,B

99ssssssssss

ΥAIB
// F(AIB)

F(ρ−1
A id) ##H

HH
HH

HH
HH

F(AB)

ψA,B

OO

F(ρA id)

;;vvvvvvvvv

ΥAB
// F(AB)

The hexagon commutes by the definition of υ′, the square in the center commutes
by axiom (3.30) and the remaining three squares commute by naturality of ψ, Υ
and ϕ. �

Proposition 3.65. We have id1 ∗Υ = υ(2) and Υ ∗ id1 = υ′(2).

Proof. The proof of the identity id1∗Υ = υ(2) follows from the commutativity
of the diagram below. The proof of the other identity is similar.

F(A)F(B)
idAΥB //

idA F(ρB)

##H
HH

HH
HH

HH
F(A)F(B)

ϕA,B

��

F(A)F(BI)
idAΥBI //

idA ψB,I

%%KKKKKKKKKK F(A)F(BI)

idA F(ρ−1
B )

;;vvvvvvvvv

ϕA,BI

��

F(A)F(B)F(I)
idA υ

′
BΥI

// F(A)F(B)F(I)

idA ϕB,I
99ssssssssss

ϕA,B idI

��
F(AB)F(I)

ψA,B idI

OO

idAB ΥI

// F(AB)F(I)

ϕAB,I
%%KKKKKKKKKK

F(ABI)

ψA,BI

OO

ψAB,I

99ssssssssss
F(ABI)

F(id ρ−1
B )

F(ρ−1
AB) ##H

HH
HH

HH
HH

F(AB)

ψA,B

OO

F(id ρB)

F(ρAB)

;;vvvvvvvvv
υAB

// F(AB)

The outer squares commute by the naturality of ψ, Υ and ϕ. The hexagon com-
mutes by the definition of υ, the square in the center commutes by Proposition 3.63,
the square above it commutes by Proposition 3.64, and the squares on its sides com-
mute by the associativity of ψ and ϕ. �
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Proposition 3.66. The following diagrams commute.

F(I) • F(A)
idI•ΥA // F(I) • F(A)

ϕI,A

��

F(I •A)

ψI,A

OO

F(I •A)

F(λ−1
A )

��

F(A) υA
//

F(λA)

OO

F(A)

F(I) • F(A)
ΥI•idA // F(I) • F(A)

ϕI,A

��

F(I •A)

ψI,A

OO

F(I •A)

F(λ−1
A )

��

F(A)
υ′
A

//

F(λA)

OO

F(A)

(3.38)

Proof. Proposition 3.65 implies

(id ∗Υ)I,A = υ
(2)
I,A = υI•A.

The naturality of υ then gives the result. The proof for υ′ is similar. �

Remark 3.67. In defining υ and υ′ by means of (3.34) we made an asymmetric
choice: we decided to place the unit object I on the right. In Proposition 3.66 we
have arrived at the same diagrams with the unit object on the left. Thus, symmetry
is recovered.

Proposition 3.68. We have υ ∗ υ = υ(2) and υ′ ∗ υ′ = υ′(2).

Proof. This follows by a similar argument to those for Propositions 3.63, 3.64
and 3.65. �

3.7.6. A comparison of Hopf monoids and Hopf lax monoidal functors.
We complement the results of Section 3.4 by showing that any Hopf monoid can be
viewed as a special case of a Hopf lax functor, and that Hopf lax functors preserve
Hopf monoids.

Let (I, •, β) be the one-arrow category and let ∗ denote its unique object.

Proposition 3.69. The category of Hopf monoids in (C, •, β) is equivalent to the
category of Hopf lax functors from (I, •, β) to (C, •, β).

Proof. Given a Hopf monoid (H,µ, ι,∆, ǫ, s) in (C, •, β), define a Hopf lax
functor

(FH , ϕ, ψ,Υ)

from (I, •, β) to (C, •, β), where (FH , ϕ, ψ) is defined as in (3.23) and Υ∗ is defined
to be s. We know from Proposition 3.26 that (FH , ϕ, ψ) is bilax. Since the antipode
s is the inverse of the identity in the convolution monoid Hom(H,H), we have

id ∗ s ∗id = id, s ∗id ∗ s = s and id ∗ s = s ∗id = ιǫ.

Hence, axioms (3.29), (3.30) and (3.31) hold and (FH , ϕ, ψ,Υ) is Hopf lax.
Conversely, given a Hopf lax functor (F , ϕ, ψ,Υ) from I to C, the object F(∗)

is a Hopf monoid with antipode Υ∗ by applying the forward direction of (3.32). �

Bilax functors preserve bimonoids (Proposition 3.31) and the bimonoid struc-
ture maps get twisted by the structure maps of the functor, as in Definition 3.28.
Hopf lax functors act similarly on Hopf monoids and their antipodes.
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Theorem 3.70. Let F be a Hopf lax functor from C to D with antipode Υ. If H
is a Hopf monoid in C with antipode s, then F(H) is a Hopf monoid in D with
antipode

(3.39) ΥHF(s) = F(s)ΥH .

Proof. The equality in (3.39) holds by naturality of Υ. We only need to
show that this map satisfies axioms (1.13). The first of these follows from the
commutativity of the diagram below; the second axiom can be checked similarly.

F(H)F(H)
idHF(s)

// F(H)F(H)
idHΥH // F(H)F(H)

ϕH,H

��

F(HH)

ψH,H

OO

F(id s)
// F(HH)

ψH,H

OO

υHH //

F(µ)

��

F(HH)

F(µ)

��

F(H)

F(∆)

OO

F(ǫ)
// F(I)

F(ι)
//

υI

$$J
JJJJJJJJJJJJ

ψ0

��

F(H)
υH // F(H)

I ϕ0

// F(I)

F(ι)

88qqqqqqqqqqqqqqq

The squares commute by the naturality of ψ and υ, the antipode axiom for H and
Proposition 3.65. The triangle commutes by Proposition 3.62. �

Remark 3.71. Suppose F is a bistrong monoidal functor and H is a Hopf monoid
with antipode s. By Proposition 3.60, F is a Hopf lax monoidal functor with
antipode Υ = id. Therefore, by Theorem 3.70, F(H) is a Hopf monoid with
antipode F(s). This gives another proof of Proposition 3.50.

3.7.7. Composites of Hopf lax functors. Consider two bilax monoidal func-
tors (F , ϕ, ψ) : C→ D and (G, γ, δ) : D→ E. Their composite (GF , ϕγ, δψ) (Defini-
tion 3.20) is also bilax, by Theorem 3.22. If Υ: F ⇒ F and Ω: G ⇒ G are natural
transformations, we may define a new natural transformation ΩΥ: GF ⇒ GF by
going around the diagram below.

GF(A)

ΩFA

$$J
JJJJJJJJ

GF(A)

G(ΥA)
::ttttttttt

ΩFA $$J
JJJJJJJJ

GF(A)

GF(A)

G(ΥA)

::ttttttttt

The above diagram commutes by the naturality of Ω.

Theorem 3.72. If (F , ϕ, ψ,Υ): C → D and (G, γ, δ,Ω): D → E are Hopf lax
functors, then so is (GF , ϕγ, δψ,ΩΥ).
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Proof. We only need to check that ΩΥ is the antipode of GF .
We first check axiom (3.31) for GF . The forward direction of (3.32) applied to

F says that F(I) is a Hopf monoid with antipode ΥI . This along with Theorem 3.70
says that GF(I) is a Hopf monoid with antipode

G(ΥI)ΩF(I) = ΩF(I)G(ΥI),

which by definition is (ΩΥ)I . Further, the bimonoid structure on GF(I) comes
from the bilax structure of GF . Therefore by the backward direction of (3.32), GF
satisfies axiom (3.31).

We now check axiom (3.30) for GF . This follows from (3.28) and the commu-
tativity of the following diagram.

GF(A)GF(B)GF(C)
ΩFAidFBΩFC // GF(A)GF(B)GF(C)

G(ΥA)G(idB)G(ΥC)
//

γFA,FB,FC

��

GF(A)GF(B)GF(C)

γFA,FB,FC

��
G(FAFBFC)

δFA,FB,FC

OO

ΩFAFBFC // G(FAFBFC)
G(ΥAidBΥC)

// G(FAFBFC)

G(ϕA,B,C)

��
GF(ABC)

G(ψA,B,C)

OO

ΩF(ABC)

// GF(ABC)

G(ψA,B,C)

OO

G(ΥABC)
// GF(ABC)

The four squares commute by the naturality of γ and Ω, and axiom (3.30) applied
to G and F .

The verification of axiom (3.29) for GF is similar. �

Theorem 3.70 can be deduced from Theorem 3.72 by specializing C to the one-
arrow category and using Proposition 3.69. The reason for writing these results in
the opposite order is that we needed the former in the proof of the latter.

Remark 3.73. Theorem 3.72 can be used to supplement the discussion in Sec-
tion 3.3.3: there is a 2-category whose 0-cells, 1-cells, and 2-cells are respectively
braided monoidal categories, Hopf lax monoidal functors, and their morphisms.

3.8. An alternative description of bilax monoidal functors

We begin this section by studying the monoidal properties of the tensor product
functor. This allows us to formulate an alternative description of bilax monoidal
functors (Proposition 3.77). This result is the analogue of the description of a
bimonoid as a monoid in a category of comonoids and viceversa.

3.8.1. The tensor product as a monoidal functor. Let (C, •) be a monoidal
category together with natural isomorphisms

β : A •B → B •A.

We do not assume that β is a braiding. Consider the tensor product functor

M : C× C→ C
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which sends (A,B) to A •B. Define natural transformations ϕ and ψ as in (3.9) to
be

M(A,B) •M(C,D)

ϕ(A,B),(C,D)
..
M
(
(A,B) • (C,D)

)

ψ(A,B),(C,D)

nn

A •B • C •D

id•β•id
..
A • C •B •D.

id•β•id

nn

Define the morphisms ϕ0 and ψ0 as in (3.10) to be

I
ϕ0 //M(I, I)

ψ0 // I

I
∼= // I • I

∼= // I.

The following result describes the monoidal properties of the functor M with
respect to the structure maps ϕ and ψ.

Proposition 3.74 (Joyal and Street). We have

β is a braiding in (C, •) ⇐⇒ (M, ϕ) is strong.

β is a symmetry in (C, •) ⇐⇒ (M, ϕ) is braided strong.

The first equivalence is [184, Proposition 5.2], and the second equivalence
is [184, Proposition 5.4].

Proposition 3.75. We have

(M, ϕ) is braided strong⇐⇒ (M, ϕ, ψ) is bistrong

⇐⇒ (M, ψ) is braided costrong.

Proof. We explain the first equivalence. The backward implication follows
from Proposition 3.46. For the forward implication: By Proposition 3.74, β is a
symmetry and further by Proposition 3.46, (M, ϕ, ϕ−1) is bistrong. Since β is a
symmetry, we have ϕ−1 = ψ which finishes the proof. �

3.8.2. An alternative description of bilax monoidal functors. Let (C, •) and
(D, •) be two monoidal categories and F be a functor from C to D. We denote the
unit object in both categories by I and writeM for both tensor product functors.
Let F0, F0, F2 and F2 be the functors defined in (3.1) and (3.2).

Proposition 3.76. If F is (co)lax, then so are F0 and F0. If F is (co)lax and C

and D are braided, then the functors F2 and F2 are also (co)lax.

Proof. We explain the lax case, the colax case being similar. The assertions
about F0 and F0 are clear (and may be seen as special cases of the construction of
Section 3.4.1). When C and D are braided, the tensor product functors M are lax
(in fact, strong) by Proposition 3.74. Since F is lax the functor F × F is also lax
by Proposition 3.6. Note that F2 and F2 are defined in terms ofM, F and F ×F
via compositions. Hence the result follows from Theorem 3.21. �
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For (F , ψ) a colax monoidal functor, let (F2, ψ2) and (F2, ψ2) be the colax
monoidal functors given by the above construction. Explicitly, they are as follows.

F(A • C •B •D)

F(id•β•id)

��

F2

(
(A,B) • (C,D)

)

ψ2

��
�
�
�
�
�
�
�
�
�
�
�
�

F(A •B • C •D)

ψA•B,C•D

��

F(A •B) • F(C •D) F2(A,B) • F2(C,D)

F(I • I)

∼=

��

F2(I, I)

(ψ2)0

��
�
�
�
�
�

F(I)
ψ0

// I

F(A • C) • F(B •D)

ψA,C•ψB,D

��

F2
(
(A,B) • (C,D)

)

ψ2

��
�
�
�
�
�
�
�
�
�
�
�
�

F(A) • F(C) • F(B) • F(D)

id•β•id

��

F(A) • F(B) • F(C) • F(D) F2(A,B) • F2(C,D)

F(I) • F(I)

ψ0•ψ0

��

F2(I, I)

(ψ2)0

��
�
�
�
�
�

I • I ∼=
// I

The lax structures on F2 and F2 induced from a lax structure on F admit similar
descriptions.

Proposition 3.77. Let F be a lax and colax functor with structure maps ϕ and ψ
respectively. The following statements are equivalent.

(i) (F , ϕ, ψ) is bilax;
(ii) ϕ : F2 ⇒ F2 and ϕ0 : F0 ⇒ F0 are morphisms of colax monoidal functors;
(iii) ψ : F2 ⇒ F2 and ψ0 : F0 ⇒ F0 are morphisms of lax monoidal functors.

Proof. We indicate how (i) and (ii) are equivalent. The equivalence between
(i) and (iii) is similar.

From the explicit definitions of ψ2 and ψ2 given above, one sees that ϕ : F2 ⇒
F2 being a colax morphism (Definition 3.8) is equivalent to the commutativity of
the braiding diagram (3.11) and one of the unitality diagrams (3.12). Similarly, the
condition that ϕ0 : F0 ⇒ F0 is a colax morphism is equivalent to the commutativity
of the other two unitality diagrams in Definition 3.3. �

Remark 3.78. The above result is the analogue of Proposition 1.11 for bimonoids.
It may be used to obtain another proof of Theorem 3.22 as follows. Recall that
morphisms of colax monoidal functors are the 2-cells of a 2-category (Section 3.3.3;
this uses Theorem 3.21). The structure maps ϕγ of the composite GF of two bilax
functors (Definition 3.20) are obtained from ϕ and γ in terms of this 2-category
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structure. Now apply Proposition 3.77: ϕ and γ are morphisms of colax monoidal
functors, hence so is ϕγ, and then GF is bilax. This approach is formalized in
Section 6.11.

3.8.3. Monoidal properties of bilax functors on the category of (co)mon-
oids. We have seen that a (co)lax functor induces a functor on the category of
(co)monoids. If the original functor is bilax, then more can be said about the
induced functors, as follows.

Proposition 3.79. If (F , ϕ, ψ) : C→ D is a bilax monoidal functor, then

(F , ψ) : Mon(C)→ Mon(D)

is a colax monoidal functor and

(F , ϕ) : Comon(C)→ Comon(D)

is a lax monoidal functor.

Proof. We discuss the first assertion. Since F is lax and C and D are braided,
the functors F2, F2, F0 and F0 are all lax (Proposition 3.76). Further, since F
is bilax, ψ : F2 → F2 and ψ0 : F0 → F0 are morphisms of lax monoidal functors
(Proposition 3.77). Now Proposition 3.30 implies that if A and B are monoids,
then

ψA,B : F(A •B)→ F(A) • F(B) and ψ0 : F(I)→ I

are morphisms of monoids. This finishes the proof of the first assertion. �

A similar result for a braided (co)lax functor (whose proof we omit) is given
below.

Proposition 3.80. If (F , ϕ) : C→ D is a braided lax monoidal functor, then

(F , ϕ) : Mon(C)→ Mon(D)

is a lax monoidal functor. Similarly, if (F , ψ) : C→ D is a braided colax monoidal
functor, then

(F , ψ) : Comon(C)→ Comon(D)

is a colax monoidal functor.

Applying Proposition 3.29 to the lax and colax functors in the above results and
using (1.14), one obtains an alternate proof of the facts that bilax functors preserve
bimonoids and braided (co)lax functors preserve (co)commutative (co)monoids.

3.9. Adjunctions of monoidal functors

We now discuss the notion of adjunction between monoidal categories for var-
ious kinds of monoidal functors. We follow the notations of Section A.2.1, where
some background information on adjunctions is also given. Throughout this section,
C and D are monoidal categories and • refers to their tensor products. Work of Kelly
on adjunctions between categories with structure includes results on adjunctions be-
tween monoidal categories [195, Section 2.1]. We mention that Propositions 3.84
and 3.96 (which we prove directly) are special cases of [195, Theorems 1.2 and 1.4].

The results of this section play an important role in the universal constructions
of Chapter 11. Interesting examples of adjunctions between monoidal functors can
also be found in Propositions 18.4 and 18.18.
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3.9.1. Colax-lax adjunctions. Recall from Example 3.12 that

Hom: Cop × C→ Set

is a braided lax monoidal functor. If F and G are (braided) colax and (braided)
lax monoidal functors respectively, then by Proposition 3.7, Theorem 3.21, and
Proposition 3.24, the functors

HomD(F(−),−) and HomC

(
−,G(−)

)

are (braided) lax monoidal functors from

Cop × D→ Set.

Definition 3.81. Let (F , ψ) be a (braided) colax monoidal functor and (G, γ) a
(braided) lax monoidal functor. We say that they form a pair of (braided) colax-lax
adjoint functors if the bijection (A.2) is an isomorphism of (braided) lax functors
Cop × D→ Set.

In the above situation, we also say that the adjunction (F ,G) is (braided)
colax-lax. It is clear that (F ,G) is braided colax-lax if (F ,G) is colax-lax and both
F and G are braided.

Proposition 3.82. Let (F ,G) be a pair of adjoint functors between monoidal cate-
gories. Assume that (F , ψ) is a colax monoidal functor and (G, γ) is a lax monoidal
functor. Then the following conditions are equivalent.

(1) The adjunction (F ,G) is colax-lax.
(2) The following two diagrams commute.

A •B

ηA•ηB

��

ηA•B // GF(A •B)

G(ψA,B)

��

GF(A) • GF(B) γF(A),F(B)

// G
(
F(A) • F(B)

)

I
ηI

//

id

��

GF(I)

G(ψ0)

��

I γ0
// G(I)

(3.40)

(3) The following two diagrams commute.

F
(
G(X) • G(Y )

)

ψG(X),G(Y )

��

F(γX,Y )
// FG(X • Y )

ξX•Y

��

FG(X) • FG(Y )
ξX•ξY

// X • Y

F(I)

ψ0

��

F(γ0)
// FG(I)

ξI

��

I
id

// I

(3.41)

Proof. The diagrams (3.40) say that for the bijection in (A.2), the map in
one direction is a morphism of lax functors, while the diagrams (3.41) say that the
map in the other direction is a morphism of lax functors. �

Proposition 3.83. If F and G form a pair of colax-lax adjoint functors between
the categories C and D, then for C a comonoid in C and A a monoid in D, the
bijection (A.2)

HomD(F(C), A) ∼= HomC

(
C,G(A)

)

is an isomorphism of convolution monoids.
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Proof. Recall that the convolution monoid is the image of a certain monoid
under the lax functor Hom (Section 3.4.5). The result then follows from Defini-
tion 3.81 and Proposition 3.30. �

Proposition 3.84. Let (F ,G) be a pair of adjoint functors. If F is colax (resp. G
is lax ), then there exists a unique lax structure on G (resp. colax structure on F)
such that (F ,G) is a colax-lax adjunction.

Proof. Let (F , ψ) be a colax monoidal functor. Use the adjunction (A.2) to
define

G(X) • G(Y )
γX,Y

// G(X • Y )

as the map that corresponds to

F
(
G(X) • G(Y )

) ψG(X),G(Y )
// FG(X) • FG(Y )

ξX•ξY // X • Y

and γ0 : I → G(I) as the map that corresponds to ψ0 : F(I)→ I. In view of (A.5),
γ and γ0 are the unique maps for which the diagrams in (3.41) commute. Hence,
to complete the proof we only need to show that (G, γ) is indeed a lax monoidal
functor.

The associativity (3.5) of γ follows from the commutativity of the diagram
below.

F(GX(GY GZ))

ψGX,GY GZ

""D
DD

DD
DD

DD
DD

D
F(id γY,Z)

// F(GXG(Y Z))
F(γX,YZ )

//

ψGX,G(Y Z)

$$I
IIIIIIIIIIII FG(X(Y Z))

ξX(Y Z)

��

F((GXGY )GZ)

F(α)

AA����������

ψGXGY,GZ

��
;;

;;
;;

;;
;;

F(γX,Y id)

��

FG(X)F(GY GZ)
idF(γY,Z)

//

idψGY,GZ

%%J
JJJJJJJJJJJJJ FG(X)FG(Y Z)

ξXξY Z

��
**

**
**

**
**

**
**

**
**

F(GXGY )FG(Z)

F(γX,Y ) id

""D
DD

DD
DD

DD
DD

D

ψGX,GY id

))SSSSSSSSSSSSSSSSSSSSSS FG(X)(FG(Y )FG(Z))

ξX(ξY ξZ)

((PPPPPPPPPPPPPPPPPP

F(G(XY )GZ)
ψG(XY ),GZ

//

F(γXY,Z)

��

FG(XY )FG(Z)

ξXY ξZ

%%J
JJJJJJJJJJJJJ (FG(X)FG(Y ))FG(Z)

α

OO

(ξXξY )ξZ

��

X(Y Z)

FG((XY )Z)
ξ(XY )Z

// (XY )Z

α

66nnnnnnnnnnnnnnnnnn

The hexagon commutes by the associativity of ψ. The other squares commute by
the definition of γ and the naturality of ψ and α.
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The unitality (3.6) of γ follows from the commutativity of the diagram below.

FG(X)
F(G(λ))

//

ξX

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

λ

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

F(λ)

��

FG(IX)

ξIX

��

X

λ

��
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

6

F(IGX)
ψI,GX

//

F(γ0 id)

��

F(I)FG(X)
ψ0 id

//

F(γ0) id

��

IFG(X)

id ξX

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

FG(I)FG(X)

ξIξX

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

F(G(I)GX)

ψG(I)GX

88qqqqqqqqqqqqqqq

F(γI,X)
// FG(IX)

ξIX

// IX

The smaller diagrams commute by the naturality of ξ, λ and ψ, by the definition
of γ and γ0, and by the unitality of ψ. �

Proposition 3.85. Let (F ,G) be a pair of adjoint functors. If F is braided colax
(resp. G is braided lax ), then the unique lax structure on G (resp. the unique colax
structure on F) afforded by Proposition 3.84 is braided.

Adjunctions can be composed [250, Theorem IV.8.1]; this operation preserves
colax-lax adjunctions.

Proposition 3.86. Let (F ,G) be a pair of adjoint functors between monoidal cat-
egories C and D. Let (F ′,G′) be another pair of adjoint functors between D and
another monoidal category E. If both adjunctions are colax-lax, then so is the ad-
junction

(F ′F ,GG′)

between C and E.

3.9.2. Lax-lax and colax-colax adjunctions.

Definition 3.87. Let (F , ϕ) and (G, γ) be (braided) lax monoidal functors. We
say that they form a pair of (braided) lax adjoint functors if the unit and counit
η and ξ are morphisms of (braided) lax monoidal functors, where we view id as
a braided lax functor with identity transformations. More explicitly, one requires
that the following diagrams commute.

A •B

ηA•ηB

��

ηA•B // GF(A •B)

GF(A) • GF(B) γF(A),F(B)

// G
(
F(A) • F(B)

)

G(ϕA,B)

OO
I

ηI //

id

��

GF(I)

I γ0
// G(I)

G(ϕ0)

OO

(3.42)
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FG(X) • FG(Y )
ϕG(X),G(Y )

//

ξX•ξY

��

F
(
G(X) • G(Y )

)

F(γX,Y )

��

X • Y FG(X • Y )
ξX•Y

oo

I

id

��

ϕ0 // F(I)

F(γ0)

��

I FG(I)
ξI

oo

(3.43)

The diagrams in the first (resp. second) row say that η (resp. ξ) is a morphism of
lax monoidal functors.

Definition 3.88. Let (F , ψ) and (G, δ) be (braided) colax monoidal functors. We
say that they form a pair of (braided) colax adjoint functors if the adjunctions η
and ξ are morphisms of (braided) colax monoidal functors. Explicitly, the necessary
diagrams can be obtained from (3.42) and (3.43) by reversing the arrows labeled ϕ
and γ and renaming them ψ and δ respectively.

In the situation of Definitions 3.87 and 3.88, we also say that the adjunction is
lax-lax and colax-colax, respectively. It is clear that an adjunction (F ,G) is braided
lax-lax (colax-colax) if (F ,G) is lax-lax (colax-colax) and both F and G are braided.

Remark 3.89. A lax-lax adjunction is the same as an adjunction in the 2-category
lCat, in the sense of Section C.1.1. Similarly, a colax-colax adjunction is the same
as an adjunction in the 2-category cCat.

The above notions should not be confused with that of lax adjunctions, which
pertain to the context of tricategories, as defined in [347].

Example 3.90. An adjunction between categories with finite products is always
braided colax-colax, with the canonical braided colax structures of Example 3.19.
Dually, an adjunction between categories with finite coproducts is always braided
lax-lax.

Proposition 3.91. If F and G form a pair of lax adjoint functors between the
categories C and D, then they restrict to a pair of adjoint functors

Mon(C)
F

%%

G

ee Mon(D).

A similar result holds in the colax case.

Proof. We explain the lax case. One needs to check that a morphism of
monoids maps to a morphism of monoids under the adjunction. So let A and X be
monoids in C and D respectively and let g : A → G(X) be a morphism of monoids
in C. Under the adjunction, this corresponds to the map given in (A.5). Since F
is lax, the first map in (A.5), namely F(g), is a morphism of monoids. Since by
assumption ξ is a morphism of lax monoidal functors, the second map in (A.5) is
also a morphism of monoids. This completes the check in one direction. For the
other direction, which is similar, one uses that η is a morphism of lax monoidal
functors. �

Proposition 3.92. If F and G form a pair of braided lax adjoint functors between
the categories C and D, then they restrict to a pair of adjoint functors

Monco(C)
F

%%

G

ee Monco(D) and Lie(C)
F

%%

G

ee Lie(D).
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A similar result holds in the colax case.

3.9.3. Colax-lax as a generalization of lax-lax and colax-colax. We now de-
rive some additional useful properties of the different types of adjunctions between
monoidal functors that hold when one of the two functors is strong.

Proposition 3.93. Let (F ,G) be a pair of adjoint functors.

(1) Suppose G is lax and F is strong. View F as a lax and colax functor as
in Proposition 3.44. Then

(F ,G) is a colax-lax adjunction ⇐⇒ (F ,G) is a lax-lax adjunction.

(2) Suppose F is colax and G is strong. View G as a lax and colax functor as
in Proposition 3.44. Then

(F ,G) is a colax-lax adjunction ⇐⇒ (F ,G) is a colax-colax adjunction.

Proof. We prove the first statement. If F is strong, then by Proposition 3.44
it has a lax structure ϕ and a colax structure ψ such that ϕ = ψ−1 and ϕ0 = ψ−1

0 . In
this situation, the diagrams in (3.42) and (3.43) become equivalent to the diagrams
in (3.40) and (3.41), and the result follows. �

Combining Propositions 3.93 and 3.84, we obtain:

Proposition 3.94. Let (F ,G) be a pair of adjoint functors and F (resp. G) be
strong. Then there exists a unique lax structure on G (resp. colax structure on F)
such that (F ,G) is a lax-lax (resp. colax-colax ) adjunction.

Combining further with Proposition 3.85, we obtain:

Proposition 3.95. Let (F ,G) be a pair of adjoint functors and F (resp. G) be
braided strong. Then there exists a unique braided lax structure on G (resp. braided
colax structure on F) such that (F ,G) is a braided lax-lax (resp. braided colax-colax )
adjunction.

Conversely, the existence of a lax-lax (resp. colax-colax) adjunction implies that
the left (resp. right) adjoint is strong.

Proposition 3.96. Let (F ,G) be a pair of adjoint functors. If the adjunction is
lax-lax (resp. colax-colax ), then F (resp. G) is strong.

Proof. We prove the first statement only. Assume (F , ϕ) and (G, γ) are lax
functors and (F ,G) is a lax-lax adjunction. The idea is to define a colax functor
(F , ψ) using Proposition 3.84 and then show that ϕ and ψ are inverses. Accordingly,
define

F(A •B)
ψA,B

// F(A) • F(B)

as the map that corresponds to

A •B
ηA•ηB // GF(A) • GF(B)

γF(A),F(B)
// G
(
F(A) • F(B)

)

under the adjunction (A.2). Similarly, let ψ0 : F(I) → I be the map that corre-
sponds to γ0 : I → G(I). We claim that ψ is the inverse of ϕ and ψ0 is the inverse
of ϕ0.
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Now consider the following diagram.

F(A) • F(B)
ϕA,B

//

F(ηA)•F(ηB)
LLLLLL

%%LLLLLL

idF(A)•F(B)

��

F(A •B)

F(ηA•ηB)

&&NNNNNNNNNNNNNNNN

ψA,B

rr

�
�

�
}

z
w

t
q

o
ljhf

FGF(A) • FGF(B)
ϕGF(A),GF(B)

//

ξF(A)•ξF(B)

rrrrrr

yyrrrrrr

F (GF(A)•GF(B))

F(γF(A),F(B))

xxpppppppppppppppp

F(A) • F(B) FG (F(A) • F(B))
ξF(A)•F(B)

oo

The top front square commutes by naturality of ϕ. The bottom front square is
a special case of (3.43), it commutes since the adjunction is lax-lax. The front
triangle commutes because (A.4) and (A.5) are inverse correspondences. There are
two faces on the back, a triangle on the left and a square on the right. The back
square commutes by definition of ψ. It follows that the back triangle commutes.
This says that ψA,BϕA,B = idF(A)•F(B).

Similarly, the diagram

F(A •B) F(A •B)

F(ηA•ηB)

''OOOOOOOOOOOOOOOOO

ψA,B
rr

�
�

�
~

{
x

u
r

p
mkig

idF(A•B)
oo

F(ηA•B)
qqqqqq

xxqqqqqq

FGF(A •B)

ξF(A•B)KKKKKK

eeKKKKKK

F (GF(A) • GF(B))

F(γF(A),F(B))

wwooooooooooooooooo

F(A) • F(B)

ϕA,B

OO

FG (F(A) • F(B))
ξF(A)•F(B)

oo

FG(ϕA,B)

ffMMMMMMMMMMMMMMM

shows that ϕA,BψA,B = idF(A•B). Thus, ϕ and ψ are inverses.
A similar argument using the unital counterparts of the above diagrams shows

that ϕ0 and ψ0 are inverses. This completes the proof. �

Proposition 3.97. Let (F ,G) be a pair of adjoint functors between monoidal cat-
egories C and D. Let (F ′,G′) be another pair of adjoint functors between D and
another monoidal category E. If both adjunctions are either lax-lax, or colax-colax,
then so is the adjunction

(F ′F ,GG′)

between C and E.

Proof. We consider the lax-lax case. Proposition 3.96 implies that F and F ′

are both strong. Hence by Proposition 3.93, one can view (F ,G) and (F ′,G′) as
colax-lax adjunctions. Now applying Proposition 3.86, we see that the composite is
also colax-lax, and further F ′F is strong. Applying Proposition 3.93 in the opposite
direction, we see that the composite is lax-lax. �
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3.10. The contragredient construction

In this section, we introduce the contragredient construction. Roughly speak-
ing, it allows us to pass from a given situation to its dual situation. The “given
situation” could be a monoidal category, or a monoidal functor, or some variation
thereof. More general discussions, which build on this one, are given in Sections 6.12
and 7.10.

3.10.1. Contravariant monoidal functors. Let F : C → D be a contravariant
functor and let C and D be monoidal categories. We say that F is contravariant
strong if

F : Cop → D, or equivalently, F : C→ Dop

is strong. Now let C and D be braided monoidal categories. We say that F is
contravariant bilax (bistrong) if

F : (Cop, •, βop)→ (D, •, β), or equivalently, F : (C, •, β)→ (Dop, •, βop)

is bilax (bistrong). (The equivalence used in the second definition follows from
Proposition 3.7.)

3.10.2. Contragredient of monoidal categories. In this discussion, ∗ stands
for a contravariant functor, say from C to C′. We assume that there is another
functor from C′ to C, also called ∗, such that

(3.44) C

∗
%%

∗

ee C′

is an adjoint equivalence of categories.
If one of the categories, say C for definiteness, is monoidal with product • and

unit I, then it induces a monoidal structure on C′ by

A •∨ B := (A∗ •B∗)∗,

with the unit given by I∨ := I∗. We say that •∨ is the contragredient of •, and
that the monoidal category (C′, •∨) is the contragredient of (C, •). We have that

(•∨)∨ ∼= •.

Proposition 3.98. The functors

(C, •)
∗

%%

∗

ee (C′, •∨)

are contravariant strong.

Proof. It follows from the definition of •∨ that

(A •∨ B)∗ ∼= A∗ •B∗, (I∨)∗ ∼= I and (A •B)∗ ∼= A∗ •∨ B∗, I∗ ∼= I∨

which implies that the ∗ functors are contravariant strong. �

Now further if C is braided with braiding β, then so is C′ with braiding

β∨
B,A := β∗

A∗,B∗ .

We say that β∨ is the contragredient of β and that the braided monoidal category
(C′, •∨, β∨) is the contragredient of (C, •, β). We have that

(β∨)∨ ∼= β.
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Proposition 3.99. The functors

(C, •, β)
∗

%%

∗

ee (C′, •∨, β∨)

are contravariant bistrong.

Proof. We saw in Proposition 3.98 that the ∗ functors are contravariant
strong. Similarly, it follows from the definition of β∨ that the following diagrams
commute.

(A •∨ B)∗
∼= //

(β∨
B,A)∗

��

A∗ •B∗

βA∗,B∗

��

(B •∨ A)∗ ∼=
// B∗ •A∗

(A •B)∗
∼= //

β∗
B,A

��

A∗ •∨ B∗

β∨
A∗,B∗

��

(B •A)∗ ∼=
// B∗ •∨ A∗

This implies that the ∗ functors are contravariant braided strong, which is the same
as contravariant bistrong. �

3.10.3. Contragredient of functors. Consider the following situation

(3.45) C
∗ // C′ F // D′ ∗ // D

where F is a covariant functor and the functors ∗ are as per the assumption (3.44).
Let F∨ denote the above composite, namely

(3.46) F∨(−) := F(−∗)∗.

We refer to F∨ as the contragredient of F . Observe that it is a covariant functor.
For a natural transformation θ : F ⇒ G, let θ∨ : G∨ ⇒ F∨ denote the induced

natural transformation. Explicitly, it is given by

(3.47) G∨(A) = G(A∗)∗
(θA∗ )∗

// F(A∗)∗ = F∨(A).

We have that

(F∨)∨ ∼= F ,

where it is implicit that the appropriate adjoint ∗ functors are used for defining the
contragredient of F∨.

Example 3.100. In the context of the tensor, symmetric and exterior algebras,
the isomorphisms in (2.69) are instances of the contragredient construction. We
elaborate a little bit further to make this point clear.

Let ∗ : Vec → Vec be the duality functor which sends a vector space to its
dual. This is an involutive contravariant bistrong functor on finite-dimensional
vector spaces. Therefore, it maps (finite-dimensional) algebras to coalgebras and
viceversa.

Let gAlg and gCoalg be the categories of (finite-dimensional) graded algebras
and graded coalgebras. Consider the functor

T : Vec→ gAlg, T (V ) := ⊕
k≥0

V ⊗k.
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The object T (V ) is the tensor algebra. It is graded by the number of tensor factors,
and its product is given by concatenation. The contragredient of T is given by the
composite

T ∨ : Vec
∗ // Vec

T // gAlg
∗ // gCoalg.

It is clear that the coproduct on T ∨ is deconcatenation.

A duality functor similar to ∗ can be defined on the category of species (Sec-
tion 8.6). The analogues of the tensor, symmetric and exterior algebras for species
along with their contragredients are treated in Chapter 11.

Example 3.101. Another interesting instance of the contragredient construction is
provided by the Fock functors which relate species to graded vector spaces. The du-
ality functors on both species and vector spaces play a role here. See Section 15.1.2
for the simplest example of this kind.

3.10.4. Contragredient of monoidal functors. The contragredient construc-
tion is compatible with monoidal functors. We illustrate this feature with some
simple but important results. Given a functor F : C′ → D′ and a transformation
ϕ as in (3.3), consider its contragredient F∨ : C → D (3.46) and define a transfor-
mation ϕ∨ by

(3.48) ϕ∨
A,B : F∨(A •∨ B) = F(A∗ •B∗)∗

(ϕA∗,B∗ )∗

−−−−−−−→
(
F(A∗) • F(B∗)

)∗
= F∨(A) •∨ F∨(B).

Similarly, for (F , ψ) with ψ as in (3.7), one defines (F∨, ψ∨).

Proposition 3.102. If (F , ϕ) : C′ → D′ is (braided) lax, then

(F∨, ϕ∨) : C→ D

is (braided) colax. Similarly, if (F , ψ) is (braided) colax, then (F∨, ψ∨) is (braided)
lax, and if (F , ϕ, ψ) is (braided) bilax, then so is (F∨, ψ∨, ϕ∨).

Further, if θ : (F , ϕ)⇒ (G, γ) is a morphism of lax (colax, bilax ) functors, then

θ∨ : (G∨, γ∨)⇒ (F∨, ϕ∨)

is a morphism of colax (lax, bilax ) functors.

Proof. Let (F , ϕ) be lax. The ∗ functors by Proposition 3.98 are contravariant
strong. Then applying Theorem 3.21, the following composite of lax functors is lax.

Cop ∗ // C′
(F ,ϕ)

// D′ ∗ // Dop

Passing to the opposite categories and applying Proposition 3.7, we obtain the
functor F∨ equipped with a colax structure. It is straightforward to check that the
colax structure is given by ϕ∨.

The remaining claims are proved in a similar manner. �

Proposition 3.103. If (F ,G) is a pair of adjoint functors, then so is (G∨,F∨).
In addition, if the adjunction (F ,G) is lax-lax (resp. colax-colax ), then (G∨,F∨) is
colax-colax (resp. lax-lax ), and if (F ,G) is colax-lax, then so is (G∨,F∨).
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Proof. The proof is summarized in the following diagram.

C′

F
%%

G

ee D′ =⇒ Cop

F∨

%%

G∨

ee Dop =⇒ D

G∨

%%

F∨

ee C.

The content of the first implication is that adjunctions can be composed (Propo-
sitions 3.86 and 3.97). The second implication says that passing to the opposite
categories switches left and right adjoints. This follows directly from the defini-
tion. �

Since the contragredient construction (−)∨ involves a passage to the opposite
categories, it switches left and right adjoints, and lax and colax functors.

3.10.5. Self-duality. Now we specialize (3.44) to the situation where C = C′ and
the two ∗ functors coincide. We say that an object V in C is self-dual if V ∼= V ∗.

Definition 3.104. A monoidal category (C, •) is self-dual if •∨ ∼= •, or more
precisely, if

id : (C, •)→ (C, •∨)

is a strong functor.
Similarly, a braided monoidal category (C, •, β) is self-dual if •∨ ∼= • and β∨ ∼=

β, or more precisely, if

id : (C, •, β)→ (C, •∨, β∨)

is a bistrong functor.

Definition 3.105. Let C and D be self-dual braided monoidal categories. A (bilax)
functor F : C→ D is self-dual if F∨ ∼= F as (bilax) functors.

Proposition 3.106. A self-dual bilax functor induces a self-dual functor on the
corresponding categories of bimonoids.

The proof is straightforward.

Proposition 3.107. A self-dual (bilax ) functor preserves self-dual objects (bimon-
oids).

Proof. Let F be a self-dual functor and let V be a self-dual object. Then by
assumption,

F(V ) ∼= F(V ∗) ∼= F(V )∗.

Hence F(V ) is self-dual.
This result complemented with Proposition 3.106 yields the claim about self-

dual bilax functors. �

Definition 3.108. Let C and D be self-dual braided monoidal categories, and let
F : C → D be a (bilax) functor. A natural transformation θ : F ⇒ F∨ is self-dual
if θ∨ ∼= θ.

Definition 3.109. A colax-lax adjunction (F ,G) is self-dual if F ∼= G∨ as colax
functors, G ∼= F∨ as lax functors, and these isomorphisms are compatible with the
unit and counit of the adjunction.
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Table 3.4. Self-dual functors.

Self-dual functors Sections

Hadamard functor on species 8.13 and 9.4

S and S∨ 11.6.4

Λ and Λ∨ 11.7.6

T0 11.10.3

Bosonic Fock functors K and K
∨

in char 0 15.1

Free Fock functor K0 16.1.3

Fermionic Fock functors K−1 and K
∨
−1 in char 0 16.3

Anyonic Fock functors ℑq 16.3

Table 3.5. Self-dual natural transformations.

Self-dual natural transformations Section

norm map κ : T → T ∨ 11.6

q-norm map κq : Tq → T ∨
q 11.7.5

norm map κ : K → K∨ 15.4

q-norm map κq : Kq → K∨
q 16.2

3.10.6. Examples. The main examples of self-dual functors in this monograph
are given below. A more elaborate summary is provided in Table 3.4.

- The functors S, Λ and T0 in Section 2.6.3 are self-dual. In Chapter 11,
we construct analogues of these functors with species playing the role of
graded vector spaces. It is interesting to note that in contrast to graded
vector spaces, the functors S and Λ for species are self-dual, regardless of
the characteristic.

- The Hadamard functor on species is a self-dual bilax functor.
- Fock functors provide an important source of self-dual bilax functors.

Their decorated and colored versions (not shown in the table) studied
in Chapters 19 and 20 provide further examples.

The main examples of self-dual natural transformations are given in Table 3.5.
These admit self-dual colored generalizations as well.

An example of a self-dual colax-lax adjunction is given in (8.81).

3.11. The image of a morphism of bilax monoidal functors

In an abelian monoidal category, a morphism of bimonoids has an image which
is itself a bimonoid. Our main goal in this section is to obtain an analogous result
for morphisms of bilax monoidal functors (Theorem 3.116). A nice proof of this
fact can be given by viewing a morphism between two bilax monoidal functors as
a bilax monoidal functor in an appropriate category. This is Proposition 3.111.

3.11.1. The category of arrows. Let D be an arbitrary category. The category
D(2) of arrows in D has for objects the triples (A, f,B) where A and B are objects
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of D and f : A→ B is a morphism in D. A morphism from (A, f,B) to (C, g,D) is
a pair (h, k) of morphisms in D such that the diagram

A
f

//

h

��

B

k

��

C g
// D

commutes. Composition and identities in D(2) are coordinatewise. The category
D(2) is an example of a comma category; see Example A.22.

Suppose (D, •) is a monoidal category. Then so is D(2), with tensor product

(A, f,B) • (A′, f ′, B′) := (A •A′, f • f ′, B •B′).

The unit object is (I, idI , I), where I is the unit object in D. If D is braided, then
so is D(2), with braiding

(A, f,B) • (A′, f ′, B′)

(βA,A′ ,βB,B′)

��

(A′, f ′, B′) • (A, f,B)

A •A′
f•f ′

//

βA,A′

��

B •B′

βB,B′

��

A′ •A
f ′•f

// B′ •B

where β is the braiding in D.

Proposition 3.110. An object (A, f,B) of D(2) is a monoid if and only if A and B
are monoids in D and f : A→ B is a morphism of monoids. The same statement
holds replacing monoids by comonoids or bimonoids (the latter if the category D is
braided).

The proof is straightforward.

3.11.2. Morphisms of monoidal functors as monoidal functors. Let F and
G be functors from a category C to a category D, and let

θ : F ⇒ G

be a natural transformation. Then one can define a functor

Hθ : C→ D(2)

by

A 7→
(
F(A), θA,G(A)

)
, f 7→

(
F(f),G(f)

)
.

Naturality of θ makes Hθ well-defined.
Now suppose that C and D are monoidal categories. Recall the notion of mor-

phisms of monoidal functors (Definitions 3.8 and 3.9).

Proposition 3.111. The functor Hθ is lax monoidal if and only if the functors F
and G are lax monoidal and θ is a morphism of lax monoidal functors. The same
statement holds replacing lax for colax or bilax (the latter if the categories C and D

are braided).
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Proof. We explain the lax case. Suppose (F , ϕ) and (G, γ) are lax monoidal
functors and θ is a morphism of lax monoidal functors. Then we define Φ by

Hθ(A) • Hθ(A′)

ΦA,A′

��
�
�
�
�

(
F(A) • F(A′), θA • θA′ ,G(A) • G(A′)

)

(ϕA,A′ ,γA,A′)

��

Hθ(A •A′)
(
F(A •A′), θA•A′ ,G(A •A′)

)
.

This is a well-defined morphism in D(2) in view of the commutativity of the diagram

F(A) • F(A′)
θA•θA′

//

ϕA,A′

��

G(A) • G(A′)

γA,A′

��

F(A •A′)
θA•A′

// G(A •A′)

which holds since θ is a morphism of lax monoidal functors (3.14). We also set

ID(2)

Φ0

��
�
�
�
� (I, idI , I)

(ϕ0,γ0)

��

Hθ(I)
(
F(I), θI ,G(I)

)

which is well-defined in view of the second diagram in (3.14). The axioms in
Definition 3.1 for ϕ and γ translate into the corresponding axioms for Φ. Conversely,
if Φ is a lax structure on the functor Hθ, then its components define lax structures
on F and G such that θ is a morphism of lax functors. �

Proposition 3.110 is the special case of Proposition 3.111 in which C is the
one-object monoidal category as in Section 3.4.1.

3.11.3. The image of a morphism. Recall that in an abelian category [250,
Section VIII.3], every morphism f : A→ B factors as

(3.49)

A
f

//

e
  

@@
@@

@@
@ B

X

m

>>~~~~~~~

with e an epimorphism and m a monomorphism. This is called a monic-epi factor-
ization of f . The factorization is functorial in the following sense.

Proposition 3.112. Given a commutative diagram in an abelian category

A
f

//

h

��

B

k

��

A′
f ′

// B′,
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and monic-epi factorizations of f and f ′, there is a unique morphism j : X → X ′

such that the diagrams below commute

A
e //

h

��

X

j

��

m // B

k

��

A′
e′

// X ′
m′

// B′,

where the rows are the given monic-epi factorizations of f and f ′.

Proof. This is [250, Proposition VIII.3.1]. �

It follows that if h and k are isomorphisms, then so is j. In this sense, monic-
epi factorizations are unique up to isomorphism. The maps m and e in (3.49) are
called the image and coimage of f respectively. Sometimes, more loosely, the same
terminology is applied to the object X (either term).

3.11.4. The image functor. Let D be an abelian category. We proceed to con-
struct a functor

ℑ : D(2) → D.

For each object (A, f,B) of D(2), we choose a monic-epi factorization as in (3.49)
and we let

ℑ(A, f,B) := X

where X is the middle object in the chosen factorization. Given a morphism
(h, k) : (A, f,B)→ (A′, f ′, B′) in D(2), we let

ℑ(h, k) := j,

where j is the unique morphism relating the chosen monic-epi factorizations of f
and f ′ afforded by Proposition 3.112.

We refer to ℑ : D(2) → D as the image functor. Its functoriality follows from
Proposition 3.112.

Lemma 3.113. Let (D, •) be an abelian monoidal category (Definition 1.8) and let

A1
f1 //

e1 !!B
BB

BB
B B1

X1

m1

==||||||
and

A2
f2 //

e2 !!B
BB

BB
B B2

X2

m2

==||||||

be monic-epi factorizations of two morphisms f1 and f2. Then

A1 •A2
f1•f2 //

e1•e2
%%LLLLLLLLLL B1 •B2

X1 •X2

m1•m2

99rrrrrrrrrr

is a monic-epi factorization of f1 • f2.
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Proof. We have to check that e1 • e2 is a monomorphism and m1 •m2 is an
epimorphism. By exactness, the maps

e1 • id : A1 •A2 → X1 •A2 and id • e2 : X1 •A2 → X1 •X2

are monomorphisms. Hence so is their composite e1 • e2. For similar reasons,
m1 •m2 is an epimorphism. �

Proposition 3.114. Let (D, •) be an abelian monoidal category. The functor

ℑ : (D(2), •)→ (D, •)

is strong. If (D, •) is braided, then ℑ is bistrong.

Proof. We define structure maps ϕ and ϕ0 (Definition 3.1). Take two objects
in D(2) and their chosen factorizations as in Lemma 3.113. Let also

A1 •A2
e12−−→ X12

m12−−→ B1 •B2

be the chosen factorization of f1•f2. Lemma 3.113 and uniqueness of factorizations
(Proposition 3.112) allows us to define

ϕ(A1,f1,B1),(A2,f2,B2) : ℑ(A1, f1, B1) • ℑ(A2, f2, B2)→ ℑ(A1 •A2, f1 • f2, B1 •B2)

as the unique isomorphism such that the following diagram commutes

(3.50)

A1 •A2
e1•e2 // X1 •X2

m1•m2 //

ϕ

��
�
�
�
� B1 •B2

A1 •A2 e12
// X12 m12

// B1 •B2.

The identity of the unit object of D can be factored through the unit object as
idI = idI idI . We let

ϕ0 : I → ℑ(I, idI , I)

be the isomorphism afforded by Proposition 3.112.
Now let (A3, f3, B3) be a third object of D(2). For ease of notation, assume the

associativity constraints of (D, •) are identities. We use similar notations to the
above for the chosen factorizations of f2 • f3 and f1 • f2 • f3. By definition of ϕ,
the following diagram commutes.

A1 •A2 •A3
e1•e2•e3 // X1 •X2 •X3

m1•m2•m3 //

ϕ•id

��

B1 •B2 •B3

A1 •A2 •A3 e12•e3
// X12 •X3 m12•m3

//

ϕ

��

B1 •B2 •B3

A1 •A2 •A3 e123
// X123 m123

// B1 •B2 •B3.

For the same reasons, a similar diagram with the middle vertical maps being

X1 •X2 •X3
id•ϕ
−−−→ X1 •X23

ϕ
−→ X123
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commutes as well. Then, by uniqueness of factorizations,

ϕ(id • ϕ) = ϕ(ϕ • id).

Thus, the associativity condition in Definition 3.1 holds. The unital condition can
be verified similarly, and hence (ℑ, ϕ) is a lax monoidal functor. Since ϕ is an
isomorphism, it is strong.

If the category D is braided, then the strong monoidal functor (ℑ, ϕ) is braided.
This follows from the commutativity of the diagram

A1 •A2
e1•e2 //

βA1,A2

��

X1 •X2
m1•m2 //

βX1,X2

��

B1 •B2

βB1,B2

��

A2 •A1 e2•e1
// X2 •X1 m2•m1

// B2 •B1,

which holds by naturality of β. Hence, by Proposition 3.46, the functor ℑ is
bistrong. �

Let P1 and P2 : D(2) → D be the canonical projections, that is,

P1(A, f,B) = A and P2(A, f,B) = B.

They are strong monoidal functors D(2) → D (bistrong if D is braided). Moreover,
there are transformations

(3.51) P1 ⇒ ℑ⇒ P2

defined by

P1(A, f,B) //___ ℑ(A, f,B) //___ P2(A, f,B)

A e
// X m

// B,

where the bottom row is the chosen factorization of f .

Proposition 3.115. The transformations (3.51) are morphisms of (bi)strong mon-
oidal functors.

Proof. Naturality follows from the functoriality of factorizations (Proposi-
tion 3.112) and conditions (3.14) follow from the definition of ϕ in (3.50). �

3.11.5. The image of a morphism of monoidal functors. We are now in
position to prove the main result of this section. Let C be an arbitrary monoidal
category and D an abelian monoidal category. Let

F : C→ D and G : C→ D

be two functors and

θ : F ⇒ G

a natural transformation. Let ℑθ denote the composite of functors

C
Hθ−−→ D(2) ℑ

−→ D,

where Hθ is the functor of Section 3.11.2 and ℑ is the image functor of Sec-
tion 3.11.4. The functor ℑθ sends an object A in C to the image of the morphism
θA : F(A)→ G(A) in D.
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Theorem 3.116. In the above situation, if F and G are lax monoidal functors and
θ is a morphism of lax monoidal functors, then

ℑθ : C→ D

is a lax monoidal functor. Moreover, θ factors as a composite of morphisms of lax
monoidal functors

F
θ +3

�$
BB

BB
BB

B

BB
BB

BB
B G

ℑθ.

:B}}}}}}}

}}}}}}}

The same result holds replacing lax for colax or bilax (the latter if C and D are
braided).

Proof. We explain the lax case. By construction ℑθ is the composite of the
lax monoidal functor Hθ (Proposition 3.111) and the strong monoidal functor ℑ
(Proposition 3.114), so Theorem 3.22 applies. Note that the composite of Hθ and
P1 is F , and the composite of Hθ and P2 is G. The factors of θ are the compositions
of the morphisms of Proposition 3.115 with the functor Hθ. They are morphisms
of lax monoidal functors by Theorem 3.21. �

Remark 3.117. The construction of the image functor ℑ involved a global choice
of factorizations. Changing the choice leads to an isomorphic bistrong monoidal
functor (again by uniqueness of factorizations). Suppose the category D is the
category of (graded) vector spaces, or more generally, the category of modules over
a commutative ring. In such a case there are two canonical choices of monic-epi
factorizations (3.49). Namely, one can choose the middle object X as the classical
image of f (a subobject of B) or as the classical coimage of f (a quotient of A).
It follows that both choices lead to isomorphic monoidal functors ℑ1

θ and ℑ2
θ. One

thus obtains a diagram of morphisms of monoidal functors

F
θ +3

�'HH
HH

HH
HH

H

HH
HH

HH
HH

H G

ℑ1
θ
∼= ℑ2

θ.

7?wwwwwwwww

wwwwwwwww

This is the situation encountered in Part III of the monograph; see Sections 15.4.3,
16.3.5, 19.2.1, 19.7.2 and 20.2.3. Further, in some of these situations, θ is given by
symmetrization (an instance of the norm map in group theory). In that case, the
image ℑ2

θ can be identified with invariants and the coimage ℑ1
θ with coinvariants,

provided the field characteristic is 0.

Remark 3.118. While abelian monoidal categories constitute a natural context
in which to formulate Theorem 3.116, this and the other results of this section hold
in greater generality. In fact, all that is needed is the existence of functorial monic-
epi factorizations in the category D (as in Proposition 3.112), and the fact that
the tensor product of D preserves monomorphisms and epimorphisms. This holds
not only in abelian monoidal categories (as in Definition 1.8), but also in (Set,×),
and in many other situations: indeed, it holds in any topos viewed as a monoidal
category under Cartesian product. This follows from [251, Propositions IV.6.1–2];
see also [60, Corollaries 5.9.2 and 5.9.4] and [59, Proposition 2.3.4]. Very general
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conditions under which monic-epi factorizations exist and are unique are given
in [58, Section 4.4] and [59, Section 2.1].

3.11.6. Self-duality of the image. In order to be able to discuss issues related
to self-duality, we combine the above setup with that of the contragredient con-
struction (Section 3.10). Accordingly, we assume that C and D are equipped with
contravariant ∗ functors as in (3.44) (taking C′ = C). This induces a ∗ functor on
the category of arrows D(2) by

(A, f,B)∗ := (B∗, f∗, A∗).

Let Hθ be as in Section 3.11.2. Then

(Hθ)
∨ = Hθ∨ ,

with definitions as in (3.46) and (3.47). This follows from the following calculation.

(Hθ)
∨(A) =

(
F(A∗), θA∗ ,G(A∗)

)∗

= (G(A∗)∗, θ∗A∗ ,F(A∗)∗)

=
(
G∨(A), θ∨A,F

∨(A)
)

= Hθ∨(A).

In particular, if θ is a self-dual transformation F ⇒ F∨, then Hθ is a self-dual
functor (Definitions 3.105 and 3.108).

Now assume further that D is an abelian category such that monic-epi factor-
izations in D are compatible with the ∗ functor. Explicitly, this means that the
dual of a monic-epi factorization of f as in (3.49) yields a monic-epi factorization
of f∗. With this assumption, it follows that the image functor ℑ of Section 3.11.4
is self-dual. Since ℑθ is the composite of Hθ and ℑ, it follows that

(ℑθ)
∨ = ℑθ∨ .

In particular, if θ is a self-dual transformation F ⇒ F∨, then ℑθ is a self-dual
functor.

If, in addition, we assume that C and D are (braided) monoidal categories, then
by employing Propositions 3.111 and 3.114, and Theorem 3.116, one sees that the
above results generalize to that setting. Among these, we highlight the following
result.

Proposition 3.119. Let C be a self-dual braided monoidal category, D be a self-
dual braided abelian monoidal category, and let F : C → D be a bilax functor. If
θ : F → F∨ is a self-dual morphism of bilax functors, then the image ℑθ is a self-
dual bilax functor.

The image of the norm transformation between full Fock functors and its de-
formed, decorated and colored versions are examples of this kind. They are dis-
cussed in Part III of the monograph; see the sections cited in Remark 3.117.



CHAPTER 4

Operad Lax Monoidal Functors

The analogies between the notion of monoid and that of lax monoidal functor,
and between the notion of commutative monoid and that of braided lax monoidal
functor were explained in Chapter 3; see in particular Section 3.4. Just as there are
other types of monoids besides associative and commutative, there are other types
of monoidal functors. This is the topic of the present chapter. Section 4.1 serves
as motivation by introducing a number of such types of monoids and monoidal
functors. In Sections 4.2, 4.3, and 4.4, these notions are treated in full generality
by making use of the notion of operad. The main result is Theorem 4.28 which
describes the structure on a composite of two monoidal functors of such general
types. This involves the Hadamard product of operads. Operads and the necessary
background are discussed in Appendix B.

We mention in passing and without further comment that many other con-
structions of Chapter 3 also generalize to the setting of operads.

Subsequent chapters in Part I develop the theory of monoidal functors in a
direction different from the present chapter and do not logically depend on this
one.

4.1. Other types of monoids and monoidal functors

There has been interest in the recent literature in various types of algebras,
beyond the classical associative, commutative, and Lie algebras. In particular,
dendriform and Zinbiel algebras have been the object of study by Loday and oth-
ers [235].

In Section 4.1.1 we define these objects in the general context of monoidal cat-
egories and review their most basic properties. Then we consider the question of
comparing such objects in two different monoidal categories. This leads to vari-
ous notions of monoidal functor, which accompany each notion of monoid just as
associative and commutative monoids go along with lax and braided lax monoidal
functors. These are introduced in Section 4.1.2. Section 4.1.3 provides some results
on the effect of a monoidal functor of a given type on a monoid of another type.

4.1.1. Other types of monoids. In Chapter 1, we considered three types of mon-
oids: associative monoids (simply called monoids in Definition 1.9), commutative
monoids (Definition 1.17), and Lie monoids (Definition 1.25). The first type can
be defined in any monoidal category, the second in any braided monoidal category,
and the third in any linear symmetric monoidal category (see Remark 1.27).

We turn now to other types of monoids of interest.

119
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Definition 4.1. Let (M, •) be a linear monoidal category. A dendriform monoid
in M is a triple (A,≺,≻) where A is an object of M,

≺ : A •A→ A ≻ : A •A→ A

are maps in M, and the following diagrams commute

A •A •A
id•∗ //

≺•id

��

A •A

≺

��

A •A
≺

// A

A •A •A
id•≺

//

≻•id

��

A •A

≻

��

A •A
≺

// A

A •A •A
id•≻

//

∗•id

��

A •A

≻

��

A •A
≻

// A

where ∗ = ≺+≻.

Definition 4.2. Let (M, •, β) be a linear symmetric monoidal category. A Zinbiel
monoid in M is a pair (A, µ) where A is an object in M, µ : A •A→ A is a map in
M, and the following diagram commutes.

A •A •A
id•(µ+µβ)

//

µ•id

��

A •A

µ

��

A •A µ
// A

We point out that none of these axioms involve the unit object of M; Defi-
nitions 4.1 and 4.2 may just as well be stated in a nonunital linear (symmetric)
monoidal category M.

Remark 4.3. When M is the category of vector spaces, one recovers the notions
of dendriform and Zinbiel algebras introduced by Loday. Zinbiel algebras appeared
in [236]; see also [238, Section 7.1]. The same objects had been considered earlier by
Schützenberger [325, pp. 18–19, identity (SO)]. For dendriform algebras, see [238,
Definition 5.1].

The following results are straightforward. They extend well-known results for
dendriform and Zinbiel algebras to the context of linear (symmetric) monoidal
categories. They are of the same sort as Proposition 1.26, which constructed a Lie
monoid out of an associative monoid.

Proposition 4.4. Let (M, •) be a linear monoidal category and (A,≺,≻) a den-
driform monoid. Define

∗ : A •A→ A

by
∗ = ≺+≻,

as in Definition 4.1. Then (A, ∗) is a nonunital associative monoid.

Proposition 4.5. Let (M, •) be a linear symmetric monoidal category and (A, µ)
a Zinbiel monoid. Define

≺ := µ : A •A→ A and ≻ := µβ : A •A→ A.

Then (A,≺,≻) is a dendriform monoid. Moreover, the nonunital associative mon-
oid of Proposition 4.4 is commutative.
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4.1.2. Other types of monoidal functors. For each type of monoid, there is a
corresponding type of monoidal functor. Lax monoidal functors (Definition 3.1) cor-
respond to associative monoids and braided lax monoidal functors (Definition 3.11)
correspond to commutative monoids. We now define the types of functor corre-
sponding to Lie, dendriform, and Zinbiel monoids. The definitions below are to be
compared with Definitions 1.25, 4.1, and 4.2.

Notation 4.6. The notation (F , ϕ) stands for a functor F : C→ D between mon-
oidal categories, not necessarily unital, along with a natural transformation

(4.1) F(A) • F(B)
ϕA,B

// F(A •B)

between the functors F2 and F2 as in (3.3). The monoidal categories may be
assumed to be linear and symmetric, depending on the context.

We let ϕ(A,B),C be the natural transformation given by the composite

(4.2) F(A) • F(B) • F(C)
ϕA,B•id

// F(A •B) • F(C)
ϕA•B,C

// F(A •B • C).

The natural transformation ϕA,(B,C) is defined similarly.
We say that the transformation ϕ is associative if

ϕ(A,B),C = ϕA,(B,C).

In this case, one may drop the brackets and denote this transformation by ϕA,B,C .

Definition 4.7. Let C be a symmetric monoidal category and D a linear symmet-
ric monoidal category. We say that (F , ϕ) is Lie-lax monoidal if ϕ satisfies the
antisymmetry relation:

(4.3)
(
F(A)F(B)

ϕ
−→ F(AB)

)

+
(
F(A)F(B)→ F(B)F(A)

ϕ
−→ F(BA)→ F(AB)

)
= 0,

and satisfies the Jacobi identity: The sum of the three morphisms below is zero.

(4.4)

F(A)F(B)F(C)
ϕ(A,B),C

// F(ABC)

F(A)F(B)F(C) // F(C)F(A)F(B)
ϕ(C,A),B

// F(CAB) // F(ABC)

F(A)F(B)F(C) // F(B)F(C)F(A)
ϕ(B,C),A

// F(BCA) // F(ABC)

The unlabeled arrows in (4.3) and (4.4) denote the canonical morphisms in-
duced by the symmetries of the categories C and D. The monoidal operations
have been omitted for simplicity. We follow the same convention in subsequent
definitions.

Definition 4.8. Let C be a monoidal category and D a linear monoidal category.
We say that (F , ϕ≺, ϕ≻) is dendriform-lax monoidal if

ϕ≺, ϕ≻ : F(A) • F(B)→ F(A •B)
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and the following diagrams commute

F(A) • F(B) • F(C)
id•ϕ

//

ϕ≺•id

��

F(A) • F(B • C)

ϕ≺

��

F(A •B) • F(C)
ϕ≺

// F(A •B • C)

F(A) • F(B) • F(C)
id•ϕ≻

//

ϕ•id

��

F(A) • F(B • C)

ϕ≻

��

F(A •B) • F(C)
ϕ≻

// F(A •B • C)

F(A) • F(B) • F(C)
id•ϕ≺

//

ϕ≻•id

��

F(A) • F(B • C)

ϕ≻

��

F(A •B) • F(C)
ϕ≺

// F(A •B • C)

where ϕ = ϕ≺ + ϕ≻.

Definition 4.9. Let C be a symmetric monoidal category and D a linear symmetric
monoidal category. We say that (F , ϕ) is Zinbiel-lax monoidal if ϕ satisfies the
following identity.

(4.5)
(
F(A)F(B)F(C)

ϕ(A,B),C
−−−−−−→ F(ABC)

)

=
(
F(A)F(B)F(C)

ϕA,(B,C)
−−−−−−→ F(ABC)

)

+
(
F(A)F(B)F(C)→ F(A)F(C)F(B)

ϕA,(C,B)
−−−−−→ F(ACB)→ F(ABC)

)

The following results are analogues of Propositions 1.26, 4.4, and 4.5. The
proofs offer no difficulty.

Proposition 4.10. Let C be a monoidal category and D a linear symmetric mon-
oidal category. Let (F , ϕ) a lax monoidal functor from C to D (not necessarily
unital). Define

ϕ− := F(A) • F(B)→ F(A •B)

by

(
F(A)F(B)

ϕ−
A,B
−−−→ F(AB)

)

=
(
F(A)F(B)

ϕA,B
−−−→ F(AB)

)

−
(
F(A)F(B)

β
−→ F(B)F(A)

ϕB,A
−−−→ F(BA)

F(β)
−−−→ F(AB)

)
.

Then (F , ϕ−) is a Lie-lax monoidal functor.
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Proposition 4.11. Let C be a monoidal category and D a linear monoidal category.
Let (F , ϕ≺, ϕ≻) be a dendriform-lax monoidal functor from C to D. Define

ϕ : F(A) • F(B)→ F(A •B)

by
ϕ = ϕ≺ + ϕ≻,

as in Definition 4.8. Then (F , ϕ) is a nonunital lax monoidal functor.

Proposition 4.12. Let C be a symmetric monoidal category and D a linear sym-
metric monoidal category. Let (F , ϕ) be a Zinbiel-lax monoidal functor. Define

ϕ≺ := ϕ and ϕ≻ := F(β)ϕβ.

Then (F , ϕ≺, ϕ≻) is a dendriform-lax monoidal functor. Moreover, the nonunital
lax monoidal functor of Proposition 4.11 is braided.

4.1.3. Transformation of monoids under monoidal functors. Lax monoidal
functors preserve monoids (Proposition 3.29) and braided lax monoidal functors
preserve commutative monoids (Proposition 3.37). It is natural to ask what type of
functors would preserve other types of monoids. By analogy with the above cases,
it may seem that Lie lax functors (Definition 4.7) would preserve Lie monoids.
However, something else is true; namely that braided lax monoidal functors preserve
Lie monoids.

Proposition 4.13. Let (F , ϕ) be a linear braided lax monoidal functor between
linear symmetric monoidal categories C and D, and (L, γ) a Lie monoid in C.
Then F(L) is a Lie monoid in D with structure map given by the composite

F(L) • F(L)
ϕL,L

// F(L • L)
F(γ)

// F(L).

Proof. We verify the Jacobi axiom in Definition 1.25 for F(L). We need to
show that the sum of the following composites, for i = 0, 1, 2, is zero:

F(L) • F(L) • F(L)
ϕL,L•id

// F(L • L) • F(L)
F(γ)•id

// F(L) • F(L)
ϕL,L

// F(L • L)

F(γ)

��

F(L) • F(L) • F(L)

ξi

OO

F(L),

where ξ is as in Definition 1.25.
By naturality and associativity of ϕ (Definition 3.1), the above equals the

composite

F(L) • F(L) • F(L)
ξi

// F(L) • F(L) • F(L)
ϕL,L,L

// F(L • L • L)
F(γ(γ•id))

// F(L).

Moreover, since (F , ϕ) is braided, ϕ commutes with ξ. Therefore, the above equals

F(L) • F(L) • F(L)
ϕL,L,L

// F(L • L • L)
F(ξi)

// F(L • L • L)
F(γ(γ•id))

// F(L).

The Jacobi axiom for L and the additivity of F then imply that the sum of these
three maps is zero.

The verification of the antisymmetry axiom is similar. �

Lax monoidal functors preserve dendriform monoids, and braided lax monoidal
functors preserve Zinbiel monoids, as we now see.
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Proposition 4.14. Let (F , ϕ) be a linear lax monoidal functor between linear mon-
oidal categories C and D. Let (A,≺,≻) be a dendriform monoid in C. Then F(A)
is a dendriform monoid in D with structure maps given by

F(A) • F(A)
ϕA,A

// F(A •A)
F(≺)

// F(A)

and

F(A) • F(A)
ϕA,A

// F(A •A)
F(≻)

// F(A).

Moreover, if A is a Zinbiel monoid (as in Proposition 4.5) and F is in addition
braided lax monoidal, then F(A) is a Zinbiel monoid.

The proof offers no difficulty.
Combining the results of Propositions 3.29, 4.13, and 4.14, we see that braided

lax monoidal functors preserve all types of monoids discussed so far. This result is
generalized in Corollary 4.37. The following result can also be easily established.

Proposition 4.15. Let (F , ϕ) be a linear Zinbiel lax monoidal functor between
linear symmetric monoidal categories C and D. Let (A, µ) be an associative monoid
in C. Then F(A) is a dendriform monoid in D with structure maps given by

F(A) • F(A)
ϕA,A

// F(A •A)
F(µ)

// F(A)

and

F(A) • F(A)
β

// F(A) • F(A)
ϕA,A

// F(A •A)
F(β)

// F(A •A)
F(µ)

// F(A).

Moreover, if A is a commutative monoid, then F(A) is a Zinbiel monoid (as in
Proposition 4.5).

The preceding results do not answer all possible questions about transformation
of monoids under monoidal functors. What is the result of applying a Lie-lax
monoidal functor to an associative monoid? What is the result of composing a Lie-
lax monoidal functor with a Zinbiel-lax monoidal functor? There is a simple answer
to these questions, and to any question of this type, that we discuss in Section 4.4.
It involves the notion of operad. Each operad gives rise to a notion of monoid and
of monoidal functor. We discuss these in Sections 4.2 and 4.3.

4.2. Types of monoid: the general case

This section assumes some basic familiarity with species and operads. Roughly
speaking, a species is a collection of vector spaces, one for each finite set. This is
similar to a graded vector space which is a sequence of vector spaces. Species are
discussed in detail in Chapter 8. Operads are species with additional structure.
They are discussed in full detail in Appendix B.

In this section, we recall the notion of an operad-monoid along with a basic set of
examples. Let p be an operad. Then one may view a p-monoid as a representation
of p. It is most common to represent p in the category of vector spaces; that is,
the most basic structure on a p-monoid is that of a vector space (see Remark 4.19).
However, it is preferable to work in more generality.

Accordingly, let M be a symmetric monoidal category. Let k be the field over
which the operad p is defined. We assume that M is linear over k (Definition 1.6).
This is the category in which we will represent p.
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4.2.1. The endomorphism operad associated to an object. Let I be a finite
set. Given a family (Vi)i∈I of objects of M, we let

•
i∈I
Vi

denote their unordered tensor product (Section 1.4). This makes use of the fact
that M is a symmetric monoidal category. If Vi = V for every i, we write

V • I := •
i∈I
Vi.

For any object V of M, define the endomorphism species

(4.6) EndV [I] := HomM(V • I , V ).

The linearity assumption on M turns EndV [I] into a vector space. A bijection
I → J induces an isomorphism

V • I ∼= V •J

and hence a linear isomorphism EndV [J ] ∼= EndV [I]. In this manner, EndV is a
species.

The endomorphism species carries an operad structure as follows. We use the
notation of Section B.4.3. Fix a map f : I → X . Given morphisms

̺ : V •X → V and ̺x : V • f−1(x) → V for each x ∈ X,

we define a morphism V • I → V as the composite below.

V • I //_____________

∼=

��

V

•
x∈X

V • f−1(x)
•

x∈X
̺x

// V •X
̺

// V

This defines the map γf in (B.13). For any singleton set {x}, we have

V •{x} ∼= V.

Using this identification, one defines the unit map ηx in (B.14) to be the map which
sends 1 ∈ k to the identity morphism V → V . It is straightforward to check that
the operad axioms hold.

4.2.2. Operad-monoids in a linear monoidal category.

Definition 4.16. Let p be an operad. A p-monoid in M is an object V with a
morphism of operads

p→ EndV ,

where EndV is the endomorphism operad.

We now make the notion of p-monoid more explicit. We use the following
generic notation for the structure maps of the operad p.

(4.7)

p[X ]⊗
⊗

x∈X

p[f−1(x)]→ p[I], k→ p[{∗}]

a⊗
⊗

x∈X

ax 7→ c 1 7→ i.
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A p-monoid in M is an object V with the following structure. For each finite
set I, there is a morphism

(4.8) Ra : V • I → V for each a ∈ p[I],

which is linear in the element a, subject to the conditions below.

Naturality. For any bijection σ : I → J , the following diagram commutes.

(4.9)

V •J
R(σa)

//

∼=

��

V

V • I
Ra

// V

Substitution compatibility. Let a, ax, c and i be as in (4.7). For each f : I → X
the following diagram commutes.

(4.10)

V • I Rc //

∼=

��

V

•
x∈X

(
•

i∈f−1(x)
V
)

•
x∈X

Rax

// V •X
Ra

// V

Further, Ri is the identity morphism.

Definition 4.17. A morphism V → W of p-monoids is a map V → W such that
for each a ∈ p[I] the following diagram commutes.

V • I Ra //

��

V

��

W • I
Ra

// W

A morphism p→ q of operads induces a restriction functor from the category
of q-monoids to the category of p-monoids.

Example 4.18. Consider the associative operad As (Example B.15). Let A be
an As-monoid in a monoidal category M. According to (4.6), the structure on A
consists of maps of species

A• I → A,

one for each linear order on a finite set I, which combine into a morphism of operads
As→ EndA. Naturality on I reduces this to a family of maps of species

A•n → A,

one for each n, which result in a morphism of operads. Further analysis of the
operad structure of As (its familiar presentation by one generator of degree 2
subject to the associativity relation) shows that the map for n = 1 must be the
identity and the map for n = 2 is associative with respect to the monoidal structure
of M. Moreover, this map determines all the higher maps. Thus, A is a monoid in
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Table 4.1. Operad-monoids and familiar types of monoids.

Operad-monoid Familiar monoid Definition

As-monoid monoid 1.9

Com-monoid commutative monoid 1.17

Lie-monoid Lie monoid 1.25

Dend-monoid dendriform monoid 4.1

Zinb-monoid Zinbiel monoid 4.2

the monoidal category M in the usual sense of Definition 1.9. The map for n = 2
is the product and the map for n = 0 is the unit.

In summary, an As-monoid structure on A is equivalent to a monoid structure
on the object A in the monoidal category M.

The analysis in Example 4.18 can also be carried out for the other types of
monoid discussed in Section 4.1.1, besides associative monoids. The conclusion is
that each type of monoid is a special case of the general notion of operad-monoid,
as shown in Table 4.1. The dendriform operad Dend is described in [238]. The
remaining relevant operads are discussed in Sections B.1.4 and B.4.3.

The content of Table 4.1 is that for the operads p in question, one has an explicit
description of the notion of p-monoids in terms of commutative diagrams, corre-
sponding to their standard presentations as quadratic operads [260, Section 3.2].
In principle, any presentation of an operad p leads to a similar description of the
notion of p-monoids in terms of commutative diagrams. We do not discuss the
theory of operad presentations in this work (but see Example B.5).

Remark 4.19. When M is the category of vector spaces, Definition 4.16 recovers
the usual notion of p-algebras over an operad p. This extends the notions of algebra
mentioned in Remark 4.3.

Other choices of M lead to the notions of graded and super algebras. A graded
p-algebra is a p-monoid in the category (gVec, ·, β) or (gVec, ·, β−1) (Sections 2.1.3
and 2.3.1). In general, these two versions of graded algebras differ; to distinguish
them one sometimes refer to the former as unsigned and to the latter as signed
graded algebras. A super p-algebra is a p-monoid in the category (sVec, ·, β−1) of
super vector spaces (Section 2.3.8).

We briefly mention the dual notion of operad-comonoids.

Definition 4.20. A p-comonoid in M is a p-monoid in the opposite category Mop.

4.3. Types of monoidal functor: the general case

We generalize the discussion is the previous section. Instead of representing an
operad on an object in a symmetric monoidal category, we represent it on a functor
between symmetric monoidal categories. This leads to the notion of an operad-lax
monoidal functor. The discussion parallels that in Section 4.2.

4.3.1. The functors FI and FI . Let C be a symmetric monoidal category and
I be a finite set. View I as a discrete category: objects are the elements of I and
every morphism is an identity. Let CI be the category of functors I → C: objects
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are functors from I to C and morphisms are natural transformations. Explicitly, an
object is an assignment of an object Ai in C to every element i ∈ I. We denote this
object by (Ai)i∈I . A morphism (Ai)i∈I → (Bi)i∈I is an assignment of a morphism
Ai → Bi for each i ∈ I.

Let M be the tensor product functor

M : CI → C (Ai)i∈I 7→ •
i∈I
Ai,

where the right-hand side refers to the unordered tensor product over I (Sec-
tion 1.4).

Now let (C, •, β) and (D, •, β) be two symmetric monoidal categories and let F
be a functor from C to D. Then, for any finite set I, there is an induced functor

(F)i∈I : CI → DI .

We denote the unit object in both C and D by K and write M for the tensor
product functors in both categories. Define

(4.11) FI :=M◦ (F)i∈I and FI := F ◦M;

these are functors from CI to D.

Remark 4.21. The functors F0, F0, F2 and F2 defined in (3.1) and (3.2) played
an important role in Chapter 3. The functors FI and FI provide a generalization:
letting I be the empty set or the set [2] recovers these constructions. Similarly, the
tensor product functor M generalizes the functor by the same name considered in
Section 3.8.1.

4.3.2. The endomorphism operad associated to a functor. Let F : C → D

be a functor between two symmetric monoidal categories and let FI and FI be as
in (4.11). We further assume that D is linear over k. Let Nat(F ,G) denote the set
of natural transformations from F to G.

Define the endomorphism species EndF by

EndF [I] := Nat(FI ,FI).

This is a vector space because D is linear. It is clear that a bijection I → J induces
a linear isomorphism

Nat(FI ,FI)→ Nat(FJ ,FJ),

so EndF is a species.
More explicitly, an element of EndF [I] consists of natural morphisms

•
i∈I
F(Ai)→ F

(
•
i∈I
Ai

)
.

Note that

EndF [∅] = Nat(F∅,F∅) = Hom
(
K,F(K)

)
,

where the right-hand side is the space of morphisms from the unit object of D to
the image under F of the unit object of C.

The endomorphism species carries an operad structure as follows. Fix a map
f : I → X . Given morphisms

•
x∈X
F(Bx)→ F

(
•

x∈X
Bx

)
and •

i∈f−1(x)
F(Ci)→ F

(
•

i∈f−1(x)
Ci

)
for each x ∈ X,
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we define

•
i∈I
F(Ai) //___________________

∼=

��

F
(
•
i∈I
Ai

)

∼=

��

•
x∈X

(
•

i∈f−1(x)
F(Ai)

)
// •
x∈X
F
(
•

i∈f−1(x)
Ai

)
// F

(
•

x∈X

(
•

i∈f−1(x)
Ai

))
.

This defines the map γf in (B.13). For a singleton {x}, the unit map ηx in (B.14)
sends 1 ∈ k to the identity morphism

•
x∈{x}

F(Ax) ∼= F(Ax)→ F(Ax) ∼= F
(
•

x∈{x}
Ax

)
.

It is straightforward to check that the operad axioms hold.

4.3.3. Operad-lax monoidal functors.

Definition 4.22. Let p be an operad. We say that a functor F is p-lax monoidal
if there is given a morphism of operads

R : p→ EndF ,

where EndF is the endomorphism operad.
We say that R is a representation of p on the functor F . The image of a ∈ p[I]

under this morphism is denoted Ra : FI ⇒ FI .

We now make the notion of a p-lax functor more explicit. A p-lax functor is
a functor F : C → D with the following structure. For each finite set I, there is a
morphism

(4.12) Ra : •
i∈I
F(Ai)→ F

(
•
i∈I
Ai

)
for each a ∈ p[I]

which is natural in the Ai’s and linear in the element a, and subject to the conditions
below.

Naturality. For any bijection σ : I → J , the following diagram commutes.

(4.13)

•
j∈J
F(Aj)

R(σa)
//

∼=

��

F
(
•
j∈J

Aj

)

•
i∈I
F(Aσ(i)) Ra

// F
(
•
i∈I
Aσ(i)

)

∼=

OO

Equivalently, we have σ(Ra) = R(σa).
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Substitution compatibility. Let a, ax, c and i be as in (4.7). For each f : I → X
the following diagram commutes.

(4.14)

•
i∈I
F(Ai)

Rc //

∼=

��

F
(
•
i∈I
Ai

)

∼=

��

•
x∈X

(
•

i∈f−1(x)
F(Ai)

)
•

x∈X
Rax

// •
x∈X
F
(
•

i∈f−1(x)
Ai

)
Ra

// F

(
•

x∈X

(
•

i∈f−1(x)
Ai

))

In addition, Ri is the identity morphism.

We briefly explain how these conditions are equivalent to Definition 4.22. Natu-
rality says that p→ EndF is a morphism of species and substitution compatibility
says further that it is a morphism of operads. More precisely, diagram (4.14) says
that the first diagram in (B.4) commutes, while Ri being the identity morphism
says that the second diagram in (B.4) commutes.

Definition 4.23. A morphism between p-lax functors F and G is a natural trans-
formation θ : F ⇒ G such that for each a ∈ p[I] the following diagram commutes.

(4.15)

•
i∈I
F(Ai)

Ra //

•
i∈I

θAi

��

F
(
•
i∈I
Ai

)

θ( •
i∈I

Ai)

��

•
i∈I
G(Ai)

Ra
// G
(
•
i∈I
Ai

)

The following is straightforward.

Proposition 4.24. The composite of morphisms of p-lax monoidal functors is
again a morphism of p-lax monoidal functors.

Composition is clearly associative; thus for two fixed symmetric monoidal cat-
egories and an operad p, we have the category of p-lax functors between them.
Further, a morphism p → q of operads induces a restriction functor from the
category of q-lax functors to the category of p-lax functors.

The types of monoidal functors discussed in Section 4.1.2 are special cases of
the general notion of operad-lax functor, as shown in Table 4.2. (Compare with
Table 4.1.)

We briefly mention the dual notion to operad-lax functors.

Table 4.2. Operad-lax functors and familiar types of functors.

Operad-lax functor Familiar lax functor Definition

As-lax functor lax functor 3.1

Com-lax functor braided lax functor 3.11

Lie-lax functor Lie-lax functor 4.7

Dend-lax functor dendriform-lax functor 4.8

Zinb-lax functor Zinbiel-lax functor 4.9
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Definition 4.25. A p-colax monoidal functor F : C → D is a p-lax monoidal
functor F : Cop → Dop.

Remark 4.26. In [312, Section 3] and [313, Definition 2.3], Richter considers a
special case of Definition 4.22: she defines E∞-lax monoidal functors, where E∞

stands for a homotopy version of the commutative operad Com (Example B.15).
It is clear that Richter’s definition contains all the ingredients of the general notion.

Her work provides interesting examples of E∞-lax monoidal functors, such as
the cubical construction of Eilenberg and Mac Lane [312, Section 5] and the inverse
functor in the Dold-Kan correspondence [313, Section 5]. Richter also explains
that the chain complex functors of Section 5.4 are E∞-colax monoidal; see [312,
Section 7] and [313, Section 5]. We say a bit more about this in Section 5.5.5.

4.3.4. Operad-monoids as operad-lax monoidal functors. We have seen
that (co)monoids can be viewed as (co)lax monoidal functors in Section 3.4.1. We
now extend this result to operad-(co)monoids.

Let I be the one-arrow category. A functor F : I → M is determined by the
choice of an object, say V , in M. In this situation, the endomorphism operad
EndF associated to the functor F specializes to the endomorphism operad EndV
associated to the object V (Section 4.2.1).

Suppose p is an operad. It follows from Definitions 4.16 and 4.22 that F is
p-(co)lax monoidal if and only if V is a p-(co)monoid. This leads to the following
result.

Proposition 4.27. The category of p-(co)monoids in M is equivalent to the cate-
gory of p-(co)lax monoidal functors from I to M.

Specializing this result to p = As and p = Com recovers Propositions 3.25
and 3.27.

4.4. Composites of monoidal functors and transformation of monoids

It is natural to wonder about the result of composing operad-lax monoidal
functors. An elegant answer to this question is given in Section 4.4.1, with special-
izations in Sections 4.4.2 and 4.4.3. This is then used in Section 4.4.4 to describe
the effect of applying a monoidal functor of a given type to a monoid of another
type. This addresses the questions raised at the end of Section 4.1.3 in the proper
generality. The statement of the main result involves the Hadamard product on
operads. The latter is discussed in detail in Section B.6; we recall below the ideas
required for the present discussion.

Suppose that p and q are species. Their Hadamard product p×q is defined by
(p×q)[I] := p[I]⊗q[I]. The unit for this product is the exponential species E given
by E[I] := k. This product extends to operads. That is, if p and q are operads,
then there is a canonical structure of an operad on p × q. This operation turns
the category of operads into a monoidal category; the unit object is the operad
Com (whose underlying species is E). Comonoids in this category are of particular
significance and are called Hopf operads.

4.4.1. Composites of monoidal functors. Throughout this discussion, C, D,
and E are symmetric monoidal categories, and F : C → D and G : D → E are
functors. We also assume that the categories D and E, and the functor G are linear
over k.



132 4. OPERAD LAX MONOIDAL FUNCTORS

Let p and q be species, and R : p → EndF and R : q → EndG be maps of
species. We proceed to construct a map from the Hadamard product q× p to the
endomorphism species of the composite functor

GF : C→ E.

Define a map of species

(4.16) R : q× p→ EndGF

as follows. For a ∈ p[I] and b ∈ q[I], let R(b⊗ a) be defined by:

•
i∈I
GF(Ai)

R(b⊗a)
//_______

Rb
!!C

CC
CC

CC
C

GF
(
•
i∈I
Ai

)

G
(
•
i∈I
F(Ai)

)G(Ra)

<<zzzzzzzz

I

Rb
!!D

DDD
DD

DD
R(b⊗a)

//________ GF(I)

G(I).

G(Ra)

;;vvvvvvvvv

Note that for I fixed, R(b⊗ a) is natural in the Ai’s and linear in b⊗ a as required.
The linearity of G is important for this conclusion. The diagram on the right
explicitly shows the case when I is empty.

One may also work in a setting where G is not necessarily linear but where
the operad p is linearized (Section B.1.3). In this case, the above definition is only
applied to those elements a which lie in the canonical basis of p[I].

Theorem 4.28. Let p and q be operads. Let F : C→ D be p-(co)lax and G : D→ E

be q-(co)lax monoidal functors. Assume that either p is a linearized operad, or G
is linear. Then GF : C→ E is (q× p)-(co)lax monoidal.

Whether one writes (q × p)-(co)lax or (p × q)-(co)lax for GF is irrelevant, in
view of the symmetry p× q ∼= q× p.

Proof. We need to check that if R : p → EndF and R : q → EndG are
morphisms of operads, then so is

R : q× p→ EndGF

as defined in (4.16). For this, it is convenient to work with the explicit definition
of operad-lax functors given after Definition 4.22. Thus, we need to check for
naturality and substitution compatibility for R(b⊗ a).

The naturality of R(b⊗a), or equivalently, the commutativity of diagram (4.13)
for R(b ⊗ a) follows directly from the same property for Ra and Rb. The check
for substitution compatibility is more interesting. We follow the notation of Sec-
tion B.6.2 for the Hadamard product of operads.

By definition R(j ⊗ i) is the composite map

GF(A)
Rj

// GF(A)
G(Ri)

// GF(A).

Since Rj and Ri are both the identity morphisms, it follows that R(j ⊗ i) is also
the identity morphism.

We fix f : I → X and for simplicity we identify the tensors

•
i∈I

and •
x∈X

•
i∈f−1(x)

.
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The diagram (4.14) for R(b ⊗ a) commutes by the commutativity of the following
diagram.

•
x∈X

•
i∈f−1(x)

GF(Ai)
Rd //

•
x∈X

Rbx

��

G
(
•

x∈X
•

i∈f−1(x)
F(Ai)

)

G(Rc)

��

G( •
x∈X

Rax)

����
��

��
��

��
��

��
��

��
��

��
��

��
��

•
x∈X
G
(

•
i∈f−1(x)

F(Ai)
)

Rb

33ggggggggggggggggggggggggggggggg

•
x∈X

G(Rax)

��

•
x∈X
GF( •

i∈f−1(x)
Ai)

Rb
// G

(
•

x∈X
F
(
•

i∈f−1(x)
Ai

))

G(Ra)
// GF

(
•

x∈X
•

i∈f−1(x)
Ai

)

The triangle on the left commutes since diagram (4.14) commutes for Rb, which we
remind is a consequence of R : q→ EndG being a morphism of operads. The com-
mutativity of the triangle on the right is G applied to the fact that diagram (4.14)
commutes for Ra, which follows from R : p→ EndF being a morphism of operads.
The quadrilateral commutes by the naturality of Rb. �

Remark 4.29. Note that in the proof above we only used the naturality of Rb and
not that of Ra. This proof may be compared with that of Theorem 3.21, where
only the naturality of γ is used.

The following result complements Theorem 4.28. The proof is omitted.

Proposition 4.30. Let p and q be operads. Let F ,F ′ : C → D be p-(co)lax and
G,G′ : D→ E be q-(co)lax monoidal functors. Assume that either p is a linearized
operad, or both G and G′ are linear. Then

(i) If F ⇒ F ′ is a morphism of p-(co)lax monoidal functors, then the in-
duced natural transformation GF ⇒ GF ′ is a morphism of (q×p)-(co)lax
monoidal functors.

(ii) If G ⇒ G′ is a morphism of q-(co)lax monoidal functors, then the in-
duced natural transformation GF ⇒ G′F is a morphism of (q×p)-(co)lax
monoidal functors.

4.4.2. Specialization: either F or G is braided lax. The operad Com is
the unit object for the Hadamard product. For this reason, the situation in The-
orem 4.28 is particularly nice when one of the functors is braided lax. We briefly
discuss this case.

Corollary 4.31. Let F : C→ D and G : D→ E be functors.

(i) Let q be an operad. Suppose F is braided (co)lax monoidal and G is
q-(co)lax monoidal. Then GF is q-(co)lax monoidal.

(ii) Let p be an operad. Suppose F is p-(co)lax monoidal and G is braided
(co)lax monoidal. Assume that either p is linearized or F is linear. Then
GF is p-(co)lax monoidal.

In addition, post (or pre) composing by a p-(co)lax monoidal functor turns a mor-
phism of braided (co)lax monoidal functors into a morphism of p-(co)lax monoidal
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functors. Similarly, pre (or post) composing by a braided (co)lax monoidal functor
preserves morphisms of p-(co)lax monoidal functors.

Proof. We explain (i); the proof of (ii) is similar. A braided (co)lax monoidal
functor is the same as a Com-(co)lax monoidal functor (Table 4.2). In addition,
Com is a linearized operad. Hence, the composite GF is (Com× q)-(co)lax mon-
oidal, by Theorem 4.28. Since Com× p ∼= p as operads, the result follows. �

More explicitly, let (F , ϕ, ϕ0) be a braided lax functor and let ϕI : FI → FI be
the transformation

ϕ( •
i∈I

Ai) : •
i∈I
F(Ai)→ F

(
•
i∈I
Ai

)

obtained by iterating ϕ. If I is empty, then ϕI is the same as ϕ0 and if I = [2],
then ϕI is the same as ϕ. Now let G be a p-lax functor. Then the composite GF
is a p-lax functor as follows. For a ∈ p[I], we define:

•
i∈I
GF(Ai)

Ra //___________

Ra
%%K

KKKKKKKK
GF
(
•
i∈I
Ai

)

G
(
•
i∈I
F(Ai)

)
.

G(ϕ( •
i∈I

Ai)
)

99ssssssssss

The p-lax structure for the functor FG may be similarly described.

4.4.3. Specialization: p = q. Let p be a linearized operad. This means that
p is obtained by linearizing a set operad; thus each p[I] comes equipped with a
canonical basis. This yields morphisms of operads:

(4.17) p→ p× p and p→ Com.

It follows that any (p × p)-(co)lax or braided (co)lax functor is canonically a p-
(co)lax functor. In particular, the identity functor is p-lax.

Theorem 4.28 now implies the following:

Theorem 4.32. Let p be a linearized operad. The composite of two p-(co)lax
functors is again p-(co)lax. In addition, pre or post composing by a p-(co)lax
functor preserves morphisms between p-(co)lax functors.

Explicitly, for an element a in the canonical basis of p[I], the structure map
Ra for GF is given by the composite:

•
i∈I
GF(Ai) Ra // G

(
•
i∈I
F(Ai)

)
G(Ra)

// GF

(
•
i∈I
Ai

)
.

We extend by linearity to all elements of p[I].
Theorem 4.32 leads to the following result. For a linearized operad p, there is

a 2-category whose 0-cells are symmetric monoidal categories, 1-cells are p-(co)lax
functors, and 2-cells are morphisms between p-(co)lax functors.

Recall that a Hopf operad is a comonoid in the category of operads with respect
to the Hadamard product. The morphisms (4.17) turn any linearized operad into
a Hopf operad. The result of Theorem 4.32 continues to hold for arbitrary Hopf
operads, provided the functors are linear:
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Theorem 4.33. Let p be a Hopf operad. The composite of two linear p-(co)lax
functors is again linear p-(co)lax. In addition, pre or post composing by a linear
p-(co)lax functor preserves morphisms between linear p-(co)lax functors.

Note that the structure map Ra for GF written for the linearized case above
is not linear in the element a. This was the reason for writing it only for elements
in the canonical basis. In the Hopf operad case, the structure map Ra for GF , for
any element a, is given by the composite:

•
i∈I
GF(Ai)

Ra(2)
// G

(
•
i∈I
F(Ai)

)
G(Ra(1))

// GF

(
•
i∈I
Ai

)

where Sweedler’s notation has been employed to express the coproduct of the ele-
ment a: ∆(a) = a(1) ⊗ a(2). One may equally well use a(1) on the first arrow and
a(2) on the second; this leads to a second p-monoidal structure on GF . If p is
cocommutative, the two structures coincide.

Theorem 4.33 implies the following. For a Hopf operad p, there is a 2-category
whose 0-cells are linear symmetric monoidal categories, 1-cells are linear p-(co)lax
monoidal functors and 2-cells are morphisms of p-(co)lax monoidal functors.

4.4.4. Transformation of monoids under monoidal functors: the general
case. Proposition 4.27 shows that operad-(co)monoids can be viewed as operad-
(co)lax monoidal functors. This relation enables us to derive results about operad-
(co)monoids from results about operad-(co)lax monoidal functors.

Theorems 4.28, 4.32 and 4.33 yield the following important results.

Theorem 4.34. Let p and q be operads and F : C→ D a q-lax monoidal functor.
Assume that either p is linearized or F is linear. Then F sends a p-monoid in C

to a (p× q)-monoid in D.

Theorem 4.35. Let p be a linearized operad and F : C → D a p-lax monoidal
functor. Then F sends a p-monoid in C to a p-monoid in D.

Let p be a Hopf operad and F : C → D a linear p-lax monoidal functor. Then
F sends a p-monoid in C to a p-monoid in D.

The operad Com is linearized and also the unit object for the Hadamard
product. Specializing either p or q to Com yields the following corollaries.

Corollary 4.36. A p-lax monoidal functor sends a commutative monoid to a p-
monoid.

Corollary 4.37. A braided lax monoidal functor preserves p-monoids for any lin-
earized operad p. A linear braided lax monoidal functor preserves p-monoids for
any operad p.

The special cases p = Com and Lie recover the results in Propositions 3.37
and 4.13. The other results about transformations of monoids in Section 4.1.3 can
also be derived from Theorem 4.34. For instance, to obtain the result on preser-
vation of dendriform monoids in Proposition 4.14, one argues as follows. If F is
As-lax monoidal and A is a Dend-monoid, then F(A) is a (Dend×As)-monoid.
Now, there is a morphism of operads Dend → Dend × As. (This morphism is
responsible for the well-known fact that the tensor product of a dendriform mon-
oid with an associative monoid is a dendriform monoid.) Restricting along this
morphism one deduces a Dend-monoid structure on F(A).





CHAPTER 5

Bilax Monoidal Functors in Homological Algebra

The notion of bilax monoidal functor between braided monoidal categories is
of central importance to this work. This chapter discusses what may be the most
classical example of a bilax monoidal functor in mathematical nature. The familiar
construction of a chain complex out of a simplicial module defines a functor between
symmetric monoidal categories, and the classical maps of Eilenberg–Zilber and
Alexander–Whitney turn it into a bilax monoidal functor. This holds both for the
unnormalized and normalized versions of the construction. The latter is an example
of a normal bilax monoidal functor in the sense of Definition 3.39 (and the reason
for such terminology).

This chapter is meant to serve as motivation for the study of bilax monoidal
functors. The results given here are not needed in the rest of the monograph.

Detailed discussions on simplicial modules and chain complexes can be found in
the books by Goerss and Jardine [147], Loday [237, Appendix B], Mac Lane [249],
May [262], or Weibel [372, Chapter 8]. We provide the necessary background in
order to keep our exposition self-contained.

Organization. We start by setting up the notation and reviewing basic notions
about simplicial modules in Section 5.1. Motivations from topological spaces are
given in Section 5.2. The Alexander–Whitney and Eilenberg–Zilber maps are dis-
cussed in Section 5.3, where we also give the key compatibility between these maps
that gives rise to a bilax monoidal functor (Lemma 5.5). The chain complex func-
tors appear in Section 5.4 along with the main result that they are bilax, which
is given in Theorem 5.6. While not formulated in these exact terms in the litera-
ture, this result pertains to the folklore of simplicial algebra. It was brought to our
attention by Clemens Berger.

It is important to remark that we work with ordinary morphisms of chain
complexes, not chain homotopy classes. If we pass to the homotopy category of
chain complexes, then the chain complex functors become bistrong. As explained
in Section 3.6.1, in this situation the bilax axiom simplifies, and one does not
need to confront it explicitly. In addition, this suffices for the applications to the
construction of products in (co)homology. This may perhaps explain the lack of
treatment in the literature of the general notion of bilax monoidal functors.

In Section 5.5 we state a number of well-known results which may be seen
as consequences of the theorem, mainly regarding the existence of products in
(co)homology. These include the cup product and the Pontrjagin product. Finally,
in Section 5.6 we discuss the possibility of obtaining a one-parameter deformation of
the chain complex functor. This can be done successfully provided that the bound-
ary maps are set aside (Theorem 5.17). If boundaries are to be kept, then a partial

137
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Table 5.1. Monoidal categories related to k-modules.

Notation Description

gMod Graded k-modules

dgModa Chain complexes of k-modules (Differential graded modules)

dgModa Chain complexes of k-modules up to homotopy

dgModc Cochain complexes of k-modules

dgModc Cochain complexes of k-modules up to homotopy

gModa Graded k-modules with annihilation operators

gModc Graded k-modules with creation operators

dgModN N -complexes of k-modules

result is still true (Proposition 5.22). We make here use of some constructions of
Kapranov [187] and of Dubois-Violette [105].

Commutative rings versus fields. For the most part of this monograph, we
work with vector spaces over a field k. This chapter deals with notions related to
homology for which it is desirable to allow more general scalars. The basic notions
about graded vector spaces discussed in Chapter 2 carry over to graded modules
mutatis mutandis. Accordingly, throughout this chapter, k denotes a commutative
ring, Mod denotes the category of k-modules, and so on. The notations are sum-
marized in Table 5.1. A comparison with Table 2.3 shows that we essentially use
all the terminology of Chapter 2 with Mod replacing Vec.

A historical note. Simplicial sets were introduced by Eilenberg and Zilber, who
called them complete semi-simplicial complexes [122, Section 8]. The Alexander–
Whitney map has its origins in the work of several authors on the cup product in
algebraic topology. The cup product appears explicitly in works of Alexander [19,
Equation (9:1)], Čech [78, Section 7] and Whitney [375, Section 6]. The idea was
introduced independently by Alexander and Kolmogorov at a 1935 conference in
Moscow. The relevant papers are [17, 18, 205, 206]. The Eilenberg–Zilber map is
implicit in a paper of Eilenberg and Zilber [123, Section 1]; it appears explicitly
in work of Eilenberg and Mac Lane [119, Section 5]. The compatibility between
the two maps is treated in a paper of Eilenberg and Moore [121, Section 17]. The
Pontrjagin product first appeared in the work of Pontrjagin [298]. More historical
information can be found in [99, 176, 376].

We thank Ryan Budney, Allen Hatcher, Joseph Neisendorfer and Paul Selick
for help with these references.

5.1. The simplicial category and simplicial modules

In this section, we review basic notions about simplicial modules.

5.1.1. Simplicial objects. The simplicial category ∆ has for objects the non-
negative integers 0, 1, 2, . . . . The morphisms from n to m are the order-preserving
functions

(5.1) µ : {0, 1, . . . , n} → {0, 1, . . . ,m}.
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Table 5.2. Simplicial objects in various categories.

Category Simplicial object

sets simplicial set

k-modules simplicial k-module

groups simplicial group

k-(co, bi)algebras simplicial (co, bi)algebra

Morphisms are composed as ordinary functions.
Let C be an arbitrary category. A simplicial object in C is a contravariant

functor

∆→ C.

If X is a simplicial object, we let Xn denote the value of the functor X on the
object n, and if µ is as above, we let

(5.2) Xµ : Xm → Xn

denote the value of the functor X on the morphism µ.
A morphism of simplicial objects X → Y is a natural transformation of func-

tors, that is, a family of maps Xn → Yn in C commuting with the action of order-
preserving functions. This defines the category of simplicial objects in C.

Some familiar categories along with their simplicial objects are summarized in
Table 5.2. For example, a simplicial set is a simplicial object in the category of
sets; for k a commutative ring, a simplicial k-module is a simplicial object in the
category of k-modules, and so on. For the most part, we deal with the category of
simplicial k-modules. We denote it by sMod (omitting k from the notation). The
category of simplicial sets will be denoted by sSet.

Remark 5.1. There is a related notion called semi-simplicial object in which ∆

is replaced by the subcategory whose morphisms are injective order-preserving
maps [372, Definition 8.1.9]. Semi-simplicial sets were introduced by Eilenberg
and Zilber [122, Section 1]. These are called ∆-complexes by Hatcher [160] and
triangulated spaces by Gelfand and Manin [143, Section I.1]. Kozlov uses the short
form trisp [207, Section 2.3].

5.1.2. Special morphisms in the simplicial category. We set up the notation
for some special morphisms of the category ∆. For each i = 0, . . . , n, define maps

δi : {0, 1, . . . , n− 1} → {0, . . . , n} and σi : {0, 1, . . . , n+ 1} → {0, . . . , n}

as follows. The map δi is the unique injective order-preserving map whose image
misses i. The map σi is the unique surjective order-preserving map which identifies
i and i+ 1. Explicitly,

δi(j) =

{
j if j < i

j + 1 if j ≥ i
and σi(j) =

{
j if j ≤ i

j − 1 if j > i.

These morphisms of ∆ are called the face and degeneracy maps, respectively. The
dependence of these maps on n is implicit. They may be visualized as shown in
Figure 5.1.
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Figure 5.1. Faces and degeneracies.

When a simplicial object X is given, it is customary to write, for each i =
0, . . . , n,

(5.3) di := Xδi : Xn → Xn−1 (n ≥ 1) and si := Xσi : Xn → Xn+1 (n ≥ 0).

Any morphism in ∆ is a composite of face and degeneracy maps [249, Lem-
ma VIII.5.1]. Moreover, the category ∆ admits a presentation in which these
maps are the generators, and the relations are certain simple commutation relations
among faces and degeneracies. As a consequence, one has the following result.

Lemma 5.2 ([249, Theorem VIII.5.2]). To define a simplicial object X in a cate-
gory C, it suffices to specify a sequence of objects Xn of C, n ≥ 0, and maps

di : Xn → Xn−1 for n ≥ 1, 0 ≤ i ≤ n

and
si : Xn → Xn+1 for n ≥ 0, 0 ≤ i ≤ n

in C, such that the following relations hold :

(5.4)

didj = dj−1di for i < j,

sisj = sj+1si for i ≤ j,

disj =





sj−1di for i < j,

idXn for i = j or i = j + 1,

sjdi−1 for i > j + 1.

5.1.3. The tensor product of simplicial modules. The tensor product of two
simplicial k-modules X and Y is X × Y defined by

(X × Y )n := Xn ⊗ Yn and (X × Y )µ := Xµ ⊗ Yµ

for every n ≥ 0 and every morphism µ in ∆. The unit object E is defined by

En := k and Eµ := idk

for every n ≥ 0 and every morphism µ in ∆. The symmetry β is the trivial switch

Xn ⊗ Yn
∼=−→ Yn ⊗Xn, x⊗ y 7→ y ⊗ x.

This turns sMod into a symmetric monoidal category.

The same construction can be done for sSet by replacing the tensor product
by the Cartesian product. In this case, the monoidal structure is the categorical
product. Note that to every simplicial set, one can associate a simplicial module
by linearization. This yields a functor

(5.5) sSet→ sMod

which is evidently bistrong.
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5.2. Topological spaces and simplicial sets

Historically, homology was first defined for topological spaces and then ab-
stracted to simplicial sets. In this section, we discuss the monoidal properties of
two classical functors which relate topological spaces and simplicial sets. One is
the singular complex functor of Eilenberg [116] (a precursor is in the paper by
Lefschetz [224]) and the other is the geometric realization functor of Milnor [273].

This section is for motivation purposes only; subsequent sections do not logi-
cally depend on this one.

5.2.1. The singular complex functor. Let (Top,×, β) be the symmetric mon-
oidal category of topological spaces with tensor product being the Cartesian prod-
uct. Consider the singular complex functor

(5.6) S : (Top,×, β)→ (sSet,×, β)

which sends a topological space T to the simplicial set X where Xn consists of the
singular n-simplices in X , that is, all continous maps from the standard n-simplex
to X . Note that a morphism µ as in (5.1) can be viewed as a continous map from
the standard n-simplex to the standard m-simplex. The map Xµ of (5.2) is then
defined as the pull-back along µ viewed in this manner.

Since the monoidal structure on both categories is the categorical product,
S carries a canonical braided colax structure (Example 3.19). In particular, for
topological spaces T and U , there is a natural transformation

S(T × U)→ S(T )× S(U)

constructed from the universal property of products. Since a continous map into
T × U is the same as a pair of continous maps, one into T and another into U , it
follows that S is in fact bistrong.

5.2.2. The geometric realization functor. The singular complex functor ad-
mits a left adjoint. This is the functor which sends a simplicial setX to its geometric
realization |X |. We denote this functor by

(5.7) | · | : (sSet,×, β)→ (Top,×, β).

For the same reason as the singular complex functor, | · | carries a canonical braided
colax structure. In particular, for simplicial sets X and Y , there is a natural
transformation

|X × Y | → |X | × |Y |.

It follows from general considerations (Example 3.90) that the adjunction (| · |,S)
is braided colax-colax.

5.2.3. Homotopy categories. Recall that there is a notion of homotopy for con-
tinous maps. This gives rise to the homotopy category of topological spaces which
we denote by Top: Objects are topological spaces and morphisms are continous
maps up to homotopy. Note that there is a bistrong functor Top → Top which
sends a topological space to itself and a continous map to its homotopy class.

There is an analogous notion of homotopy for simplicial maps [147, Section
I.6], [262, Definition 5.1] or [372, Section 8.3.11]. This gives rise to the homotopy
category of simplicial modules which we denote by sMod. As for topological spaces,
the canonical functor sMod→ sMod is bistrong.
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Warning. The situation for simplicial sets is more delicate. The homotopy rela-
tion for simplicial maps between simplicial sets is not an equivalence relation. To
overcome this problem one needs to restrict to the subcategory of fibrant simplicial
sets, also called Kan complexes. These are simplicial sets which satisfy the Kan
condition [147, Section I.3], [262, Definition 1.3] or [372, Section 8.2.7]. The origi-
nal source is [185]. The singular complex of a topological space is indeed a fibrant
simplicial set. Further, these simplicial sets are closed under taking Cartesian prod-
uct. We denote the subcategory of fibrant simplicial sets by fsSet and its homotopy
category by fsSet.

The following commutative diagrams relate the various homotopy categories.

fsSet //

��

sMod

��

fsSet // sMod

Top
S //

��

fsSet

��

Top // fsSet

fsSet
| · |

//

��

Top

��

fsSet // Top

(5.8)

The functors in the top horizontal rows are as in (5.5), (5.6) and (5.7). The first
two diagrams are diagrams of bistrong functors, while the third is a diagram of
braided colax functors. Composing the first two yields the commutative diagram

(5.9)

Top //

��

sMod

��

Top // sMod

of bistrong functors.

5.3. Alexander–Whitney and Eilenberg–Zilber

In this section, we review the classical maps of Alexander–Whitney and Eilen-
berg–Zilber. They provide the structure maps for the colax and lax structures of
the chain complex functors. We also establish a compatibility lemma which allows
us to deduce (in Section 5.4) that the lax and colax structures are compatible, in
the sense that they make the chain complex functors bilax monoidal.

5.3.1. Alexander–Whitney. Fix n ≥ 0. For each pair of indices h, k with 0 ≤
h ≤ k ≤ n, define

δh,k : {0, 1, . . . , k − h} → {0, 1, . . . , n}

by

(5.10) δh,k(i) := i+ h.

The dependence of δh,k on n is not reflected in the notation, but n will always be
clear from the context.

The map δh,k is order-preserving, injective, and its image is {h, h+ 1, . . . , k}.
It is the following composite of face maps:

(5.11) {0, 1, . . . , k − h}
δ0−→ {0, 1, . . . , k − h+ 1} → · · ·

δh−1
−−−→ {0, 1, . . . , k − h+ h}

= {0, 1, . . . , k}
δk+1
−−−→ {0, 1, . . . , k + 1} → · · ·

δn−→ {0, 1, . . . , n}.
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Let X and Y be simplicial modules and n ≥ 0. The Alexander–Whitney map

(5.12) ψX,Y : Xn ⊗ Yn →
n⊕

i=0

Xi ⊗ Yn−i

is given by

ψX,Y (x⊗ y) :=

n∑

i=0

Xδ0,i(x) ⊗ Yδi,n(y) =

n∑

i=0

(di+1 · · · dn)(x) ⊗ (d0 · · ·di−1)(y).

The second expression follows from (5.11).

Remark 5.3. There is a companion to the Alexander–Whitney map obtained by
interchanging the roles of X and Y . We denote it by bψ. It is given by

(bψ)X,Y (x ⊗ y) :=

n∑

i=0

Xδi,n(x) ⊗ Yδ0,i(y) =

n∑

i=0

(d0 · · · di−1)(x)⊗ (di+1 · · · dn)(y).

There is no reason to view either ψ or bψ as more fundamental than the other.

5.3.2. Eilenberg–Zilber. Let p, q ≥ 0. Given a subset S ⊆ {0, 1, . . . , p + q − 1}
with |S| = p, define

σS : {0, 1, . . . , p+ q} → {0, 1, . . . , q}

by

(5.13) σS(i) := i− |{j ∈ S : j < i}|.

The dependence of σS on q is not reflected in the notation, but q will always be
clear from the context.

The map σS is order-preserving and surjective. Indeed, it is the unique order-
preserving surjective map which identifies i and i + 1 for each i ∈ S. Write S =
{i1, . . . , ip} with 0 ≤ i1 < · · · < ip ≤ p + q − 1. The map σS is the following
composite of degeneracy maps:

(5.14) {0, 1, . . . , p+ q}
σip
−−→ {0, 1, . . . , p+ q − 1} → · · ·

σi1−−→ {0, 1, . . . , p+ q − p}.

In the same situation, we set

ǫ(S) :=

p∑

j=1

ij − (j − 1).

Remark 5.4. The function ǫ is called the signature by Mac Lane [249, Chap-
ter VIII.8]. It is essentially the Schubert statistic (2.13). The precise connection
is

ǫ(S) = schp+q(S + 1),

where

S + 1 = {i1 + 1, . . . , ip + 1} ⊆ [p+ q].

We will need some elementary properties of the Schubert statistic (Section 2.2.1)
later in Sections 5.4 and 5.6.

Let X and Y be simplicial modules and p, q ≥ 0. The Eilenberg–Zilber map

(5.15) ϕX,Y : Xp ⊗ Yq → Xp+q ⊗ Yp+q
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is given by

ϕX,Y (x⊗ y) :=
∑

S⊔T={0,1,...,p+q−1}
|S|=p,|T |=q

(−1)ǫ(S)XσT (x) ⊗ YσS (y)

=
∑

S⊔T={0,1,...,p+q−1}
S={i1<···<ip}
T={j1<···<jq}

(−1)ǫ(S)(sjq · · · sj1)(x) ⊗ (sip · · · si1)(y).

The second expression follows from (5.14).
The map ϕX,Y was introduced by Eilenberg and Mac Lane [119, Section 5] in

relation to the Eilenberg–Zilber theorem [123, Section 1]. It is also referred to as
the simplicial cross product [67, Section IV.16] or [160, Section 3.B, p. 277].

5.3.3. A compatibility lemma. The lemma below will allow us to relate the
Alexander–Whitney and Eilenberg–Zilber maps. We need some notation. Given
0 ≤ h ≤ k ≤ n and a subset S ⊆ {0, 1, . . . , n− 1}, let

(5.16) S(h, k) := S ∩ {h, h+ 1, . . . , k − 1} − h

be the subset of {0, 1, . . . , k − h− 1} obtained by subtracting h from each element
in the intersection of S and {h, h+ 1, . . . , k − 1}.

Lemma 5.5. Let p, q ≥ 0, n = p + q, and 0 ≤ h ≤ k ≤ n. Consider a disjoint
decomposition S ⊔ T = {0, 1, . . . , n− 1} with |S| = p and |T | = q. Let

i := |T (0, h)| and j := |T (0, k)|.

Then the following diagram commutes.

(5.17)

{0, 1, . . . , k − h}
δh,k

//

σS(h,k)

��

{0, 1, . . . , n}

σS

��

{0, 1, . . . , j − i}
δi,j

// {0, 1, . . . , q}

Proof. First note that, since |T | = q, 0 ≤ i ≤ j ≤ q, so δi,j maps as stated.
Also, since S and T are complementary,

|S ∩ {0, 1, . . . , h− 1}| = h− i and |S ∩ {0, 1, . . . , k − 1}| = k − j;

therefore,

|S ∩ {h, h+ 1, . . . , k − 1}| = k − h− (j − i)

and σS(h,k) maps as stated.
Let x ∈ {0, 1, . . . , k − h}. We compute using (5.10) and (5.13):

σSδh,k(x) = σS(x+ h) = x+ h− |{y ∈ S : y < x+ h}|.
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We have

|{y ∈ S : y < x+ h}| = |{y ∈ S ∩ {0, 1, . . . , h− 1} : y < x+ h}|

+ |{y ∈ S ∩ {h, h+ 1, . . . , k − 1} : y < x+ h}|

= |S ∩ {0, 1, . . . , h− 1}|

+ |{y − h ∈ S ∩ {h, h+ 1, . . . , k − 1} − h : y − h < x}|

= h− i+ |{z ∈ S(h, k) : z < x}|.

Therefore,

σSδh,k(x) = x+ h−
(
h− i+ |{z ∈ S(h, k) : z < x}|

)

= x+ i− |{z ∈ S(h, k) : z < x}| = δi,jσS(h,k)(x). �

The above lemma can be rephrased in geometric terms. Interpret the set
{0, 1, . . . , n} as the standard n-simplex, and denote it by ∆n. Further, interpret an
element i of a subset S ⊆ {0, 1, . . . , n − 1} as the edge joining i and i + 1 in ∆n.
With this understanding, the map δh,k embeds ∆k−h into ∆n using the vertices
from h to k, while the map σS contracts the edges corresponding to the elements
of S. Diagram (5.17) can be rewritten as follows.

∆k−h
δh,k

//

σS(h,k)

��

∆n

σS

��

∆j−i
δi,j

// ∆q

The horizontal maps are embeddings, while the vertical maps contract edges in the
manner explained above.

We will apply this lemma in the next section in the special cases when the
embedded simplices are either the initial segment or the final segment of the bigger
simplex.

5.4. The chain complex functors

The goal of this section is to construct bilax functors from the category of sim-
plicial modules to the category of chain complexes. Chain complexes were reviewed
in Section 2.7; we follow the notation of Table 5.1.

5.4.1. From simplicial modules to chain complexes. From a simplicial mod-
ule X one constructs a chain complex C(X) as follows. The n-th component of
C(X) is simply Xn and the n-th component of the boundary map (n ≥ 1) is

(5.18) ∂n : Xn → Xn−1, ∂n :=

n∑

i=0

(−1)idi,

where di : Xn → Xn−1 is as in (5.3). Then C(X) is a chain complex called the
unnormalized chain complex of the simplicial module X .

Let Nn(X) be the submodule of Xn defined by

N0(X) := X0 and Nn(X) :=

n−1⋂

i=0

ker(di : Xn → Xn−1).
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Note the index i runs up to n−1 only. The boundary map sendsNn(X) toNn−1(X).
Therefore, N (X) is a chain subcomplex of C(X). It is called the normalized chain
complex of the simplicial module X .

A morphism of simplicial modules X → Y induces morphisms of complexes

C(X)→ C(Y ) and N (X)→ N (Y ).

We obtain two functors

C : sMod→ dgModa and N : sMod→ dgModa

called the unnormalized and normalized chain complex functors, respectively.
The inclusion defines a natural transformation

N ⇒ C.

The normalized chain complex functor N has a canonical complement in C. This
is the functor D consisting of “degenerate elements”:

Dn(X) :=

n−1∑

i=0

si(Cn−1(X)).

One can check that [372, Lemma 8.3.7]

Xn = Nn(X)⊕Dn(X).

This yields a canonical projectionXn ։ Nn(X) and hence a natural transformation

C ⇒ N .

5.4.2. Monoidal properties of the chain complex functors. We proceed to
discuss the monoidal structure of the chain complex functors. For that, recall that

(sMod,×, β, E) and (dgModa, ·, β−1, 1)

are both symmetric monoidal categories. The former is discussed in Section 5.1
and the latter in Section 2.7.

The Alexander–Whitney map (5.12) and the Eilenberg–Zilber map (5.15) com-
mute with the boundary maps and define morphisms of complexes

(5.19) C(X) · C(Y )
ϕX,Y

//
C(X × Y ).

ψX,Y

oo

Moreover, since they are given in terms of actions of morphisms of ∆, these maps
are natural in X and Y . For Alexander–Whitney, we will verify more general
properties in Proposition 5.20.

Consider the maps

(5.20) 1
ϕ0 //

C(E)
ψ0

oo

whose components

1n

ϕ0
//
En

ψ0

oo

are the identity if n = 0 and 0 if n > 0.
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Theorem 5.6. The chain complex functor

(C, ϕ, ψ) : (sMod,×, β)→ (dgModa, ·, β−1)

is bilax monoidal.

Proof. The associativity axioms (3.5) for Alexander–Whitney and Eilenberg–
Zilber can be understood as follows. If X,Y , and Z are simplicial modules, then
both

(ψX,Y · idZ)ψX×Y,Z and (idX · ψY,Z)ψX,Y×Z

are given by

Xn ⊗ Yn ⊗ Zn →
⊕

0≤h≤k≤n

Xh ⊗ Yk−h ⊗ Zn−k

x⊗ y ⊗ z 7→
∑

0≤h≤k≤n

Xδ0,h(x)⊗ Yδh,k(y)⊗ Zδk,n(z).

Also, both

ϕX×Y,Z(ϕX,Y · idZ) and ϕX,Y×Z(idX · ϕY,Z)

are given by

Xp ⊗ Yq ⊗ Zr → Xp+q+r ⊗ Yp+q+r ⊗ Zp+q+r

x⊗ y ⊗ z 7→
∑

S⊔T⊔U={0,1,...,p+q+r−1}
|S|=p,|T |=q,|U|=r

(−1)ǫ(S,T )XσT⊔U (x) ⊗ YσS⊔U (y)⊗ ZσS⊔T (z),

where ǫ(S, T ) is given by any of the two following expressions.

(5.21) ǫ(S, T ) := ǫ(S ⊔ T ) + ǫ(S̄) = ǫ(S) + ǫ(T̄ )

Here S̄ and T̄ are the images of S and T under the unique order-preserving bijections

S ⊔ T → {0, 1, . . . , p+ q − 1} and T ⊔ U → {0, 1, . . . , q + r − 1},

respectively. The equality in (5.21) holds by (2.17).
The unit axioms (3.6), (3.12), and (3.13) are all straightforward.
The main point is the verification of the braiding axiom (3.11). It takes the

following form

(5.22)

C(W ×X) · C(Y × Z)

ϕW×X,Y×Z

xxpppppppppppppppp
ψW,X ·ψY,Z

''PPPPPPPPPPPPPPPPP

C(W ×X × Y × Z)

C(id×β×id)

��

C(W ) · C(X) · C(Y ) · C(Z)

id·β−1·id

��

C(W × Y ×X × Z)

ψW×Y,X×Z

&&NNNNNNNNNNNNNNNN
C(W ) · C(Y ) · C(X) · C(Z)

ϕW,Y ·ϕX,Z

wwnnnnnnnnnnnnnnnnn

C(W × Y ) · C(X × Z)
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where W is a fourth simplicial module. Take

w ∈Wp, x ∈ Xp, y ∈ Yq, z ∈ Zq,

so that (w ⊗ x) ⊗ (y ⊗ z) is an element of degree p + q in C(W ×X) · C(Y × Z).
Starting from this element and going clockwise around the diagram one obtains

p∑

i=0

q∑

j=0

∑

I,J

∑

S,T

(−1)(p−i)j(−1)ǫ(I)(−1)ǫ(S)

×
(
Wδ0,iσJ (w) ⊗ Yδ0,jσI (y)

)
⊗
(
Xδi,pσT (x)⊗ Zδj,qσS (z)

)
.

The inner sums are over subsets I, J, S, T such that

I ⊔ J = {0, 1, . . . , i+ j − 1}, |I| = i, |J | = j,

and
S ⊔ T = {0, 1, . . . , p+ q − i− j − 1}, |S| = p− i, |T | = q − j.

The sign (−1)(p−i)j is introduced by the braiding of dgModa.
On the other hand, starting from the same element but going counterclockwise

around the diagram, one obtains

p+q∑

h=0

∑

A,B

(−1)ǫ(A)
(
WσBδ0,h(w) ⊗ YσAδ0,h(y)

)
⊗
(
XσBδh,p+q(x)⊗ ZσAδh,p+q(z)

)
.

The inner sum is over subsets A,B such that

A ⊔B = {0, 1, . . . , p+ q − 1}, |A| = p, |B| = q.

Given A and B as above, define

I := A(0, h), J := B(0, h), S := A(h, p+ q), T := B(h, p+ q),

with notation as in (5.16). In particular, h = i+j. This sets up a bijection between
pairs (A,B) and tuples (I, J, S, T ) as above. Moreover, the corresponding terms in
each of the two summations obtained above agree, by virtue of Lemma 5.5. Further,
by (2.18), we have

(5.23) (p− i)j + ǫ(I) + ǫ(S) = ǫ(A)

which shows that the signs agree. �

Alexander–Whitney and Eilenberg–Zilber project onto (but do not restrict to)
the normalized complex yielding natural transformations

(5.24) N (X) · N (Y )
ϕX,Y

//
N (X × Y ).

ψX,Y

oo

The same is true of the unit maps. This yields

(5.25) 1
ϕ0 //

N (E).
ψ0

oo

In fact, in contrast to (5.20), these maps are inverse isomorphisms. We deduce:

Corollary 5.7. The normalized chain complex functor

(N , ϕ, ψ) : (sMod,×, β)→ (dgModa, ·, β−1)

is bilax monoidal and the transformation C ⇒ N is a morphism of bilax monoidal
functors. Moreover, N is normal in the sense of Definition 3.39.
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We now turn to the commutativity properties of the chain complex functors.
The Eilenberg–Zilber map commutes with the braidings. This is explained below.

Proposition 5.8. The chain complex functors

(C, ϕ), (N , ϕ) : (sMod,×, β)→ (dgModa, ·, β−1)

are braided lax.

Proof. We have to verify the commutativity of the right rectangle in (3.16)
involving the braidings and the Eilenberg–Zilber map. It suffices to do it for the
unnormalized chain complex functor. Starting from x ⊗ y ∈ Xp ⊗ Yq and going
clockwise we obtain ∑

S,T

(−1)ǫ(S)YσS (y)⊗XσT (x),

while going counterclockwise we obtain

(−1)pq
∑

S,T

(−1)ǫ(T )YσS (y)⊗XσT (x).

In both cases the sum is over subsets S, T such that

S ⊔ T = {0, 1, . . . , p+ q − 1}, |S| = p, |T | = q.

The obtained elements agree since

(−1)pq+ǫ(T ) = (−1)pq−ǫ(T ) = (−1)ǫ(S)

by (2.15). �

In contrast, the Alexander–Whitney map does not commute with the braidings.
The conjugate of ψ by the braidings is precisely the map bψ given in Remark 5.3.
So neither C nor N is braided colax (but see Section 5.5.5). It is natural to wonder
whether bψ is compatible with ϕ. The answer is positive in view of Proposition 3.16:
(C, ϕ, bψ) and (N , ϕ, bψ) are bilax monoidal.

A key property of bilax functors is that they preserve bimonoids and that
of braided lax functors is that they preserve commutative monoids. Recall from
Section 2.7 that a monoid in the category of chain complexes is a differential graded
algebra (with differential of degree −1). Similarly, (co, bi)monoids are differential
graded (co, bi)algebras. Further, recall that a monoid in the category of simplicial
modules is the same thing as a simplicial algebra, that is, a simplicial object in the
category of k-algebras. Similarly, (co, bi)monoids are simplicial (co, bi)algebras.
These observations imply the following well-known fact.

Corollary 5.9. If X is a simplicial bialgebra, then C(X) and N (X) are differential
graded bialgebras. Further, if X is commutative, then so are C(X) and N (X).

Remark 5.10. The fact that the chain complex functors should be examples of
bilax monoidal functors was pointed out to us by Clemens Berger. Closely related
properties are noted in the literature.

The fact that ϕX,Y and ψX,Y are natural morphisms of chain complexes (5.19)
is given in [249, Theorems VIII.8.5 and VIII.8.8]. The fact that they project onto
the normalized complexes (5.24) is given in [249, Corollaries VIII.8.6 and VIII.8.9]
or [262, Propositions 29.8 and 29.9]. The fact that the chain complex functors
are colax and lax is given in [249, Proposition VIII.8.7 and Exercise VIII.8.2] and
in [262, Propositions 29.8 and 29.9], as well as many other places. The fact that
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they are braided lax is given in [119, Theorem 5.2]; this is the starting point for the
work of Richter [313]. The braiding axiom (5.22) appears in several textbooks [125,
Section 4.b], [328, Section 5.5], and [361, Section 9.7, Problem 5]. It can be traced
back to the work of Eilenberg and Moore [121, p. 232].

Certain consequences of the fact thatN is a normal bilax monoidal functor have
been remarked in the literature. For instance, Mac Lane [249, Corollary VIII.8.9]
notes that

ψX,Y ϕX,Y = idN (X)·N (Y ),

which we know is a general fact for normal bilax functors (Proposition 3.41, item
(ii)). Working in the more general setting of crossed complexes, Tonks notes the
commutativity of the following diagrams [362, Proposition 2.2.13].

N (X) · N (Y × Z)
id·ψY,Z

//

ϕX,Y×Z

��

N (X) · N (Y ) · N (Z)

ϕX,Y ·id

��

N (X × Y × Z)
ψX×Y,Z

// N (X × Y ) · N (Z)

N (X × Y ) · N (Z)
ψX,Y ·id

//

ϕX×Y,Z

��

N (X) · N (Y ) · N (Z)

id·ϕY,Z

��

N (X × Y × Z)
ψX,Y×Z

// N (X) · N (Y × Z)

This is also a general fact for normal bilax monoidal functors (Proposition 3.41,
items (iv) and (v)). On the other hand, such conditions do not suffice to imply
that a given functor is bilax (see Example 3.42).

Question 5.11. It would be interesting to know if Theorem 5.6 extends to the
context of crossed complexes. In other words, is Tonks’ fundamental crossed com-
plex another example of a normal bilax monoidal functor? Tonks’ diagrams suggest
that the answer is probably positive.

5.5. The (co)homology functors. Cup and Pontrjagin products

In this section, we compose the chain complex functors of the previous section
with the (co)homology functors of Section 2.7.5. We study their monoidal properties
and state some well-known results which follow. We follow the notation of Table 5.1.

5.5.1. The chain complex functors up to homotopy. The chain complex
functors are compatible with homotopies. In other words, a homotopy between
simplicial maps induces a chain homotopy between the corresponding chain maps.
Let C and N be defined by the commutativity of the following diagrams.

sMod
C //

��

dgModa

��

sMod
C

// dgModa

sMod
N //

��

dgModa

��

sMod
N

// dgModa
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The left vertical functor appears in (5.9) while the right vertical functor was defined
in (2.73). They are both bistrong: the main observation is that the objects in the
source and target categories are the same. By construction, C and N are bilax
monoidal and C ⇒ N is a morphism of bilax monoidal functors. In fact:

Proposition 5.12. The functors C and N are bistrong, and C ⇒ N is an isomor-
phism of bistrong monoidal functors.

Proof. The fact that C is bistrong follows from the Eilenberg–Zilber theo-
rem: ϕX,Y and ψX,Y are both chain equivalences. Further they are inverse to each
other. (The latter may also be deduced from the former using Proposition 3.46.)
A good account of the Eilenberg–Zilber theorem is given in Mac Lane’s book [249,
Section VIII.8, Theorems 8.1, 8.5 and 8.8]. Some other sources are [67, Corol-
lary VI.1.4], [262, Section 29, Corollary 29.10], [282, Section 59], [335, Chapter 5,
Section 3, Theorems 6, 7 and 8], [361, Theorem 9.7.1] and [372, Section 8.5].

Recall the normalization theorem [249, Theorem VIII.6.1] or [262, Corollary
22.3] which says that the natural transformation C ⇒ N induces an isomorphism
between the functors C and N . This implies that N is bistrong and isomorphic to
C as a bistrong functor. �

The Dold–Kan theorem [101, 186] states that the normalized chain complex
functor defines an equivalence of categories

N : sMod→ dgModa.

For later references, see [262, Theorem 22.4] or [372, Theorem 8.4.1]. The inverse
functor is described for instance in [372, Section 8.4.4]. This equivalence is compat-
ible with homotopies (so N is also an equivalence of categories). Further, it is an
adjoint equivalence [372, Exercise 8.4.2]. The monoidal properties of the adjunction
(Section 3.9) are studied in [77, 313, 326].

5.5.2. Monoidal properties of duality. Recall that duality interchanges chain
and cochain complexes (Section 2.7). Further, if the complexes are assumed to be
finite-dimensional in each component, then the duality functor is bistrong. How-
ever, one frequently meets complexes which are in fact infinite-dimensional in all
components; take, for example, the singular chain complex of a topological space.
To include such situations, we work in full generality. Note that for any complexes
K and L, there is always a map

K∗ · L∗ → (K · L)∗.

While this map is not an isomorphism in general, we have:

Proposition 5.13. The duality functor

(dgModa)
op → dgModc

is braided lax, where (−)op refers to the opposite category.

5.5.3. Monoidal properties of (co)homology. Recall that the (co)homology
functors are defined on the homotopy category of (co)chain complexes. We now
study their monoidal properties.

Proposition 5.14. The homology and cohomology functors

H• : dgModa → gMod and H• : dgModc → gMod

of (2.74) are braided lax. Further, if k is a field, then they are bistrong.
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Proof. We first explain the homology case. The tensor product of cycles is
a cycle, and the tensor product of a cycle and a boundary, in either order, is a
boundary. For any chain complexes K and L, this yields maps

(5.26) H•(K) · H•(L)→ H•(K · L).

This along with the obvious isomorphism 1 → H•(1) turn H• into a braided lax
functor. This is straightforward to verify.

The Künneth formula says that (5.26) fits into a short exact sequence (the third
term involves the Tor functor). The statement in varying levels of generality can
be found in a number of textbooks. We mention [69, Proposition (0.8)], [160, The-
orem 3B.5], [249, Theorems V.10.1 and V.10.2], [282, Section 58], [335, Chapter 5,
Section 3, Theorem 3] or [372, Theorem 3.6.3]. The origin of this formula is in the
papers of Künneth [214, 215]. We want to apply it in the case when k is a field. In
this situation, all k-modules are free, so the Tor term vanishes implying that (5.26)
is an isomorphism. Hence, in this case, the functor H• is bistrong.

The preceding is true even if one works with chain complexes which are Z-
graded. In this situation, the distinction between chain and cochain complexes
disappears since one can pass from one situation to the other by changing the
degree of each component to its negative. The assertions for the cohomology functor
follow from this observation. An explicit formulation of the Künneth formula for
cohomology of cochain complexes is given in [335, Chapter 5, Section 4, Theorem 2].

�

Remark 5.15. A Künneth formula for cohomology of chain complexes is given
in [282, Section 60, Theorem 60.3].

Proposition 5.16. If k is a field, then the homology and cohomology functors are
contragredients of each other.

Proof. Let us first work over any commutative ring k. For any chain complex
K, there is a surjective map

H•(K∗)→ H•(K)∗.

This map fits into a short exact sequence (the third term involves the Ext functor).
This is known as the universal coefficient theorem for cohomology, see [160, Theo-
rem 3.2], [249, Theorem III.4.1 and Corollary III.4.2] or [335, Chapter 5, Section 5,
Theorem 3]. If k is a field, then the Ext term vanishes and the above map is an
isomorphism. �

To summarize, if k is a field, then homology and cohomology are dual notions,
and both are bistrong as functors.

5.5.4. Cup and Pontrjagin products. The (co)homology of a simplicial module
X is defined to be

H•(X) := H•

(
C(X)

)
and H•(X) := H•

(
C(X)∗

)
,

where C(X)∗ denotes the cochain complex which is the dual of C(X).
We now discuss the cup and Pontrjagin products in the context of simplicial

modules. By composing with the bistrong functors (5.5) and (5.6), they can be
carried over to the context of topological spaces. Both products can be defined
over any commutative ring k.
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We begin with the cup product. Consider the composition of functors

H• : (sMod)op
C
−→ (dgModa)

op (−)∗

−−−→ dgModc H•

−−→ gMod

where (−)op refers to the opposite category. We continue to denote the composite
by H• since it yields the cohomology of a simplicial module. The first functor in the
composite is bistrong, while the remaining two are braided lax; so the composite is
braided lax.

SupposeX is a simplicial set. Then its linearization kX is a simplicial coalgebra
(via the diagonal). This is a cocommutative comonoid in sMod or equivalently a

commutative monoid in (sMod)op. Hence H•(kX), which is its image under a
braided lax functor, is a graded commutative algebra. This is the cup product in
cohomology.

Note that the Alexander–Whitney map does not turn C into a braided colax
functor; however it does turn C into a braided colax functor. In other words, the
left rectangle in (3.16) involving the braidings and the Alexander–Whitney map
commutes up to homotopy. For this reason, one says that the differential graded
coalgebra C(kX) is cocommutative up to homotopy. It is this fact which ensures
that the cup product is commutative. A direct proof of commutativity of the cup
product is given in Hatcher’s book [160, Theorem 3.14]. The main step in the proof
is indeed the construction of a chain homotopy.

We now discuss the Pontrjagin product. Consider the composition of functors

H• : sMod
C
−→ dgModa

H•−−→ gMod

We continue to denote it by H• since it yields the homology of a simplicial module.
The first functor in the composite is bistrong, while the second is braided lax; so
the composite is braided lax.

Suppose that G is a simplicial group, that is, a simplicial object in the category
of groups. Then its linearization kG is a simplicial bialgebra, and in particular, a
simplicial algebra. It follows that H•(kG) is a graded algebra. This is the Pontrja-
gin product in homology. If G is abelian, then this product is commutative. There
is no subtle chain homotopy issue here since the Eilenberg–Zilber map does turn C
into a braided lax functor. Since kG is a simplicial bialgebra, Corollary 5.9 shows
that C(kG) and N (kG) are differential graded bialgebras. Further, if we assume
that k is a field, then H•(kG) is a graded bialgebra.

5.5.5. The chain complex functors and E∞-coalgebras. Recall that the
chain complex functors C and N are not braided colax. For this reason, for a
general simplicial set X , the differential graded coalgebras C(kX) and N (kX) may
fail to be cocommutative. However, it is known from classical work of Dold [102]
that these coalgebras satisfy a higher homotopy version of cocommutativity. This
statement is a refinement of the fact that C(kX) is a cocommutative comonoid in
the homotopy category dgModa of chain complexes. More precise versions of this
statement are given by Smirnov [331, Corollary to Proposition 5, and Proposition 8]
and by Berger and Fresse [39].

The cocommutativity up to higher homotopies of these coalgebras may be de-
duced from corresponding properties of the chain complex functors. This has been
explained by Richter. In [312, Section 7] and [313, Section 5], Richter shows that
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the chain complex functors are E∞-colax, where E∞ stands for a homotopy version
of the commutative operad Com (Example B.15).

In Section 4.3.3, for any operad p, we defined a notion of p-lax monoidal func-
tors and the dual notion of p-colax monoidal functors. A braided colax monoidal
functor is the same thing as a Com-colax monoidal functor (Table 4.2). Thus, an
E∞-colax monoidal functor is a homotopy version of a braided colax monoidal func-
tor. Moreover, it follows from Corollary 4.36 that applying an E∞-colax monoidal
functor to a cocommutative comonoid results in a E∞-comonoid. Combined with
Richter’s result, this recovers the fact that C(kX) and N (kX) are E∞-coalgebras.

5.6. A q-analogue of the chain complex functor

Throughout this section, k is a commutative ring and q ∈ k is a fixed scalar.

5.6.1. In search of q-analogues. We discuss the possibility of deforming the
chain complex functor

(C, ϕ, ψ) : (sMod,×, β)→ (dgModa, ·, β−1)

of Section 5.4. More precisely, we would like to replace the target category by
the category of N -complexes (dgModN , ·q, βq) of Section 2.9. However, we saw in
Proposition 2.27 that the only choices, other than the one already considered, are

(gMod, ·, βq), (gModa, ·, β), and (gModa, ·−1, β−1).

These are the categories of graded k-modules, and of graded k-modules with anni-
hilation operators (the latter has two choices for tensor products and braidings).

In Section 5.6.2 we construct a one-parameter deformation ϕq of the Eilenberg–
Zilber map which together with the Alexander–Whitney map ψ yields a bilax mon-
oidal functor

(5.27) (C, ϕq, ψ) : (sMod,×, β)→ (gMod, ·, βq).

This is the content of Theorem 5.17 and gives a positive answer for the first example.
For the third example, there is an obvious bistrong functor

(dgModa, ·, β−1)→ (gModa, ·−1, β−1),

so we can precompose this with the chain complex functor to again get a positive
answer. For the second example, we do not have any result of this kind.

We know from Proposition 2.24 and Remark 2.25 that (dgModN , ·q) is a mon-
oidal category if N =∞ or N = 1 and q is arbitrary, or if 2 ≤ N <∞ and

(5.28) k is an integral domain, and q ∈ k is a primitive N -th root of unity.

We ask whether in this situation, the functor

(sMod,×)→ (dgModN , ·q)

defined by appropriately deforming (5.18) is either lax or colax. We will show in
Proposition 5.22 that there is a positive answer in the colax case.
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5.6.2. Alexander–Whitney and q-Eilenberg–Zilber. Consider the functor

C : sMod→ gMod.

that simply forgets the face and degeneracy maps. Thus, ifX is a simplicial module,
the n-th component of C(X) is Xn. We proceed to turn C into a bilax monoidal
functor as mentioned in (5.27).

Let X and Y be simplicial modules. The colax structure map

ψX,Y : C(X × Y )→ C(X) · C(Y )

will be the Alexander–Whitney map (5.12).
The lax structure map

(ϕq)X,Y : C(X) · C(Y )→ C(X × Y )

will be a q-deformation of the Eilenberg–Zilber map, with q = −1 recovering the
classical map (5.15). It is defined as follows. Let i, j ≥ 0. We define

(ϕq)X,Y : Xi ⊗ Yj → Xi+j ⊗ Yi+j

by

(ϕq)X,Y (x⊗ y) :=
∑

S⊔T={0,1,...,i+j−1}
|S|=i,|T |=j

qǫ(S)XσT (x)⊗ YσS (y),

where σS and σT are as in (5.13).
The unit structure maps ψ0 and ϕ0 are as before (5.20).

Theorem 5.17. The functor

(C, ϕq, ψ) : (sMod,×, β)→ (gMod, ·, βq)

is bilax monoidal.

Proof. The assertions that only involve ψ follow from Theorem 5.6, since
the above functor is obtained by composing the chain complex functor with the
forgetful functor dgModa → gMod which is strong.

Consider the associativity and unitality axioms for (C, ϕq). As in the proof of
Theorem 5.6, we find that both maps

(ϕq)X×Y,Z

(
(ϕq)X,Y · idZ

)
and (ϕq)X,Y×Z(idX · (ϕq)Y,Z)

from

Xi ⊗ Yj ⊗ Zk → Xi+j+k ⊗ Yi+j+k ⊗ Zi+j+k

are given by

x⊗ y ⊗ z 7→
∑

S⊔T⊔U={0,1,...,i+j+k−1}
|S|=i,|T |=j,|U|=k

qǫ(S,T )XσT⊔U (x)⊗ YσS⊔U (y)⊗ ZσS⊔T (z),

where ǫ(S, T ) is as in (5.21). Thus, diagram (3.5) commutes and ϕq is associative.
The commutativity of diagrams (3.6) follows from (2.14); thus ϕq is unital.

Finally, we verify the braiding axiom (3.11). This is (5.22) with ϕq replacing
ϕ. The extra ingredient is the verification of

q(p−i)j+ǫ(I)+ǫ(S) = qǫ(A)

which holds by (5.23). �
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Recall that the chain complex functor (C, ϕ) is braided lax (Proposition 5.8).
For the deformed functor (C, ϕq) we have the following property.

Proposition 5.18. The Eilenberg–Zilber maps ϕq and ϕq−1 are related by conju-
gation by βq. More precisely, for any simplicial modules X and Y , the following
diagram commutes.

C(X) · C(Y )
ϕq

//

βq

��

C(X × Y )

C(β)

��

C(Y ) · C(X) ϕq−1

// C(Y ×X)

Proof. As in the proof of Proposition 5.8, starting from x⊗ y ∈ Xi ⊗ Yj and
going clockwise we obtain

∑

S,T

qǫ(S)YσS (y)⊗XσT (x),

while going counterclockwise we obtain

qij
∑

S,T

q−ǫ(T )YσS (y)⊗XσT (x).

In both cases the sum is over subsets S, T such that

S ⊔ T = {0, 1, . . . , i+ j − 1}, |S| = i, |T | = j.

The obtained elements agree since

qij−ǫ(T ) = qǫ(S)

by (2.15). �

5.6.3. The boundary maps of Kapranov and Dubois-Violette. To a sim-
plicial module X , we associate an ∞-complex Cq(X), or equivalently, a graded
module with annihilation operators as follows. The underlying graded module is
C(X). Thus, the n-th component of Cq(X) is Xn. The boundary map of Cq(X) has
components

(5.29) Xn → Xn−1, ∂n :=

n−1∑

i=0

qidi − q
n−1dn,

for each n ≥ 1.
A morphism of simplicial modules commutes with the boundary maps (5.29).

We thus obtain a functor

Cq : sMod→ gModa.

In addition, if q ∈ k is an N -th root of unity and q 6= 1, then the boundary map
satisfies ∂N = 0 [104, Lemma 3]. Thus, we obtain in this case a functor

Cq : sMod→ dgModN .
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Remark 5.19. The boundary map (5.29) was introduced by Dubois-Violette [104,
Example 2] (in the dual context of cochain complexes). Kapranov had considered
a different boundary map with n-th component

(5.30)

n∑

i=0

qidi.

Note that both boundary maps reduce to (5.18) when q = −1. In addition, if q is an
N -th root of unity and q 6= 1, then (5.30) also satisfies ∂N = 0 [187, Proposition 0.2].

We show below that the boundary map (5.29) commutes with the Alexander–
Whitney map, while (5.30) does not (unless q = −1). On the other hand, simple
calculations show that neither boundary commutes with the q-Eilenberg–Zilber
map.

Proposition 5.20. The Alexander–Whitney map commutes with the boundary
maps of Cq(X × Y ) and Cq(X) ·q Cq(Y ).

Proof. We have to verify the commutativity of the diagram

Cq(X × Y )
∂ //

ψ

��

Cq(X × Y )

ψ

��

Cq(X) ·q Cq(Y )
∂·id+τ ·∂

// Cq(X) ·q Cq(Y )

in which all boundary maps are instances of (5.29) and τ is as in (2.76).
Take x ∈ Xn, y ∈ Yn. Applying ∂ to x⊗ y we obtain

n−1∑

h=0

qhdh(x)⊗ dh(y)− q
n−1dn(x)⊗ dn(y).

Applying ψ to this element we obtain

n−1∑

h=0

qh
n−1∑

j=0

(dj+1 · · ·dn−1dh)(x) ⊗ (d0 · · · dj−1dh)(y)

− qn−1
n−1∑

j=0

(dj+1 · · ·dn−1dn)(x) ⊗ (d0 · · ·dj−1dn)(y)

Using the simplicial relations (5.4), we see that

dj+1 · · · dn−1dh =

{
dhdj+2 · · · dn if h ≤ j,

dj+1 · · · dn if h ≥ j + 1,

and

d0 · · · dj−1dh =

{
d0 · · · dj if h ≤ j,

dh−jd0 · · · dj−1 if h ≥ j + 1.

Therefore,

ψ∂(x⊗ y) = A+B − C
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where the elements A, B, and C are defined as follows.

A :=

n−1∑

j=0

j∑

h=0

qh(dhdj+2 · · · dn)(x) ⊗ (d0 · · ·dj)(y),

B :=
n−1∑

j=0

n−1∑

h=j+1

qh(dj+1 · · · dn)(x) ⊗ (dh−jd0 · · · dj−1)(y),

C :=qn−1
n−1∑

j=0

(dj+1 · · ·dn)(x)⊗ (dn−jd0 · · · dj−1)(y).

Consider now the other side of the diagram. Applying ψ to x⊗ y we obtain
n∑

i=0

(di+1 · · ·dn)(x) ⊗ (d0 · · · di−1)(y).

Applying ∂ ⊗ id and τ ⊗ ∂ to this element we obtain respectively

n∑

i=1

i−1∑

r=0

qr(drdi+1 · · · dn)(x) ⊗ (d0 · · ·di−1)(y)

−
n∑

i=1

qi−1(didi+1 · · ·dn)(x) ⊗ (d0 · · · di−1)(y),

and

n−1∑

i=0

n−i−1∑

s=0

qi(di+1 · · ·dn)(x)⊗ qs(dsd0 · · · di−1)(y)

−
n−1∑

i=0

qi(di+1 · · · dn)(x)⊗ qn−i−1(dn−id0 · · · di−1)(y).

Let A′, B′, B′′, and C′ be the four summations in the two preceding formulas,
so that

(∂ ⊗ id + τ ⊗ ∂)(x⊗ y) = A′ −B′ +B′′ − C′.

Simple changes of variables show that

A = A′ and C = C′.

On the other hand, another application of the simplicial relations shows that

B′ =

n∑

i=1

qi−1(didi+1 · · ·dn)(x) ⊗ (d0d0 · · ·di−2)(y).

In addition, letting j := i and h := i+ s we see that

B′′ =
n−1∑

j=0

n−1∑

h=j

qh(dj+1 · · ·dn)(x)⊗ (dh−jd0 · · · dj−1)(y)

=

n−1∑

j=0

qj(dj+1 · · ·dn)(x) ⊗ (d0d0 · · ·dj−1)(y)

+
n−1∑

j=0

n−1∑

h=j+1

qh(dj+1 · · · dn)(x) ⊗ (dh−jd0 · · · dj−1)(y)

= B′ +B.
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Thus
B = B′′ −B′

and
ψ∂(x⊗ y) = (∂ ⊗ id + τ ⊗ ∂)(x⊗ y)

as needed. �

Remark 5.21. If we use Kapranov’s boundary map (5.30) instead of Dubois-
Violette’s (5.29), the somewhat delicate cancellation B = B′′ −B′ that took place
in the above proof does not hold anymore, and the commutativity between the
Alexander–Whitney maps and the boundary maps is lost.

Proposition 5.20 allows us to view ψX,Y as a morphism in dgModN . Suppose
that N =∞, or else that 2 ≤ N <∞ and (5.28) is satisfied. In particular, dgModN
is a monoidal category. Under these hypotheses:

Proposition 5.22. The functor

(Cq, ψ) : (sMod,×)→ (dgModN , ·q)

is colax monoidal.

Proof. This follows from the fact that the functor

(C, ψ) : (sMod,×)→ (gMod, ·)

is colax monoidal (Theorem 5.17). �





CHAPTER 6

2-Monoidal Categories

In Chapter 3 we studied braided monoidal categories and bilax monoidal func-
tors in detail. We now consider 2-monoidal categories. The main motivation for
considering these objects is that they provide a more general and natural context
for bilax monoidal functors, as well as for braided (co)lax monoidal functors.

A category is 2-monoidal when it possesses two monoidal structures related by
an interchange law. Notions of this sort have been considered in the literature.
We provide a precise definition in Section 6.1 which differs from those notions in
various respects, as we explain in Remark 6.2. Coherence for 2-monoidal categories
is discussed in Section 6.2.

A braided monoidal category provides an example of a 2-monoidal category in
which the two monoidal structures coincide. The interchange law is built from the
braiding. This is explained in Section 6.3. Strong 2-monoidal categories (those for
which the interchange law and other structure maps are invertible) are necessar-
ily of this form. For arbitrary 2-monoidal categories the two monoidal structures
may be different, and the notion of 2-monoidal category is more general than that
of a braided monoidal category. Several examples of this kind are discussed in
Section 6.4.

In a 2-monoidal category one may define bimonoids, double monoids, and dou-
ble comonoids. When a braided monoidal category is viewed as a 2-monoidal cate-
gory, a double (co)monoid is simply a (co)commutative monoid (Proposition 6.29).
These and related notions along with many examples are studied in Sections 6.5, 6.6
and 6.7. Similarly, monoidal functors between 2-monoidal categories may be bilax,
double lax, or double colax, as discussed in Section 6.8. These notions generalize
those of bilax, braided lax, and braided colax monoidal functor between braided
monoidal categories (Proposition 6.59). Sections 6.9 and 6.10 provide examples.
For instance: In a monoidal category with coproducts, the free monoid on an ob-
ject admits a description which is similar to that of the tensor algebra on a vector
space. This construction gives rise to a bilax monoidal functor between 2-monoidal
categories.

An important feature of the theory of 2-monoidal categories presented here
is that it emerges from considerations of higher category theory. For instance, a
2-monoidal category is precisely a pseudomonoid in an appropriate monoidal 2-
category, and a bilax functor is a morphism of pseudomonoids. This viewpoint is
explained in Section 6.11. The necessary background on 2-categories is given in
Appendix C.

In Section 6.12 we extend the contragredient construction of Section 3.10 to
the context of 2-monoidal categories.

161
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6.1. The basic theory of 2-monoidal categories

This section deals with basic notions related to 2-monoidal categories. These
categories are equipped with two monoidal structures related by an interchange
law. They are such that each monoidal structure defines a monoidal functor with
respect to the other. We also define strong 2-monoidal categories and braided
2-monoidal categories; both notions are closely related to the familiar notion of
braided monoidal categories.

6.1.1. Definition.

Definition 6.1. A 2-monoidal category is a five tuple (C, ⋄, I, ⋆, J) where (C, ⋄, I)
and (C, ⋆, J) are monoidal categories with units I and J respectively, along with a
transformation (called the interchange law)

(6.1) ζA,B,C,D : (A ⋆ B) ⋄ (C ⋆ D)→ (A ⋄ C) ⋆ (B ⋄D)

which is natural in A,B,C and D, and three morphisms

(6.2) ∆I : I → I ⋆ I, µJ : J ⋄ J → J, ιJ = ǫI : I → J,

such that the axioms below are satisfied.

Associativity. The following diagrams commute.
(
(A ⋆ B) ⋄ (C ⋆ D)

)
⋄ (E ⋆ F )

α //

ζ⋄id

��

(A ⋆ B) ⋄
(
(C ⋆ D) ⋄ (E ⋆ F )

)

id⋄ζ

��(
(A ⋄ C) ⋆ (B ⋄D)

)
⋄ (E ⋆ F )

ζ

��

(A ⋆ B) ⋄
(
(C ⋄ E) ⋆ (D ⋄ F )

)

ζ

��

((A ⋄ C) ⋄ E) ⋆ ((B ⋄D) ⋄ F )
α⋆α

//
(
A ⋄ (C ⋄ E)

)
⋆
(
B ⋄ (D ⋄ F )

)

(6.3)

((A ⋆ B) ⋆ C) ⋄ ((D ⋆ E) ⋆ F )
α⋄α //

ζ

��

(
A ⋆ (B ⋆ C)

)
⋄
(
D ⋆ (E ⋆ F )

)

ζ

��(
(A ⋆ B) ⋄ (D ⋆ E)

)
⋆ (C ⋄ F )

ζ⋆id

��

(A ⋄D) ⋆
(
(B ⋆ C) ⋄ (E ⋆ F )

)

id⋆ζ

��(
(A ⋄D) ⋆ (B ⋄ E)

)
⋆ (C ⋄ F ) α

// (A ⋄D) ⋆
(
(B ⋄ E) ⋆ (C ⋄ F )

)

(6.4)

Unitality. The following diagrams commute.

I ⋄ (A ⋆ B)
∆I⋄id // (I ⋆ I) ⋄ (A ⋆ B)

ζ

��

A ⋆ B
λA⋆λB

//

λA⋆B

OO

(I ⋄A) ⋆ (I ⋄B)

(A ⋆ B) ⋄ I
id⋄∆I // (A ⋆ B) ⋄ (I ⋆ I)

ζ

��

A ⋆ B ρA⋆ρB
//

ρA⋆B

OO

(A ⋄ I) ⋆ (B ⋄ I)

(6.5)
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J ⋆ (A ⋄B) (J ⋄ J) ⋆ (A ⋄B)
µJ⋆id
oo

A ⋄B
λA⋄λB

//

λA⋄B

OO

(J ⋆ A) ⋄ (J ⋆ B)

ζ

OO
(A ⋄B) ⋆ J (A ⋄B) ⋆ (J ⋄ J)

id⋆µJoo

A ⋄B ρA⋄ρB
//

ρA⋄B

OO

(A ⋆ J) ⋄ (B ⋆ J)

ζ

OO

(6.6)

Compatibility of units. The units I and J are compatible in the following sense.

(J, µJ , ιJ ) is a monoid in (C, ⋄, I).(6.7)

(I,∆I , ǫI) is a comonoid in (C, ⋆, J).(6.8)

The arrows labeled α, λ and ρ in the diagrams above refer to the associativity and
unit constraints in either monoidal category.

Sometimes we write (C, ⋄, ⋆) for a 2-monoidal category with the units, inter-
change law (6.1), and structure maps (6.2) being understood. The interchange law
is sometimes called the middle-four interchange [90]. The structure map ιJ = ǫI is
determined by the rest of the structure; see Proposition 6.9.

Remark 6.2. Let us argue in favor of our definition of 2-monoidal categories.
Related notions appear in the literature but with important differences.

The two-fold monoidal categories of Balteanu and Fiedorowicz [31, 204] involve
two monoidal structures which are required to be strict and to share the unit object
(I = J). While the former assumption may not be crucial, the latter fails in many
of the examples we are interested in (see Section 6.4). Two-fold monoidal cate-
gories thus appear as a somewhat unnatural special case of 2-monoidal categories.
Forcey, Siehler, and Sowers [132] improve on this notion by removing the strictness
assumption and allowing the unit objects to be distinct, but the structure maps
∆I and µJ (6.2) are assumed to be isomorphisms. This again fails in most of our
examples.

Another related notion appears in recent work of Vallette [363, Section 1.2],
under the name of lax 2-monoidal category; this notion involves fewer structure
morphisms and fewer axioms than our notion of 2-monoidal category. We do not
know of any examples in which only these axioms are satisfied. In [363, Section 1.3],
Vallette defines a colax 2-monoidal category and then combines the two to define
a 2-monoidal category. This is different from what we do (compare his definition
with the alternative definition we give in Proposition 6.4) and again leaves out most
of our examples.

In addition to the examples of Section 6.4, support for Definition 6.1 is pro-
vided by various results of later sections, such as Proposition 6.4 and most notably
Proposition 6.73, which shows that our notion of 2-monoidal category is an instance
of a general notion in higher category theory (that of a pseudomonoid in a monoidal
2-category).

Definition 6.3. We say that a 2-monoidal category is strong if the structure mor-
phisms (6.1) and (6.2) are isomorphisms.

The notion of a strong 2-monoidal category is not truly a new one: a result of
Joyal and Street implies that this notion is equivalent to that of a braided monoidal
category. We recall this fact with more explanation in Section 6.3.
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6.1.2. Opposite and transposes. Let (C, ⋄, I, ⋆, J) be a 2-monoidal category
with interchange law ζ. The symmetry between the two monoidal structures which
is evident in Definition 6.1 implies that (Cop, ⋆, J, ⋄, I) is also a 2-monoidal category.
We denote it simply by Cop and call it the opposite 2-monoidal category of C. The
interchange law ζop is given by the maps

(6.9) ζop
A,B,C,D : (A ⋄B) ⋆ (C ⋄D)→ (A ⋆ C) ⋄ (B ⋆ D)

of the category Cop which correspond to the maps

ζA,C,B,D : (A ⋆ C) ⋄ (B ⋆ D)→ (A ⋄B) ⋆ (C ⋄D)

of the category C.

Define a new monoidal structure ⋄̃ on C by

A ⋄̃B := B ⋄A.

The category (C, ⋄̃, I, ⋆, J) is 2-monoidal, with interchange law ζt⋄ given by the
maps

(6.10) ζt⋄A,B,C,D : (A ⋆ B) ⋄̃ (C ⋆ D)→ (A ⋄̃ C) ⋆ (B ⋄̃D)

which are equal to the maps

ζC,D,A,B : (C ⋆ D) ⋄ (A ⋆ B)→ (C ⋄A) ⋆ (D ⋄B).

We denote this 2-monoidal category by Ct⋄ and call it the ⋄-transpose of C.
The ⋆-transpose is the 2-monoidal category (C, ⋄, I, ⋆̃, J) with A ⋆̃ B := B ⋆ A

and interchange law ζt⋆A,B,C,D := ζB,A,D,C . We denote it by Ct⋆ .

Combining the two constructions we obtain the transpose (C, ⋄̃, I, ⋆̃, J), denoted
Ct. The interchange law is ζtA,B,C,D := ζD,C,B,A.

Finally, we mention that if (C, ⋄, ⋆) is a strong 2-monoidal category, then so is
(C, ⋆, ⋄). The interchange law for the latter is ζ−1.

6.1.3. The interchange law: a pictorial representation. The transformation
ζ is called an interchange law between the two monoidal structures on C. We
represent the two terms in (6.1) by means of pictures as below.

(6.11)
A B

C D
//
A B
C D

The lines indicate which operation takes precedence: the horizontal line in the
picture on the left indicates that the operation ⋆ is first applied to each pair of
objects on the same side of the line, then the operation ⋄ is applied to the results;
the vertical line gives precedence to the operation ⋄.
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Other pictures involving more objects can be similarly interpreted. For in-
stance, diagrams (6.3) and (6.4) can be represented as follows.

A B

C D

E F

//

��

A B
C D

E F

��

A B

C D
E F

//

A B
C D
E F

A B C

D E F
//

��

A B C

D E F

��

A B C

D E F
//
A B C
D E F

(6.12)

(The associativity constraints have been suppressed for convenience.)
Similarly, diagrams (6.5) and (6.6) can be expressed as follows.

I I

A B

��

A B //oo

id

��

A B

I I

��

I I
A B

// A B
A B
I I

oo

J A

J B

��

A

B
oo

id
��

//
A J

B J

��

J A
J B

//
A

B

A J
B J

oo

(6.13)

The unit and counit conditions in (6.7) and (6.8) can be expressed as follows.

I I

��

I //oo

id

��

I I

��

J I // I I Joo

J

I

��

Joo

id

��

//
I

J

��

J

J
// J

J

J
oo

(6.14)

6.1.4. An equivalent description of 2-monoidal categories. There are al-
ternative descriptions for the notion of 2-monoidal category. One is given in the
result below. Two other equivalent descriptions are given in Proposition 6.73; also
see Remark 6.74.

Let (I, •) be the one-arrow category and let ∗ denote its unique object.

Proposition 6.4. Let (C, ⋄, I) and (C, ⋆, J) be monoidal categories equipped with
structure morphisms (6.1) and (6.2). Then (C, ⋄, I, ⋆, J) is a (strong) 2-monoidal
category if and only if both conditions (i) and (ii) below hold.

(i) The functors

⋆ : (C× C, ⋄)→ (C, ⋄) (A,B) 7→ A ⋆ B J : I→ (C, ⋄) ∗ 7→ J

are lax (strong).
(ii) The functors

⋄ : (C× C, ⋆)→ (C, ⋆) (A,B) 7→ A ⋄B I : I→ (C, ⋆) ∗ 7→ I

are colax (costrong).

Proof. One checks that condition (i) is equivalent to axioms (6.3), (6.5)
and (6.7). Similarly, condition (ii) is equivalent to axioms (6.4), (6.6) and (6.8). �
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Other types of compatibilities between the functors ⋄ and ⋆ lead to higher
monoidal categories, which are the object of Chapter 7. For instance, the case
when (C, ⋆) is braided and the functor ⋄ : (C × C, ⋆) → (C, ⋆) is bilax occurs when
(C, ⋆, ⋄, ⋆) is a 3-monoidal category. The case when both monoidal categories are
braided and each functor is braided bilax with respect to the other occurs when
(C, ⋆, ⋄, ⋆, ⋄) and (C, ⋄, ⋆, ⋄, ⋆) are 4-monoidal categories. These facts are discussed
in more detail in Proposition 7.4 and 7.27.

6.1.5. Braided 2-monoidal categories. Braided monoidal categories formalize
the concept of commutativity for monoidal categories. We briefly discuss the anal-
ogous concept for 2-monoidal categories.

Definition 6.5. A 2-monoidal category (C, ⋄, I, ⋆, J) is ⋄-braided if the monoidal
category (C, ⋄, I) is braided and the following diagrams commute.

(A ⋆ B) ⋄ (C ⋆ D)
ζ

//

β

��

(A ⋄C) ⋆ (B ⋄D)

β⋆β

��

(C ⋆ D) ⋄ (A ⋆ B)
ζ

// (C ⋄A) ⋆ (D ⋄B)

J ⋄ J
µJ

xxrrrrrrr

β

��

J

J ⋄ J
µJ

ffLLLLLLL

(6.15)

Similarly, a 2-monoidal category (C, ⋄, I, ⋆, J) is ⋆-braided if the monoidal category
(C, ⋆, J) is braided and the following diagrams commute.

(A ⋆ B) ⋄ (C ⋆ D)
ζ

//

β⋄β

��

(A ⋄C) ⋆ (B ⋄D)

β

��

(B ⋆ A) ⋄ (D ⋆ C)
ζ

// (B ⋄D) ⋆ (A ⋄ C)

I ⋆ I

β

��

I

∆I
99sssssss

∆I %%KK
KKK

KK

I ⋆ I

(6.16)

Further, a 2-monoidal category is braided if it is braided with respect to both
monoidal structures.

The first diagrams in (6.15) and (6.16) can be shown pictorially as follows.

A B

C D

ζ
//

β

��

A B
C D

β⋆β

��

C D

A B ζ
//
C D
A B

A B

C D

ζ
//

β⋄β

��

A B
C D

β

��

B A

D C ζ
//
B A
D C

(6.17)

In the first diagram, we switch objects vertically, while in the second diagram, we
switch them horizontally.

Definition 6.5 can be understood in terms of the functors of Proposition 6.4:

Proposition 6.6. A 2-monoidal category is ⋄-braided if and only if the functors ⋆
and J are braided lax. Similarly, a 2-monoidal category is ⋆-braided if and only if
the functors ⋄ and I are braided colax.
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6.2. Coherence

There is a coherence result for 2-monoidal categories, which we briefly indicate.
It can be deduced from a coherence result on lax functors given in [230].

First, let A and B be objects of a monoidal 2-category C. If two morphisms
A → B are constructed out of the structure maps in C (including the structure
constraints of the monoidal categories (C, ⋄, I) and (C, ⋆, J)), then they coincide.
For instance, the following diagrams, in which each arrow involves a unit constraint
of one of the monoidal categories (and hence is invertible), commute.

(6.18)

J

&&MMMMMMMMMMMM

��xxqqqqqqqqqqqq

I ⋄ J

��

J ⋆ J

xxrrrrrrrrrr

&&LLLLLLLLLL J ⋄ I

��

(I ⋄ J) ⋆ J

%%LLLLLLLLLL
J ⋆ (J ⋄ I)

yyrrrrrrrrrr

(I ⋄ J) ⋆ (J ⋄ I)

Second, let Aij be objects in a 2-monoidal category C, with 1 ≤ i ≤ m, 1 ≤
j ≤ n. In this situation, there is a morphism

(6.19) ⋄
j∈[n]

(
⋆

i∈[m]
Aij

)
−→ ⋆

i∈[m]

(
⋄

j∈[n]
Aij

)

constructed out of the structure maps in C, and it is the unique such. The notation
stands for unordered tensor products (Section 1.4). Since these are taken over the
canonically ordered sets [m] and [n], they may also be interpreted as unbracketed
tensor products.

The first array in Table 6.1 shows instances of these canonical morphisms, along
with their m and n values. Each entry in the next two arrays refers to an axiom and
the corresponding m and n value. In each axiom, one equalizes certain morphisms
to guarantee uniqueness in (6.19). If either m or n is 1, then the morphism in (6.19)
is the identity.

Table 6.1. Coherence for 2-monoidal categories.

m n Morphism

2 2 ζ

2 0 ∆I

0 2 µJ

0 0 ιJ = ǫI

m n Mor. Eqn.

2 3 (6.3)

3 2 (6.4)

2 1 id (6.5)

1 2 id (6.6)

m n Mor. Eqn.

3 0 (6.8)

0 3 (6.7)

1 0 id (6.8)

0 1 id (6.7)
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We provide an example of the uniqueness in (6.19). The composite of the
morphisms below

A B

C D
//

A J B

I I I

C J D

//

A J B
I I I
C J D

//

A J B
I J I
C J D

//
A B
C D

is equal to the interchange law (6.11).

We now discuss some diagrams that commute in any 2-monoidal category.
Their commutativity follows from coherence, but we provide direct proofs. When
considering the diagrams below, recall that ιJ = ǫI according to Definition 6.1.
Among other things, we show below that this map is determined by the interchange
law and the unit constraints of the two monoidal categories. The latter occur in
the arrows labeled ∼= in the diagrams below.

Proposition 6.7. In any 2-monoidal category, the following diagrams commute.

I
ιJ //

∆I

��

J

∼=

��

I ⋆ I ιJ⋆ιJ
// J ⋆ J

J ⋄ J
ǫI⋄ǫI //

µJ

��

I ⋄ I

∼=

��

J ǫI
// I

I ⋄ I
∼= //

∆I⋄∆I

��

I
∆I // I ⋆ I

∼=
��

(I ⋆ I) ⋄ (I ⋆ I)
ζ

// (I ⋄ I) ⋆ (I ⋄ I)

J ⋄ J
µJ //

∼=
��

J
∼= // J ⋆ J

(J ⋆ J) ⋄ (J ⋆ J)
ζ

// (J ⋄ J) ⋆ (J ⋄ J)

µJ⋆µJ

OO

Proof. The first diagram is a consequence of counitality for the comonoid
(I,∆I , ǫI), since ǫI = ιJ . The third diagram follows from either diagram in (6.5).
The other two follow by passing to the opposite category. �

Proposition 6.8. For any objects A and B of a 2-monoidal category, the following
diagrams commute.

A ⋆ B

∼=

��

∼= // I ⋄ (A ⋆ B)

∼=

��

A ⋆ (I ⋄B)

id⋆(ǫI⋄id)

��

(I ⋆ J) ⋄ (A ⋆ B)

ζ

��

A ⋆ (J ⋄B) ∼=
// (I ⋄A) ⋆ (J ⋄B)

A ⋆ B

∼=

��

∼= // (A ⋆ B) ⋄ I

∼=

��

A ⋆ (B ⋄ I)

id⋆(id⋄ǫI)

��

(A ⋆ B) ⋄ (I ⋆ J)

ζ

��

A ⋆ (B ⋄ J) ∼=
// (A ⋄ I) ⋆ (B ⋄ J)
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A ⋆ B

∼=

��

∼= // (A ⋆ B) ⋄ I

∼=

��

(A ⋄ I) ⋆ B

(id⋄ǫI)⋆id

��

(A ⋆ B) ⋄ (J ⋆ I)

ζ

��

(A ⋄ J) ⋆ B ∼=
// (A ⋄ J) ⋆ (B ⋄ I)

A ⋆ B

∼=

��

∼= // I ⋄ (A ⋆ B)

∼=

��

(I ⋄A) ⋆ B

(ǫI⋄id)⋆id

��

(J ⋆ I) ⋄ (A ⋆ B)

ζ

��

(J ⋄A) ⋆ B ∼=
// (J ⋄A) ⋆ (I ⋄B)

A ⋄BOO

∼=

oo
∼=

J ⋆ (A ⋄B)
OO

∼=

A ⋄ (J ⋆ B)
OO

id⋄(ιJ⋆id)

(J ⋄ I) ⋆ (A ⋄B)
OO

ζ

A ⋄ (I ⋆ B) oo ∼=
(J ⋆ A) ⋄ (I ⋆ B)

A ⋄BOO

∼=

oo
∼=

(A ⋄B) ⋆ J
OO

∼=

A ⋄ (B ⋆ J)
OO

id⋄(id⋆ιJ)

(A ⋄B) ⋆ (J ⋄ I)
OO

ζ

A ⋄ (B ⋆ I) oo ∼=
(A ⋆ J) ⋄ (B ⋆ I)

A ⋄BOO

∼=

oo
∼=

(A ⋄B) ⋆ J
OO

∼=

(A ⋆ J) ⋄B
OO

(id⋆ιJ )⋄id

(A ⋄B) ⋆ (I ⋄ J)
OO

ζ

(A ⋆ I) ⋄B oo
∼=

(A ⋆ I) ⋄ (B ⋆ J)

A ⋄BOO

∼=

oo
∼=

J ⋆ (A ⋄B)
OO

∼=

(J ⋆ A) ⋄B
OO

(ǫJ⋆id)⋄id

(I ⋄ J) ⋆ (A ⋄B)
OO

ζ

(I ⋆ A) ⋄B oo
∼=

(I ⋆ A) ⋄ (J ⋆ B)

Proof. We fill in the first diagram with commutative pieces as follows.

A ⋆ B

∼=

��

∼= // I ⋄ (A ⋆ B)

∆I⋆id
��

∼= // (I ⋆ J) ⋄ (A ⋆ B)

ζ

��

(I ⋆ I) ⋄ (A ⋆ B)
(id⋆ǫI)⋄id

44iiiiiiiiiiii

ζ
��

A ⋆ (I ⋄B)
∼= //

id⋆(ǫI⋄id)
��

(I ⋄A) ⋆ (I ⋄B)

id⋆(ǫI⋄id) **UUUUUUUUUUUU

A ⋆ (J ⋄B) ∼=
// (I ⋄A) ⋆ (J ⋄B)

In this diagram, the top left corner commutes by (6.5), and the triangle next to it
by counitality (6.8). The remaining pieces commute by naturality.

The commutativity of the remaining diagrams follows by passing to the trans-
pose or opposite categories. �

The following result shows that ιJ = ǫI is determined by the interchange law
and the unit constraints of the two monoidal categories. The horizontal arrows
in the diagrams below are uniquely determined in view of (6.18) (and similar dia-
grams).
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Proposition 6.9. In any 2-monoidal category, the following diagrams commute.

(I ⋆ J) ⋄ (J ⋆ I)

ζI,J,J,I

��

I
∼=oo

ιJ=ǫI

��

∼= // (J ⋆ I) ⋄ (I ⋆ J)

ζJ,I,I,J

��

(I ⋄ J) ⋆ (J ⋄ I) J∼=
oo

∼=
// (J ⋄ I) ⋆ (I ⋄ J)

Proof. These can be deduced from the first two diagrams in Proposition 6.8
by setting A = J , B = I. �

In pictorial notation, this can be shown as follows.

I J

J I

��

I //

��

oo
J I

I J

��

I J
J I J //oo

J I
I J

6.3. Braided monoidal categories as 2-monoidal categories

In this section, we relate 2-monoidal categories to braided monoidal categories.
More precisely, we show that a strong 2-monoidal category (Definition 6.3) is the
same as a braided monoidal category. Further, a strong braided 2-monoidal cate-
gory is the same as a symmetric monoidal category.

Proposition 6.10. A braided monoidal category gives rise to a strong 2-monoidal
category both of whose monoidal structures are identical.

Proof. Let (C, •, I, β) be a braided monoidal category. Then define a strong
2-monoidal category (C, •, I, •, I) both of whose monoidal structures are identical,
with the interchange law given by the following composite

(A •B) • (C •D)
∼=
−→ A • (B •C) •D

id•β•id
−−−−−→ A • (C •B) •D

∼=
−→ (A •C) • (B •D)

and the remaining structure morphisms given by

λI : I → I • I, λ−1
I : I • I → I, id : I → I.

The arrows labeled ∼= are the unique isomorphisms obtained from the associativity
constraint in C, while λ refers to the left unit constraint in C. It does not matter
whether one uses λ or ρ since λI = ρI . It is straightforward to check that the
2-monoidal category axioms hold. �

Proposition 6.10 admits the following converse.

Proposition 6.11. Let (C, ⋄, I, ⋆, J) be a strong 2-monoidal category. Then the
monoidal categories (C, ⋄, I) and (C, ⋆, J) are braided and isomorphic as braided
monoidal categories.

Moreover, the interchange law arises from the braiding as in Proposition 6.10
(and the isomorphisms between ⋄ and ⋆).
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Proof. We outline the main steps. The units I and J are isomorphic, since
the 2-monoidal category is strong. Choosing B and C equal to either unit object
in (6.1), we deduce that the two monoidal structures are isomorphic. Finally,
choosing A and D equal to either unit object in (6.1), we obtain the braiding.
Coherence guarantees that axioms (1.5) hold.

We now show that the braiding determines the interchange law. For simplic-
ity of notation, we identify the two monoidal structures. Consider the following
composites.

A

D
//
A I

I D

ζ
//
A I
I D

// A D

B

C
//
I B

C I

ζ
//
I B
C I

// C B

By construction, the first composite is the identity, while the second composite
is the braiding. One can then deduce that the following composites are both the
identity.

A

C D
//
A I

C D

ζ
//
A I
C D

//
A
C

D

A B

D
//
A B

I D

ζ
//
A B
I D

// A
B
D

From these observations, we derive the required result: The composite

A B

C D
//

A I

I B

C I

I D

//

A I
I B
C I
I D

//
A B
C D

,

with the middle map defined by (6.19), is the interchange law and it is induced
from the braiding. �

Remark 6.12. Propositions 6.10 and 6.11 are reformulations of results of Joyal
and Street [184, Propositions 5.2 and 5.3]. It follows that there is an equivalence
between the notions of braided monoidal category and strong 2-monoidal category.
In particular, any strong 2-monoidal category arises from a braided monoidal cat-
egory as in Proposition 6.10, up to a 2-strong monoidal functor. (Strong monoidal
functors are discussed in Section 6.8.4 below.)

Proposition 6.11 is a categorical version of the Eckmann–Hilton argument (see
Proposition 6.29 and Remark 6.30). Another result in this direction is given by
Kock [204, Proposition 3.2], who shows that a 2-monoidal category with strict
associativity and strict interchange must come from a symmetric monoidal category
(by means of the construction of Proposition 6.10) and moreover, the symmetry
must satisfy βX,X = idX•X for every object X .

Proposition 6.13. Let C be a braided monoidal category viewed as a 2-monoidal
category. Then the following are equivalent.
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(i) C is ⋄-braided.
(ii) C is ⋆-braided.
(iii) β is a symmetry.

Proof. Let (M, ϕ, ψ) be as in Section 3.8.1. From the definitions or from
Proposition 6.6, one has the following.

(i) ⇐⇒ (M, ϕ) is braided strong.

(ii) ⇐⇒ (M, ψ) is braided costrong.

Propositions 3.74 and 3.75 say that the statements on the right are both equivalent
to (M, ϕ, ψ) being bistrong and further equivalent to β being a symmetry. �

Thus, braided monoidal categories are same as strong 2-monoidal categories and
symmetric monoidal categories are same as of strong braided 2-monoidal categories.

Recall the notion of lax braided monoidal categories from Definition 1.5. The
following result, which generalizes Proposition 6.10, is of interest to us.

Proposition 6.14. A lax braided monoidal category gives rise to a 2-monoidal
category whose monoidal structures are identical.

We use the notation (C, •, •) to denote a 2-monoidal category which arises from
this construction.

Example 6.15. The braiding β on graded vector spaces admit a one-parameter
deformation denoted by βq, see (2.50). Of special interest is the value q = 0. It is
distinguished by the property that β0 is not invertible, hence β0 is not a braiding,
however it is a lax braiding. The above result then implies that (gVec, ·, βq) is a
2-monoidal category for all values of q.

Remark 6.16. One may wonder about the converse of Proposition 6.14: If the
two monoidal structures of a 2-monoidal category coincide, is the interchange law
necessarily of the form id • β • id for a lax braiding β?

Proposition 6.11 says that the answer is positive in the strong case. Moreover,
its proof shows that if (C, •, I, •, I, ζ) is 2-monoidal, then defining βB,C by

idI • βB,C • idI = ζI,B,C,I ,

one obtains a lax braiding β on (C, •, I).
However, it does not follow (and is not true in general) that ζ = id • β • id; see

Example 6.24. So, the answer to the above question is in general negative.

6.4. Examples of 2-monoidal categories

There is an abundance of 2-monoidal categories in nature. In this section, we
provide a variety of examples. The categories are constructed from diverse objects
such as graphs, posets, vector spaces, and bimodules over a commutative algebra.
We learned Examples 6.17 and 6.18 below from Steve Chase.

Example 6.17. Let X be a set. A directed graph with vertex set X is a triple
(A, s, t) where A is a set and

A
s //

t
//X



6.4. EXAMPLES OF 2-MONOIDAL CATEGORIES 173

is a pair of maps, called the source and target maps, respectively. The elements
a ∈ A are called arrows and may be represented as follows.

s(a)
a

,,
t(a)

A morphism (A, s, t) → (B, s, t) of directed graphs with vertex set X is a map
f : A→ B such that

A
f

//

s
  

@@
@@

@@
@ B

s
~~~~

~~
~~

~

X

and

A
f

//

t
  

@@
@@

@@
@ B

t
~~~~

~~
~~

~

X

commute.
We often write A instead of (A, s, t) and understand that s and t are given.
Let C be the category of directed graphs with vertex set X . Given two such

graphs A and B, define

A ⋄B := {(a, b) ∈ A×B : s(a) = t(b)}

A ⋆ B := {(a, b) ∈ A×B : s(a) = s(b) and t(a) = t(b)}.

Thus A⋄B consists of pairs of arrows in series and A⋆B consists of pairs of arrows
in parallel ; their elements may be respectively represented as follows.

∗

b

%%
∗

a

%%
∗ ∗

a

%%

b

99 ∗

We turn A ⋄ B and A ⋆ B into directed graphs with vertex set X by defining, for
(a, b) ∈ A ⋄B,

s(a, b) := s(b) and t(a, b) := t(a),

and for (a, b) ∈ A ⋆ B,

s(a, b) := s(a) = s(b) and t(a, b) := t(a) = t(b).

These operations turn the category of directed graphs with vertex set X into
a 2-monoidal category (C, ⋄, ⋆). Let A, B, C, D be directed graphs with vertex set
X . The interchange law (6.1)

ζA,B,C,D : (A ⋆ B) ⋄ (C ⋆ D)→ (A ⋄ C) ⋆ (B ⋄D)

simply sends (a, b, c, d) to (a, c, b, d). Note that the elements of these two sets may
be represented as follows: for (a, b, c, d) ∈ (A ⋆ B) ⋄ (C ⋆ D),

∗

c

%%

d

99 ∗

a

%%

b

99 ∗

and for (a, c, b, d) ∈ (A ⋄C) ⋆ (B ⋄D),

∗
a

  
∗

c
**

d

44

∗

∗
b

>>
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so ζ is well-defined, but in general is not bijective. The unit object I of (C, ⋄) is
the discrete graph (X, id, id) and the unit object J of (C, ⋆) is the complete graph
(X × X, p1, p2) with p1(x, y) = x and p2(x, y) = y. The structure map ∆I is the
identity. The other maps in (6.2) are uniquely determined since the object J is
terminal in the category C.

Example 6.18. Let k be a commutative ring. Let K be a k-algebra and C the
category of K-bimodules. An object of C is a k-module M with left and right
actions of K such that

(a ·m) · b = a · (m · b)

for all a, b ∈ K, m ∈M .
Let M ⋆N denote the tensor product over K of two K-bimodules M and N :

M ⋆N := M ⊗K N = M ⊗N/(m · a⊗ n ≡ m⊗ a · n),

where M ⊗ N denotes tensor product over k. The category C is monoidal under
tensor product over K. The unit object is K viewed as a K-bimodule by left and
right multiplication.

Suppose from now on that K is commutative. Then a K-bimodule M may also
be viewed as a (K ⊗K)-bimodule via

(a⊗ b) ·m := a ·m · b =: m · (a⊗ b).

Let M ⋄N denote the tensor product over K ⊗K of two K-bimodules M and N :

M ⋄N := M ⊗K⊗K N = M ⊗N/(a ·m · b⊗ n ≡ m⊗ a · n · b).

Then M ⋄N is again a K-bimodule under

a · (m⊗ n) := a ·m⊗ n = m⊗ a · n and (m⊗ n) · b := m⊗ n · b = m · b⊗ n.

Therefore, tensor product over K ⊗ K defines a second monoidal structure on C.
The unit object is K ⊗K viewed as a K-bimodule by

a · (x⊗ y) := ax⊗ y and (x ⊗ y) · a := x⊗ ya.

Let

(6.20) γM,N : M ⊗N →M ⋆N and ϕM,N : M ⊗N →M ⋄N

denote the canonical projections.
The above operations turn the category of K-bimodules into a 2-monoidal

category

(C, ⋄,K ⊗K, ⋆,K).

Let M , N , P and Q be K-bimodules. The interchange law (6.1)

ζA,B,C,D : (M ⋆N) ⋄ (P ⋆ Q)→ (M ⋄ P ) ⋆ (N ⋄Q)
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is the unique map making the following diagram commutative.

(6.21)

M ⊗N ⊗ P ⊗Q
idM⊗βN,P⊗idQ

//

γM,N⊗γP,Q

��

M ⊗ P ⊗N ⊗Q

ϕM,P⊗ϕN,Q

��

(M ⋆N)⊗ (P ⋆ Q)

ϕM⋆N,P⋆Q

��

(M ⋄ P )⊗ (N ⋄Q)

γM⋄P,N⋄Q

��

(M ⋆N) ⋄ (P ⋆ Q)
ζ

//______ (M ⋄ P ) ⋆ (N ⋄Q)

It is easy to see that ζ is well-defined and that the axioms in Definition 6.1 are
satisfied.

Example 6.19. Throughout this example, we employ the terminology and nota-
tions of Section A.1. Let (C, ⋄, I) be an arbitrary monoidal category. Suppose that
in the category C all finite products exist and consider the corresponding cartesian
monoidal category (C,×, J), as in Example 1.4. Then (C, ⋄, I,×, J) is a 2-monoidal
category: The interchange law (6.1)

ζA,B,C,D : (A×B) ⋄ (C ×D)→ (A ⋄ C)× (B ⋄D)

is defined by

ζA,B,C,D := (πA×B
A ⋄ πC×D

C , πA×B
B ⋄ πC×D

D ).

The structure maps (6.2) are as follows: ∆I : I → I × I is the diagonal (Exam-
ple 1.19), and µJ : J ⋄ J → J and ιJ = ǫI : I → J are the unique maps to the
terminal object J .

Let (C, ⋆, J) be an arbitrary monoidal category, and dually suppose that in the
category C all finite coproducts exist. Let (C,∐, I) be the corresponding cocartesian
monoidal category, as in Example 1.4. Then (C,∐, I, ⋆, J) is a 2-monoidal category.
The interchange law

ζA,B,C,D : (A ⋆ B)∐ (C ⋆ D)→ (A ∐C) ⋆ (B ∐D)

is defined by

ζA,B,C,D :=

(
ιA∐C
A ⋆ ιB∐D

B

ιA∐C
C ⋆ ιB∐D

D

)
.

Note that Example 6.17 is of the first form above: the categorical product of
two directed graphs A and B is the graph A ⋆ B defined in that example. On
the other hand, in Example 6.18, neither operation is the categorical product or
coproduct in the category of bimodules.

Finally, suppose that C is a category with both finite products and finite coprod-
ucts. Then (C,∐, I,×, J) is a 2-monoidal category. This may be seen as a special
case of either of the two constructions above. It is important to note that both
constructions yield the same structure. For instance, in both cases the interchange
law is given by

(
ιA∐C
A πA×B

A ιB∐D
B πA×B

B

ιA∐C
C πC×D

C ιB∐D
D πC×D

D

)
: (A×B) ∐ (C ×D)→ (A ∐ C)× (B ∐D).
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Example 6.20. Let P be a partially ordered set. It gives rise to a category C in
which the objects are the elements of P and there is exactly one morphism from
x to y if x ≤ y; otherwise there are no morphisms from x to y. If every pair of
elements a, b ∈ P has a least upper bound a ∨ b and a greatest lower bound a ∧ b,
then P is said to be a lattice. Suppose in addition that P has a minimum element
0 and a maximum element 1. In this case, C carries a structure of 2-monoidal
category with

⋄ = ∨, I = 0, ⋆ = ∧, J = 1.

The interchange law is the unique map

ζ : (a ∧ b) ∨ (c ∧ d)→ (a ∨ c) ∧ (b ∨ d)

which exists since (a∧b)∨ (c∧d) ≤ (a∨c)∧ (b∨d). The structure maps ∆I and µJ
are identities, while ιJ = ǫI is the unique map 0→ 1. The axioms in Definition 6.1
are satisfied since any diagram in C commutes, given that there is at most one
morphism between any two objects.

Note that ∧ is the categorical product and ∨ is the categorical coproduct in C,
so this 2-monoidal category is a special case of those in Example 6.19.

Remark 6.21. The 2-monoidal category (C, ⋄, ⋆) of directed graphs of Exam-
ple 6.17 is ⋆-braided. More generally, the 2-monoidal categories (C, ⋄,×) and
(C,∐, ⋆) of Example 6.19 are ×-braided and ∐-braided respectively. It follows
that the 2-monoidal category (C,∨,∧) of Example 6.20 is braided.

Example 6.22. Recall the Hadamard and Cauchy products on graded vector
spaces (Example 6.78). Let A, B, C and D be graded vector spaces. Define
the interchange law

ζ : (A×B) · (C ×D)→ (A · C)× (B ·D)

⊕

n=s+t

(As ⊗Bs)⊗ (Ct ⊗Dt)→

( ⊕

n=s1+t1

As1 ⊗ Ct1

)
⊗

( ⊕

n=s2+t2

Bs2 ⊗Dt2

)

to be the natural embedding given by switching the middle factors. This turns
(gVec, ·,×) into a braided 2-monoidal category with the unit morphisms

∆1 : 1→ 1× 1, µE : E · E → E, ιE = ǫ1 : 1→ E,

defined as follows. The first and third map are identities on the ∅-component. Under
the identification of E with k[x], the map µE is the usual product on polynomials.

Interestingly, one can also define an interchange law in the other direction.
We let it be the surjection which is identity if s1 = s2 and t1 = t2 and zero
otherwise. This turns (gVec,×, ·) also into a braided 2-monoidal category with the
unit morphisms

∆E : E → E · E, µ1 : 1× 1→ 1, ι1 = ǫE : E → 1,

defined as follows. The last two maps are identities on the ∅-component. Under
the identication of E with k[x], the map ∆E is

xn 7→
n∑

i=0

xi ⊗ xn−i.

Note that the two examples are distinguished by the order in which the mon-
oidal structures are listed. We will see later that the two constructions are in fact
the contragredients of each other (Section 6.12).



6.4. EXAMPLES OF 2-MONOIDAL CATEGORIES 177

In Section 8.1, we define analogues of the Hadamard and Cauchy products
for species. By proceeding along similar lines, one obtains that (Sp, ·,1,×,E) and
(Sp,×,E, ·,1) are braided 2-monoidal categories (Proposition 8.68).

Example 6.23. We now discuss an interchange law between the Hadamard and
substitution product of graded vector spaces. Let A, B, C and D be graded vector
spaces. Define

ζ : (A×B) ◦ (C ×D)→ (A ◦ C)× (B ◦D)

to be the map induced by the isomorphism

(Ak ⊗Bk)⊗

( k⊗

h=1

Cih ⊗Dih

)
→

(
Ak ⊗

k⊗

h=1

Cih

)
⊗

(
Bk ⊗

k⊗

h=1

Dih

)

which reorders the tensor factors. This turns (gVec, ◦,×) into a 2-monoidal category
(with the unit morphisms defined appropriately).

The analogue of this construction for species yields a 2-monoidal category
(Sp, ◦,×), which is discussed in Section B.6.

Example 6.24. We know from Section 6.3 that one source of 2-monoidal categories
is provided by braided monoidal categories (or even just lax braided monoidal
categories). One uses the same operation twice and the braiding gives rise to the
interchange law. The example about to be discussed exhibits a fairly particular
feature: the two monoidal operations coincide, but the interchange law is not given
by a braiding, not even a lax braiding.

Let Vec be the category of vector spaces. We consider the following monoidal
structure on this category:

V ⊙W := V ⊕W ⊕ (V ⊗W ).

On morphisms, we correspondingly set

f ⊙ g := f ⊕ g ⊕ (f ⊗ g).

The operation ⊙ is associative and turns Vec into a monoidal category in which
the unit object is the zero vector space. One way to see this is by appealing to the
functor

(Vec,⊙, 0)→ (Vec,⊗, k), V 7→ k⊕ V,

which is strong monoidal. (The existence of this functor does not trivialize the
example under discussion in any way.) More explicitly, note that both (A⊙B)⊙C
and A⊙ (B ⊙ C) are canonically isomorphic to

A⊙B ⊙ C := A⊕B ⊕ C ⊕ (A⊗B)⊕ (A⊗ C)⊕ (B ⊗ C)⊕ (A⊗B ⊗ C).

More generally,

A1 ⊙ · · · ⊙An =
⊕

1≤k≤n
i1<···<ik

Ai1 ⊗ · · · ⊗Aik .

Note that in order to define a linear map between two spaces A1⊙· · ·⊙An and
B1 ⊙ · · · ⊙Bm it suffices to specify a linear map between each pair of components
Ai1 ⊗ · · · ⊗Aik and Bj1 ⊗ · · · ⊗Bjh .

We define an interchange law between ⊙ and itself as follows. We let

ζ : A⊙B ⊙ C ⊙D → A⊙ C ⊙B ⊙D
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be given by the identity map on the components

A, B, C, D, A⊗B, A⊗ C, B ⊗D, C ⊗D, A⊗B ⊗D, and A⊗ C ⊗D.

On all other components, ζ is 0.
Note that ζ vanishes on all components containing B ⊗ C as a subfactor and

for this reason no switch of factors is ever involved. But note also that ζ vanishes
on the component A⊗D. This is an important point: any map of the form

id⊙ β ⊙ id : A⊙B ⊙ C ⊙D → A⊙ C ⊙B ⊙D

is necessarily the identity on A ⊗ D. For this reason, ζ does not arises from a
braiding (or a lax braiding).

The unit maps (6.2) are all defined to be 0. The unit axioms (6.5)–(6.8) are
thus trivially satisfied.

It remains to verify the associativity axioms (6.3)–(6.4). Since all components
involved are either the identity or 0, it suffices to verify that for each diagram the
two sides vanish on the same components. For diagram (6.3), the two sides vanish
precisely on the components

A⊗D, A⊗D ⊗ E, A⊗D ⊗ F, A⊗D ⊗ E ⊗ F,

A⊗ F, C ⊗ F, and A⊗ C ⊗ F

as well as on any components containing

B ⊗ C, B ⊗ E, and D ⊗ E

as subfactors. For diagram (6.4) the situation is similar.
We conclude that (Vec,⊙,⊙) is a 2-monoidal category with interchange law ζ.

As explained above, it does not arise from a lax braided monoidal category via the
construction of Proposition 6.14.

6.5. Bimonoids and double (co)monoids

Recall that one can define bimonoids and (co)commutative (co)monoids in any
braided monoidal category. In this section we discuss the analogues of these in a
2-monoidal category.

Bimonoids generalize in a straightforward manner. The idea is as follows. For a
bimonoid (Definition 1.10), the braiding β occurs in diagram (1.9) where it relates
two tensors both with 4 factors; so it can be replaced without difficulty by the inter-
change law. In contrast, for a (co)commutative (co)monoid (Definition 1.17), the
braiding relates two tensors both with 2 factors. As a result, it is not immediately
clear how to proceed. We use the term double (co)monoid for the generalization of
a (co)commutative (co)monoid.

A summary of different types of “monoids” is given in Table 6.2.

6.5.1. Bimonoids.

Definition 6.25. Let (C, ⋄, I, ⋆, J) be a 2-monoidal category. A bimonoid in C

is a quintuple (H,µ, ι,∆, ǫ) where (H,µ, ι) is a monoid in (C, ⋄, I), (H,∆, ǫ) is a
comonoid in (C, ⋆, J), and the two structures are compatible in the sense that the
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following four diagrams commute.

(H ⋆H) ⋄ (H ⋆H)
ζ

// (H ⋄H) ⋆ (H ⋄H)

µ⋆µ

��

H ⋄H µ
//

∆⋄∆

OO

H
∆

// H ⋆H

(6.22)

H ⋄H
ǫ⋄ǫ //

µ

��

J ⋄ J

µJ

��

H ǫ
// J

I

∆I

��

ι // H

∆

��

I ⋆ I ι⋆ι
// H ⋆H

(6.23)

H
ǫ

��
@@

@@
@@

@

I ιJ=ǫI
//

ι

??��������
J

(6.24)

A morphism of bimonoids is a morphism of the underlying monoids and comonoids.

Remark 6.26. The notion of bimonoid is self-dual in the following sense. Let
(H,µ, ι,∆, ǫ) be a bimonoid in (C, ⋄, I, ⋆, J). Switching µ with ∆ and ι with ǫ we
obtain a bimonoid in the opposite category (Cop, ⋆, J, ⋄, I) of Section 6.1.2. In more
detail, let H be H viewed as an object of Cop and let

µ := ∆ ∈ HomC(H ⋆H,H) = HomCop(H,H ⋆ H),

ι := ǫ ∈ HomC(H, J) = HomCop(J,H),

∆ := µ ∈ HomC(H,H ⋄H) = HomCop(H ⋄H,H),

ǫ := ι ∈ HomC(I,H) = HomCop (H, I).

Then (H,µ, ι,∆, ǫ) is a bimonoid in (Cop, ⋆, J, ⋄, I).

Proposition 6.27. The unit objects I and J carry a unique bimonoid structure.
In addition, ιJ = ǫI : I → J is a morphism of bimonoids.

Proof. Consider the object I. Since it is the unit for ⋄, it carries a unique
monoid structure given by the identity maps. By (6.8), (I,∆I , ǫI) is a comonoid.
The structures are compatible in view of the last two diagrams in Proposition 6.7.
This is the unique comonoid structure compatible with the monoid structure, in
view of (6.23) and (6.24). The statement for J follow by duality. Finally, the first
two diagrams in Proposition 6.7 imply that ιJ = ǫI is a morphism of bimonoids. �

6.5.2. Double (co)monoids. We now turn to the analogue of a commutative
monoid for 2-monoidal categories; we call it a double monoid. Informally, it is
an object with two monoid structures which commute with each other; hence the
name. This is not to be confused with commutative bimonoids.

Definition 6.28. A double monoid in a 2-monoidal category (C, ⋄, ⋆) is an object
A equipped with morphisms

A ⋄A→ A, I → A, A ⋆ A→ A, J → A,
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which turn A into a monoid in both (C, ⋄, I) and (C, ⋆, J) and the following diagrams
commute.

(A ⋆ A) ⋄ (A ⋆ A) //

��

(A ⋄A) ⋆ (A ⋄A)

��

A ⋄A // A A ⋆ Aoo

(6.25)

J ⋄ J //

��

A ⋄A

��

J // A

I ⋆ I // A ⋆ A

��

I //

OO

A

(6.26)

A

I //

??�������
J

__???????
(6.27)

Dually, one can define a double comonoid.
A morphism between two double (co)monoids is a morphism of the two under-

lying (co)monoids.

The second diagram in (6.26) may be omitted from the definition since its
commutativity follows from the remaining assumptions: Recall that J is the unit
object for ⋆, I is a comonoid with respect to ⋆ with I → J being the counit map,
and A is a monoid with respect to ⋆ with J → A being the unit map. Thus we
have a commutative diagram

I ⋆ I // J ⋆ J // A ⋆ A

��

I

OO

// J // A

whose composite is the second diagram in (6.26).

Let (C, •, •) be a 2-monoidal category arising from a braided monoidal category
as in Section 6.3.

Proposition 6.29 (Eckmann–Hilton argument). A (co)commutative (co)mon-
oid in C gives rise to a double (co)monoid, for which both (co)monoid structures
are identical.

Conversely, let A be a double (co)monoid in (C, •, •). Then the two (co)products
on A coincide and are (co)commutative.

Proof. The first statement is clear. For the converse, we explain the monoid
case. Diagram (6.27) shows that the two unit maps of A coincide. Let us denote
them by ι : I → A. Let µ1, µ2 : A •A→ A be the two products of A. The following
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diagram commutes.

A • I • I •A
id•ι•ι•id //

id•β•id

��

A •A •A •A
µ1•µ1 //

id•β•id

��

A •A
µ2

&&LL
LLLLL

LL

A •A

ρ•λ
66llllllllll

ρ•λ ((RRRRRRRRRR A

A • I • I •A
id•ι•ι•id

// A •A •A •A µ2•µ2

// A •A

µ1

99rrrrrrrrr

Indeed, the triangle commutes by (1.8), the square by naturality, and the pentagon
by (6.25). The unitality of µ1 and µ2 now tells us that the map along the top
is µ2 and that along the bottom is µ1. Thus, µ1 = µ2. Let us denote this com-
mon product by µ. A similar argument proves the commutativity of the following
diagram

A •A
λ•ρ

//

β

��

I •A •A • I
ι•id•id•ι //

id•β•id

��

A •A •A •A
µ•µ

//

id•β•id

��

A •A
µ

&&LL
LLLLL

LL

A

A •A
λ•ρ

// I •A •A • I
ι•id•id•ι

// A •A •A •A µ•µ
// A •A

µ

99rrrrrrrrr

from which we deduce that µβ = µ. Thus, (A, µ, ι) is a commutative monoid. �

To summarize, in the context of braided monoidal categories, commutative and
double monoids are equivalent notions.

Remark 6.30. The classical Eckmann–Hilton argument [109] or [226, Lemma 1.2.4]
goes as follows.

Consider a set with two binary operations + and × and two elements 0 and 1.
Consider the axioms

(x+ y)× (z + t) = (x× z) + (y × t),

x+ 0 = x = 0 + x,

x× 1 = x = 1× x.

This is not quite a double monoid (since we are not assuming associativity), but is
very close. By setting x = t = 1 and y = z = 0, we deduce 1 = 0. Then, by setting
y = z = 0, we get that the operations ∗ and + coincide. Next, by setting x = t = 0,
we get that + is commutative. Further manipulations give that + is associative.

Note that the proof of Proposition 6.29 made no use of associativity. This may
be deduced from the other assumptions, as in the classical case.

Several results related to the Eckmann–Hilton argument appear in this mono-
graph. Apart from Proposition 6.29, we have Propositions 3.46, 6.11, and 6.59.

6.5.3. Commutative bimonoids and commutative double monoids. We
now briefly discuss the notion of commutativity for bimonoids and double mon-
oids. The context for this is more special: that of braided 2-monoidal categories
(Section 6.1.5).

Definition 6.31. A commutative bimonoid in a ⋄-braided 2-monoidal category is
a bimonoid (H,µ, ι,∆, ǫ) such that (H,µ, ι) is commutative.
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A cocommutative bimonoid in a ⋆-braided 2-monoidal category is a bimonoid
(H,µ, ι,∆, ǫ) such that (H,∆, ǫ) is cocommutative.

Proposition 6.32. Let (H,µ,∆) be a bimonoid in a 2-monoidal category C.

(i) If C is ⋄-braided, then Hop := (H,µβ,∆) is again a bimonoid.
(ii) If C is ⋆-braided, then copH := (H,µ, β∆) is again a bimonoid.

The proof is straightforward. We also note that the three statements in each
set below are equivalent.

H is a commutative bimonoid;
id: H → Hop is a morphism of bimonoids;
µ = µβ.

(6.28)

H is a cocommutative bimonoid;
id: H → copH is a morphism of bimonoids;
∆ = β∆.

(6.29)

Remark 6.33. The results of Proposition 6.32 are consistent with those of Propo-
sition 1.21 for bimonoids in a braided monoidal category. Indeed, when the 2-
monoidal category arises from a braided monoidal category, the hypotheses in (i)
and (ii) above are both equivalent to β = β−1, by Proposition 6.13. Therefore, in
this situation Hop = opH and copH = Hcop.

Definition 6.34. A (co)commutative double (co)monoid in a ⋄-braided 2-monoidal
category is a double (co)monoid in the 2-monoidal category such that the coproduct
with respect to ⋄ is (co)commutative.

A (co)commutative double (co)monoid in a ⋆-braided 2-monoidal category is a
double (co)monoid in the 2-monoidal category such that the coproduct with respect
to ⋆ is (co)commutative.

6.5.4. Alternative descriptions of bimonoids and double (co)monoids.
Recall that a bimonoid in a braided monoidal category can be interpreted as a
monoid in the category of comonoids, or viceversa. We show that the same is true
for a bimonoid in a 2-monoidal category. We also give analogous results for double
(co)monoids.

Proposition 6.35. Let (C, ⋄, I, ⋆, J) be a 2-monoidal category. If A and B are
monoids in (C, ⋄, I), then so is A ⋆ B. Moreover, (Mon(C, ⋄, I), ⋆, J) is a monoidal
category. Similarly, if C and D are comonoids in (C, ⋆, J), then so is C ⋄D, and
(Comon(C, ⋆, J), ⋄, I) is a monoidal category.

Proof. We explain the first statement, the second being similar. If A and B
are monoids in (C, ⋄, I), then by applying the first lax functor in Proposition 6.4,
part (i), it follows that A⋆B is also a monoid. Explicitly, the structure is as follows.

(A ⋆ B) ⋄ (A ⋆ B)
ζ

// (A ⋄A) ⋆ (B ⋄B)
µ⋆µ

// A ⋆ B.

I
∆I // I ⋆ I

ι⋆ι // A ⋆ B.

The second lax functor in Proposition 6.4, part (i), says that J is also a monoid.
The only thing left to check is that the associativity and unit constraints of

(C, ⋆, J) induce morphisms of monoids. This is omitted. �

Let Bimon(C, ⋄, ⋆), dMon(C, ⋄, ⋆) and dComon(C, ⋄, ⋆) denote the categories of
bimonoids, double monoids and double comonoids respectively in (C, ⋄, ⋆). These
and other similar notations are given in Table 6.2.
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Proposition 6.36. There are canonical equivalences of categories

Bimon(C, ⋄, ⋆) ∼= Comon(Mon(C, ⋄), ⋆) ∼= Mon(Comon(C, ⋆), ⋄),

dMon(C, ⋄, ⋆) ∼= Mon(Mon(C, ⋄), ⋆),

dComon(C, ⋄, ⋆) ∼= Comon(Comon(C, ⋆), ⋄).

Proposition 6.36 provides alternative descriptions for bimonoids and double
(co)monoids. They generalize the corresponding statements for braided monoidal
categories (1.14). For example, the middle statement generalizes the fact that a
commutative monoid is a monoid in the category of monoids. The verification of the
above propositions is straightforward. The proof brings into play all the 2-monoidal
category axioms.

Proposition 6.37. If (C, ⋄, ⋆) is ⋄-braided, then (Monco(C, ⋄), ⋆) is a monoidal
category and (Comon(C, ⋆), ⋄) is a braided monoidal category. Further, there are
canonical equivalences of categories

Bimonco(C, ⋄, ⋆) ∼= Comon(Monco(C, ⋄), ⋆) ∼= Monco(Comon(C, ⋆), ⋄)

∼= Mon(Comon(Mon(C, ⋄), ⋆), ⋄).

A similar interpretation may be given for coBimon(C, ⋄, ⋆). Observe that com-
mutative bimonoids or (2, 1)-monoids are obtained by a three step process suggest-
ing that they belong to the world of 3-monoidal categories. This point is addressed
in more detail below.

6.5.5. A summary of different types of monoids. We have discussed var-
ious notions of “monoids” in “monoidal categories”, starting with monoids and
comonoids in a monoidal category; bimonoids, commutative monoids and cocom-
mutative comonoids in a braided monoidal category; bimonoids, double monoids
and double comonoids in a 2-monoidal category; and (co)commutative bimonoids
and (co)commutative double (co)monoids in a braided 2-monoidal category.

A summary of all these objects, along with the notations that we use for the
corresponding categories is given in Table 6.2. The first column suggests a sys-
tematic nomenclature for organizing these objects: a monoid is a (1, 0)-monoid, a

Table 6.2. Categories of different types of monoids.

(0, 0) C Object

(1, 0) Mon(C, ⋄) Monoid

(0, 1) Comon(C, ⋆) Comonoid

(2, 0) dMon(C, ⋄, ⋆) Double monoid

(1, 1) Bimon(C, ⋄, ⋆) Bimonoid

(0, 2) dComon(C, ⋄, ⋆) Double comonoid

(3, 0) dMonco(C, ⋄, ⋆) Comm. double monoid

(2, 1) Bimonco(C, ⋄, ⋆) Comm. bimonoid

(1, 2) coBimon(C, ⋄, ⋆) Cocomm. bimonoid

(0, 3) codComon(C, ⋄, ⋆) Cocomm. double comonoid
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comonoid is a (0, 1)-monoid, a bimonoid is a (1, 1)-monoid, and so forth. An object
in the category is to be viewed as a (0, 0)-monoid. This notation suggests that one
can define the notion of a (i, j)-monoid in a higher monoidal category with i + j
monoidal structures. This is the subject of Chapter 7; see in particular Sections 7.4
and 7.7.

We emphasize that for (2, 1)-monoids we assume (C, ⋄) is braided, for (1, 2)-
monoids we assume (C, ⋆) is braided, and for (3, 0)- and (0, 3)-monoids we assume
either (C, ⋄) or (C, ⋆) is braided. We will see later that braided 2-monoidal categories
are examples of 3-monoidal categories. The latter provide a natural context for
these four types of monoids. This situation is analogous to that for bimonoids:
Bimonoids can be defined in a braided monoidal category but the natural context
for them is a 2-monoidal category.

6.6. Modules and comodules over a bimonoid

Recall the notion of a (co)module over a (co)monoid from Definition 1.12. The
category of (co)modules over a bimonoid is a monoidal category. We discussed
this result in the context of braided monoidal categories in Section 1.2.3. We now
generalize it to the context of 2-monoidal categories.

Let (C, ⋄, I, ⋆, J) be a 2-monoidal category. Let A and B be monoids in (C, ⋄, I)
and let (M,χ) and (N, ρ) be left modules over A and B respectively. Consider the
monoid A ⋆ B resulting from Proposition 6.35.

Proposition 6.38. In this situation, M ⋆ N is a left A ⋆ B-module with structure
map

(A ⋆ B) ⋄ (M ⋆N)
ζ

// (A ⋄M) ⋆ (B ⋄N)
χ⋆ρ

// M ⋆N.

Now let A be a bimonoid in C. The maps

∆: A→ A ⋆ A and ǫ : A→ J.

are morphisms of monoids in (C, ⋄, I). It follows that ifM andN are left A-modules,
then M ⋆N is again a left A-module with structure map:

A ⋄ (M ⋆N)
∆⋄id // (A ⋆ A) ⋄ (M ⋆N)

ζ
// (A ⋄M) ⋆ (A ⋄N)

χ⋆ρ
// M ⋆N.

It is also clear that if f : M →M ′ and g : N → N ′ are morphisms of left A-modules,
then so is f ⋆ g : M ⋆N →M ′ ⋆ N ′.

Further, J is an A-module with structure map:

A ⋄ J
ǫ⋄id // J ⋄ J

µJ // J.

Let ModA denote the category of left modules over the bimonoid A. The above
constructions yield functors

(6.30) ⋆ : ModA ×ModA → ModA and I→ ModA,

where I is the one-arrow category.

Proposition 6.39. For a bimonoid A in (C, ⋄, ⋆), the category ModA equipped with
the functors (6.30) and the associative and unit constraints induced from (C, ⋆, J)
is a monoidal category.
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Proof. The only thing left to check is that the associative and unit constraints
of (C, ⋆) are morphisms of A-modules. The first check follows from the coassocia-
tivity of ∆ and (6.4), while the second check follows from the counitality of ǫ
and (6.6). �

Proposition 6.40. Let C be a ⋆-braided 2-monoidal category. For a cocommutative
bimonoid A, the monoidal category ModA is braided, with the braiding induced from
(C, ⋆, β). Further, if β is a symmetry, then so is the induced braiding.

Proof. The proof is straightforward and follows from (6.16). �

Given a morphism A→ B of (cocommutative) bimonoids, the restriction func-
tor ModB → ModA on the module categories is a (braided) strong monoidal functor.

Let ComodA denote the category of left comodules over a comonoid A. The
above discussion can also be carried out for the category ComodA. IfA is a bimonoid
and M and N are left A-comodules, then M ⋄N is again a left A-comodule:

M ⋄N // (A ⋆M) ⋄ (A ⋆ N)
ζ

// (A ⋄A) ⋆ (M ⋄N)
µ⋆id

// A ⋆ (M ⋄N).

Proposition 6.41. For a bimonoid A in (C, ⋄, ⋆), the category ComodA is a mon-
oidal category, whose structure is induced from (C, ⋄, I). Further, if C is ⋄-braided
and A is commutative, then ComodA is braided.

6.7. Examples of bimonoids and double monoids

We now describe bimonoids and double monoids in explicit terms in some of
the 2-monoidal categories of Section 6.4.

Example 6.42. Let (C, ⋄,×) be a 2-monoidal category as in Example 6.19, in
which the second monoidal structure is cartesian. Recall from Example 1.19 that

Comon(C,×) ∼= C.

It follows that

Bimon(C, ⋄,×) ∼= Mon(C, ⋄).

Dually, let (C,∐, ⋆) be a 2-monoidal category in which the first structure is
cocartesian. Then

Bimon(C,∐, ⋆) ∼= Comon(C, ⋆).

Finally, if (C,∐,×) is the 2-monoidal category that combines both situations, then

Bimon(C,∐,×) ∼= C.

Example 6.43. Consider the category (C, ⋄, ⋆) of directed graphs with vertex set
X as in Example 6.17. A monoid in (C, ⋄) is precisely a small category with object
set X . According to Example 6.42, so is a bimonoid in (C, ⋄, ⋆), since the operation
⋆ is the categorical product.

A monoid in (C, ⋆) is a graph in which for each x, y ∈ X , the set of arrows
{a ∈ A | s(a) = x, t(a) = y} is a monoid. A double monoid in (C, ⋄, ⋆) is a category
with object set X enriched over the category of monoids in Set (Section C.3.1).
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Example 6.44. Let K be a commutative algebra and (C, ⋄, ⋆) be the category of
K-bimodules as in Example 6.18. Let (M,µ, ι) be a monoid in (C, ⋄).

Composing µ with the projection ϕ : M ⊗M → M ⋄M (6.20) we obtain an
associative product on M

M ⊗M
ϕ
−→M ⋄M

µ
−→M.

We denote the product of m,n ∈M simply by mn.
We use ι : K ⊗K →M to define two maps as follows.

s : K →M s(a) := ι(a⊗ 1),

t : K →M t(a) := ι(1 ⊗ a).

The following properties can be deduced from the unit axioms in Definition 1.9:

a ·m = s(a)m = ms(a)

m · b = t(b)m = mt(b).

Choosing a = b = 1 we deduce (from the unit axiom for the actions of K on M)
that the element ι(1 ⊗ 1) = s(1) = t(1) is a unit for the product on M defined
above. It also follows that the images of s and t are contained in the center of the
algebra M . Moreover, from the associativity of the actions of K on M we deduce
that s and t are morphisms of algebras.

In summary, M is a unital associative algebra and s, t : K →M are morphisms
of algebras whose images are contained in the center of M . Thus, M is precisely a
K-algebroid in the sense of Ravenel [301, Section A1.1] (this reference deals directly
with Hopf algebroids). The same objects (K-algebroids) are simply called graphs
by Maltsiniotis [254]. The construction of a K-algebroid from a monoid in (C, ⋄) is
reversible, so that K-algebroids and monoids in (C, ⋄) are equivalent notions.

A comonoid in (C, ⋆) is sometimes called a K-coalgebroid [95, 254] and more
often a K-coring [74, 349].

A K-bialgebroid [254, 301] can be defined as a comonoid in (Mon(C, ⋄), ⋆).
Thus, K-bialgebroids and bimonoids in (C, ⋄, ⋆) are equivalent notions.

Remark 6.45. There is a more general notion of bialgebroid that allows for the
base algebra K to be noncommutative and requires only that the images of s and
t in H commute elementwise [73, 321]; see [190] for a survey of related notions.

A related (and older) notion is that of ×K-bialgebras. These were introduced
by Sweedler [351, Section 5] in the commutative case and Takeuchi [355, Section 4]
in the noncommutative case.

It is unclear to us whether these objects can be seen as bimonoids in a certain 2-
monoidal category. It seems that to capture this notion in full generality one needs
a more general setting than that of 2-monoidal categories in which the associativity
constraints are allowed to be lax (along the lines of Section D.3). We do not consider
such objects in this monograph.

Example 6.46. Let P be a lattice and (C,∨,∧) the 2-monoidal category of Ex-
ample 6.20. Any object x of C (element of P ) carries a unique bimonoid structure.
The maps µ : x ∨ x → x and ∆: x → x ∧ x are identities, while ι : 0 → x and
ǫ : x→ 1 are the unique maps. The bimonoid is commutative and cocommutative.
This is a special case of Example 6.42.
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Example 6.47. Consider now the 2-monoidal category (C,⊙,⊙) of Example 6.24.
As discussed in that example, maps between iterated ⊙-products are determined by
their components. We display such components in matrix notation. For instance,
a map A⊙B → C is determined by the matrix

(
x y z

)

where x : A → C, y : B → C and z : A ⊗ B → C are its components, so that
the map is x + y + z. Similarly, the product f ⊙ g of two maps f : A → C and
g : B → D is determined by the matrix



f 0 0
0 g 0
0 0 f ⊗ g


 .

Let (A, µ, ι) be a monoid in (C,⊙, 0). Since the unit object is 0, we have ι = 0.
Write µ =

(
x y m

)
. The unit axioms in Definition 1.9 force x = y = idA, while

the associativity axiom simply boils down to that of the map m : A ⊗ A → A. In
conclusion, a monoid in (C,⊙, 0) is the same as a not necessarily unital algebra.
Let us write µ+ := m for the nonunital multiplication.

Similarly, a comonoid in (C,⊙, 0) is the same as a not necessarily counital
coalgebra.

Now suppose (A, µ,∆) is a bimonoid in (C,⊙, 0). The unit and counit maps
are 0, and hence the only relevant axiom in Definition 6.25 is (6.22). According to
the preceding discussion, we may display the components of µ : A ⊙ A → A and
∆ : A→ A⊙A as follows:

µ =
(
id id µ+

)
∆ =




id
id

∆+


 .

Their composite A⊙A→ A⊙A is therefore given by

∆µ =




id id µ+

id id µ+

∆+ ∆+ ∆+µ+


 .

On the other hand, making use of the definition of the interchange law ζ in Exam-
ple 6.24 to go around the top of diagram (6.22), we find that

(µ⊙ µ)ζ(∆ ⊙∆) =




id id µ+

id id µ+

∆+ ∆+ (µ+ ⊗ id)(id⊗∆+) + (id⊗ µ+)(∆+ ⊗ id)


 .

Therefore,

∆+µ+ = (µ+ ⊗ id)(id⊗∆+) + (id⊗ µ+)(∆+ ⊗ id).

Equivalently, employing the notations µ+(a ⊗ b) = ab and ∆+(a) = a1 ⊗ a2, the
condition is

(6.31) ∆+(ab) = ab1 ⊗ b2 + a1 ⊗ a2b.

Conversely, given a nonunital multiplication µ+ and a noncounital comultipli-
cation ∆+ on A that satisfy (6.31), we obtain a bimonoid in (C,⊙, 0) by reversing
the above construction. Such objects (A, µ+,∆+) are called infinitesimal bialgebras.
In conclusion, a bimonoid in (C,⊙, 0) is the same as an infinitesimal bialgebra. It
follows that this notion is self-dual (Remark 6.26).
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Infinitesimal bialgebras were introduced by Joni and Rota [179, Section XII] and
further studied by Ehrenborg and Readdy [113], Aguiar [5, 7, 8, 9] and Voiculescu
[369, 370]. These objects should not be confused with the 0-bialgebras of Sec-
tion 2.3.6, for which a similar terminology is often employed.

Example 6.48. We briefly discuss double monoids in (C,⊙,⊙). Note that the
Eckmann–Hilton argument (Proposition 6.29) does not apply because we are not
dealing with a braided monoidal category. In fact, its conclusion does not hold, as
we see next.

Let (A, µ, ν) be a double monoid in (C,⊙,⊙). Axiom (6.25) forces µ+ = 0 and
imposes no conditions on ν+. Thus, in this situation, monoids and double monoids
are equivalent notions.

Example 6.49. We expand on Example 6.47 by discussing modules over a bimon-
oid in the 2-monoidal category (C,⊙,⊙).

First, we consider modules over monoids. Let A be a monoid in (C,⊙,⊙) with
product µ : A⊙A→ A and let (M,χ) be a left module over it. Write

χ =
(
χ0 χ′

0 χ+

)

for the components of χ : A ⊙M → M . The unit axiom for χ makes χ′
0 = idM .

Associativity boils down to the following conditions on the maps χ0 : A→M and
χ+ : A⊗M →M :

χ+(µ+ ⊗ idM ) = χ+(idA ⊗ χ+),

χ+(idA ⊗ χ0) = χ0µ+.

Equivalently, (M,χ+) is a nonunital left module over the nonunital algebra A, and
χ0 : A→M is a morphism of modules.

Second, we discuss tensor products of monoids and modules. Let B be another
monoid in (C,⊙,⊙). By Proposition 6.35, there is a monoid structure on A ⊙ B.
The corresponding nonunital product on (A⊙B)⊗ (A⊙B) is given by

(a, b, u⊗ v)⊗ (a′, b′, u′ ⊗ v′) 7→ (aa′, bb′, au′ ⊗ v′ + u⊗ vb′),

where a, a′, u ∈ A and b, b′, v ∈ B.
Now let (N, ρ) be a left module over B. By Proposition 6.38, there is a left

A⊙ B-module structure on M ⊙N . A calculation shows that the structure maps
are

A⊙B →M ⊙N

(a, b, u⊗ v) 7→
(
χ0(a), ρ0(b), χ0(u)⊗ ρ0(v)

)
,

and

(A⊙B)⊗ (M ⊙N)→M ⊙N

(a, b, u⊗ v)⊗ (m,n, x⊗ y) 7→
(
a ·m, b · n, a · x⊗ y + χ0(u)⊗ v · n

)
,

where a ∈ A, b ∈ B, u⊗ v ∈ A⊗B, m ∈M , n ∈ N , x⊗ y ∈M ⊗N ,

χ+(a⊗m) = a ·m and ρ+(b ⊗ n) = b · n.

Finally, suppose that (A, µ,∆) is a bimonoid in (C,⊙,⊙), or equivalently that
(A, µ+,∆+) is an infinitesimal bialgebra, and let (M,χ) and (N, ρ) be two left A-
modules. According to Proposition 6.39, there is an A-module structure on M⊙N .
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Combining the preceding calculations we obtain that the structure maps of M ⊙N
are

A→M ⊙N

a 7→
(
χ0(a), ρ0(a), χ0(a1)⊗ ρ0(a2)

)
,

and

A⊗ (M ⊙N)→M ⊙N

a⊗ (m,n, x⊗ y) 7→
(
a ·m, a · n, a · x⊗ y + χ0(a1)⊗ a2 · n

)
,

where the notation is as above and in addition ∆+(a) = a1 ⊗ a2.
The preceding constructions for modules over nonunital algebras and infinites-

imal bialgebras improve upon the results in [9, Appendix A].

6.8. Bilax and double (co)lax monoidal functors

There are three different types of monoidal functors between 2-monoidal cate-
gories: bilax, double lax and double colax. They correspond to the three types of
monoids in a 2-monoidal category: bimonoid, double monoid and double comonoid.
The latter were discussed in Section 6.5.

6.8.1. Bilax monoidal functors. The theory of bilax monoidal functors for
braided monoidal categories can be extended to the more general context of 2-
monoidal categories. We now explain this briefly.

Definition 6.50. Let (C, ⋄, I, ⋆, J) and (D, ⋄, I, ⋆, J) be 2-monoidal categories. A
bilax functor is a 3-tuple (F , ϕ, ψ) where

- F : C→ D is a functor,
- (F , ϕ) : (C, ⋄, I)→ (D, ⋄, I) is lax monoidal,
- (F , ψ) : (C, ⋆, J)→ (D, ⋆, J) is colax monoidal,

and the conditions below are satisfied.

Interchanging. The following diagram commutes

(6.32)

F(A ⋆ B) ⋄ F(C ⋆ D)

ψA,B⋄ψC,D

&&MMMMMMMMMMMMMMMM

ϕA⋆B,C⋆D

zzuuuuuuuuuuuuuu

F
(
(A ⋆ B) ⋄ (C ⋆ D)

)

F(ζA,B,C,D)

��

(
F(A) ⋆ F(B)

)
⋄
(
F(C) ⋆ F(D)

)

ζF(A),F(B),F(C),F(D)

��

F
(
(A ⋄ C) ⋆ (B ⋄D)

)

ψA⋄C,B⋄D

$$I
IIIIIIIIIIIII

(
F(A) ⋄ F(C)

)
⋆
(
F(B) ⋄ F(D)

)

ϕA,C⋆ϕB,D

xxqqqqqqqqqqqqqqqq

F(A ⋄ C) ⋆ F(B ⋄D)

where ζ denotes the interchange law in either 2-monoidal category.
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Unitality. The following diagrams commute.

I

∆I

��

ϕ0 // F(I)
F(∆I)

// F(I ⋆ I)

ψI,I

��

I ⋆ I ϕ0⋆ϕ0

// F(I) ⋆ F(I)

J F(J)
ψ0oo F(J ⋄ J)

F(µJ )
oo

J ⋄ J

µJ

OO

F(J) ⋄ F(J)
ψ0⋄ψ0

oo

ϕJ,J

OO

(6.33)

F(I)
F(ǫI=ιJ )

// F(J)

ψ0

��

I ǫI=ιJ
//

ϕ0

OO

J

(6.34)

Definition 6.51. Let (F , ϕ, ψ) and (G, γ, δ) be bilax functors between 2-monoidal
categories C and D. A morphism from F to G of bilax functors is a natural trans-
formation θ : F ⇒ G such that (F , ϕ) ⇒ (G, γ) is a morphism of lax functors and
(F , ψ)⇒ (G, δ) is a morphism of colax functors.

Proposition 6.52. There is a 2-category whose 0-cells, 1-cells, and 2-cells are
respectively 2-monoidal categories, bilax monoidal functors, and their morphisms.

In particular, the composite of bilax functors is again bilax. Further, this
composition is compatible with morphisms of bilax functors. These checks proceed
along the same lines as in the context of braided monoidal categories (Section 3.3.3)
and are omitted. For an alternative approach, see Remark 6.76.

Corollary 6.53. A bilax functor preserves bimonoids and morphisms between bi-
monoids.

Proof. This follows from Proposition 6.52 and the observation that the cat-
egory of bimonoids is equivalent to the category of bilax monoidal functors from I

to (C, ⋄, ⋆), where I is the one-arrow category. �

6.8.2. Double (co)lax monoidal functors. Recall the notion of braided (co)lax
monoidal functors between braided monoidal categories. We now extend this no-
tion to 2-monoidal categories. This parallels the passage from (co)commutative
(co)monoids to double (co)monoids.

Definition 6.54. Let (C, ⋄, I, ⋆, J) and (D, ⋄, I, ⋆, J) be 2-monoidal categories. A
double lax monoidal functor is a 3-tuple (F , ϕ, γ) where

- F : C→ D is a functor,
- (F , ϕ) : (C, ⋄, I)→ (D, ⋄, I) is lax monoidal,
- (F , γ) : (C, ⋆, J)→ (D, ⋆, J) is lax monoidal,

and the conditions below are satisfied.
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Interchanging. The following diagram commutes

(6.35)

(
F(A) ⋆ F(B)

)
⋄
(
F(C) ⋆ F(D)

) ζ
//

γA,B⋄γC,D

��

(
F(A) ⋄ F(C)

)
⋆
(
F(B) ⋄ F(D)

)

ϕA,C⋆ϕB,D

��

F(A ⋆ B) ⋄ F(C ⋆ D)

ϕA⋆B,C⋆D

��

F(A ⋄C) ⋆F(B ⋄D)

γA⋄C,B⋄D

��

F
(
(A ⋆ B) ⋄ (C ⋆ D)

)
F(ζ)

// F
(
(A ⋄ C) ⋆ (B ⋄D)

)

where ζ denotes the interchange law in either 2-monoidal category.

Unitality. The following diagrams commute.

I

∆I

��

ϕ0 // F(I)
F(∆I)

// F(I ⋆ I)

I ⋆ I ϕ0⋆ϕ0

// F(I) ⋆ F(I)

γI,I

OO
J

γ0 // F(J) F(J ⋄ J)
F(µJ )
oo

J ⋄ J

µJ

OO

γ0⋄γ0
// F(J) ⋄ F(J)

ϕJ,J

OO

(6.36)

F(I)
F(ǫI=ιJ )

// F(J)

I ǫI=ιJ
//

ϕ0

OO

J

γ0

OO

(6.37)

Definition 6.55. A double colax monoidal functor is a 3-tuple (F , ψ, δ) where
F : C→ D is a functor, (F , ψ) : (C, ⋄, I)→ (D, ⋄, I) and (F , δ) : (C, ⋆, J)→ (D, ⋆, J)
are both colax monoidal and satisfy axioms dual to those in Definition 6.54. Namely,
one replaces ϕ by ψ, γ by δ and reverses the arrows with those labels.

Definition 6.56. Let (F , ϕ, γ) and (G, ϕ′, γ′) be double lax functors between 2-
monoidal categories C and D. A morphism from F to G of double lax functors is a
natural transformation θ : F ⇒ G such that (F , ϕ) ⇒ (G, ϕ′) and (F , γ) ⇒ (G, γ′)
are morphisms of lax functors.

Morphisms between double colax functors are defined similarly.

The category of double (co)monoids is equivalent to the category of double
(co)lax monoidal functors from I to (C, ⋄, ⋆), where I is the one-arrow category.

Proposition 6.57. There is a 2-category whose 0-cells, 1-cells, and 2-cells are re-
spectively 2-monoidal categories, double (co)lax monoidal functors and their mor-
phisms.

It follows that:

Corollary 6.58. A double (co)lax functor preserves double (co)monoids and mor-
phisms between double (co)monoids.
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We present the functor version of Proposition 6.29. Let (C, •, •) and (D, •, •)
be strong 2-monoidal categories arising from braided monoidal categories as in
Section 6.3.

Proposition 6.59. A braided (co)lax functor from C to D gives rise to a double
(co)lax functor for which both (co)lax structures are identical.

Conversely, let F : (C, •, •) → (D, •, •) be a double (co)lax functor. Then the
two (co)lax structures coincide and are braided (co)lax.

Proof. For the first statement, the main diagram to check is (6.35). This
diagram can be broken up using the associativity of ϕ = γ so that one of the pieces
is the square for the braided lax axiom (3.16). Details are omitted.

For the converse, let ϕ and γ be two lax structures on F . Axiom (6.37) gives
that ϕ0 = γ0. Next by setting B = C = I in (6.35), it follows that ϕ = γ. Finally
by setting A = D = I in (6.35), it follows that ϕ is braided, which finishes the
proof. �

This is a variant of the Eckmann–Hilton argument; see Proposition 6.29 and
Remark 6.30. To summarize, in the context of braided monoidal categories, braided
lax and double lax functors are equivalent notions.

Remark 6.60. Suppose there is given a binary operation on a set X . The set of
axioms

(x+ y) + (z + t) = (x + z) + (y + t)

x+ 0 = x = 0 + x

is clearly equivalent to the set of axioms

(x+ y) + z = x+ (y + z)

x+ y = y + x

x+ 0 = x = 0 + x.

Corresponding to each set of axioms there is a different complex for calculat-
ing the homology theory of abelian groups of Eilenberg and Mac Lane [118, 120].
The complex corresponding to the first set is Eilenberg and Mac Lane’s cubical
construction. In this connection, see in particular [247, Section 1].

The first set of axioms is analogous to the axioms for a double lax monoidal
functor (Definition 6.54) and the second set is analogous to the axioms for a braided
lax monoidal functor (Definitions 3.1 and 3.11). Proposition 6.59 states that the
equivalence remains true in the categorical setting.

6.8.3. Braided bilax and double (co)lax monoidal functors. We now discuss
functors that go along with commutative bimonoids and double monoids. We recall
that the context for this is that of braided 2-monoidal categories.

Definition 6.61. A ⋄-braided bilax functor between ⋄-braided 2-monoidal cate-
gories is a bilax functor between them which is braided lax.

A morphism between ⋄-braided bilax functors is a morphism between the un-
derlying bilax functors.

Definition 6.62. A ⋄-braided double (co)lax functor between ⋄-braided 2-monoidal
categories is a double (co)lax functor between them which is braided (co)lax.

A morphism between ⋄-braided double (co)lax functors is a morphism between
the underlying double (co)lax functors.
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4 //

��

2

��

2 // 1
double lax

lax-lax
(2, 0)

2 //

��

4

��

1 // 2
bilax

lax-colax
(1, 1)

1 //

��

2

��

2 // 4
double colax
colax-colax

(0, 2)

Figure 6.1. The interchanging axiom for various monoidal functors.

Similarly, one can define ⋆-braided bilax and ⋆-braided double (co)lax functors
and morphisms between them.

6.8.4. 2-strong monoidal functors. There is a striking similarity between the
axioms for a double lax functor, a bilax functor and a double colax functor. Let us
concentrate on the interchanging axiom.

Figure 6.1 shows a condensed version of the interchanging axiom for various
monoidal functors. The numbers 1, 2 and 4 indicate the number of occurrences of F
in that entry. A comparison of the three pictures shows that one can pass from one
to the other by reversing some of the arrows. To bring out this similarity, we also
employ the terminology lax-colax for bilax, lax-lax for double lax and colax-colax
for double colax. We also suggest a two tuple notation, with the two coordinates
indicating the number of monoidal structures for which the functor is lax and colax
respectively.

Proposition 6.63. Suppose (F , ϕ) is strong and (F , ψ) is colax. Then (F , ϕ, ψ)
is bilax if and only if (F , ϕ−1, ψ) is double colax. Similarly, suppose (F , ϕ) is lax
and (F , ψ) is costrong. Then (F , ϕ, ψ) is bilax if and only if (F , ϕ, ψ−1) is double
lax.

In the former situation, we say that F is strong-colax, or equivalently, costrong-
colax, while in the latter, we say that F is lax-costrong, or equivalently, lax-strong.
It follows that

strong-strong, strong-costrong, and costrong-costrong

are equivalent notions. We call a functor of this kind a 2-strong functor. It can be
simultaneously viewed as a (2, 0)-, a (1, 1)- and a (0, 2)-functor.

Example 6.64. A 2-strong functor between strong 2-monoidal categories is a fa-
miliar notion. Recall that a strong 2-monoidal category is equivalent to a braided
monoidal category. In this context, strong-costrong is the same as bistrong by
definition and (co)strong-(co)strong is the same as braided (co)strong by Proposi-
tion 6.59. As a consequence, we obtain Proposition 3.46 which says that braided
(co)strong and bistrong functors are equivalent notions. Though the proof is es-
sentially the same as before, the perspective provided here is new. To summarize,
a 2-strong functor between strong 2-monoidal categories is the same as a braided
strong (bistrong) functor between braided monoidal categories.

The similarity between bilax functors and double (co)lax functors was not man-
ifest earlier between bilax functors and braided (co)lax functors. This is because
the lax-lax axiom (6.35) simplifies to the braided lax axiom (3.16) in the context
of braided monoidal categories, and so one directly works with that.
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6.8.5. Alternative descriptions of the various monoidal functors. Let
(C, ⋄, ⋆) and (D, ⋄, ⋆) be 2-monoidal categories and suppose F : C→ D is ⋄-lax and
⋆-colax functor with structure maps ϕ and ψ respectively. Let I be the one-arrow
category. Recall the composite functors

F2,F2 : C× C→ D and F0,F0 : I→ D

defined in (3.1) and (3.2). Consider the following diagrams.

(C× C, ⋄)
⋆ //

F×F

��

(C, ⋄)

F

��

ψ

v~ uuuuuuuuuuuuu

uuuuuuuuuuuuu

(D× D, ⋄)
⋆

// (D, ⋄)

(C, ⋄)

F

##G
GG

GG
GG

GG

ψ0

��
I

>>}}}}}}}}}
// (D, ⋄)

(6.38)

The composites in the first diagram are F2 and F2. Since ⋆ is lax monoidal (Propo-
sition 6.4), both F2 and F2 can be turned into lax monoidal functors

(C× C, ⋄)→ (C, ⋄).

For the same reason, F0 and F0 can be turned into lax monoidal functors

I→ (C, ⋄).

Explicitly, the lax structures are as follows.

F(A ⋆ B) ⋄ F(C ⋆ D)

ϕA⋆B,C⋆D

��

F2(A,B) ⋄ F2(C,D)

ϕ2

��
�
�
�
�
�
�
�

F
(
(A ⋆ B) ⋄ (C ⋆ D)

)

F(ζ)

��

F
(
(A ⋄ C) ⋆ (B ⋄D)

)
F2

(
(A,B) ⋄ (C,D)

)

F(I)

F(∆)

��

I
ϕ0oo

(ϕ2)0

��
�
�
�

F(I ⋆ I) F2(I, I)

(
F(A) ⋆ F(B)

)
⋄
(
F(C) ⋆ F(D)

)

ζ

��

F2(A,B) ⋄ F2(C,D)

ϕ2

��
�
�
�
�
�
�
�

(
F(A) ⋄ F(C)

)
⋆
(
F(B) ⋄ F(D)

)

ϕA,C⋆ϕB,D

��

F(A ⋄ C) ⋆ F(B ⋄D) F2
(
(A,B) ⋄ (C,D)

)

I ⋆ I

ϕ0⋆ϕ0

��

I

(ϕ2)0
��
�
�
�

∆oo

F(I) ⋆ F(I) F2(I, I)

Up to this point, we have made no use of the ⋆-colax structure ψ. It is now
natural to ask for the conditions under which ψ : F2 ⇒ F2 and ψ0 : F0 ⇒ F0 are
morphisms of lax functors.

Dually, the ⋆-colax structure ψ of F may be used to turn F2,F2,F0 and F0

into colax monoidal functors

(C× C, ⋆)→ (C, ⋆) and I→ (C, ⋆).

In this case one may ask whether ϕ is a morphism of colax functors.
Similar questions can be posed in the situation when F is ⋄-lax and ⋆-lax or

when F is ⋄-colax and ⋆-colax. The answers are summarized below. In each case,
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the functors F2,F2,F0 and F0 are endowed with the appropriate lax or colax
structure.

Proposition 6.65. Let C and D be 2-monoidal categories and F : C→ D a functor.

(a) Suppose ϕ is a ⋄-lax structure on F and ψ is a ⋆-colax structure on F .
The following statements are equivalent.

(i) (F , ϕ, ψ) is bilax;
(ii) ϕ : F2 ⇒ F2 and ϕ0 : F0 ⇒ F0 are morphisms of colax functors;
(iii) ψ : F2 ⇒ F2 and ψ0 : F0 ⇒ F0 are morphisms of lax functors.

(b) Suppose ϕ is a ⋄-lax structure on F and γ is a ⋆-lax structure on F . The
following statements are equivalent.

(i) (F , ϕ, γ) is double lax;
(ii) γ : F2 ⇒ F2 and γ0 : F0 ⇒ F0 are morphisms of lax functors.

(c) Suppose ψ is a ⋄-colax structure on F and δ is a ⋆-colax structure on F .
The following statements are equivalent.

(i) (F , ψ, δ) is double colax;
(ii) ψ : F2 ⇒ F2 and ψ0 : F0 ⇒ F0 are morphisms of colax functors.

The proof is straightforward. The first set of statements generalizes the result
of Proposition 3.77 from braided monoidal categories to 2-monoidal categories.

6.9. Examples of bilax and double (co)lax monoidal functors

We provide examples of monoidal functors between some of the 2-monoidal
categories of Section 6.4.

Example 6.66. Let X be a set and (CX , ⋄, ⋆) the 2-monoidal category of graphs
of Example 6.17. Consider also the symmetric monoidal category of sets under
Cartesian product as a 2-monoidal category (Set,×,×) (Section 6.3). The forgetful
functor

F : CX → Set, F(A, s, t) := A

which sends a graph to its underlying set of arrows, is double colax. The structure
transformations

ψA,B : A ⋄B → A×B and δA,B : A ⋆ B → A×B

are simply the inclusion maps.
Now let K be a commutative algebra and (CK , ⋄, ⋆) the 2-monoidal category

of K-bimodules of Example 6.18. Consider k-modules under tensor product as a
2-monoidal category (Mod,⊗,⊗). The forgetful functor

F : CK → Mod, F(M) := M

is double lax. The structure transformations

γM,N : M ⊗N →M ⋆N and ϕM,N : M ⊗N →M ⋄N

are the projections defined in (6.20). The interchanging axiom in Definition 6.55
holds precisely by construction of the interchange law in CK (diagram (6.21)).

The two preceding examples are related as follows. Given a set A, let kA denote
the space of all functions A→ k. This defines the dual linearization functor

k(−) : Setop → Vec.

The inclusion
kA ⊗ kB →֒ kA×B
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turns k(−) into a braided lax monoidal functor (Setop,×) → (Vec,⊗), or equiva-
lently (Proposition 6.59), a double lax monoidal functor

(Setop,×,×)→ (Vec,⊗,⊗).

Now let X be a fixed set and view kX as a commutative algebra under pointwise
product. Given a graph (A, s, t) with vertex set X , the following actions turn kA

into a kX -bimodule:

(f · h)(a) := f(a)h
(
s(a)

)
and (h · f)(a) := h

(
t(a)

)
f(a)

for f ∈ kA, h ∈ kX , and a ∈ A. Thus the dual linearization functor restricts to a
functor

k(−) : (CX)op → CkX .

Let A and B be graphs with vertex set X . It is easy to see that there are
unique maps as indicated below.

kA ⊗ kB
� � //

ϕ

����

kA×B

k
δ

����

kA ⋄ kB //____ kA⋆B

kA ⊗ kB
� � //

γ

����

kA×B

k
ψ

����

kA ⋆ kB //____ kA⋄B

(6.39)

For instance, the existence of the map on the right is due to the fact that for f ∈ kA,
g ∈ kB, h ∈ kX , and (a, b) ∈ A ⋄B, we have

(f · h⊗ g)(a, b) = (f · h)(a)g(b) = f(a)h
(
s(a)

)
g(b)

= f(a)h
(
t(b)
)
g(b) = f(a)(h · g)(b) = (f ⊗ h · g)(a, b)

(we used that s(a) = t(b) for (a, b) ∈ A ⋄B).
The maps in (6.66) turn k(−) into a double lax monoidal functor

(Cop
X , ⋆, ⋄)→ (CkX , ⋄, ⋆)

(note the reversal of the order of the operations in the opposite of CX). Moreover,
diagrams (6.66) imply that

(CX)op
Fop

//

k
(−)

��

Setop

k
(−)

��

CkX F
// Vec

is a commutative diagram of double lax monoidal functors.

Example 6.67. Let P and Q be two lattices and let CP and CQ be the associated
2-monoidal categories, as in Example 6.20. Let f : P → Q be an order-preserving
map:

x ≤ y ∈ P =⇒ f(x) ≤ f(y) ∈ Q.

We then have a bilax monoidal functor

(F , ϕ, γ) : (CP ,∨,∧)→ (CQ,∨,∧)
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as follows. The functor F is the map f on objects, and is well-defined on morphisms
since f is order-preserving. For the same reason, f(a) ∨ f(b) ≤ f(a ∨ b) and
f(a ∧ b) ≤ f(a) ∧ f(b), and this gives rise to the transformations

ϕ : f(a) ∨ f(b)→ f(a ∨ b) and ψ : f(a ∧ b)→ f(a) ∧ f(b).

The maps ϕ0 : 0→ f(0) and ψ0 : f(1)→ 1 are also well-defined. If f is a morphism
of lattices, then F is bistrong.

Example 6.68. Let (C, ⋄,×) be a 2-monoidal category as in Example 6.19, in which
the second monoidal structure is cartesian. Let D be another such category and let
(F , ϕ) : (C, ⋄) → (D, ⋄) be a lax monoidal functor. According to Example 3.19, F
carries a canonical colax monoidal structure

ψA,B : F(A×B)→ F(A)×F(B).

It turns out that

(F , ϕ, ψ) : (C, ⋄,×)→ (D, ⋄,×)

is in fact bilax monoidal. Let us verify the commutativity of diagram (6.32). We
claim that both sides yield the same map defined by the commutativity of the
diagram below (the map is shown dotted).

F(A) ⋄ F(C)
ϕA,C

// F(A ⋄ C)

F(A×B) ⋄ F(C ×D) //______

F(πA)⋄F(πC)

OO

F(πB)⋄F(πD)

��

F(A ⋄ C)×F(B ⋄D)

πF(A⋄C)

OO

πF(B⋄D)

��

F(B) ⋄ F(D) ϕB,D
// F(B ⋄D)

To prove this, one may work separately with each square. The proof involving the
top square is the commutativity of the diagram below. The other is similar.

F(A×B) ⋄ F(C ×D)

F(πA)⋄F(πC)

��

ψA,B⋄ψC,D

((QQQQQQQQQQQQQQQQQQQ

ϕA×B,C×D

xxqqqqqqqqqqqqqqqqq

F
(
(A×B) ⋄ (C ×D)

)

F(πA⋄πC)

��
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

F(ζA,B,C,D)

��

(
F(A)×F(B)

)
⋄
(
F(C) ×F(D)

)

πF(A)⋄πF(C)
nnnnnnnnn

vvnnnnnnnnn ζF(A),F(B),F(C),F(D)

��

F
(
(A ⋄ C)× (B ⋄D)

)

F(πA⋄C)
MMMMMMM

&&MMMMMMMψA⋄C,B⋄D

��

F(A) ⋄ F(C)

ϕA,C

��

(
F(A) ⋄ F(C)

)
×
(
F(B) ⋄ F(D)

)
πF(A)⋄F(C)

oo

ϕA,C×ϕB,D

��

F(A ⋄ C)×F(B ⋄D)πF(A⋄C)

// F(A ⋄ C) F(A ⋄ C)×F(B ⋄D)πF(A⋄C)

oo
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Above, the triangles involving ζ commute by the definition of the interchange law in
Example 6.19, and the triangles involving ψ by the definition of the colax structure
in Example 3.19. This completes the check.

Thus, in this situation every lax monoidal functor carries a canonical bilax
monoidal structure. Similarly, every colax monoidal functor carries a canonical
double colax monoidal structure.

There are dual statements for functors between 2-monoidal categories of the
form (C,∐, ⋆), where the first structure is cocartesian. For categories of the form
(C,∐,×), any functor carries a canonical bilax monoidal structure. This generalizes
the construction for bicartesian monoidal categories in Example 3.19.

6.10. The free monoid functor as a bilax monoidal functor

In this section, we construct the free bimonoid on a comonoid in a monoidal
category (satisfying some additional hypotheses). Related ideas in the context of
species are discussed in detail in Chapter 11; see Section 11.2 in particular. The
relevance of this construction to the present chapter is that it provides an example
of a bilax functor.

6.10.1. The free monoid. Let (C, ⋆, J) be a monoidal category with countable
coproducts such that for any object A, the functors

A ⋆ (−) : C→ C and (−) ⋆ A : C→ C

preserve these coproducts. Namely, for objects B1, B2, . . . , Bn, . . . in C, the maps
∐

n

(A ⋆ Bn)
∼=
−−→ A ⋆

(∐

n

Bn

)
and

∐

n

(Bn ⋆ A)
∼=
−−→

(∐

n

Bn

)
⋆ A

defined by the universal property of coproducts are isomorphisms (as indicated).
Let I be an initial object in C. We further assume that the canonical map

I → A ⋆ I and I → I ⋆ A are isomorphisms for every object A. In particular,
tensoring with A on either side is a strong monoidal functor on (C,∐, I).

Now define the free monoid functor

T : (C,∐, I)→ (C, ⋆, J) T (A) :=
∐

n≥0

A⋆n

where A⋆n is the unbracketed tensor product of A with itself n times. In particular,
A⋆0 = J .

We now proceed to turn T into a lax functor. Define morphisms

(6.40) T (A) ⋆ T (B)→ T (A ∐B) and J
∼=
−−→ T (I)

as follows. The second map is defined to be the obvious isomorphism. For the first
map, we note that

T (A) ⋆ T (B) =
∐

n,m

A⋆n ⋆ B⋆m and T (A ∐B) =
∐

k

∐

(C1,...,Ck)

C1 ⋆ C2 ⋆ · · · ⋆ Ck

where the sum is over all (C1, . . . , Ck) such that Ci is equal to either A or B. The
map between the two is defined in the obvious manner with the (n,m)-summand
mapping into the (k = n+m)-summand.

The lax functor T induces a functor on monoids, which in view of Example 1.19
maps as follows:

T : C→ Mon(C, ⋆, J).
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Explicitly, the product of T (A) is given by the canonical identification of A⋆n ⋆A⋆m

with A⋆(m+n), and the unit is the canonical map from J = A⋆0 into the coproduct.

Proposition 6.69. [250, Theorem VII.3.2] We have that T (A) is the free monoid
on A, or equivalently that, T is the left adjoint of the forgetful functor.

Remark 6.70. There are situations in which one is interested in the free monoid
on a monoidal category and the above hypotheses are not satisfied. The free operad
on a species is an example of this situation [260, Section 1.9]. For recent work in
this direction, see [364].

6.10.2. The free bimonoid on a comonoid. Recall from Example 6.19 that
(C,∐, ⋆) is a 2-monoidal category. Now assume that (C, ⋆, J) is braided. We proceed
to turn T into a bilax functor

T : (C,∐, ⋆)→ (C, ⋆, ⋆).

The lax structure is as defined in (6.40). For the colax structure, define the mor-
phisms

T (A ⋆ B)→ T (A) ⋆ T (B) and T (J)→ J

or equivalently,
∐

k

(A ⋆ B)⋆k →
∐

n,m

A⋆n ⋆ B⋆m and
∐

n

J⋆n → J

as follows. The first map is defined by rearranging the factors using the braiding
and the second map is defined by summing the isomorphisms J⋆n → J . It is
straightforward to check that T is bilax.

Recall from Example 6.42 that a bimonoid in (C,∐, ⋆) is the same as a comonoid
in (C, ⋆). The bilax functor then induces a functor on bimonoids:

T : Comon(C, ⋆)→ Bimon(C, ⋆, ⋆).

Proposition 6.71. We have that T (A) is the free bimonoid on a comonoid A, or
equivalently that, T is the left adjoint of the forgetful functor from bimonoids to
comonoids.

Proof. Consider the adjunction

(C, ⋆)
T

%%

fℓ

ee (Mon(C, ⋆), ⋆)

of Proposition 6.69. It is clear that the forgetful functor is strong. Proposition 3.94
implies that there is a unique colax structure on T such that the above adjunction
is colax-colax. One checks that this colax structure on T matches the one that was
defined above. The result now follows from Proposition 3.91. �

6.11. 2-monoidal categories viewed as pseudomonoids

The contents of this section rely on several notions pertaining to 2-categories
discussed in Appendix C such as monoidal 2-categories and pseudomonoids.

The 2-categories of relevance to the present chapter are summarized in Ta-
ble 6.3. The first on the list is Cat, whose objects are categories and whose 1-cells
are functors. The other categories similarly involve monoidal or 2-monoidal cat-
egories and functors; the 2-categories Cat, lCat and cCat were introduced in Sec-
tion 3.3.3. The 2-cells for Cat are natural transformations; the 2-cells in the other
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Table 6.3. 2-categories related to Cat.

2-category 0-cell 1-cell 2-cell

Cat category functor nat. transf.

lCat monoidal category lax monoidal functor Def. 3.8

cCat monoidal category colax monoidal functor Def. 3.8

llCat 2-monoidal category double lax monoidal functor Def. 6.56

lcCat 2-monoidal category bilax monoidal functor Def. 6.51

ccCat 2-monoidal category double colax monoidal functor Def. 6.56

Cat

		
		

		

66
66

66

lCat












55
55

55
cCat

��
��

��

77
77

77
7

llCat lcCat ccCat

Figure 6.2. The lax and colax constructions on Cat.

2-categories do not have a special name. For example, a 2-cell in lCat is a morphism
between lax functors in the sense of Definition 3.8.

Recall that for a monoidal category, one has the monoid and comonoid con-
structions, namely Mon(−) and Comon(−) (Section 1.2.7). Similarly, for a monoidal
2-category, one has the lax and colax constructions, denoted by l(−) and c(−). A
monoidal 2-category is a 2-category with a compatible monoidal structure. The
lax and colax constructions refer to the passage from a monoidal 2-category to the
category of pseudomonoids therein.

The goal of this section is to show that the 2-categories of Table 6.3 arise by
means of the lax and colax constructions. This is detailed in Figure 6.2. Applying
the lax construction takes us one step down to the left, while applying the colax
construction takes us one step down to the right. The starting point is the monoidal
2-category Cat.

This claim is proved in Propositions 6.72 and 6.75 below. There is an inductive
aspect to the argument, with the proof of the latter result relying on the proof of
the former.

Proposition 6.72. A pseudomonoid in Cat is precisely a monoidal category. More-
over,

lCat = l(Cat) and cCat = c(Cat).

This result is given in [264, Example 2.4].

Proof. Let I be the one-arrow category. According to Definition C.3, a pseu-
domonoid in the monoidal 2-category Cat is a category C equipped with functors

C× C→ C and I→ C,
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and natural transformations as in (C.3)–(C.4) which satisfy axioms (C.5)–(C.6). We
explain how this corresponds to a monoidal category structure on C (Definition 1.1).

The former functor is the tensor product and the transformation α is the as-
sociativity constraint. The unit object is the image of the unique object of I under
the latter functor.

The three pentagons in the front of (C.5) correspond to the three arrows along
the bottom of pentagon (1.1). The two pentagons in the back (other than the
base) of (C.5) correspond to the top of pentagon (1.1). Thus, axiom (C.5) becomes
axiom (1.1). Similarly, axiom (C.6) becomes axiom (1.2).

In summary, a pseudomonoid in Cat is precisely a monoidal category.
To complete the proof of lCat = l(Cat) we need to consider morphisms of

pseudomonoids, and morphisms between them. (The proof of cCat = c(Cat) is
similar.) A lax morphism between pseudomonoids (Definition C.4) is the same
as a lax monoidal functor between monoidal categories (Definition 3.1). Indeed,
the natural transformations (C.7) correspond to the structure morphisms (3.3)
and (3.4) and the 2-cell diagrams (C.8) and (C.9) correspond to the associativity
and unitality axioms, namely (3.5) and (3.6).

Similarly, a morphism between lax morphisms (Definition C.5) is the same as
a morphism between lax monoidal functors (Definition 3.8) with (C.10) reducing
to (3.14). �

Proposition 6.73. A pseudomonoid in lCat or cCat is precisely a 2-monoidal
category.

Proof. We use Definition C.3 to understand a pseudomonoid in lCat explicitly.
To start with, we require an object in lCat. This is a monoidal category, which for
definiteness, we call (C, ⋄, I). Next, we require lax monoidal functors

(6.41) (⋆, ϕ, ϕ0) : (C× C, ⋄)→ (C, ⋄) and (J , ϕ′, ϕ′
0) : I→ (C, ⋄),

where I is the one-arrow category. More explicitly, we require morphisms

ζ := ϕ : (A ⋆ B) ⋄ (C ⋆ D)→ (A ⋄ C) ⋆ (B ⋄D)

∆I := ϕ0 : I → I ⋆ I, µJ := ϕ′ : J ⋄ J → J, ιJ = ǫI := ϕ′
0 : I → J

where J is the image under J of the unique object in I. The notations on the left
are chosen to make the connection with Definition 6.1 clearer. One readily checks
that the associativity and unitality of the lax monoidal functor (⋆, ϕ, ϕ0) is the same
as (6.3) and (6.5) while that of (J , ϕ′, ϕ′

0) is the same as (6.7). The discussion so
far matches with the first part of Proposition 6.4.

Before proceeding further, we set up some notation. Let F and G be two
functors from C× C× C→ C defined by

F(A,B,C) := A ⋆ (B ⋆ C) and G(A,B,C) := (A ⋆ B) ⋆ C.

Let L and R be two functors from C to itself defined by

L(A) := J ⋆ A and R(A) := A ⋆ J.

As specified in (C.3)–(C.4), we require morphisms of lax monoidal functors α : F ⇒
G, λ : id⇒ L and ρ : id⇒R. This provides natural morphisms

A ⋆ (B ⋆ C)→ (A ⋆ B) ⋆ C, A→ J ⋆ A, A→ A ⋆ J.
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The fact that α is a morphism of lax monoidal functors is the same as (6.4) and the
coassociativity of ∆I in (6.8). The fact that λ and ρ are morphisms of lax functors
is the same as (6.6) and the counitality of ∆I in (6.8). This accounts for all the
2-monoidal category axioms, each one appearing exactly once.

The final requirement, namely (C.5)–(C.6), says that α, λ and ρ satisfy the
pentagon and triangle axioms (as in Proposition 6.72). This requires (C, ⋆, J) to be
a monoidal category, which is the last piece of the puzzle.

To summarize, we have shown that a pseudomonoid in lCat is the same as a
2-monoidal category.

The argument for cCat proceeds along the same lines. For the notation to
match up, we have to start with the monoidal category (C, ⋆, J) and define colax
monoidal functors using ⋄ and I as in the second part of Proposition 6.4. As
expected, the axioms emerge in a different order; however, we do get all of them,
each one appearing exactly once, as before. �

Remark 6.74. The above result provides two alternative definitions for a 2-
monoidal category. Further, the proof shows that these definitions are obtained
by expanding conditions (i) and (ii) respectively of Proposition 6.4.

Proposition 6.75. We have

(6.42) llCat = l(lCat), lcCat = c(lCat) = l(cCat), ccCat = c(cCat).

Proof. The lax and colax constructions applied to lCat or cCat yield pseu-
domonoids therein, and according to Proposition 6.73 these are 2-monoidal cate-
gories. Hence, the 0-cells of all 2-categories in (6.42) are 2-monoidal categories.

We now turn our attention to the 1-cells. The four arguments to be made are
essentially the four parts of Proposition 6.65. For concreteness, we explain one of
them. Let F be a 1-cell in c(lCat) connecting the 0-cells C and D. Recall that C and
D are equipped with (6.41). We now understand F explicitly using Definition C.4.
Since we are doing the colax construction, the arrows on the 2-cells in the diagrams
should be reversed. To start with, there exists a suitable ϕ so that

(F , ϕ) : (C, ⋄)→ (D, ⋄)

is lax. The next requirement is given by (C.7). For this particular example, the
same diagrams are shown in (6.38). As in the proof of Proposition 6.72, the condi-
tions (C.8) and (C.9) imply that there exists a suitable ψ so that

(F , ψ) : (C, ⋆)→ (D, ⋆)

is colax. However, observe that (C.7) requires something more; namely that ψ be
a morphism of lax functors. By one part of Proposition 6.65, this is the same as
(F , ϕ, ψ) being bilax or lax-colax.

The situation for 2-cells is simpler. Continuing with the previous example, let
F ⇒ G be a 2-cell in c(lCat). To start with, it is a 2-cell in lCat which means that
(F , ϕ) ⇒ (G, γ) is a morphism of lax functors. The condition (C.10) further says
that (F , ψ)⇒ (G, δ) is a morphism of colax functors. This completes the proof. �

Remark 6.76. The middle claim in (6.42) shows that bilax monoidal functors
are 1-cells of a 2-category. In particular, this shows that the composite of bilax
functors is again bilax. A direct proof of this was given in Theorem 3.22. The
above proof is more abstract; the main idea involved in it was also explained earlier
in Remark 3.78. Similar remarks apply to double (co)lax monoidal functors.
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Table 6.4. More 2-categories related to Cat.

2-category 0-cell 1-cell

bCat braided monoidal category bilax monoidal functor

blCat braided monoidal category braided lax monoidal functor

bcCat braided monoidal category braided colax monoidal functor

cblCat ⋄-braided 2-monoidal category ⋄-braided bilax monoidal functor

lbcCat ⋆-braided 2-monoidal category ⋆-braided bilax monoidal functor

We now consider 2-categories involving braided monoidal categories, which have
been considered explicitly in this monograph. They are summarized in Table 6.4.
The 2-cells in bCat are the morphisms of bilax monoidal functors in the sense
of Definition 3.9. Note that the braiding does not play a role in this definition.
Similarly, the 2-cells in the other 2-categories are the morphisms of the underlying
(co, bi)lax monoidal functors.

The following result describes the behavior of the lax and colax constructions
in this context. For the definitions related to braided 2-monoidal categories, see
Section 6.1.5. The proof is omitted.

Proposition 6.77. A pseudomonoid in bcCat is precisely a ⋆-braided 2-monoidal
category. Similarly, a pseudomonoid in blCat is precisely a ⋄-braided 2-monoidal
category. Moreover, we have

cblCat = c(blCat) and lbcCat = l(bcCat).

6.12. Contragredience for 2-monoidal categories

In this section, we return to the contragredient construction of Section 3.10
and generalize it to the context of 2-monoidal categories. The present discussion
assumes familiarity with the contents of Section 3.10.

6.12.1. Contravariant monoidal functors. Let F : C → D be a contravariant
functor. Now let C and D be 2-monoidal categories. We say that F is contravariant
2-strong if

F : Cop → D, or equivalently, F : C→ Dop

is 2-strong. We say that F is a contravariant bilax functor if

F : Cop → D, or equivalently, F : C→ Dop

is bilax.

6.12.2. Contragredient of 2-monoidal categories. Now let

C

∗
%%

∗

ee C′

be a contravariant adjoint equivalence of categories, as in (3.44).
Let, say (C, ⋄, ⋆), be a 2-monoidal category with structure morphisms ζ, ∆I ,

µJ and ιJ = ǫI . Using this data, one can define a 2-monoidal structure on C′. We
use the notation

(C′, ⋆∨, ⋄∨)
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for the 2-monoidal category,

ζ∨ : (A ⋄∨ B) ⋆∨ (C ⋄∨ D)→ (A ⋆∨ C) ⋄∨ (B ⋆∨ D)

for the interchange law, and

∆∨
I : I∗ ⋆∨ I∗ → I∗, µ∨

J : J∗ → J∗ ⋄∨ J∗, ι∨J = ǫ∨I : J∗ → I∗.

for the structure morphisms. These are defined as follows.
The monoidal structures ⋆∨ and ⋄∨ are given by

A ⋆∨ B := (A∗ ⋆ B∗)∗ and A ⋄∨ B := (A∗ ⋄B∗)∗.

The correponding unit objects are J∗ and I∗. For the interchange law ζ∨: Let A,
B, C and D be objects of C′. Then A∗, C∗, B∗ and D∗ are objects of C. Evaluating
the interchange law ζ of C on these objects (in that order), one obtains a morphism

(A∗ ⋆ C∗) ⋄ (B∗ ⋆ D∗)→ (A∗ ⋄B∗) ⋆ (C∗ ⋄D∗).

Applying the ∗ functor to this morphism yields
(
(A∗ ⋄B∗) ⋆ (C∗ ⋄D∗)

)∗
→
(
(A∗ ⋆ C∗) ⋄ (B∗ ⋆ D∗)

)∗

which is a morphism in C′. This is defined to be ζ∨ evaluated on A, B, C and D.
The morphisms ∆∨

I , µ∨
J and ι∨J = ǫ∨I are defined similarly.

It is straightforward to check that (C′, ⋆∨, ⋄∨) is a 2-monoidal category. We call
it the contragredient of (C, ⋄, ⋆).

Example 6.78. The 2-monoidal categories of graded vector spaces with finite-
dimensional components

(gVec, ·,×) and (gVec,×, ·)

of Example 6.22 are contragredients of each other. The essential check is that gVec

is self-dual with respect to the Cauchy and Hadamard products, and the interchange
laws in the two cases are contragredients of each other.

Additional examples of this kind, in which C = C′ and this category is self-dual
with respect to both ⋄ and ⋆ (so the contragredient has the effect of switching the
order of the tensor products), are discussed in Section 8.13.5. They involve species
instead of graded vector spaces.

Proposition 6.79. The functors

(C, ⋄, ⋆)
∗

%%

∗

ee (C′, ⋆∨, ⋄∨)

are contravariant 2-strong.

The proof is straightforward.

6.12.3. Contragredient of monoidal functors. Consider the situation

F∨ : C
∗ // C′ F // D′ ∗ // D

as in (3.45). For a natural transformation θ : F ⇒ G, let θ∨ : G∨ ⇒ F∨ denote the
induced natural transformation.
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Proposition 6.80. Let C′ and D′ be 2-monoidal categories. If F : C′ → D′ is a
double lax (bilax, double colax ) monoidal functor, then F∨ : C → D is a double
colax (bilax, double lax ) monoidal functor.

Further, if θ : F ⇒ G is a morphism of double lax (bilax, double colax ) functors,
then θ∨ : G∨ ⇒ F∨ is a morphism of double colax (bilax, double lax ) functors.

We elaborate further on the above construction. The categories C and D are
given the 2-monoidal structures contragredient to those of C′ and D′. The colax
structure(s) of F∨ are constructed from the lax structure(s) of F and viceversa, as
in Proposition 3.102. The proof makes use of Proposition 6.79 and follows along
the lines of the proof given for Proposition 3.102.

6.12.4. Self-duality. For completeness, we record some basic definitions and re-
sults related to self-duality. Here we work in the situation where C = C′ and where
this category is equipped with a self-adjoint ∗ functor.

Definition 6.81. A 2-monoidal category (C, ⋄, ⋆) is self-dual if

id : (C, ⋄, ⋆)→ (C, ⋆∨, ⋄∨)

is a 2-strong equivalence.

Definition 6.82. Let C and D be self-dual 2-monoidal categories. A bilax functor
F : C→ D is self-dual if F∨ ∼= F as bilax functors.

Proposition 6.83. A self-dual bilax functor induces a self-dual functor on the cor-
responding categories of bimonoids. In particular, it preserves self-dual bimonoids.

The proof of the first claim is straightforward. The second claim follows from
the first by Proposition 3.107.

Definition 6.84. Let C and D be self-dual 2-monoidal categories, and let F : C→ D

be a bilax functor. A natural transformation θ : F ⇒ F∨ of bilax functors is self-
dual if θ∨ ∼= θ.





CHAPTER 7

Higher Monoidal Categories

In previous chapters, we studied monoidal and 2-monoidal categories in detail.
These are the n = 1 and n = 2 cases of the general notion which occupies us
in this chapter. To start off, it is natural to ask whether there is a reasonable
notion of a category with three compatible monoidal structures. The answer is
in the affirmative, and in fact, using this notion, one can then define without
difficulty categories with any number of monoidal structures. Roughly speaking,
n-monoidal categories are categories with n ordered monoidal structures related
by
(
n
2

)
interchange laws. They are not to be confused with monoidal n-categories

(which would be n-categories with a monoidal structure).
The n = 3 case is very interesting and along with the previous two cases plays

an important role in the general theory. We start by discussing 3-monoidal cat-
egories in Section 7.1. A symmetric monoidal category provides an example of a
3-monoidal category in which all three monoidal structures coincide. The inter-
change laws are built from the symmetry. This is explained in Section 7.2. Strong
3-monoidal categories (those for which the interchange laws and other structure
maps are invertible) are necessarily of this form. More examples of 3-monoidal cat-
egories are provided in Section 7.3. Monoids in a 3-monoidal category and functors
between 3-monoidal categories are discussed in Sections 7.4 and 7.5.

Higher monoidal categories and their functors are discussed in Sections 7.6
and 7.8. Section 7.7 deals with the n + 1 notions of monoid one may define in
an n-monoidal category. In Section 7.9 we explain how n-monoidal categories can
be interpreted as pseudomonoids in appropriate monoidal 2-categories. We also
explain how the lax and colax constructions give rise to all notions of monoidal
functors between higher monoidal categories. This is a continuation of the discus-
sion in Section 6.11. In Section 7.10 we extend the contragredient construction of
Sections 3.10 and 6.12 to the context of higher monoidal categories.

7.1. 3-monoidal categories

In this section we develop the basic theory of 3-monoidal categories. The
definition consists of a category equipped with three ordered monoidal structures,
three interchange laws, one for each pair of monoidal structures, and a bunch of
axioms relating them. These interchange laws can be drawn pictorially using the
three coordinate planes in three-dimensional space.

We show that a 3-monoidal category can be viewed as consisting of three 2-
monoidal categories linked by bilax and double (co)lax monoidal functors. This
provides alternative ways of thinking about these objects. Basic constructions on
2-monoidal categories such as taking opposite and transposes also extend to 3-
monoidal categories.

207
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7.1.1. Definition.

Definition 7.1. A 3-monoidal category is a seven tuple (C, ⋄, I, ⋆, J, ·,K) where

(C, ⋄, I, ⋆, J), (C, ⋆, J, ·,K), and (C, ⋄, I, ·,K)

are 2-monoidal categories, such that the axioms below are satisfied.
The first assumption entails natural transformations

(7.1)

(A ⋆ B) ⋄ (C ⋆ D)→ (A ⋄ C) ⋆ (B ⋄D)

(A · B) ⋆ (C ·D)→ (A ⋆ C) · (B ⋆ D)

(A · B) ⋄ (C ·D)→ (A ⋄ C) · (B ⋄D)

and morphisms

(7.2)
I → I ⋆ I, I → I · I, J → J · J, J ⋄ J → J, K ⋄K → K, K ⋆ K → K

I → J, J → K, I → K.

The axioms to be satisfied are given below. All three natural transformations will
be denoted by the same letter ζ, while the other structure maps will go unnamed.

Interchange axiom. The following diagram commutes.

(7.3)

((A1·B1)⋆(A2·B2))⋄((C1·D1)⋆(C2·D2))
ζ⋄ζ

//

ζ

��

((A1⋆A2)·(B1⋆B2))⋄((C1⋆C2)·(D1⋆D2))

ζ

��
((A1·B1)⋄(C1·D1))⋆((A2·B2)⋄(C2·D2))

ζ⋆ζ

��

((A1⋆A2)⋄(C1⋆C2))·((B1⋆B2)⋄(D1⋆D2))

ζ·ζ

��
((A1⋄C1)·(B1⋄D1))⋆((A2⋄C2)·(B2⋄D2))

ζ
// ((A1⋄C1)⋆(A2⋄C2))·((B1⋄D1)⋆(B2⋄D2))

Unitality. The following diagrams commute.

(I ⋆ I) · (I ⋆ I) I · Ioo

(I · I) ⋆ (I · I)

OO

I ⋆ Ioo I

OO

oo

(7.4)

(J · J) ⋄ (J · J)

��

J ⋄ Joo

��

(J ⋄ J) · (J ⋄ J) // J · J Joo

(7.5)

(K ⋆K) ⋄ (K ⋆K) //

��

K ⋄K

��

(K ⋄K) ⋆ (K ⋄K) // K ⋆K // K

(7.6)
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I //

��

J

��

I · I // J · J

J ⋄ J //

��

K ⋄K

��

J // K

I ⋆ I // K ⋆K

��

I

OO

// K

(7.7)

J

��
@@

@@
@@

@

I //

??�������
K

(7.8)

We emphasize that in a 3-monoidal category, the order in which the monoidal
structures are written is important, as was also the case in a 2-monoidal category.

The last diagram in (7.7) may be omitted from the definition since its commu-
tativity follows from the remaining assumptions: Recall that J is the unit object
for ⋆, I is a comonoid with respect to ⋆ with I → J being the counit map, and K
is a monoid with respect to ⋆ with J → K being the unit map. Thus we have a
commutative diagram

I ⋆ I // J ⋆ J // K ⋆K

��

I

OO

// J // K

whose composite is the last diagram in (7.7).

Definition 7.2. We say that a 3-monoidal category is strong if the structure mor-
phisms (7.1) and (7.2) are isomorphisms.

We will see later in Proposition 7.6 that the notion of a strong 3-monoidal
category is equivalent to that of a symmetric monoidal category.

7.1.2. Opposite and transposes. We extend the considerations of Section 6.1.2.
Let (C, ⋄, I, ⋆, J, ·,K) be a 3-monoidal category. The monoidal structures in Defini-
tion 7.1 have a symmetry which implies that (Cop, ·,K, ⋆, J, ⋄, I) is also a 3-monoidal
category. The interchange laws are as defined in (6.9). We denote the resulting
object simply by Cop and call it the opposite 3-monoidal category of C.

Define a new monoidal structure ⋄̃ on C by

A ⋄̃B := B ⋄A.

The category (C, ⋄̃, I, ⋆, J, ·,K) is 3-monoidal. The interchange laws are as defined
in (6.10). We denote this 3-monoidal category by Ct⋄ and call it the ⋄-transpose of
C. The ⋆-transpose and ·-transpose of C are defined similarly.

Combining these constructions we obtain 3-monoidal categories

(C, ⋄̃, I, ⋆̃, J, ·,K), (C, ⋄̃, I, ⋆, J, ·̃,K), and (C, ⋄, I, ⋆̃, J, ·̃,K),

and finally

(C, ⋄̃, I, ⋆̃, J, ·̃,K)

which we call the transpose of C and denote by Ct.
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7.1.3. The interchange axiom: a pictorial representation. We now give a
pictorial way to represent the interchange axiom in a 3-monoidal category (C, ⋄, ⋆, ·).
For that, first recall from (6.11) that the interchange law in a 2-monoidal category
(C, ⋄, ⋆) can be visualized as a ⋆-line cutting across a ⋄-line. In the present situation,
we have three monoidal structures, so we use planes in three space rather than lines
in two space. For definiteness, we name the three coordinate planes as follows.

⋄ ⋆ ·

The interchange law between ⋆ and ⋄, for example, can be visualized as follows. To
start with, the ⋄-plane is in one piece while the ⋆-plane is in two pieces, which lie
on either side of the ⋄-plane. After applying the interchange law, the situation is
reversed. We say that the interchange law specifies a procedure for the ⋆-plane to
cut across the ⋄-plane. Note however that the cutting operation works in only one
direction. Following this convention, observe that the three interchange laws (7.1)
say that the ·-plane can cut across both the ⋆- and ⋄-planes, and the ⋆-plane can
cut across the ⋄-plane, but not the other way round.

Building on the above discussion, now imagine the three coordinate planes all
together such that one of the planes is in one piece, another is in two pieces and
the third is in four pieces. This is a convenient way to picture a linear order on
the three planes. For convenience of drawing, we show the plane in one piece with
fat lines, the plane in two pieces as usual, and the plane in four pieces with dotted
lines.

The following is a pictorial representation of the interchange axiom (7.3).

(7.9)

ζ
//

ζ⋄ζ

��

ζ⋆ζ
//

ζ

��

ζ
//

ζ·ζ
//

The cube in the top left corner shows the configuration where the ⋄-plane is in one
piece, the ⋆-plane is in two pieces and the ·-plane is in four pieces. The situation is
reversed in the cube in the bottom right corner. The six cubes show the six possible
configurations or linear orders on the three planes. The unique way of linking these
cubes as shown above is the interchange axiom. It may be viewed as the analogue
of the braiding hexagon (1.6).
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7.1.4. Equivalent descriptions of 3-monoidal categories. Recall that there
are three types of functors that relate 2-monoidal categories: bilax, double lax and
double colax. It is clear from the definition that a 3-monoidal category contains
within itself three 2-monoidal categories. Interestingly enough, it also contains a bi-
lax, a double lax and a double colax functor. This is explained below. Furthermore,
each one of these can be used to provide an alternative description of a 3-monoidal
category. Let I be the one-arrow category and let ∗ denote its unique object.

Proposition 7.3. Let (C, ⋄, I, ⋆, J), (C, ⋆, J, ·,K) and (C, ⋄, I, ·,K) be three 2-
monoidal categories. Then (C, ⋄, I, ⋆, J, ·,K) is a 3-monoidal category if and only
if either of the following three equivalent conditions are satisfied.

(i) The functors

⋄ : (C× C, ⋆, ·)→ (C, ⋆, ·) (A,B) 7→ A ⋄B I : I→ (C, ⋆, ·) ∗ 7→ I

are double colax.
(ii) The functors

⋆ : (C× C, ⋄, ·)→ (C, ⋄, ·) (A,B) 7→ A ⋆ B J : I→ (C, ⋄, ·) ∗ 7→ J

are bilax.
(iii) The functors

· : (C× C, ⋄, ⋆)→ (C, ⋄, ⋆) (A,B) 7→ A · B K : I→ (C, ⋄, ⋆) ∗ 7→ K

are double lax.

The conditions on the functors I, J and K can be rephrased by saying that
I is a double comonoid in (C, ⋆, ·), J is a bimonoid in (C, ⋄, ·) and K is a double
monoid in (C, ⋄, ⋆).

Proof. The structure morphisms (7.1) and (7.2) are provided to us as part of
the hypotheses. Hence in view of Proposition 6.4, we know that the above functors
have the appropriate lax and colax properties. The content of the present result
then is that the interchange and unitality axioms in a 3-monoidal category are
equivalent to the “bi” as well as equivalent to the “double” properties of these
functors.

This is a straightforward check. For example, for item (ii), we note that the
bilax axioms (6.32), (6.33) and (6.34) for the functor ⋆ reduce to (7.3), (7.4), (7.6)
and the last diagram in (7.7), while the bilax axioms for J account for (7.5), (7.8)
and the first two diagrams in (7.7). �

7.1.5. 3-monoidal categories arising from two tensor products. It is natu-
ral to consider 3-monoidal categories in which there are only two tensor products,
with one of them being used twice. A specific context of this kind is considered
below. Variations of this idea can be found in Section 7.3.

Let (C, ⋄, I, ⋆, J) and (C, ⋆, J, ⋄, I) be 2-monoidal categories. Thus, there are
two sets of structure morphisms (6.1) and (6.2), with the arrows reversed in one
set. In particular, there are two interchange laws:

(A ⋆ B) ⋄ (C ⋆ D)→ (A ⋄ C) ⋆ (B ⋄D)

(A ⋄B) ⋆ (C ⋄D)→ (A ⋆ C) ⋄ (B ⋆ D).



212 7. HIGHER MONOIDAL CATEGORIES

Assume further that (C, ⋄, I) is braided. This yields another 2-monoidal category
(C, ⋄, I, ⋄, I) whose structure morphisms are constructed from the braiding (Sec-
tion 6.3). In this situation:

Proposition 7.4. We have that

(C, ⋄, ⋄, ⋆), (C, ⋄, ⋆, ⋄) and (C, ⋆, ⋄, ⋄)

are 3-monoidal categories if and only if the functors

⋆ : (C× C, ⋄)→ (C, ⋄) and J : I→ (C, ⋄)

are braided bilax.

It is implicit that the structure maps of the above 3-monoidal categories are
defined using the structure maps of the 2-monoidal categories that they contain.
The condition on the functor J can be rephrased by saying that J is a commutative
and cocommutative bimonoid in (C, ⋄).

Proof. Applying the three parts of Proposition 7.3 once each, we see that

(C, ⋄, ⋄, ⋆), (C, ⋄, ⋆, ⋄) and (C, ⋆, ⋄, ⋄)

are 3-monoidal categories if and only if the functors

⋆ : (C× C, ⋄, ⋄)→ (C, ⋄, ⋄) and J : I→ (C, ⋄, ⋄)

are double lax, bilax and double colax respectively. In the present situation, by
Proposition 6.59, double (co)lax is the same as braided (co)lax. The result follows.

�

7.2. Symmetric monoidal categories as 3-monoidal categories

We show that a strong 3-monoidal category (Definition 7.2) is the same as a
symmetric monoidal category. This is a continuation of the discussion in Section 6.3.

Proposition 7.5. A symmetric monoidal category gives rise to a strong 3-monoidal
category all of whose monoidal structures are identical.

Proof. Let (C, •, I, β) be a symmetric monoidal category. Then define a
strong 3-monoidal category (C, •, I, •, I, •, I) all of whose monoidal structures are
identical, with the structure maps as defined in the proof of Proposition 6.10. It is
straightforward to check that the 3-monoidal category axioms hold. �

Proposition 7.5 admits the following converse.

Proposition 7.6. Let (C, ⋄, I, ⋆, J, ·,K) be a strong 3-monoidal category. Then the
monoidal categories (C, ⋄, I), (C, ⋆, J) and (C, ·,K) are symmetric and isomorphic
as symmetric monoidal categories.

Moreover, the interchange laws arise from the symmetry as in Proposition 7.5
(and the isomorphisms between ⋄, ⋆ and ·).

Proof. Consider the monoidal categories (C, ⋄), (C, ⋆) and (C, ·). From Propo-
sition 6.11 we know that any two of them are isomorphic. Further these pairwise
isomorphisms are compatible: for units, this can be seen from (7.8) and for the
monoidal structures, this can be seen by setting all objects except A1 and D2 equal
to the unit.

So, for the rest of the proof, we assume that the three monoidal structures
are identical. Further, Proposition 6.11 also shows that for any pair of monoidal
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structures, the interchange law between them is given by a braiding. Let us call
these braidings β⋄,⋆, β⋆,· and β⋄,·. We claim that these braidings are isomorphic
and symmetries. This can be deduced by employing the interchange axiom (7.3)
thrice as follows.

- Set all objects except B1 and C2 equal to the unit, and deduce that β⋆,·
and β⋄,· are isomorphic.

- Set all objects except B2 and C1 equal to the unit, and deduce that β⋄,⋆
and β⋄,· are isomorphic.

- Finally, set all objects except A2 and D1 equal to the unit, and deduce
that these isomorphic braidings are symmetries.

The result follows. �

We illustrate the above proof on a simple example.

Example 7.7. Recall that the category gVec of graded vector spaces has a monoidal
structure given by the Cauchy product and a braiding βq for any nonzero scalar
q (2.50).

Fix three nonzero scalars q⋄,⋆, q⋆,· and q⋄,·. Now define the 2-monoidal category

(gVec, ⋄, ⋆)

with ⋄ and · both equal to the Cauchy product and the interchange law given by
the braiding βq⋄,⋆ . The 2-monoidal categories (gVec, ⋆, ·) and (gVec, ⋄, ·) are defined
similarly using the scalars q⋆,· and q⋄,·.

Proposition 7.6 implies that

(gVec, ⋄, ⋆, ·) is a 3-monoidal category ⇐⇒ q⋄,⋆ = q⋆,· = q⋄,· = ±1.

Let us prove this directly. Observe that the interchange axiom (7.3) holds if and
only if

q
(a2+b2)(c1+d1)
⋄,⋆ qb1c1+b2c2⋄,· q

(b1+d1)(a2+c2)
⋆,· = qa2c1+b2d1

⋄,⋆ q
(b1+b2)(c1+c2)
⋄,· qb1a2+d1c2

⋆,·

for any nonnegative integers a2, b1, b2, c1, c2, and d1. By cancelling common terms,
this is further equivalent to the identity

qb2c1+a2d1
⋄,⋆ qd1a2+b1c2

⋆,· = qb2c1+b1c2⋄,· .

This clearly holds if the scalars are all equal to 1 or all equal to −1. Conversely,
suppose that the above identity holds. Then:

- Setting a2 = b2 = c1 = d1 = 0 and b1 = c2 = 1 yields q⋆,· = q⋄,· = q (say).
- Setting a2 = b1 = c2 = d1 = 0 and b2 = c1 = 1 yields q⋄,⋆ = q⋄,· = q.
- Finally, setting b1 = b2 = c1 = c2 = 0 and a2 = d1 = 1 yields q2 = 1.

This completes the proof.

7.3. Constructions of 3-monoidal categories

We now discuss two general constructions of 3-monoidal categories: from mon-
oidal categories with products and coproducts, and from braided 2-monoidal cat-
egories. This complements the discussion in Section 7.2, where we constructed
3-monoidal categories from symmetric monoidal categories.
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7.3.1. Monoidal categories with products and coproducts. Let (C, ⋆, J)
be a monoidal category. Suppose that in the category C, all finite products and
coproducts exist. This yields the (co)cartesian monoidal categories (C,∐, I) and
(C,×,K) where ∐ is constructed from the coproduct and × from the product, and
I is a initial object and K is a terminal object. Further, by Example 6.19,

(C,∐, I, ⋆, J), (C, ⋆, J,×,K) and (C,∐, I,×,K)

are all 2-monoidal categories, with the interchange laws constructed from the uni-
versal property of the (co)product. Note that the 2-monoidal categories

(C,∐, I,∐, I) and (C,×,K,×,K)

are instances of this construction.

Proposition 7.8. We have that

(C,∐, I,∐, I, ⋆, J), (C,∐, I, ⋆, J,×,K) and (C, ⋆, J,×,K,×,K)

are 3-monoidal categories.

Proof. We only check that (C,∐, ⋆,×) is a 3-monoidal category; the remaining
two checks are similar.

The interchange axiom (7.3) holds, that is, the maps

((A1 ×B1) ⋆ (A2 ×B2)) ∐ ((C1 ×D1) ⋆ (C2 ×D2))

��

((A1 ∐ C1) ⋆ (A2 ∐ C2))× ((B1 ∐D1) ⋆ (B2 ∐D2))

obtained by following the two directions coincide. This map can be checked to be
as follows. First note that from the universal property of the (co)product, such a
map is equivalent to four maps

(A1 ×B1) ⋆ (A2 ×B2)

��

// (B1 ∐D1) ⋆ (B2 ∐D2)

(A1 ∐ C1) ⋆ (A2 ∐C2) (C1 ×D1) ⋆ (C2 ×D2).oo

OO

The vertical map on the left is the composite

(A1 ×B1) ⋆ (A2 ×B2)→ A1 ⋆ A2 → (A1 ∐C1) ⋆ (A2 ∐C2).

In the notation of Section A.1, it is

ιA1∐C1

A1
πA1×B1

A1
⋆ ιA2∐C2

A2
πA2×B2

A2
.

The descriptions of the remaining three maps are similar.
Any object is canonically a bimonoid in (C,∐,×); so in particular axiom (7.5)

holds. Since I is an initial object and K is a terminal object, the remaining axioms
hold as well. This shows that (C,∐, ⋆,×) is a 3-monoidal category.

The above proof was direct. However, since the main check there was left to
the reader, we provide an alternative proof below which is complete in all details.

In view of Proposition 7.3, part (ii), it is enough to show that

⋆ : (C× C,∐,×)→ (C,∐,×) (A,B) 7→ A ⋆ B J : I→ (C,∐,×) ∗ 7→ J
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are bilax. For this, note that the one-arrow category I always has (co)products
defined in the obvious manner, and if C has (co)products, then so does C × C by
taking (co)products coordinatewise. So both functors above are of the form

(D,∐,×)→ (C,∐,×)

where the 2-monoidal structure is constructed from the coproduct and product.
From Example 6.68, we know that such functors always carry a canonical bilax
structure. This completes the proof. �

7.3.2. Braided 2-monoidal categories. Recall that a braided monoidal cate-
gory can be viewed as a 2-monoidal category. Similarly, ⋄-braided and ⋆-braided
2-monoidal categories can be viewed as a 3-monoidal categories as follows.

A ⋄-braided 2-monoidal category (C, ⋄, ⋆) gives rise to a 3-monoidal category,
namely,

(C, ⋄, ⋄, ⋆).

The first two monoidal structures coincide. The interchange law for the first and
third, as well as the second and third monoidal structures coincides with the inter-
change law of (C, ⋄, ⋆), while the interchange law for the first and second monoidal
structure is constructed from the braiding.

The verification of the axioms offers no difficulty. For example, the interchange
axiom (7.3) in pictorial notation takes the following form.

A1 B1

A2 B2

C1 D1

C2 D2

ζ
//

β

��

A1 B1

A2 B2

C1 D1

C2 D2

β⋆β

��
A1 B1

C1 D1

A2 B2

C2 D2

ζ
//

A1 B1

C1 D1

A2 B2

C2 D2

The vertical maps are constructed from the braiding while the horizontal maps
are constructed from the interchange law using (6.19). The commutativity of this
diagram follows from that of the first diagram in (6.17) and naturality.

An alternative proof of the above result as well as a converse is given below.

Proposition 7.9. Let (C, ⋄, ⋆) be a 2-monoidal category and let (C, ⋄) be braided.
Then

(C, ⋄, ⋄, ⋆) is a 3-monoidal category ⇐⇒ (C, ⋄, ⋆) is ⋄-braided.

Proof. It follows from Propositions 6.6, 6.59 and 7.3 that both the above
conditions are equivalent to the condition that the functors

⋆ : (C× C, ⋄)→ (C, ⋄) and J : I→ (C, ⋄)

are braided lax. �

By passing to the opposite category, we deduce:
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Proposition 7.10. Let (C, ⋄, ⋆) be a 2-monoidal category and let (C, ⋆) be a braided
monoidal category. Then

(C, ⋄, ⋆, ⋆) is a 3-monoidal category ⇐⇒ (C, ⋄, ⋆) is ⋆-braided.

In the above results, if we choose ⋆ to be the product or ⋄ to be the coproduct
in C (whenever they exist), then we recover two of the 3-monoidal categories in
Proposition 7.8.

7.4. Monoids in 3-monoidal categories

We consider four kinds of monoids in 3-monoidal categories: (3, 0)-monoids,
(2, 1)-monoids, (1, 2)-monoids and (0, 3)-monoids. This is consistent with the no-
tations introduced in Table 6.2.

Definition 7.11. A (2, 1)-monoid in a 3-monoidal category (C, ⋄, ⋆, ·) is a tuple
(A, µ, ν,∆) where A is an object in C such that

(A, µ) is a monoid in (C, ⋄),

(A, ν) is a monoid in (C, ⋆),

(A,∆) is a comonoid in (C, ·),

(A, µ, ν) is a double monoid in (C, ⋄, ⋆),

(A, µ,∆) is a bimonoid in (C, ⋄, ·), and

(A, ν,∆) is a bimonoid in (C, ⋆, ·).

The unit maps have been suppressed in the notation for simplicity.

Definition 7.12. Let (A, µ, ν,∆) and (A′, µ′, ν′,∆′) be (2, 1)-monoids. A mor-
phism of (2, 1)-monoids between them is a map A→ A′ such that (A, µ)→ (A′, µ′)
and (A, ν) → (A′, ν′) are morphisms of monoids, and (A,∆) → (A′,∆′) is a mor-
phism of comonoids.

The remaining kinds of monoids and morphisms between them are defined in
a similar fashion. It is reasonable to refer to (3, 0)-monoids as triple monoids and
to (0, 3)-monoids as triple comonoids.

Example 7.13. A commutative bimonoid in a ⋄-braided 2-monoidal category
(C, ⋄, ⋆) is an example of a (2, 1)-monoid in the 3-monoidal category (C, ⋄, ⋄, ⋆).

Similar statements hold for each of the other (co)commutative entries in Ta-
ble 6.2.

For i ranging between 0 and 3, let 3−iMoni(C) denote the category of (i, 3− i)-
monoids in C.

Recall that a bimonoid can be viewed as a monoid in a category of comonoids
and viceversa. We now provide an interpretation along these lines for monoids in
a 3-monoidal category. The basic observation is the following.

Proposition 7.14. Let (C, ⋄, ⋆, ·) be a 3-monoidal category. Then

(Mon(C, ⋄), ⋆, ·) and (Comon(C, ·), ⋄, ⋆)

are 2-monoidal categories.



7.5. MONOIDAL FUNCTORS BETWEEN 3-MONOIDAL CATEGORIES 217

Proof. We explain the first claim. By Proposition 6.35, (Mon(C, ⋄), ⋆) and
(Mon(C, ⋄), ·) are both monoidal categories. In particular, if A and B be monoids
in (C, ⋄), then A ⋆ B and A ·B are also monoids in (C, ⋄).

To complete the proof, we need to check that the structure maps defining the
2-monoidal category (C, ⋆, ·) are morphisms of monoids. For example, if A, B, C,
and D are monoids in (C, ⋄), then the interchange law

(A · B) ⋆ (C ·D)→ (A ⋆ C) · (B ⋆ D)

is a morphism of monoids. This follows from the interchange axiom (7.3) and (7.4).
The remaining checks are similar. �

Warning. Neither Mon(C, ⋆) nor Comon(C, ⋆) defines a 2-monoidal category with
respect to ⋄ and ·.

Now we may combine the constructions of Propositions 6.35 and 7.14. Namely,
start with a 3-monoidal category. Take monoids with respect to the first, or co-
monoids with respect to the last monoidal structure. Do the same on the resulting
2-monoidal categories. Finally, take monoids or comonoids in the resulting mon-
oidal categories. It is not surprising that the result of these iterations yield the
various types of monoids in the original 3-monoidal category. The precise result is
given below.

Proposition 7.15. There are canonical equivalences of categories

0Mon3(C) ∼= Mon(Mon(Mon(C, ⋄), ⋆), ·)

1Mon2(C) ∼= Comon(Mon(Mon(C, ⋄), ⋆), ·)

∼= Mon(Comon(Mon(C, ⋄), ·), ⋆)

∼= Mon(Mon(Comon(C, ·), ⋆), ⋄)

2Mon1(C) ∼= Mon(Comon(Comon(C, ·), ⋆), ⋄)

∼= Comon(Mon(Comon(C, ·), ⋄), ⋆)

∼= Comon(Comon(Mon(C, ⋄), ·), ⋆)

3Mon0(C) ∼= Comon(Comon(Comon(C, ·), ⋆), ⋄).

This result may be combined with Proposition 6.36 to give alternative descrip-
tions of the categories of (i, 3− i)-monoids. For example:

1Mon2(C) ∼= Comon(dMon(C, ⋄, ⋆), ·)

∼= Mon(Bimon(C, ⋄, ·), ⋆)

∼= Bimon(Mon(C, ⋄), ⋆, ·)

∼= dMon(Comon(C, ·), ⋄, ⋆).

7.5. Monoidal functors between 3-monoidal categories

We consider four kinds of functors between 3-monoidal categories. We call
them

lax-lax-lax

(3, 0)

lax-lax-colax

(2, 1)

lax-colax-colax

(1, 2)

colax-colax-colax

(0, 3).
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The notations extend those given in Figure 6.1. The type of functors are indexed
by pairs (i, j) of nonnegative integers such that i + j = 3. The first (second)
coordinate indicates the number of lax (colax) structures that the functor carries.
The lax structures always precede the colax structures in our convention.

7.5.1. Definition. The functors on 3-monoidal categories are defined in terms of
functors on 2-monoidal categories in a straightforward manner without imposing
any new axioms. Further, the definitions of (3, 0)-, (2, 1)-, (1, 2)- and (0, 3)-functors
are all similar to one another. To avoid repetition, we explain (2, 1)-functors only.

Definition 7.16. A functor

(F , ϕ, γ, ψ) : (C, ⋄, ⋆, ·)→ (D, ⋄, ⋆, ·)

between 3-monoidal categories is lax-lax-colax or (2, 1) if

(F , ϕ) is ⋄-lax, (F , γ) is ⋆-lax, and (F , ψ) is ·-colax

such that

(F , ϕ, γ) : (C, ⋄, ⋆)→ (D, ⋄, ⋆) is lax-lax,

(F , ϕ, ψ) : (C, ⋄, ·)→ (D, ⋄, ·) is lax-colax, and

(F , γ, ψ) : (C, ⋆, ·)→ (D, ⋆, ·) is lax-colax.

Recall from the theory of 2-monoidal categories that morphisms between bilax
or double lax or double colax functors were defined in terms of morphisms of lax or
colax functors without imposing any new axioms. The same feature continues to
hold for morphisms between (3, 0)-, (2, 1)-, (1, 2)- or (0, 3)-functors. Again to avoid
repetition, we explain morphisms between (2, 1)-functors only.

Definition 7.17. Let (F , ϕ, γ, ψ) and (G, ϕ′, γ′, ψ′) be lax-lax-colax functors be-
tween 3-monoidal categories C and D. A morphism from F to G of lax-lax-colax
functors is a natural transformation θ : F ⇒ G such that (F , ϕ) ⇒ (G, ϕ′) and
(F , γ)⇒ (G, γ′) are morphisms of lax functors, and (F , ψ)⇒ (G, ψ) is a morphism
of colax functors.

It is reasonable to refer to (3, 0)-functors as triple lax monoidal functors and
to (0, 3)-functors as triple colax monoidal functors.

7.5.2. Alternative descriptions. We begin by providing an alternative descrip-
tion of lax-lax-colax functors.

Let (C, ⋄, ⋆, ·) and (D, ⋄, ⋆, ·) be 3-monoidal categories and suppose there is a
functor F between them such that

(F , ϕ, ψ) : (C, ⋄, ·)→ (D, ⋄, ·) is bilax, and (F , γ) : (C, ⋆)→ (D, ⋆) is lax.

Consider the following diagrams.

(C× C, ⋄, ·)
⋆ //

F×F

��

(C, ⋄, ·)

F

��

(D× D, ⋄, ·)
⋆

//

γ

5=ssssssssssssss

ssssssssssssss
(D, ⋄, ·)

(C, ⋄, ·)

F

$$H
HHHHHHHHHHHH

I

J

=={{{{{{{{{{{{{
J

//

γ0

KS

(D, ⋄, ·)

By Proposition 7.3, part (ii), all functors involved in these diagrams are bilax.
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Proposition 7.18. In the above setup,

(F , ϕ, γ, ψ) is lax-lax-colax ⇐⇒ γ and γ0 are morphisms of bilax functors.

Proof. Apply Proposition 6.65 to obtain:

(F , ϕ, γ) is lax-lax ⇐⇒ γ and γ0 are morphisms of lax functors.

(F , γ, ψ) is lax-colax ⇐⇒ γ and γ0 are morphisms of colax functors.

The result follows. �

We discuss a simple consequence. Let F be lax-lax-colax. Suppose A and B
are bimonoids in (C, ⋄, ·). Then A ⋆ B is also a bimonoid in (C, ⋄, ·). Since F is
bilax, it follows that

F(A), F(B), F(A ⋆ B) and F(A) ⋆ F(B)

are all bimonoids in (D, ⋄, ·). Now applying Proposition 7.18, we deduce that

γA,B : F(A) ⋆ F(B)→ F(A ⋆ B) and γ0 : J → F(J)

are morphisms of bimonoids.

There is another similar description for lax-lax-colax functors which is as fol-
lows. Let (C, ⋄, ⋆, ·) and (D, ⋄, ⋆, ·) be 3-monoidal categories and suppose there is a
functor F between them such that

(F , ϕ, γ) : (C, ⋄, ⋆)→ (D, ⋄, ⋆) is double lax, and (F , ψ) : (C, ·)→ (D, ·) is colax.

Consider the following diagrams.

(C× C, ⋄, ⋆)
· //

F×F

��

(C, ⋄, ⋆)

F

��

ψ

u} rrrrrrrrrrrrrr

rrrrrrrrrrrrrr

(D× D, ⋄, ⋆)
·

// (D, ⋄, ⋆)

(C, ⋄, ⋆)

F

$$I
IIIIIIIIIIII

ψ0

��
I

K

=={{{{{{{{{{{{{
K

// (D, ⋄, ⋆)

By Proposition 7.3, part (iii), all the functors involved are double lax.

Proposition 7.19. In the above setup,

(F , ϕ, γ, ψ) is lax-lax-colax ⇐⇒ ψ and ψ0 are morphisms of double lax functors.

Remark 7.20. One may naively think that there should be a similar third de-
scription for a lax-lax-colax functor which involves ϕ and ϕ0. However, this is not
true, as one can check.

Since passing to the opposite category turns a lax-lax-colax functor into a lax-
colax-colax functor, and viceversa, it follows that there are two similar descriptions
for a lax-colax-colax functor as well.

The situation for lax-lax-lax and colax-colax-colax functors is different. They
have only one description each.

These observations can be summarized in a unified manner: For any of the
above types of functor, the rightmost lax structure and the leftmost colax structure
yield one description each of the functor.
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7.5.3. 3-strong monoidal functors. There is an obvious variation on the kind
of functors discussed above: let one or more of the (co)lax structures be (co)strong.
Thus we have functors which are lax-lax-costrong, or lax-strong-colax, or strong-
strong-colax, and so on. As an extreme situation, we may consider functors where
all (co)lax structures are (co)strong. From the discussion in Section 6.8.4, it follows
that

strong-strong-strong, strong-strong-costrong,

strong-costrong-costrong, costrong-costrong-costrong

are equivalent notions. We call a functor of this kind a 3-strong functor. It can be
simultaneously viewed as a (3, 0)-, (2, 1)-, a (1, 2)- and a (0, 3)-functor.

Example 7.21. A 3-strong functor between strong 3-monoidal categories is a fa-
miliar notion. Recall that a strong 3-monoidal category is equivalent to a symmetric
monoidal category. Using the analysis of Example 6.64, it follows that a 3-strong
functor between strong 3-monoidal categories is the same as a braided strong func-
tor between symmetric monoidal categories.

7.5.4. Examples. We discuss monoidal functors related to the constructions of
Section 7.3.

Example 7.22. Let (F , γ) : (C, ⋆) → (D, ⋆) be a lax monoidal functor. Sup-
pose that C and D have finite (co)products. Now for both C and D, consider the
3-monoidal category of Proposition 7.8 in which the first monoidal structure is co-
cartesian and the third monoidal structure is cartesian. Then Example 6.68 shows
that

(F , ϕ, γ, ψ) : (C,∐, ⋆,×)→ (D,∐, ⋆,×)

is a lax-lax-colax functor with ϕ and ψ constructed from the universal properties
of the (co)products.

Thus, in this situation, every lax monoidal functor carries a canonical lax-
lax-colax monoidal structure. Similarly, every colax monoidal functor carries a
canonical lax-colax-colax monoidal structure.

Similar statements can be made for the remaining two 3-monoidal categories
of Proposition 7.8. For example, a lax functor (C, ⋆) → (D, ⋆) yields a lax-lax-lax
functor

(C,∐,∐, ⋆)→ (D,∐,∐, ⋆)

and so forth.

Example 7.23. Recall from Proposition 7.9 that a ⋄-braided 2-monoidal category
gives rise to a 3-monoidal category in which the first two monoidal structures are
identical. In this situation, a ⋄-braided bilax functor between ⋄-braided 2-monoidal
categories (Definition 6.61) gives rise to a lax-lax-colax functor between the cor-
responding 3-monoidal categories. Similarly, a ⋄-braided double (co)lax functor
(Definition 6.62) gives rise to a (co)lax-(co)lax-(co)lax functor.

Similar statements can be made for functors between ⋆-braided 2-monoidal
categories.

7.6. Higher monoidal categories

After 1-, 2- and 3-monoidal categories, we turn our attention to the general
case. Higher monoidal categories are built out of these initial cases in a rather
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straightforward manner. Further motivation for the ideas discussed here is given
in Section 7.9, where we explain how a n-monoidal category can be viewed as a
pseudomonoid in a monoidal 2-category.

7.6.1. Definition. Let C be a category with n monoidal structures, which are
linearly ordered. We denote such a structure by

(C, ⋄1, I1, . . . , ⋄n, In)

where ⋄1, ⋄2, . . . , ⋄n are the monoidal structures and I1, I2, . . . , In are the respective
unit objects. Sometimes the latter are omitted and we simply write

(7.10) (C, ⋄1, . . . , ⋄n).

By restricting to any k of these monoidal structures, we obtain a category with k
monoidal structures. As a shorthand, we write Ci for (C, ⋄i), Cij for (C, ⋄i, ⋄j), and
so on.

Definition 7.24. A n-monoidal category for n ≥ 3 is a category with n linearly
ordered monoidal structures as in (7.10). In other words,

Ci is a monoidal category for each 1 ≤ i ≤ n.

Further, we require that

Cij is a 2-monoidal category for each 1 ≤ i < j ≤ n, and

Cijk is a 3-monoidal category for each 1 ≤ i < j < k ≤ n.

It is implicit (in the notation) that Cij uses the structure of Ci and Cj , and Cijk
uses the structure of Cij , Cjk and Cik.

Note that if C and C′ are n-monoidal categories, then so is C× C′.

Remark 7.25. A related notion of iterated or n-fold monoidal categories appears
in [32, 132]. This is a more restrictive notion than ours; see Remark 6.2 for more
details.

Definition 7.26. We say that a n-monoidal category is strong if all structure
morphisms defining it are isomorphisms. Equivalently, a n-monoidal category is
strong if all the 2-monoidal categories it contains are strong.

7.6.2. Opposite and transposes. We now extend the considerations of Sec-
tions 6.1.2 and 7.1.2.

Recall that if C is a 2- or 3-monoidal category, then so is the opposite category
Cop. The monoidal structures of Cop are same as those of C but they are written
in the opposite order. The structure morphisms are defined by reversing arrows. It
is easy to see that the same procedure works for any n-monoidal category. Thus, if
(C, ⋄1, . . . , ⋄n) is a n-monoidal category, then so is (Cop, ⋄n, . . . , ⋄1).

Let C be a n-monoidal category. Define a new monoidal structure ⋄̃i on C by

A ⋄̃i B := B ⋄i A.

The category (C, ⋄1, . . . , ⋄̃i, . . . , ⋄n) is also n-monoidal. We call it the ⋄i-transpose
of C. This construction can be repeated on the other monoidal structures. In
particular, we may take transpose of every monoidal structure. Thus,

(C, ⋄̃1, . . . , ⋄̃n)

is a n-monoidal category. We call it the transpose of C and denote by Ct.
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7.6.3. Examples. Any symmetric monoidal category gives rise to a strong n-
monoidal category with all n-monoidal structures identical to the given monoidal
structure and all interchange laws constructed from the braiding. Further, it follows
from the analysis in Section 7.2 that all strong n-monoidal categories arise in this
manner. To summarize, a strong n-monoidal category is equivalent to a symmetric
monoidal category.

A natural next step is to consider n-monoidal categories made up of two distinct
monoidal structures. We now consider a specific context of this kind. This is a
continuation of the discussion in Section 7.1.5.

Let (C, ⋄, ⋆) and (C, ⋆, ⋄) be 2-monoidal categories. Assume further that (C, ⋄)
and (C, ⋆) are braided. This yields 2-monoidal categories (C, ⋄, ⋄) and (C, ⋆, ⋆). In
this situation:

Proposition 7.27. Suppose

(C, ⋄, ⋄, ⋆), (C, ⋄, ⋆, ⋄), (C, ⋆, ⋄, ⋄), (C, ⋄, ⋆, ⋆), (C, ⋆, ⋄, ⋆), and (C, ⋆, ⋆, ⋄)

are 3-monoidal categories. Then any word of length n in ⋄ and ⋆ turns C into a
n-monoidal category.

Proof. This follows from Proposition 7.4. �

7.7. Monoids in higher monoidal categories

We now consider monoids in any higher monoidal category. This unifies the
n = 1, 2 and 3 cases that we have seen before. The n = 1 case is that of (co)monoids
in a monoidal category, and the n = 2 case is that of double (co)monoids and
bimonoids in a 2-monoidal category. The present discussion parallels the n = 3
case discussed in Section 7.4.

7.7.1. Definition. There are n + 1 different types of monoids in a n-monoidal
category. It is natural to index them by pairs (i, j) of non-negative integers such
that i+j = n. Recall that this is precisely how we indexed monoids in a 3-monoidal
category.

Definition 7.28. Let (C, ⋄1, I1, . . . , ⋄n, In) be a n-monoidal category and let 0 ≤
i ≤ n. A monoid of type (i, n− i), or a (i, n− i)-monoid is an object A with maps

µj : A ⋄j A→ A ∆k : A→ A ⋄k A

ιj : Ij → A ǫk : A→ Ik

for 1 ≤ j ≤ i and i+ 1 ≤ k ≤ n, such that

(A, µj , ιj) is a monoid in Cj , (A,∆k, ǫk) is a comonoid in Ck,

and

(A, µj , ιj , µj′ , ιj′ ) is a double monoid in Cjj′ for 1 ≤ j < j′ ≤ i,

(A, µj , ιj ,∆k, ǫk) is a bimonoid in Cjk for 1 ≤ j ≤ i and i+ 1 ≤ k ≤ n,

(A,∆k, ǫk,∆k′ , ǫk′) is a double comonoid in Ckk′ for i+ 1 ≤ k < k′ ≤ n.

A morphism between two (i, n−i)-monoids is a morphism of the underlying monoids
and comonoids.
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For n = 3 and i = 2, the above specializes to Definitions 7.11 and 7.12 for
(2, 1)-monoids and morphisms between them.

Let n−iMoni(C) denote the category of (i, n − i)-monoids in C; the monoidal
structures of C are not explicitly written in the notation. This is consistent with
the notation for the category of (i, 3− i)-monoids introduced in Section 7.4. Let us
also take note of categories of this kind for n = 0, 1 and 2.

0Mon0(C) = C, 0Mon1(C) = Mon(C), 1Mon0(C) = Comon(C),

1Mon1(C) = Bimon(C), 0Mon2(C) = dMon(C), 2Mon0(C) = dComon(C).

In particular, a (0, 0)-monoid is an object, a (1, 0)-monoid is a monoid, a (0, 1)-
monoid is a comonoid, and so forth.

7.7.2. Alternative descriptions. Recall that monoids in a 2- or 3-monoidal cat-
egory can be obtained by appropriate iterations of the monoid and comonoid con-
structions. We now explain how this procedure works in general. The basic obser-
vation is the following.

Proposition 7.29. If C is a n-monoidal category, then

(Mon(C, ⋄1), ⋄2, . . . , ⋄n) and (Comon(C, ⋄n), ⋄1, . . . , ⋄n−1)

are (n− 1)-monoidal categories.

Proof. This follows from Proposition 7.14. �

The next basic observation is that these two constructions commute with each
other. More precisely:

Proposition 7.30. There are canonical equivalences of (n−2)-monoidal categories

(Comon(Mon(C, ⋄1), ⋄n), ⋄2, . . . , ⋄n−1) ∼= (Mon(Comon(C, ⋄n), ⋄1), ⋄2, . . . , ⋄n−1)

∼= (Bimon(C, ⋄1, ⋄n), ⋄2, . . . , ⋄n−1).

Proof. This follows from the first claim in Proposition 6.36 and noting that
the equivalences in that result are compatible with the remaining monoidal struc-
tures ⋄2, . . . , ⋄n−1. �

The equivalence in the above proposition is taken in the 2-category whose 0-cells
are (n− 2)-monoidal categories, 1-cells are (n− 2)-strong functors (Section 7.8.2),
and 2-cells are morphisms of (n − 2)-strong functors. A similar remark applies to
categorical equivalences appearing in the discussion below.

Let C be a n-monoidal category, and let C[i,j] denote the (n−j+i−1)-monoidal
category obtained from C by deleting the monoidal structures from ⋄i to ⋄j both
inclusive. Do the monoid construction i− 1 times in increasing order from the first
structure to the (i− 1)-st structure. Do the comonoid construction n− j times in
decreasing order from the last structure to the (j + 1)-st structure. The monoid
and constructions can be interleaved in any manner. The result will be a (j− i+1)-
monoidal category whose objects are precisely (i− 1, n− j)-monoids in C[i,j]. This
follows from Definition 7.28 and Propositions 7.29 and 7.30.

This discussion is summarized in Propositions 7.31 and 7.32 below.
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Proposition 7.31. If C is a n-monoidal category, then

(n−jMoni−1(C[i,j]), ⋄i, . . . , ⋄j)

is a (j − i+ 1)-monoidal category.

In particular, if A and B are two (i − 1, n − j)-monoids in C[i,j], then so is
A ⋄k B for i ≤ k ≤ j. The structure morphisms can be written down explicitly as
in Section 6.5.4.

Proposition 7.32. There are canonical equivalences of (j− i)-monoidal categories

(n−jMoni(C[i+1,j]), ⋄i+1, . . . , ⋄j)

∼= (Mon(n−jMoni−1(C[i,j]), ⋄i), ⋄i+1, . . . , ⋄j)

∼= (Comon(n−j−1Moni(C[i+1,j+1]), ⋄j+1), ⋄i+1, . . . , ⋄j).

An important special case of the above results is given below.

Proposition 7.33. If C is a n-monoidal category, then

(n−iMoni−1(C[i,i]), ⋄i)

is a monoidal category. Further, there are canonical equivalences of categories

n−iMoni(C) ∼= Mon(n−iMoni−1(C[i,i]), ⋄i)

∼= Comon(n−i−1Moni(C[i+1,i+1]), ⋄i+1).

To summarize, the category of (i, n − i)-monoids in C is obtained from C by
applying i monoid and (n− i) comonoid constructions. The monoid constructions
are done in increasing order starting from the first structure, while the comonoid
constructions are done independently in decreasing order starting from the last
structure. Thus there are

(
n
i

)
iterative interpretations of a (i, n− i)-monoid.

7.8. Monoidal functors between higher monoidal categories

There are n+ 1 different types of functors between n-monoidal categories. We
call them

(n, 0) (n− 1, 1) · · · (i, n− i) · · · (0, n).

We have already seen the n = 1, 2 and 3 cases. For example, for monoidal categories,
we have lax and colax functors, which in the above notation would be functors of
type (1, 0) and (0, 1) respectively. For 2-monoidal categories, we have (2, 0)- or
double lax functors, (1, 1)- or bilax functors, and (0, 2)- or double colax functors
(Figure 6.1). Functors between 3-monoidal categories were discussed in Section 7.5
and they serve as a model for the general definition.

7.8.1. Definition and basic properties. For a category C with n monoidal
structures, recall that Ci stands for (C, ⋄i), Cij stands for (C, ⋄i, ⋄j), and so on. We
extend this notation to functors. In other words, for F a functor between C and D,
both categories with n monoidal structures, Fi denotes either a lax or colax functor
between Ci and Di constructed from F , Fij denotes either a double lax or bilax or
double colax functor between Cij and Dij , and so forth.
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Definition 7.34. Let n ≥ 3 and 0 ≤ m ≤ n. We say that a functor F : C → D

between n-monoidal categories is of type (m,n−m) if

Fi : Ci → Di is

{
lax if 1 ≤ i ≤ m

colax if m+ 1 ≤ i ≤ n,

and

Fij : Cij → Dij is





lax-lax if 1 ≤ i < j ≤ m,

lax-colax if 1 ≤ i ≤ m < j ≤ n,

colax-colax if m+ 1 ≤ i < j ≤ n.

It is implicit (in the notation) that Fij uses the structure of Fi and Fj .

Definition 7.35. Let F and G be (m,n − m)-functors between n-monoidal cat-
egories C and D. A morphism from F to G of (m,n − m)-functors is a natural
transformation θ : F ⇒ G that is a morphism of lax functors Fi ⇒ Gi for 1 ≤ i ≤ m
and a morphism of colax functors for m+ 1 ≤ i ≤ n.

For n = 3 and m = 2, the above specialize to Definitions 7.16 and 7.17 of
(2, 1)-functors and morphisms between them.

Example 7.36. Let F be a braided lax functor between symmetric monoidal
categories C and D. If we view C and D as n-monoidal categories in the manner
discussed earlier, then F becomes a (n, 0)-functor between them. This is true for
any n. Further, a morphism between F and G of braided lax functors translates to
a morphism between the corresponding (n, 0)-functors.

Similarly, a braided colax functor between symmetric monoidal categories can
be viewed as a (0, n)-functor, and a morphism of braided colax functors as a mor-
phism of (0, n)-functors.

We now turn to some basic properties of higher monoidal functors. The first
property is that monoidal functors of the same type can be composed, and these
compositions are compatible with morphisms between them. This can be expressed
as follows.

Proposition 7.37. For 1 ≤ m ≤ n fixed, there is a 2-category whose 0-cells are
n-monoidal categories, 1-cells are (m,n − m)-functors and 2-cells are morphisms
between them.

Proof. This follows from Propositions 6.52 and 6.57. �

Recall that the Cartesian product of n-monoidal categories is also a n-monoidal
category. It is straightforward to check that this operation turns the 2-category of
Proposition 7.37 into a monoidal 2-category (not to be confused with a 2-monoidal
category). A part of the check involved is stated explicitly as a proposition below.
It generalizes Proposition 3.6.

Proposition 7.38. If F : C → D and F ′ : C′ → D′ are monoidal functors both of
the same type, then

(F ,F ′) : C× C′ → D× D′

is also a monoidal functor of the same type.

For any functor F : C → D, let Fop : Cop → Dop denote the same functor on
the opposite categories. Recall that if C is a n-monoidal category, then so is Cop

with the order of the monoidal structures reversed.
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Proposition 7.39. Let C and D be n-monoidal categories. If F : C → D is a
monoidal functor of type (i, j) with i+ j = n, then Fop : Cop → Dop is a monoidal
functor of type (j, i).

This generalizes Proposition 3.7.

7.8.2. n-strong monoidal functor. Let F be a (m,n − m)-functor for which
all m lax structures are strong and all n−m colax structures are costrong. Since
strong and costrong are equivalent notions, F can be viewed as a (i, n− i)-functor
for any 0 ≤ i ≤ n. In this situation, we say that F is n-strong.

A 1-strong functor is the same as a strong, or equivalently, a costrong func-
tor. A 2-strong functor is the same as a strong-strong, or strong-costrong, or
costrong-costrong functor (the three notions are equivalent). This was discussed in
Section 6.8.4. The case of 3-strong functors was discussed in Section 7.5.3.

Recall that a strong n-monoidal category is equivalent to a symmetric monoidal
category. It follows that a n-strong functor between strong n-monoidal categories
is the same as a braided strong functor between symmetric monoidal categories.

7.8.3. Monoids and monoidal functors. Higher monoids and higher monoidal
functors relate to each other in two ways. First, a higher monoid is same as a higher
monoidal functor from the one-arrow category. Second, a higher monoidal functor
induces a functor between categories of higher monoids. The precise statements are
given below. This generalizes the discussion in Section 3.4.

Proposition 7.40. A (i, j)-monoid in C is same as a (i, j)-functor from the one-
arrow category I to C.

Let A be a (i, j)-monoid in C. The corresponding (i, j)-functor, denoted FA,
sends the unique object in I to A, and its structure morphisms are defined using
the structure morphisms of A.

Recall that C[i,j] denotes the (n− j + i− 1)-monoidal category obtained from
a n-monoidal category C by deleting the monoidal structures from ⋄i to ⋄j both
inclusive.

Proposition 7.41. Let F be a (m,n−m)-functor between C and D. Further, let

0 ≤ i− 1 ≤ m ≤ j ≤ n.

Then F induces a monoidal functor

(7.11) (n−jMoni−1(C[i,j]), ⋄i, . . . , ⋄j) −→ (n−jMoni−1(D[i,j]), ⋄i, . . . , ⋄j)

of type (m− i+ 1, j −m).

The categories in (7.11) are as constructed in Proposition 7.31. Setting i− 1 =
m = j yields: A (m,n − m)-functor F between n-monoidal categories C and D

induces a functor
n−mMonm(C) −→ n−mMonm(D)

between the categories of (m,n−m)-monoids.

Proposition 7.42. Let F and G be (m,n − m)-functors between C and D. A
morphism F ⇒ G of (m,n−m)-functors induces a morphism of (m− i+1, j−m)-
functors between the categories in (7.11).
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Remark 7.43. Propositions 7.31, 7.41 and 7.42 say that the 2-categories of Propo-
sition 7.37, one for the indices 1 ≤ m ≤ n and the other for the indices 1 ≤
m− i+ 1 ≤ j − i+ 1, are related by a 2-functor.

7.8.4. Lower monoidal functors in a higher monoidal category. Recall that
a 3-monoidal category contains bilax and double (co)lax functors as a part of its
structure. The latter are monoidal functors between 2-monoidal categories. In
the same vein, any higher monoidal category contains monoidal functors involving
fewer number of monoidal structures. Details follow.

Let (C, ⋄1, . . . , ⋄n) be a n-monoidal category. Recall that C[i,i] stands for the
(n− 1)-monoidal category obtained from C by deleting the i-th monoidal structure
⋄i. In this situation:

Proposition 7.44. For 1 ≤ i ≤ n,

⋄i : (C× C)[i,i] → C[i,i] (A,B) 7→ A ⋄i B Ii : I→ C[i,i] ∗ 7→ Ii

are functors of (n− 1)-monoidal categories of type (i− 1, n− i).

In view of Proposition 7.40, the second statement can be rephrased by saying
that the unit object Ii is a monoid of type (i− 1, n− i) in C[i,i].

7.8.5. An iterative description of higher monoidal functors. We now give
an iterative description of a higher monoidal functor. This generalizes the discussion
of Section 7.5.2.

Let C and D be n-monoidal categories and suppose there is a functor F between
them such that

F : C[i,i] → D[i,i] is of type (i− 1, n− i), and (F , γ) : (C, ⋄i)→ (D, ⋄i) is lax.

Consider the following diagrams.

(C× C)[i,i]
⋄i //

F×F

��

C[i,i]

F

��

(D× D)[i,i] ⋄i
//

γ

6>uuuuuuuuuuuuu

uuuuuuuuuuuuu
D[i,i]

C[i,i]

F

!!D
DD

DD
DD

DD
DD

D

I

Ii

??������������
Ii

//

γ0

KS

D[i,i]

By Proposition 7.44, all functors involved in these diagrams are of type (i−1, n−i).

Proposition 7.45. In the above setup,

F is of type (i, n− i) ⇐⇒ γ and γ0 are morphisms of (i− 1, n− i)-functors.

A similar statement can be given by replacing the lax structure γ by a colax
structure.

7.8.6. Adjunctions of monoidal functors. Recall the notion of lax-lax and
colax-colax adjunctions from Section 3.9.2. We now extend these notions to higher
monoidal functors.

Let C and D be n-monoidal categories and let

C

F
%%

G

ee D

be an adjunction.
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Definition 7.46. Let F and G be functors of type (m,n−m). We say that they
form an adjunction of type (m,n−m) if the unit and counit of the adjunction are
morphisms of (m,n−m)-functors.

A (1, 0)-functor is same as a lax functor. Further, a (1, 0)-adjunction is the same
as a lax-lax adjunction. Similarly, a (0, 1)-adjunction is the same as a colax-colax
adjunction.

Proposition 7.47. If F and G form a (m,n −m)-adjunction between C and D,
then they induce a (m− i+ 1, j −m)-adjunction between the categories in (7.11).

Proof. This follows from Remark 7.43. �

Example 7.48. Let C and D be symmetric monoidal categories and let (F ,G) be a
braided lax-lax adjunction between them. By viewing C and D as n-monoidal cat-
egories, it follows from the discussion in Example 7.36 that (F ,G) is an adjunction
of type (n, 0) between them.

Now consider the diagrams

C

F
%%

G

ee D, Mon(C)
F

%%

G

ee Mon(D), and Monco(C)
F

%%

G

ee Monco(D).

If the first adjunction is braided lax-lax, then Proposition 7.47 along with the above
discussion implies that the second and the third adjunctions are also braided lax-
lax.

Similar statements apply with lax replaced by colax.

7.9. Higher monoidal categories viewed as pseudomonoids

We began this chapter with 3-monoidal categories. These were defined as cat-
egories with three monoidal structures equipped with certain structure maps satis-
fying a list of axioms. It is natural to ask: How do we know that the list of axioms
for this definition is complete? In other words, is there a systematic procedure
which will give us the list of axioms, rather than our having to guess it? The same
question can be asked about higher monoidal categories and functors between them.

The goal of this section is to answer the latter question.

7.9.1. Iterations of the lax and colax constructions. Monoidal 2-categories
hold the key to the problem. The first step in the solution was taken in Section 6.11
where we showed that 2-monoidal categories and the three types of functors between
them can be understood in terms of the lax and colax constructions on monoidal
2-categories. Recall that these constructions are denoted by l(−) and c(−).

We claim that by iterating these constructions further, one can systematically
construct higher monoidal categories and the different types of functors between
them. In other words, Figure 6.2 can be extended indefinitely leading to a categor-
ical version of Pascal’s triangle. This is shown in Figure 7.1. A precise statement
is given in Proposition 7.49.

The triangle is divided into rows. We count from the top starting with zero.
The n-th row of the triangle has (n + 1) entries. We index them by (i, j) with
i+ j = n and j running from 0 to n increasing from left to right. The 2-category
appearing in the (i, j) entry is as follows: 0-cells are n-monoidal categories, 1-cells
are (i, j)-functors, and 2-cells are morphisms of (i, j)-functors. We refer to this
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Figure 7.1. The lax-colax hierarchy of higher monoidal categories.

2-category as Cat(i, j). The 2-category Cat(0, 0) is Cat. Its 0-cells are 0-monoidal
categories, or simply categories, 1-cells are (0, 0)-functors, or simply functors, and
2-cells are morphisms of functors, or natural transformations.

Proposition 7.49. The lax construction applied to the 2-category Cat(i, j) yields
the 2-category Cat(i+ 1, j) while the colax construction yields Cat(i, j + 1).

The proof has an inductive flavor. Accordingly, we start at the top and work our
way down. The first two iterations were understood in Propositions 6.72 and 6.75.
The first step of the third iteration is as follows.

Proposition 7.50. A pseudomonoid in llCat or lcCat or ccCat is the same as a
3-monoidal category.

Proof. The proof proceeds along the same lines as Proposition 6.73, so we
will be brief. Let us first consider a pseudomonoid in lcCat. To start with, we
require an object in lcCat. This is a 2-monoidal category, which for definiteness, we
call (C, ⋄, ·). Next, we require bilax functors

⋆ : (C× C, ⋄, ·)→ (C, ⋄, ·) and J : I→ (C, ⋄, ·),

where I is the one-arrow category. This gives us the missing structure morphisms,
such as the interchange law for ⋄ and ⋆, as well as all the 3-monoidal category
axioms. This is the content of item (ii) of Proposition 7.3. The remaining require-
ments ensure that (C, ⋄, ⋆) and (C, ⋆, ·) are also 2-monoidal categories. It is clear
that for this part, one is essentially reusing the arguments of Proposition 6.73.

For a pseudomonoid in llCat, we start with (C, ⋄, ⋆) while for a pseudomonoid
in ccCat, we start with (C, ⋆, ·). These choices ensure uniformity of notation. The
proof then proceeds the same way; we make use of the remaining two items of
Proposition 7.3. �

The further cases of Proposition 7.49 are fairly straightforward and there are no
new axioms left to uncover. One of the ingredients in the proof is Proposition 7.45.

Remark 7.51. In Pascal’s triangle, there are
(
n
i

)
paths from (0, 0) to (i, n−i). This

then is the number of ways to define Cat(i, n− i) iteratively. It is also the number
of ways to define a (i, n− i) functor iteratively. For example, there is only way to
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Cat = (Categories, functors, natural transformations)

��

(Monoidal categories, strong functors, –)

��

(Braided monoidal categories, braided strong functors, –)

��

(Symmetric monoidal categories, braided strong functors, –)

Figure 7.2. The strong hierarchy of higher monoidal categories.

define a double (co)lax functor but two ways to define a bilax functor iteratively
(Proposition 6.65). The analogous remark for (i, n − i)-monoids was made at the
end of Section 7.7; the n = 3 is shown in full detail in Proposition 7.15.

Note that all 2-categories in the n-th row of the triangle have the same 0-
cells, namely n-monoidal categories. It follows that a n-monoidal category can be
interpreted as a pseudomonoid in n different ways. This was shown explicitly for
n = 2 and n = 3 in Propositions 6.73 and 7.50.

7.9.2. Iterations of the strong construction. Recall that there is a strong
version of the lax and colax constructions on monoidal 2-categories. Joyal and
Street [184, Remark 5.1] studied the iterations of the strong construction on Cat.
The result is shown in Figure 7.2. One sees that braided monoidal categories emerge
from this construction but not bilax functors. Another noteworthy feature is that
the iterations stabilize and one does not see anything new after symmetric monoidal
categories. For related facts, see [28, Section V] and [32].

From our present point of view, Figure 7.2 may be regarded as a degenerate
version of Figure 7.1 in which all entries in a given row get identified. This is
substantiated by the results of Sections 6.3 and 7.2.

7.10. Contragredience for higher monoidal categories

In this section, we generalize the contragredient construction of Section 6.12
to higher monoidal categories. The generalization is rather straightforward and we
present it here for completeness.

7.10.1. Contravariant monoidal functors. Let F : C → D be a contravariant
functor. Now let C and D be n-monoidal categories. We say that F is contravariant
n-strong if

F : Cop → D, or equivalently, F : C→ Dop

is n-strong. Now let n = 2m. We say that F is a contravariant (m,m)-functor if

F : Cop → D, or equivalently, F : C→ Dop

is of type (m,m). (The equivalence used in the second definition follows from
Proposition 7.39.)

7.10.2. Contragredient of higher monoidal categories. Now let

C

∗
%%

∗

ee C′
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be a contravariant adjoint equivalence of categories, as in (3.44).
Let, say (C, ⋄, ⋆), be a 2-monoidal category. In Section 6.12, we explained how

the above functors can be used to turn C′ into a 2-monoidal category. We denoted
it by (C′, ⋆∨, ⋄∨) and called it the contragredient of C.

Now, let (C, ⋄, ⋆, ·) be a 3-monoidal category. By applying the previous con-
struction to each of the 2-monoidal categories

(C, ⋄, ⋆), (C, ⋄, ·) and (C, ⋆, ·)

yields the 2-monoidal categories

(C′, ⋆∨, ⋄∨), (C′, ·∨, ⋄∨) and (C′, ·∨, ⋆∨).

These when put together yield a 3-monoidal category

(C′, ·∨, ⋆∨, ⋄∨).

We call this the contragredient of (C, ⋄, ⋆, ·). It is now clear this construction can
be applied to any higher monoidal category.

Proposition 7.52. The functors

(C, ⋄1, . . . , ⋄n)
∗

%%

∗

ee (C′, ⋄∨n , . . . , ⋄
∨
1 )

are contravariant n-strong.

The proof is straightforward.

7.10.3. Contragredient of monoidal functors. Consider the situation

F∨ : C
∗ // C′ F // D′ ∗ // D

as in (3.45). For a natural transformation θ : F ⇒ G, let θ∨ : G∨ ⇒ F∨ denote the
induced natural transformation.

Proposition 7.53. Let C′ and D′ be n-monoidal categories. If F : C′ → D′ is a
monoidal functor of type (m,n − m), then F∨ : C → D is a monoidal functor of
type (n−m,m).

Further, if θ : F ⇒ G is a morphism of (m,n−m)-functors, then θ∨ : G∨ ⇒ F∨

is a morphism of (n−m,m)-functors.

We elaborate further on the above construction; the n = 2 case was explained
in Proposition 6.80. The categories C and D are given the n-monoidal structures
contragredient to those of C′ and D′. The m colax structures of F∨ are constructed
from the m lax structures of F , as in Proposition 3.102. Similar statement holds
for the n−m lax structures of F∨. The proof makes use of Proposition 7.52.

7.10.4. Self-duality. We now work in the situation where C = C′ and where this
category is equipped with a self-adjoint ∗ functor.

Definition 7.54. A n-monoidal category (C, ⋄1, . . . , ⋄n) is self-dual if

id : (C, ⋄1, . . . , ⋄n)→ (C, ⋄∨n , . . . , ⋄
∨
1 )

is a n-strong equivalence.

Definition 7.55. Let C and D be self-dual 2m-monoidal categories. A (m,m)-
functor F : C→ D is self-dual if F∨ ∼= F as (m,m)-functors.
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Proposition 7.56. A self-dual (m,m)-functor induces a self-dual functor on the
corresponding categories of (m,m)-monoids. In particular, it preserves self-dual
(m,m)-monoids.

The proof of the first claim is straightforward. The second claim follows from
the first by Proposition 3.107.

Definition 7.57. Let C and D be self-dual 2m-monoidal categories, and let F : C→
D be a (m,m)-functor. A natural transformation θ : F ⇒ F∨ of (m,m)-functors is
self-dual if θ∨ ∼= θ.
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Hopf Monoids in Species





CHAPTER 8

Monoidal Structures on Species

We now enter the world of species. The category of species may be regarded
as an analogue of the category of graded vector spaces, the former possessing more
structure than the latter. Graded vector spaces were discussed in detail in Chap-
ter 2. Standard material on species is reviewed in Section 8.1; this includes defi-
nitions of the Hadamard, Cauchy and substitution tensor products on species. Of
particular importance for us is the Cauchy product and any reference to monoids
in species is with respect to this product. In Sections 8.2–8.5 we discuss monoids
and Hopf monoids in species, along with a first few examples.

We also consider species with special properties or with additional structure.
These include set species, linearized species, and species with restrictions in Sec-
tion 8.7, connected and positive species in Section 8.9, and species with up-down
operators in Section 8.12. Coradical filtrations of positive comonoids are discussed
in Section 8.10. In addition to the tensor products, there are a number of interesting
operations on species. We discuss duality of species in Section 8.6, and derivatives
of species in Section 8.11.

In Section 8.8, we interpret bimonoids in species as bilax monoidal functors.
This is different from the interpretation of a bimonoid (in any braided monoidal cat-
egory) as a bilax functor from the one-arrow category (Section 3.4.1). Further, this
interpretation is specific to species, the corresponding result for graded bialgebras
does not hold. We will see a few instances of this kind in this chapter.

The dual of a species allows us to define the dual of a Hopf monoid. In Sec-
tion 8.13 we make use of an interchange law between the Hadamard and Cauchy
products to give a construction of self-dual Hopf monoids in species. We also re-
formulate this result in the language of 2- and 3-monoidal categories.

8.1. Species

Good treatments on species can be found in the original work of Joyal [181] or
the book by Bergeron, Labelle and Leroux [40], whose notation for the most part
we follow. Kelly [197] gave an early detailed discussion of the basic operations on
the category of species. In some form, espèces de structures appear in the work of
Ehresmann [115, Chapter II].

8.1.1. Definition. Let k be a field of arbitrary characteristic. Consider the fol-
lowing categories:

• Set, whose objects are arbitrary sets and whose morphisms are arbitrary
maps between sets;
• Set×, whose objects are finite sets and whose morphisms are bijections

between finite sets;

235
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• Vec, whose objects are vector spaces over k and whose morphisms are
linear maps between vector spaces.

Definition 8.1. A set species is a functor

Set× −→ Set.

A vector species is a functor
Set× −→ Vec.

A morphism between species p and q is a natural transformation between the
functors p and q.

More generally, one can consider species with values on an arbitrary category
C, as in Example A.13. We are mainly interested in vector species, and we shall
refer to them simply as species.

We write Sp for the category of species. Given a species p, we denote the image
of a finite set I by p[I] and say that p[I] is the space of p-structures on the set I,
or the I-component of p.

Thus, a species consists of a family of vector spaces p[I], one for each finite set
I, together with linear maps

p[σ] : p[I]→ p[J ],

one for each bijection σ : I → J , such that

p[idI ] = idp[I] and p[τσ] = p[τ ]p[σ]

whenever I
σ
−→ J

τ
−→ K are composable bijections. It follows that the map p[σ] is

an isomorphism with inverse p[σ−1].
Similarly, a morphism of species f : p→ q consists of a family of linear maps

fI : p[I]→ q[I],

one for each finite set I, such that for each bijection σ : I → J , the diagram

(8.1)

p[I]
fI //

p[σ]

��

q[I]

q[σ]

��

p[J ]
fJ

// q[J ]

commutes. The map fI is the I-component of f . When p is understood, we let

idI : p[I]→ p[I]

denote the identity of p[I]. These are the components of the identity map of p.

Definition 8.2. A species p is finite-dimensional if for every finite set I, the space
p[I] is finite-dimensional. It is of finite support if p[I] = 0 for all but finitely many
cardinalities |I|.

Most, but not all, of the concrete examples of species discussed in this mono-
graph are finite-dimensional. Few are of finite support.

Warning. We make no notational distinction between the category of all species
and the full subcategory of finite-dimensional species. The notation Sp refers to
either one or the other depending on the context.
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We write [n] as a shorthand for {1, 2, . . . , n} and p[n] for p[{1, 2, . . . , n}]. In
particular, [0] = ∅.

Let Sn be the symmetric group on n letters; S0 is the group with one element.
Each element π of Sn induces a map p[π] : p[n]→ p[n]. This turns p[n] into a left
Sn-module. We denote the action of π ∈ Sn on x ∈ p[n] by p[π](x) or, when there
is no risk of confusion, simply by π(x).

Up to isomorphism, the species p can be recovered from the sequence of spaces

p[0],p[1],p[2], . . . ,

together with the structure of Sn-module on each p[n]; see [40, Exercise 1.1.6].
From this point of view, a morphism from the species p to the species q is a family
of morphisms p[n]→ q[n] of Sn-modules, one for each n.

Example 8.3. We give two basic examples of species. They will accompany us
throughout the rest of Part II as they illustrate our main constructions.

• exponential species: E[I] := k for all I. We let ∗I denote the element
1 ∈ k = E[I].
• linear order species: L[I] is the k-span of the set of linear (total) orders

on I. By convention, L[∅] = k. We write

l = l1|l2| · · · |ln ∈ L[I]

to denote the linear order l on the set I = {l1, . . . , ln} for which

l1 < · · · < ln.

Many more examples can be found in [40, Chapter 1.1] and throughout this mono-
graph, particularly in Chapters 12 and 13.

8.1.2. Monoidal structures. There are a variety of monoidal structures on the
category of species Sp. One of the simplest is given by the addition operation on
species. It is defined by

(8.2)
(p + q)[I] := p[I]⊕ q[I],

(p + q)[σ] := p[σ]⊕ q[σ]

on a finite set I and a bijection σ : I → J . This defines a functor p+q : Set× → Vec,
that is, a species. This operation gives rise to a monoidal category (Sp,+), with
the zero species serving as the unit object. This species, which we denote simply
by 0, has

0[I] = 0

for every finite set I.

Remark 8.4. The species p+q is both the categorical product and the categorical
coproduct of p and q in Sp. This follows from Proposition A.10, item (iii) since
direct sum is the categorical (co)product in Vec and it is a special case of (co)limit.

The other monoidal structures on species that we consider are defined below
and summarized in Table 8.1. The corresponding analogues for the category of
graded vector spaces can be found in Table 2.1.

The units are as follows. The exponential species E is defined in Example 8.3.
The species 1 and X, characteristic of the empty set and singletons respectively,
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Table 8.1. Monoidal structures on species.

Name Tensor product Unit

Cauchy · 1

Hadamard × E

Substitution ◦ X

are defined by

1[I] :=

{
k if I is empty,

0 otherwise,
X[I] :=

{
k if I is a singleton,

0 otherwise.
(8.3)

One can define decorated versions of the above species as follows. For any
vector space V , let

1V [I] :=

{
V if I is empty,

0 otherwise,
XV [I] :=

{
V if I is a singleton,

0 otherwise.
(8.4)

The decorated version of the exponential species is defined by

(8.5) EV [I] := V ⊗I ,

where the right-hand side is the unordered tensor product of V over I. Letting
V = k recovers the previous definitions.

Definition 8.5. Let p and q be two species. Define new species p · q, p× q, and
p ◦ q as follows. For any finite set I,

(p · q)[I] :=
⊕

I=S⊔T

p[S]⊗ q[T ];(8.6)

(p× q)[I] := p[I]⊗ q[I];(8.7)

(p ◦ q)[I] :=
⊕

X⊢I

p[X ]⊗

(⊗

S∈X

q[S]

)
.(8.8)

We refer to these operations as the Cauchy product, the Hadamard product,
and the substitution of species, in the order (8.6)–(8.8), by analogy with the op-
erations for graded vector spaces defined in Section 2.1.1. The following remarks
complement their definition.

• In the Cauchy product (8.6), the sum is over all ordered decompositions
of I into disjoint subsets S and T . Thus, if |I| = n, there are 2n terms in
the direct sum.
• A bijection σ : I → J gives rise to maps

p[S]⊗ q[T ]
p[σ|S ]⊗p[σ|T ]
−−−−−−−−−→ p[σ(S)] ⊗ q[σ(T )],

where σ|S denotes the restriction of σ to S. This turns p ·q into a functor
Set× → Vec, that is, a species. A similar remark applies to the other
operations.
• In the substitution product (8.8), the sum is over all partitionsX of I, that

is, collections of disjoint nonempty subsets of I whose union is I. There
is more information on set partitions in Section 10.1.2. This definition of
p ◦ q applies only when q[∅] = 0 and we will use it only in this situation.
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The general definition of the substitution product (when q[∅] is arbitrary)
is discussed fully in Section B.4.

Each of the operations (8.6)–(8.8) defines a monoidal structure on the category
of species, with units as shown in Table 8.1. The resulting monoidal categories are
denoted

(Sp, ·), (Sp,×) and (Sp, ◦).

Warning. To obtain a monoidal category using the unit X of (8.3) and the sub-
stitution product as defined in (8.8), one must either restrict to the category of
positive species (Section B.1), or use the whole category of species but modify the
definition of (8.8) as done in Section B.4.

The monoidal categories (Sp, ·) and (Sp,×) are braided, and in fact symmetric.
The symmetry p · q→ q · p has components

p[S]⊗ q[T ]→ q[T ]⊗ p[S], x⊗ y 7→ y ⊗ x.

The symmetry p × q → q × p is defined similarly. The substitution operation is
not braided.

The operations (8.6)–(8.8) can be defined for set species as well. We return to
this point in Section 8.7.1.

8.1.3. Monoids and comonoids. The notions of monoid and comonoid in a
general monoidal category are recalled in Definition 1.9. For the monoidal categories
of species discussed above, they are as follows.

A monoid in (Sp, ◦) is an operad, while a comonoid in (Sp, ◦) is a cooperad.
We point out a technicality. There is a variant of the substitution product, and it
is comonoids with respect to this variant that we call cooperads. These ideas are
discussed in full detail in Appendix B.

A monoid in (Sp,×) is a functor Set× → Alg, where Alg is the category of
algebras over k. Similarly, a comonoid in (Sp,×) is a functor Set× → Coalg, where
Coalg is the category of coalgebras over k.

Monoids and comonoids in (Sp, ·) are of central importance to our work. We
do not reserve a special name for these objects, but sometimes refer to them simply
as (co)monoids in species. We begin their study in Section 8.2.

An equivalent notion to that of monoids in (Sp, ·) was first introduced by Bar-
ratt [33], who called them twisted algebras. The term “twisted” appears in various
contexts and is frequently given other meanings in the literature. For this reason,
we do not employ this terminology.

Monoids in (Sp, ·) (or twisted algebras) appear in the work of Joyal [182],
Fresse [136, Section 1.2.10], Stover [346] and in the work of Patras with Livernet,
Reutenauer, and Schocker [234, 291, 292, 293]. The relevance of these objects to
recent work relating Hopf algebras to combinatorics was first pointed out in [291],
and independently by the authors of this monograph.

8.2. Monoids and comonoids in species

From now on we focus our attention on (Sp, ·), the monoidal category of species
under the Cauchy product. In this section we discuss the notion of (co)monoid in
(Sp, ·) in explicit terms. We employ the notations of Table 8.2 to denote various
related categories.
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Table 8.2. Categories of (co)monoids in species.

Category Description

Mon(Sp, ·) Monoids

Comon(Sp, ·) Comonoids

Monco(Sp, ·, β) Commutative monoids
coComon(Sp, ·, β) Cocommutative comonoids

It will often be understood that the Cauchy product is the monoidal structure
under consideration. In this case, we may simply write Mon(Sp) for the category
of monoids in (Sp, ·), and similarly for the other categories.

8.2.1. Monoids. We make the notion of monoid in (Sp, ·) explicit. A monoid in
(Sp, ·) is a species p together with morphisms of species

µ : p · p→ p and ι : 1→ p

which are associative and unital in the sense of Definition 1.9. The product µ entails
one linear map for each finite set I

⊕

I=S⊔T

p[S]⊗ p[T ]→ p[I].

This in turn consists of a map

(8.9) µS,T : p[S]⊗ p[T ]→ p[I]

for each decomposition I = S ⊔ T . These are the components of the product. The
unit ι consists of a single linear map

ι∅ : k→ p[∅],

the other components necessarily being 0. The following diagrams must commute:
for each bijection σ : I → J and each decomposition I = S ⊔ T of a finite set I into
disjoint subsets S and T ,

(8.10)

p[S]⊗ p[T ]
µS,T

//

p[σ|S ]⊗p[σ|T ]

��

p[I]

p[σ]

��

p[σ(S)]⊗ p[σ(T )] µσ(S),σ(T )

// p[J ];

for each decomposition I = R ⊔ S ⊔ T ,

(8.11)

p[R]⊗ p[S]⊗ p[T ]
idR⊗µS,T

//

µR,S⊗idT

��

p[R]⊗ p[S ⊔ T ]

µR,S⊔T

��

p[R ⊔ S]⊗ p[T ] µR⊔S,T

// p[R ⊔ S ⊔ T ];
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finally, for each I,

p[I]

HHHHHHHHHHHHH

HHHHHHHHHHHHH
p[∅]⊗ p[I]

µ∅,I
oo

k⊗ p[I]

ι∅⊗idI

OO
p[I]⊗ p[∅]

µI,∅
// p[I]

vvvvvvvvvvvvv

vvvvvvvvvvvvv

p[I]⊗ k.

idI⊗ι∅

OO

(8.12)

We now make the notion of a commutative monoid explicit (Definition 1.17).
Let

(8.13) βS,T : p[S]⊗ q[T ]→ q[T ]⊗ p[S], x⊗ y 7→ y ⊗ x

be the components of the braiding.
A monoid (p, µ, ι) in (Sp, ·) is commutative if diagram

(8.14)

p[S]⊗ p[T ]

µS,T
%%K

KKKKKKKKK

βS,T
// p[T ]⊗ p[S]

µT,S
yyssssssssss

p[I]

commutes, for all decompositions I = S ⊔ T .

Morphisms of monoids in monoidal categories are discussed in Section 1.2.1.
Let

f : (p, µ, ι)→ (p′, µ′, ι′)

be a morphism of monoids in (Sp, ·). Explicitly, it consists of a map

fI : p[I]→ p′[I]

for each finite set I, satisfying (8.1) and such that the following diagrams commute.

p[S]⊗ p[T ]
fS⊗fT //

µS,T

��

p′[S]⊗ p′[T ]

µ′
S,T

��

p[I]
fI

// p′[I]

p[∅]
f∅ // p′[∅]

k

ι∅

``AAAAAAAA ι′∅

==||||||||

(8.15)

8.2.2. Comonoids. A comonoid in (Sp, ·) is a species p together with morphisms
of species

∆: p→ p · p and ǫ : p→ 1

which are coassociative and counital. Let

(8.16) ∆S,T : p[I]→ p[S]⊗ p[T ]

be the components of the coproduct; there is one for each disjoint decomposition
I = S ⊔ T . Let

ǫ∅ : p[∅]→ k

be the only nonzero component of the counit. Replacing µS,T by ∆S,T and ι∅
by ǫ∅ (and reversing those arrows) in diagrams (8.10)–(8.15) makes the notion of
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comonoid (cocommutative comonoid, morphism of comonoids) in (Sp, ·) explicit.
For instance, coassociativity is expressed by the commutativity of the diagram

p[I]
∆R⊔S,T

//

∆R,S⊔T

��

p[R ⊔ S]⊗ p[T ]

∆R,S⊗idT

��

p[R]⊗ p[S ⊔ T ]
idR⊗∆S,T

// p[R]⊗ p[S]⊗ p[T ]

for each decomposition I = R ⊔ S ⊔ T .

Remark 8.6. If p is a (co)monoid in (Sp, ·), then p[∅] is a (co)algebra, whose
structures maps are the ∅-components of the structure maps of p. Indeed, replacing
all finite sets for the empty set in axioms (8.11) and (8.12) yields the monoid axioms
for p[∅].

In addition, a (co)algebra structure on a vector space V is the same as a
(co)monoid structure on the species 1V defined in (8.4).

Analogous statements hold for (co)commutative (co)monoids and Lie monoids
(Definition 1.25).

8.2.3. Modules, comodules, and cohomology. Recall the notions of (bi)mod-
ule over a monoid and (bi)comodule over a comonoid from Section 1.2.3. Let us
briefly consider a bicomodule m over a comonoid c in (Sp, ·). The structure maps

χ1 : m→ c ·m and χ2 : m→m · c

consist of components

χ1
S,T : m[I]→ c[S]⊗m[T ] and χ2

S,T : m[I]→m[S]⊗ c[T ]

for each decomposition I = S ⊔ T . The bicomodule axioms translate into the
commutativity of certain diagrams, including the following.

m[I]
χ2
R⊔S,T

//

χ1
R,S⊔T

��

m[R ⊔ S]⊗ c[T ]

χ1
R,S⊗idT

��

c[R]⊗m[S ⊔ T ]
idR⊗χ2

S,T

// c[R]⊗m[S]⊗ c[T ]

The remaining axioms take similar forms.

Cohomology of a (co)monoid with coefficients in a bi(co)module can be defined
in the same manner as for (co)algebras (Section 2.7.6). Indeed, let c and m be as
above. We define

Cn(c,m) := HomSp(m, c·n)

and

dn : Cn(c,m)→ Cn+1(c,m)

by

dn(f) := (id · f)χ1 +

n∑

i=1

(−1)i(id·(i−1) ·∆ · id·(n−i))f + (−1)n+1(f · id)χ2.
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Table 8.3. Categories of bimonoids in species.

Category Description

Bimon(Sp, ·, β) Bimonoids

Hopf(Sp, ·, β) Hopf monoids

An element f ∈ Cn(c,m) has components

fS1,...,Sn : m[I]→ c[S1]⊗ · · · ⊗ c[Sn],

one for each decomposition I = S1 ⊔ · · · ⊔ Sn. The components of the differential
of f are as follows. Given a decomposition I = S1 ⊔ · · · ⊔ Sn+1, we have

(8.17) dn(f)S1,...,Sn+1

= (idS1 ⊗ fS2,...,Sn+1)χ
1
S1,S2⊔···⊔Sn+1

+

n∑

i=1

(−1)i(idS1 ⊗ · · · ⊗ idSi−1 ⊗∆Si,Si+1 ⊗ idSi+2 ⊗ · · · ⊗ idSn+1)

fS1,...,Si−1,Si⊔Si+1,Si+2,...,Sn+1

+ (−1)n+1(fS1,...,Sn ⊗ idSn+1)χ
2
S1⊔···⊔Sn,Sn+1

.

8.3. Bimonoids and Hopf monoids in species

We discuss bimonoids and Hopf monoids in species, along with examples. These
notions are defined in the general context of braided monoidal categories in Defini-
tions 1.10 and 1.15. We employ the notations of Table 8.3 (and more generally of
Table 1.1) to denote various related categories.

The Cauchy product and the braiding will often be understood from the con-
text. In that case, we may simply write Bimon(Sp) and Hopf(Sp) for the category of
bimonoids and Hopf monoids in (Sp, ·, β), and similarly for other related categories.

8.3.1. Bimonoids. A bimonoid in (Sp, ·, β) is a species h together with a monoid
structure (µ, ι) and a comonoid structure (∆, ǫ) such that ∆ and ǫ are morphisms
of monoids, or equivalently, µ and ι are morphisms of comonoids. Below we make
these conditions explicit in terms of the maps µS,T , ∆S,T and βS,T of (8.9), (8.16)
and (8.13).

Lemma 8.7. Let S⊔T = I = S′⊔T ′ be two decompositions of a finite set I. Then
there are unique subsets A,B,C, and D of I such that

S = A ⊔B, T = C ⊔D, S′ = A ⊔ C, T ′ = B ⊔D.

Proof. The only choice is A = S∩S′, B = S∩T ′, C = T ∩S′, D = T ∩T ′. �

Figure 8.1 illustrates the situation.
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Figure 8.1. The sets of Lemma 8.7.

The compatibility conditions in Definition 1.10 take the following explicit form.
First, for any pair of decompositions S ⊔ T = I = S′ ⊔ T ′ of a finite set I, diagram

(8.18)

p[A]⊗ p[B]⊗ p[C]⊗ p[D]
idA⊗βB,C⊗idD

// p[A]⊗ p[C]⊗ p[B]⊗ p[D]

µA,C⊗µB,D

��

p[S]⊗ p[T ] µS,T
//

∆A,B⊗∆C,D

OO

p[I]
∆S′,T ′

// p[S′]⊗ p[T ′]

must commute, where A, B, C, and D are as in Lemma 8.7. In addition, diagrams

p[∅]⊗ p[∅]
ǫ∅⊗ǫ∅ //

µ∅,∅

��

k⊗ k

p[∅]
ǫ∅

// k

k
ι∅ // p[∅]

∆∅,∅

��

k⊗ k
ι∅⊗ι∅

// p[∅]⊗ p[∅]

(8.19)

p[∅]
ǫ∅

  A
AA

AA
AA

A

k

ι∅

>>}}}}}}}}
k

(8.20)

must commute as well.
These diagrams are respectively equivalent to those in (1.9), (1.10) and (1.11).

The assertion regarding diagram (1.9) deserves argument: going around the top of
this diagram we encounter the composite

⊕
p[A]⊗ p[B]⊗ p[C]⊗ p[D]

idA⊗βB,C⊗idD
//
⊕

p[A]⊗ p[C]⊗ p[B]⊗ p[D]

L

µA,C⊗µB,D

��

p[S]⊗ p[T ]

L

∆A,B⊗∆C,D

OO

⊕
p[A ⊔ C]⊗ p[B ⊔D].

The first two direct sums are over all A, B, C, and D such that S = A ⊔ B and
T = C ⊔ D. The third direct sum is over all A, B, C, and D which in addition
to these conditions satisfy S′ = A ⊔ C and T ′ = B ⊔D. According to Lemma 8.7
there is only one such choice, so our claim is justified.
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Remark 8.8. For the first time here we encounter an important difference between
bimonoids in species and graded bialgebras. Namely, diagram (1.9) dictates the
following compatibility condition for the components of the structure maps of a
graded bialgebra:

∆n,m(x · y) =
∑

a,b,c,d

∆a,b(x)∆c,d(y),

where

n+m = |x|+ |y|

and a, b, c, and d are related to n, m, and the degrees of x and y by

a+ c = n, b+ d = m, a+ b = |x|, c+ d = |y|.

In contrast to the situation of Lemma 8.7, these four equations do not determine
a, b, c, and d uniquely. This dissimilarity between bimonoids in species and graded
bialgebras will persist in a number of constructions and the reason will always be
the failure of Lemma 8.7 when sets are replaced by numbers; see Remarks 8.36
and 8.65.

8.3.2. Hopf monoids. A Hopf monoid in (Sp, ·, β) is a bimonoid along with a
map s : h → h (the antipode) which is the inverse of the identity map in the con-
volution algebra Hom(h,h); see Definitions 1.13 and 1.15. Explicitly, this requires
the existence of a linear map

sI : h[I]→ h[I]

for each finite set I, commuting with bijections, and such that for each nonempty
set I the composites

h[I]
⊕∆S,T
−−−−→

⊕

S⊔T=I

h[S]⊗ h[T ]
idS⊗sT−−−−−→

⊕

S⊔T=I

h[S]⊗ h[T ]
⊕µS,T
−−−−→ h[I](8.21)

h[I]
⊕∆S,T
−−−−→

⊕

S⊔T=I

h[S]⊗ h[T ]
sS ⊗idT−−−−−→

⊕

S⊔T=I

h[S]⊗ h[T ]
⊕µS,T
−−−−→ h[I](8.22)

are zero, and for which the following diagrams commute

h[∅]⊗ h[∅]
id∅⊗s∅ // h[∅]⊗ h[∅]

µ∅,∅

��

h[∅] ǫ∅
//

∆∅,∅

OO

k ι∅
// h[∅]

h[∅]⊗ h[∅]
s∅ ⊗id∅ // h[∅]⊗ h[∅]

µ∅,∅

��

h[∅] ǫ∅
//

∆∅,∅

OO

k ι∅
// h[∅].

(8.23)

These conditions are equivalent to diagrams (1.13).

General results on Hopf monoids (Section 1.2) apply to Hopf monoids in species.
In particular, when viewed as a map s : h → hop,cop, the antipode is a morphism
of Hopf monoids (Proposition 1.22); if h is (co)commutative, then s2 = id.

Remark 8.9. As in Remark 8.6, if h is a (bi, Hopf) monoid in species, then h[∅] is
a (bi, Hopf) algebra, whose structures maps are the ∅-components of the structure
maps of h. In particular, if s is the antipode of h, then the map s∅ is the antipode of
the Hopf algebra h[∅], in view of axioms (8.23). Also, a (bi, Hopf) algebra structure
on a vector space V is the same as a (bi, Hopf) monoid structure on the species 1V
defined in (8.4).
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The following result states that a Hopf monoid h is equivalent to a bimonoid
h for which h[∅] is a Hopf algebra.

Proposition 8.10. Let h be a bimonoid in species.

(i) Suppose h is a Hopf monoid with antipode s. Then h[∅] is a Hopf algebra
with antipode s∅.

(ii) Suppose h[∅] is a Hopf algebra and let s0 denote its antipode. Then h is
a Hopf monoid with antipode s given by

s∅ := s0

and

(8.24) sI :=
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)kµ∅,S1,∅,...,∅,Sk,∅

(
s0⊗idS1 ⊗ s0⊗ · · · ⊗ s0⊗idSk ⊗ s0

)

∆∅,S1,∅,...,∅,Sk,∅

for any nonempty finite set I.

The sum is over all ordered decompositions of I into nonempty subsets Si.
Notice this makes the sum finite (k can be at most |I|). The map

(8.25) µS1,...,Sk : h[S1]⊗ · · · ⊗ h[Sk]→ h[I]

is a component of the k − 1 iteration of the product of h. These are well-defined
by associativity (8.11). Similarly, the map

(8.26) ∆S1,...,Sk : h[I]→ h[S1]⊗ · · · ⊗ h[Sk]

is a component of the iterated coproduct. Similar remarks apply to the maps

µ∅,S1,∅,...,∅,Sk,∅ : h[∅]⊗ h[S1]⊗ h[∅]⊗ · · · ⊗ h[∅]⊗ h[Sk]⊗ h[∅]→ h[I]

and

∆∅,S1,∅,...,∅,Sk,∅ : h[I]→ h[∅]⊗ h[S1]⊗ h[∅]⊗ · · · ⊗ h[∅]⊗ h[Sk]⊗ h[∅].

Proof. Part (i) was discussed in Remark 8.9. To prove (ii), we verify the
antipode axioms directly. Axioms (8.23) hold by hypothesis. Below we check (8.21);
axiom (8.22) holds by symmetry.

Choose a decomposition I = S ⊔ T . Using (8.24) for sT we have that

µS,T (idS ⊗ sT )∆S,T

=
∑

T1⊔···⊔Tk=T
Ti 6=∅ k≥1

(−1)kµS,T
(
idS ⊗ µ∅,T1,∅,...,∅,Tk,∅

)
(
idS ⊗ s0⊗idT1 ⊗ s0⊗ · · · ⊗ s0⊗idTk ⊗ s0

)
(
idS ⊗∆∅,T1,∅,...,∅,Tk,∅

)
∆S,T

=
∑

T1⊔···⊔Tk=T
Ti 6=∅ k≥1

(−1)kµS,∅,T1,∅,...,∅,Tk,∅

(
idS ⊗ s0⊗idT1 ⊗ s0⊗ · · · ⊗ s0⊗idTk ⊗ s0

)

∆S,∅,T1,∅,...,∅,Tk,∅.

We used associativity and coassociativity.
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Suppose now that S = ∅ (and T = I). The previous formula gives us

µ∅,I(id∅ ⊗ sI)∆∅,I

=
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)kµ∅,∅,S1,∅,...,∅,Sk,∅(
id∅ ⊗ s0⊗idS1 ⊗ s0⊗ · · · ⊗ s0⊗idSk ⊗ s0

)

∆∅,∅,S1,∅,...,∅,Sk,∅

=
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)kµ∅,S1,∅,...,∅,Sk,∅(
(µ∅,∅(id∅ ⊗ s0)∆∅,∅)⊗ (idS1 ⊗ s0⊗ · · · ⊗ s0⊗idSk ⊗ s0)

)

∆∅,S1,∅,...,∅,Sk,∅

=
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)kµ∅,S1,∅,...,∅,Sk,∅((
ι∅ǫ∅

)
⊗
(
idS1 ⊗ s0⊗ · · · ⊗ s0⊗idSk ⊗ s0

))

∆∅,S1,∅,...,∅,Sk,∅

=
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)kµS1,∅,...,∅,Sk,∅

(
idS1 ⊗ s0⊗ · · · ⊗ s0⊗idSk ⊗ s0

)
∆S1,∅,...,∅,Sk,∅.

We used (co)associativity, the antipode axiom for s0, and (co)unitality.
Finally, in the sum ∑

S⊔T=I

µS,T (idS ⊗ sT )∆S,T ,

consider the terms for which S 6= ∅ and the term for which S = ∅. Using the
previously obtained expressions for µS,T (idS⊗sT )∆S,T and µ∅,I(id∅⊗sI)∆∅,I we see
that all terms cancel. More precisely, the summand corresponding to (T1, . . . , Tk)
in the former cancels with the term corresponding to (S, T1, . . . , Tk) in the latter.
Thus, the sum is zero and axiom (8.21) holds. �

The first cases (|I| ≤ 2) of (8.24) are as follows.

s{a} =− µ∅,{a},∅

(
s∅⊗id{a} ⊗ s∅

)
∆∅,{a},∅,

s{a,b} =− µ∅,{a,b},∅

(
s∅⊗id{a,b} ⊗ s∅

)
∆∅,{a,b},∅

+ µ∅,{a},∅,{b},∅

(
s∅⊗id{a} ⊗ s∅⊗id{b} ⊗ s∅

)
∆∅,{a},∅,{b},∅

+ µ∅,{b},∅,{a},∅

(
s∅⊗id{b} ⊗ s∅⊗id{a} ⊗ s∅

)
∆∅,{b},∅,{a},∅.

8.4. Antipode formulas for connected bimonoids

Connected bimonoids in species are analogous to graded connected bialgebras
(Section 2.3.2). We define them in Section 8.4.1. Connected species are studied
separately later, in Section 8.9. Connected bimonoids are necessarily Hopf monoids.
For this special class of Hopf monoids there are explicit and recursive formulas for
the antipode which we discuss in Sections 8.4.2 and 8.4.3.

8.4.1. Connected bimonoids.

Proposition 8.11. Let h be a bimonoid in species. The following are equivalent
statements.

(i) dimh[∅] = 1.

(ii) The composite h[∅]
ǫ∅
−→ k

ι∅
−→ h[∅] is the identity.
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(iii) ι∅ and ǫ∅ define inverse isomorphisms of bialgebras k ∼= h[∅].

Proof. The equivalence between (i) and (ii) holds in view of (8.20). The
equivalence with (iii) follows from diagrams (8.19). �

Definition 8.12. A connected bimonoid is a bimonoid in species that verifies the
conditions in Proposition 8.11.

A connected bimonoid is necessarily a Hopf monoid. This result can be de-
duced in a number of ways. It follows from either Proposition 8.10, or from the
antipode formulas given in Propositions 8.13 or 8.14 below. It also appears in [346,
Proposition 4.4].

8.4.2. Takeuchi’s antipode formula.

Proposition 8.13. Let h be a connected bimonoid. For any nonempty finite set
I, the I-component of the antipode is

(8.27) sI =
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)kµS1,...,Sk∆S1,...,Sk .

The sum is over all ordered decompositions of I into nonempty subsets Si. The
maps µS1,...,Sk and ∆S1,...,Sk are as in (8.25) and (8.26). By definition, both maps
µI and ∆I (the case k = 1 of the preceding) are the identity of h[I].

Proof. This result is a special case of Proposition 8.11. Indeed, since h is
connected, the bialgebra h[∅] = k is a Hopf algebra with antipode equal to idk.
In addition, axioms (8.12) imply that the iterated product µ∅,S1,∅,...,∅,Sk,∅ identifies
with µS1,...,Sk , and similarly for the iterated coproducts. Thus, formula (8.24)
becomes (8.27).

We provide another proof. The map ιǫ− id : h → h is locally nilpotent in the
convolution algebra Hom(h,h), hence id is invertible and its inverse is

∑

k≥0

(ιǫ− id)∗k.

The ∅-component of the map ιǫ− id is zero; therefore, the right-hand side of (8.27)
is the I-component of the previous sum. �

The preceding result is analogous to Takeuchi’s expression for the antipode of
a connected Hopf algebra (2.55), and for this reason we refer to it as Takeuchi’s
antipode formula.

Many examples of Hopf monoids are discussed in this monograph. They are
usually connected, so (8.27) applies. The formula yields an expression for the
antipode as an alternating sum in which many cancellations often take place. By
contrast, we are often interested in an explicit formula for the structure constants of
the antipode on a given basis. Obtaining such a formula requires understanding of
these cancellations; this is often a challenging combinatorial problem. This problem
will be solved for many but not all of the examples discussed in this monograph.
Often, we will employ Takeuchi’s formula as the first step in the derivation of such
explicit antipode formulas.
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8.4.3. Milnor and Moore’s antipode formulas.

Proposition 8.14. Let h be a connected bimonoid. Define maps sI and s′I by
induction on the cardinality of I as follows. Let

s∅ = s′∅

be the identity of h[∅] = k, and for |I| > 0,

sI := −
∑

S⊔T=I
T 6=I

µS,T (idS ⊗ sT )∆S,T ,(8.28)

s′I := −
∑

S⊔T=I
S 6=I

µS,T (s′S ⊗idT )∆S,T .(8.29)

Then

s = s′

and this map is the antipode of h.

Proof. By construction, s satisfies (8.21) and is therefore a right inverse of
id in Hom(h,h). Similarly, s′ is the left inverse of id, and then s = s′ is the
antipode. �

Proposition 8.14 provides two recursive formulas for the components of the
antipode of a connected Hopf monoid. It is analogous to the result of Milnor and
Moore for the antipode of a graded connected Hopf algebra given in (2.56). For
this reason, we refer to (8.28) and (8.29) as Milnor and Moore’s antipode formulas.
Note, however, that these formulas demand the same work as directly verifying the
antipode axioms (8.21)–(8.23).

8.5. The simplest Hopf monoids

We define a Hopf monoid structure on the exponential species and on the species
of linear orders (Example 8.3). The dual Hopf monoids are discussed in Section 8.6.
These are simple but important examples. They are the basic building blocks for
the more elaborate Hopf monoids studied in Chapter 12. Additional interesting
examples are discussed in Chapter 13.

We define the Hopf monoid structure maps using the notation of Section 8.2.
We fix a decomposition I = S ⊔ T and describe the components

h[S]⊗ h[T ]
µS,T
−−−→ h[I] and h[I]

∆S,T
−−−→ h[S]⊗ h[T ]

of the product and coproduct in each case. The unit and counit are determined by
the maps

k
ι∅−→ h[∅]

ǫ∅−→ k.

The Hopf monoids below are connected (Definition 8.12), so ι∅ and ǫ∅ are the inverse
bijections that identify 1 ∈ k with the distinguished basis element of h[∅], while
s∅ is the identity of h[∅]. For this reason, we do not mention the unit or counit
structure maps. The existence of the antipode is guaranteed by Proposition 8.10.
We provide explicit formulas for the antipode.
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Example 8.15. For the exponential species E, the product and coproduct simply
identify the basis elements on each side:

E[S]⊗E[T ]→ E[I] E[I]→ E[S]⊗ E[T ]

∗S ⊗ ∗T 7→ ∗I ∗I 7→ ∗S ⊗ ∗T .

The antipode is given by

s(∗I) = (−1)|I| ∗I .

This can be verified in various ways. One may directly check (8.21)–(8.23). One may
also start by noting that for a singleton set I, these conditions give s(∗I) = −(∗I).
The fact that the antipode is a morphism of monoids s : h → hop then gives the
general formula.

Finally, it may also be derived from Takeuchi’s formula (8.27) by using
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)k = (−1)|I|,

or equivalently
∑

s1+···+sk=n
si≥1 k≥1

(
n

s1, . . . , sk

)
(−1)k = (−1)n.

This is a well-known identity. It provides the reduced Euler characteristic of the
Coxeter complex of type An−1, which is a sphere of dimension n−2. See Section 10.3
for information on the Coxeter complex.

Example 8.16. For the species L of linear orders, the product and coproduct are:

L[S]⊗ L[T ]→ L[I] L[I]→ L[S]⊗ L[T ]

l1 ⊗ l2 7→ l1 · l2 l 7→ l|S ⊗ l|T .

The linear order l1 · l2 is the ordinal sum or concatenation of the linear orders l1
and l2: it is the linear order on I whose restrictions to S and T are l1 and l2, and in
which the elements of S precede the elements of T . In other words, if l1 = l11| · · · |l

s
1

and l2 = l12| · · · |l
t
2, then l1 · l2 = l11| · · · |l

s
1|l

1
2| · · · |l

t
2. The linear order l|S is the

restriction of the linear order l on I to the subset S. We refer to the coproduct of
L as deshuffling.

For example, for the decomposition I = {l, a, k} ⊔ {s, h,m, i},

l|a|k ⊗ s|h|m|i 7→ l|a|k|s|h|m|i, m|i|k|s|h|l|a 7→ k|l|a⊗m|i|s|h.

The antipode is given by

s(l) = (−1)|I| l,

where l is the linear order on I obtained by reversing the linear order l. As for E,
this can be verified in various ways. One may directly check (8.21)–(8.23). One may
also start by noting that for a singleton set I, these conditions give s(∗I) = −(∗I).
The fact that the antipode is a morphism of monoids s : h → hop then gives the
general formula. Finally, it may also be derived from Takeuchi’s formula; we discuss
this below.

Applying Takeuchi’s formula (8.27) to L yields

s(l) =
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)k l|S1 · · · l|Sk .
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The right-hand side involves concatenations of restrictions of the linear order l. To
reconcile this with our earlier formula, one has to show that for any pair of linear
orders l and l′ on I, we have

(8.30)
∑

(S1,...,Sk)
k≥1

(−1)k =

{
(−1)|I| if l′ = l

0 otherwise,

where the sum if over all ordered decompositions I = S1 ⊔ · · · ⊔ Sk into nonempty
subsets for which l|S1 · · · l|Sk = l′. Such decompositions are partially ordered by
refinement and in this manner they form a Boolean poset. They are decompositions
into intervals of l′, and on each interval the orders l and l′ must agree. The thinnest
one is always the decomposition into singleton intervals. If l′ 6= l, then there are
longer intervals of l′ on which l and l′ agree. The result then follows by inclusion-
exclusion.

The map π : L→ E given by

(8.31) L[I]
πI−→ E[I], l 7→ ∗I

for every linear order l ∈ L[I], is a morphism of Hopf monoids.
The Hopf monoid E is both commutative and cocommutative. The Hopf mon-

oid L is cocommutative but not commutative. Moreover, E is the free commutative
monoid on one generator and L is the free monoid on one generator. Here, “one
generator” is understood as the unit species X. In this sense, beyond the trivial
Hopf monoid 1, E and L are the simplest examples of Hopf monoids.

The precise meaning of freeness and cofreeness is discussed in detail in Chap-
ter 11. The universal properties of E and L are given in Examples 11.11, 11.15
and 11.28.

Example 8.17. Consider the Cauchy product of the exponential species with itself,

E·2 := E ·E.

According to (8.6), there is one basis element in E·2[I] for each decomposition
I = S ⊔ T , or equivalently, for each subset S of I. For this reason, we refer to E·2

as the species of subsets, and we regard E·2[I] as the vector space with basis the
set of all subsets of I.

Since the monoidal category (Sp, ·) is symmetric, the Cauchy product of two
Hopf monoids is again a Hopf monoid (Section 1.2.7). Therefore, there is a Hopf
monoid structure on the species of subsets. Explicitly, the structure maps are

E·2[S]⊗E·2[T ]→ E·2[I] E·2[I]→ E·2[S]⊗E·2[T ]

S′ ⊗ T ′ 7→ S′ ⊔ T ′ I ′ 7→ (I ′ ∩ S)⊗ (I ′ ∩ T )

where S′, T ′ and I ′ denote subsets of S, T and I, respectively.
The antipode of E·2 is

s(I ′) = (−1)|I|I ′

for any subset I ′ of I.
The Hopf monoid structure on L·2 can be similarly described in terms of dis-

positions into two blocks (Section 10.1.3). Higher products E·k and L·k and mixed
products such as E · L yield additional examples of Hopf monoids.
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Example 8.18. Let EV be the species of (8.5). If B is a basis of V , then the set
of all functions I → B is a basis of V ⊗I . Let I = S ⊔ T be a decomposition. The
species EV is a Hopf monoid with product

EV [S]⊗EV [T ]→ EV [I] f1 ⊗ f2 7→ f,

where f ∈ EV [I] is the function such that f |S = f1 and f |T = f2, and coproduct

EV [I]→ EV [S]⊗EV [T ] f 7→ f |S ⊗ f |T .

The antipode is given by

sI(f) = (−1)|I|f for f ∈ EV [I].

Note that Ek = E, the Hopf monoid defined in Example 8.15. If V is two-
dimensional, then EV

∼= E·2, the Hopf monoid of Example 8.17. If (e1, e2) is
an ordered basis for V , then the isomorphism sends f : I → {e1, e2} to the subset
f−1({e1}).

The Hopf monoid EV is discussed in [33] and [291, Section 4] and referred to
as the tensor algebra, in view of the fact that EV [n] = V ⊗n.

8.6. Duality in species

We now discuss the monoidal properties of the duality functor on species along
with examples. The analogous discussion for graded vector spaces is given in Sec-
tion 2.1.4. A general framework for duality is given in Section 3.10; the duality
functor on species is an example of the ∗ functor (3.44).

8.6.1. The duality functor.

Definition 8.19. For a species q, define the contragredient or dual species q∗ by

q∗[I] := q[I]∗,

where q[I]∗ denotes the dual vector space of q[I].

A bijection I → J induces an invertible linear map q∗[J ]→ q∗[I], whose inverse
gives a map q∗[I] → q∗[J ]. This turns q∗ into a functor Set× → Vec, that is, a
species. Moreover, a map p→ q of species induces a map q∗ → p∗ of species. This
defines a functor

(−)∗ : Spop → Sp

called the duality functor.
On finite-dimensional species, the duality functor is an adjoint equivalence. In

particular, it is an involution.
For a species q arising as the linearization of a set species, the vector space q[I]

has a canonical basis. For the dual species q∗, we use superscript ∗ to denote the
dual basis elements of q[I]∗. When q is finite-dimensional, the map q→ q∗ which
sends a basis element to the corresponding dual basis element is an isomorphism of
species.
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8.6.2. Interaction with monoidal structures. In this section we assume that
all species are finite-dimensional.

The Hadamard product on species plays a special role in the context of duality.
Namely, there are canonical morphisms of species

(8.32) E→m×m∗ and m∗ ×m→ E

that turn (Sp,×, ∗) into a monoidal category with duals. As a consequence:

Proposition 8.20. For any species p and q, there are natural isomorphisms

(p× q)∗ ∼= p∗ × q∗ and (p∗)∗ ∼= p.

It follows that

(−)∗ : (Spop,×, βop)→ (Sp,×, β)

is a bistrong monoidal functor.

The duality functor also behaves well with respect to the Cauchy product. We
have canonical isomorphisms

(p · q)∗ ∼= p∗ · q∗

which turn

(−)∗ : (Spop, ·, βop)→ (Sp, ·, β)

into a bistrong monoidal functor. We also employ the terminology that (−)∗ is a
contravariant bistrong monoidal functor on (Sp, ·). Therefore by Proposition 3.50,
(−)∗ maps monoids in (Sp, ·) to comonoids in (Sp, ·) and viceversa, and Hopf mon-
oids to Hopf monoids preserving antipodes. If h is a Hopf monoid, the resulting
Hopf monoid h∗ is called the dual of h.

Definition 8.21. A Hopf monoid h in (Sp, ·) is self-dual if h ∼= h∗ as Hopf monoids.

We now discuss the duals of the Hopf monoids in Examples 8.15, 8.16 and 8.18.

Example 8.22. The Hopf monoid E (the exponential species) is self-dual. The
isomorphism E→ E∗ is given by

E[I]→ E∗[I], ∗I 7→ (∗I)
∗,

where ∗I is the basis element of E[I]. Note that the map does not involve any
coefficient; hence self-duality of E holds over a field of any characteristic.

Example 8.23. Let V be a finite-dimensional vector space. The previous example
generalizes as follows:

(EV )∗ = EV ∗ .

This holds in any characteristic. Since V ∼= V ∗, EV is self-dual (though noncanoni-
cally). If, in addition, V is equipped with a basis, then the self-duality is canonical.

Example 8.24. Fix a decomposition I = S ⊔ T . The product for the dual L∗ of
the Hopf monoid of linear orders is given by

L∗[S]⊗ L∗[T ]→ L∗[I]

l∗1 ⊗ l
∗
2 7→

∑

shuffles

l∗.

The sum is over all shuffles l of l1 and l2. These are extensions of the linear orders
l1 on S and l2 on T to a linear order l on I.
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The coproduct is given by

L∗[I]→ L∗[S]⊗ L∗[T ]

l∗ 7→

{
(l|S)∗ ⊗ (l|T )∗ if S is an initial segment of l,

0 otherwise.

The subset S is an initial segment of l if all its elements precede the elements of T
according to l. We also say in this case that T is a final segment of I. Note that in
this case l is the concatenation of l|S and l|T . We refer to the coproduct of L∗ as
deconcatenation.

The Hopf monoid L∗ is commutative but not cocommutative.

The dual π∗ : E∗ → L∗ of the morphism (8.31) is given by

(8.33) E∗[I]
π∗
I−→ L∗[I], (∗I)

∗ 7→
∑

l∗,

where the sum is over all linear orders on I.
One can check that the map

L→ L∗ l′ 7→
∑

l∗,

where the sum is over all linear orders l on I, is a morphism of Hopf monoids. It is
clear that on any I-component, the image of this map is one-dimensional and hence
it is far from being an isomorphism. In fact, it factors through the morphism (8.31)
to yield the following commutative diagram of Hopf monoids.

(8.34)

L //

π

��

L∗

E
id

// E∗

π∗

OO

8.7. Set species and linearized species

Recall the notion of set species from Definition 8.1. Consider the linearization
functor

k(−) : Set −→ Vec,

which sends a set to the vector space with basis the given set. Composing a set
species P with the linearization functor gives a (vector) species, which we denote
kP. A linearized species is a species p of the form kP for some set species P. We will
often follow a similar notational convention when dealing with linearized species.
For instance, there are set species E and L (defined below) whose linearizations are
the species E and L of Example 8.3.

In this section we focus on set species and the associated linearized (vector)
species; particularly on linearized (co, bi)-monoids in (Sp, ·). Linearized species
exhibit certain remarkable features. We highlight a couple of them.

• A construction of Méndez defines a canonical partial order on each set
(E ·M)[I] for any linearized connected monoid m = kM. This is reviewed
in Section 8.7.6.
• If in addition m is a comodule-monoid, then (E·M)[I] carries the structure

of a left regular band. This is explained in Section 8.7.7.
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Linearized comonoids and bimonoids play a central role in the cohomology
theory of species. This is discussed later in Section 9.6.

8.7.1. Monoidal structures on set species. In Section 8.1.2 we discussed a
number of monoidal structures on the category of (vector) species. The opera-
tions (8.6)–(8.8) can also be defined for set species, as follows.

Let P and Q be two set species. New species P ·Q, P×Q, and P◦Q are defined
by

(P ·Q)[I] :=
∐

I=S⊔T

P[S]×Q[T ],(8.35)

(P×Q)[I] := P[I]×Q[I],(8.36)

(P ◦Q)[I] :=
∐

X⊢I

P[X ]×

(
∏

S∈X

Q[S]

)
,(8.37)

on any finite set I. In the right-hand sides, × denotes the Cartesian product of
sets.

We employ the same terminology for these operations as for the analogous op-
erations for (vector) species: Cauchy, Hadamard, and substitution. Similar remarks
to those following Definition 8.5 apply in this situation. For instance, the definition
of P ◦Q applies only when Q[∅] = ∅.

Each operation defines a monoidal structure on the category of set species. The
unit objects 1, E, and X are defined by

1[I] :=

{
{∗} if I is empty,

0 otherwise,
E[I] := {∗}, X[I] :=

{
{∗} if I is a singleton,

0 otherwise.

Comparing with Definition 8.5 we see that

(8.38) k(p · q) ∼= kp · kq, k(p× q) ∼= kp× kq, k(p ◦ q) ∼= kp ◦ kq.

Also,
k1 = 1, kE = E, kX = X.

Thus, the linearization functor is strong monoidal for each operation.

Remark 8.25. The Hadamard product is the categorical product in the category
of set species. This follows from the dual of item (iii) in Proposition A.10, since
Cartesian product is the categorical product in the category of sets. Explicitly,
given set species P1 and P2, let

pi : P1 × P2 → Pi, i = 1, 2,

be the morphisms of set species whose I-component is the canonical projection
P1[I]× P2[I]→ Pi[I]. Then, given a set species Q and morphisms of species

fi : Q→ Pi,

there is a unique morphism
f : Q→ P1 × P2

such that
Q

f1

��~~
~~

~~
~~ f2

��
@@

@@
@@

@@

f

��

P1 Pp1
oo

p2
// P2
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commutes. The components of f are

Q[I]→ P1[I]× P2[I], x 7→
(
f1(x), f2(x)

)
.

Addition of set species is defined by

(P1 + P2)[I] := P1[I] ∐ P2[I],

where S ∐ T denotes the disjoint union of two arbitrary sets S and T . Addition is
the coproduct in the category of set species. Compare with Remark 8.4.

8.7.2. Linearized monoids and comonoids. Let P be a set species and p := kP
its linearization.

Consider the monoidal category of set species under the Cauchy product (8.35)
and assume that P is a monoid therein. Then p acquires a structure of monoid in
(Sp, ·) by linearization; in this situation we say that p is a linearized monoid.

Equivalently, p is a monoid in (Sp, ·) in such a way that the structure maps of
p preserve the basis species P: for any decomposition I = S ⊔ T , the maps

µS,T : p[S]⊗ p[T ]→ p[I] and ι∅ : k→ p[∅]

are the linearization of maps

P[S]× P[T ]→ P[I] and {∗} → P[∅].

Given x ∈ P[S] and y ∈ P[T ], let

(8.39) x · y ∈ P[I]

denote the image of x⊗ y under the multiplication µS,T : p[S]⊗p[T ]→ p[I]. Also,
let 1 ∈ P[∅] denote the image of 1 ∈ k under the unit map ι∅ : k → p[∅] (or
equivalently of ∗ under {∗} → P[∅]).

The monoid axioms (8.11)–(8.12) then acquire the familiar form

(8.40) x · (y · z) = (x · y) · z

for all decompositions I = R ⊔ S ⊔ T and x ∈ P[R], y ∈ P[S], z ∈ P[T ], and

(8.41) x · 1 = x = 1 · x

for all x ∈ P[I].
In particular, P[∅] is an ordinary monoid, and p[∅] = kP[∅] is its monoid algebra.

The situation for comonoids is slightly different. There are no nontrivial co-
monoids in the category of set species, since there are no maps to the unit object
other than from species concentrated on the empty set. There is nevertheless a
companion notion for comonoids to that of linearized monoids.

We say that a comonoid p in (Sp, ·) is linearized if the species p is linearized
(p = kP) and the structure maps of p preserve the basis species P. More precisely,
for any decomposition I = S ⊔ T , the maps

∆S,T : p[I]→ p[S]⊗ p[T ] and ǫ∅ : p[∅]→ k

are the linearization of maps

P[I]→ P[S]× P[T ] and P[∅]→ {∗}.

Given x ∈ P[I], we write

(8.42) ∆S,T (x) =: (x|S , x/S).
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We say that x|S ∈ P[S] and x/S ∈ P[T ] are the restriction of x to S and contraction
of S from x, respectively. The terminology is motivated by the example of matroids
(Section 13.8).

Coassociativity is equivalent to the identities

(8.43) (x|R⊔S)|R = x|R, (x|R⊔S)/R = (x/R)|S , x/R⊔S = (x/R)/S,

for any decomposition I = R ⊔ S ⊔ T and x ∈ P[I]. Counitality is equivalent to

(8.44) x|I = x = x/∅

for any x ∈ P[I].
In particular, it follows from (8.44) that for x ∈ P[∅] we have ∆∅,∅(x) = x⊗ x.

Thus, p[∅] = kP[∅] is the usual coalgebra of a set (Example 3.52).

8.7.3. Linearized bimonoids. Continue to assume that p = kP is a linearized
species. We say it is a linearized bimonoid if p is a bimonoid in (Sp, ·, β) and the
structure maps preserve the basis species P. The compatibility axiom (8.18) takes
the following form. Let I = S ⊔T = S′ ⊔T ′ be two decompositions, and A,B,C,D
the resulting intersections, as in Lemma 8.7. Then we must have

(8.45) x|A · y|C = (x · y)|S′ and x/A · y/C = (x · y)/S′

for all x ∈ P[S] and y ∈ P[T ]. The unit conditions (8.19)–(8.20) are all automatic;
in particular, the compatibility between ∆∅,∅ and ι∅ follows from (8.44).

A number of examples of bimonoids discussed in this monograph are linearized,
including those in Section 8.5. The dual (Section 8.6) of a linearized bimonoid is
in general not linearized.

8.7.4. Linearized comodules. Let p = kP be a linearized comonoid. Let m =
kM be a linearized species and assume that m is a right p-comodule (Section 8.2.3)
with structure map

χ : m→m · p.

We say that the comodule m is linearized if for each decomposition I = S ⊔ T , the
component χS,T is the linearization of a map

M[I]→ M[S]× P[T ].

As in (8.42), we write
χS,T (x) =: (x|S , x/S),

with x|S ∈ M[S] and x/S ∈ P[T ]. With this notation, coassociativity of χ is
equivalent to the conditions in (8.43) and counitality is equivalent to x|I = x for
all x ∈ M[I].

Suppose now that p is a linearized bimonoid. In this case, the category of
right p-comodules is monoidal (Section 1.2.3). Assume that m is a monoid in this
category, and that all its structure is linearized. We say in this case that m is
a linearized right comodule-monoid. The compatibility between the monoid and
comodule structures of m is then expressed by the conditions in (8.45).

8.7.5. Connected linearized species. Connected species and connected (co,
bi)-monoids are discussed later in Section 8.9.1. In the linearized setting, one can
say the following.

A linearized species p = kP is connected precisely if P[∅] is a singleton. If in
addition p is a linearized (co, bi)-monoid, then it is automatically connected as a
(co, bi)-monoid.
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8.7.6. A partial order associated to a linearized connected monoid. We
review an interesting construction of Méndez which appears in his thesis [269] and in
his work with Yang [271]. The language of this monograph allows us to formulate
this construction in simpler terms (in those references, the notion of monoid in
species is not used).

Let m = kM be a linearized monoid. Assume in addition that m is connected.
Let I be a finite set. Consider the set

(E ·M)[I] =
∐

I=S⊔T

E[S]×M[T ] =
∐

I=S⊔T

M[T ].

We view the elements of this set as pairs (x, T ) where T ⊆ I and x ∈ M[T ].
We define a partial order on (E · M)[I] as follows. Given x1 ∈ M[T1] and

x2 ∈ M[T2], we say that

(8.46) (x1, T1) ≤ (x2, T2)

if T1 ⊆ T2 and there is y ∈ M[T2 \ T1] such that x1 · y = x2.

(We used notation (8.39) for the product of the monoid m.) Briefly,

(x1, T1) ≤ (x2, T2) if x1 is a left divisor of x2.

This is indeed a partial order. Transitivity follows from (8.40), and antisymmetry
from (8.41) plus connectedness.

For the simplest example, consider the exponential species E = kE (Exam-
ple 8.15). Since there is only one structure on each finite set, the elements of
(E ·M)[I] can be identified with subsets of I. The partial order (8.46) is inclusion.
Thus, (E ·M)[I] is the Boolean poset 2I .

We will not dwell on this topic in this monograph, except for the discussion of
a related construction in Section 8.7.7 below. For other examples and applications,
see [269, 271].

There is a similar partial order to (8.46) defined in terms of right divisibility.
Left and right divisibility coincide if the monoid m is commutative.

8.7.7. An LRB associated to a linearized connected comodule-monoid.
A (unital) left regular band is an ordinary monoid (Σ, ∗) such that

(8.47) x ∗ y ∗ x = x ∗ y

for all x, y ∈ Σ.
The origin of left regular bands (LRBs) can be traced to Schützenberger [324]

and Klein-Barmen [201]. This notion plays a prominent role in the work of Brown
on random walks [70, 71]. More information can be found in [154, 294, 295] and [12,
Chapter 2].

Suppose now that p is a linearized bimonoid and m is a linearized right p-
comodule-monoid. We define a product ∗ on the set (E ·M)[I] as follows. Given
x1 ∈ M[T1] and x2 ∈M[T2], we set

(8.48) (x1, T1) ∗ (x2, T2) :=
(
x1 · (x2|T2\T1

), T1 ∪ T2

)
.

Above, we used notations (8.42) for the comodule structure map

M[T2]→ M[T2 \ T1]× P[T1 ∩ T2],

x2 7→ (x2|T2\T1
, x2/T2\T1

)
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and (8.39) for the product map

M[T1]×M[T2 \ T1]→ M[T1 ⊔ (T2 \ T1)] = M[T1 ∪ T2],

(x1, x2|T2\T1
) 7→ x1 · (x2|T2\T1

).

Proposition 8.26. In this situation,
(
(E · M)[I], ∗

)
is an ordinary monoid with

unit element (1, ∅). If in addition m is connected, then
(
(E ·M)[I], ∗

)
is an LRB.

Proof. We check associativity. We have
(
(x1, T1) ∗ (x2, T2)

)
∗ (x3, T3) =

(
(x1 · x2|T2\T1

) · x3|T3\T1∪T2
, T1 ∪ T2 ∪ T3

)
.

On the other hand,

(x1, T1) ∗
(
(x2, T2) ∗ (x3, T3)

)
= (x1, T1) ∗ (x2 · x3|T3\T2

, T2 ∪ T3)

= (x1 · (x2 · x3|T3\T2
)|T2∪T3\T1

, T1 ∪ T2 ∪ T3).

By (8.45) and (8.43),

(x2 ·x3|T3\T2
)|T2∪T3\T1

= (x2|T2\T1
) · (x3|T3\T2

|T3\T1∪T2
) = (x2|T2\T1

) · (x3|T3\T1∪T2
).

Together with (8.40), this implies associativity as needed.
We check unitality. We have

(1, ∅) ∗ (x, I) = (1 · x|I , I) = (x, I)

and

(x, I) ∗ (1, ∅) = (x · 1|∅, I) = (x, I),

in both cases by (8.44) and (8.41).
Finally, we check the LRB axiom (8.47), assuming connectedness. The first

calculation above implies

(x1, T1) ∗ (x2, T2) ∗ (x1, T1) = (x1 · x2|T2\T1
· x1|T1\T1∪T2

, T1 ∪ T2 ∪ T1).

But

x1|T1\T1∪T2
= x1|∅ = 1,

since m is connected. Hence,

(x1, T1) ∗ (x2, T2) ∗ (x1, T1) = (x1 · x2|T2\T1
), T1 ∪ T2) = (x1, T1) ∗ (x2, T2)

as needed. �

Associated to any LRB (Σ, ∗) there is a partial order on the set Σ defined
by [70, Section 2.2]

(8.49) x ≤ y if x ∗ y = y.

We now check that when applied to the LRB of Proposition 8.26, this construc-
tion recovers the partial order of Section 8.7.6.

Proposition 8.27. Suppose m is a linearized connected right p-comodule-monoid.
The partial order (8.49) associated to the LRB

(
(E · M)[I], ∗

)
coincides with the

partial order (8.46) associated to the connected monoid m.
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Proof. Suppose (x1, T1) ≤ (x2, T2) in (8.49). Then

(x2, T2) = (x1, T1) ∗ (x2, T2) =
(
x1 · (x2|T2\T1

), T1 ∪ T2

)
.

Hence,
T1 ⊆ T2 and x2 = x1 · (x2|T2\T1

).

In particular, x1 is a left divisor of x2 and (x1, T1) ≤ (x2, T2) in (8.46).

Conversely, suppose (x1, T1) ≤ (x2, T2) in (8.46). Then T1 ⊆ T2 and x1 · y = x2

for some y ∈ M[T2 \ T1]. By (8.44),

y|T2\T1
= y.

Hence,
(x1, T1) ∗ (y, T2 \ T1) = (x2, T2),

and by (8.47),

(x1, T1)∗ (x2, T2) = (x1, T1)∗ (x1, T1)∗ (y, T2 \T1) = (x1, T1)∗ (y, T2 \T1) = (x2, T2).

Thus, (x1, T1) ≤ (x2, T2) in (8.49). �

Example 8.28. Consider the species of linear orders L = kL. It is a linearized
connected bimonoid (Example 8.16). Any bimonoid may be viewed as a (right)
comodule-monoid over itself (the comodule structure map is the coproduct) and we
do so with L. Let us view a linear order l = l1| · · · |ln as a word without repeated
letters. The associated LRB

(
(E ·L)[I], ∗

)
can be described as follows. Its elements

are words whose letters are some of the elements of I and which do not contain
repeated letters. Given two such words l1 and l2, their product is obtained by first
removing all letters in l1 from l2 and then concatenating the resulting subword of
l2 at the end of l1.

It follows that
(
(E · L)[I], ∗

)
is the free LRB on the set I [70, Example 1.3].

We do not pursue this topic any further in this monograph.

8.7.8. Species with restrictions and linearized comonoids. A species with
restrictions is a contravariant functor from the category of finite sets with injections
as morphisms to the category of sets.

This terminology is due to Schmitt [322]. Equivalently, a species with restric-
tions is a presheaf on finite sets. Given a species with restrictions P, a finite set V
and a subset U , let

ρV,U : P[V ]→ P[U ]

denote the image under the functor P of the inclusion U →֒ V . We refer to it as a
restriction map. These maps satisfy the presheaf axioms

(8.50) ρV,UρW,V = ρW,U and ρU,U = idU

for any finite sets W ⊇ V ⊇ U .
Since an arbitrary injection equals a bijection followed by an inclusion, a species

with restrictions is equivalent to an ordinary species equipped with restriction maps
satisfying (8.50).

Let P be a species with restrictions and p = kP its linearization. Given a
decomposition I = S ⊔ T , define a linear map

∆S,T : p[I]→ p[S]⊗ p[T ] by x 7→ ρI,S(x) ⊗ ρI,T (x)

for x ∈ P[I]. Define ǫ∅ : p[∅] → k by sending all elements of P[∅] to 1. With this
structure, p is a linearized comonoid in (Sp, ·). Indeed, the comonoid axioms (8.43)
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and (8.44) follow from the presheaf axioms (8.50). Moreover, the comonoid p is
cocommutative.

We refer to the above as Schmitt’s comonoid construction (see Remark 8.34).

Conversely, suppose that p = kP is a linearized comonoid in (Sp, ·). Then,
using the notation (8.42), we may define restriction maps on p either by

ρ
(1)
V,U : p[V ]→ p[U ] by x 7→ x|U ,

or

ρ
(2)
V,U : p[V ]→ p[U ] by x 7→ x/V \U ,

for x ∈ P[V ]. Both ρ(1) and ρ(2) turn p into a species with restrictions: the presheaf
axioms (8.50) follow from (8.43) and (8.44).

If the comonoid p is cocommutative, then ρ(1) = ρ(2). In this case, (8.43)
and (8.44) are equivalent to the presheaf axioms (8.50).

Proposition 8.29. The following categories are equivalent.

(i) The category of species with restrictions.
(ii) The category of linearized cocommutative comonoids.
(iii) The category of linearized right E-comodules.
(iv) The category of linearized left E-comodules.

Proof. The equivalence between (i) and (ii) follows from the preceding dis-
cussion. The equivalence between (i) and either (iii) or (iv) follows along similar
lines. For instance, starting with a species P with restrictions, we define maps

χS,T : P[I]→ P[S]× E[T ], x 7→
(
ρI,S(x), ∗T ).

These turn p = kP into a linearized right E-comodule, and any such structure is
necessarily of this form. �

A similar discussion leads to the following result.

Proposition 8.30. The following categories are equivalent.

(i) The category of linearized comonoids.
(ii) The category of linearized E-bicomodules.

8.7.9. Monoids with restrictions and linearized bimonoids. Let Spr denote
the category of species with restrictions. The Cauchy product of two species with
restrictions is defined as for set species (8.35). It is again a species with restrictions
by defining

ρV,U : (P ·Q)[V ]→ (P ·Q)[U ]

as follows. For each decomposition V = S⊔T , on the subset P[S]×Q[T ] ⊆ (P·Q)[V ],
ρV,U is the map

P[S]×Q[T ]
ρS,S∩U×ρT,T∩U
−−−−−−−−−−→ P[S ∩ U ]×Q[T ∩ U ] ⊆ (P ·Q)[U ].

This defines the monoidal category (Spr, ·); the unit object is the set species 1.
A monoid P in (Spr, ·) is a monoid in the category of set species with respect

to the Cauchy product, equipped in addition with restriction maps such that for
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each U ⊆ V = S ⊔ T , the following diagram commutes.

(8.51)

P[S]× P[T ]
ρS,S∩U×ρT,T∩U

//

µS,T

��

P[S ∩ U ]× P[T ∩ U ]

µS∩U,T∩U

��

P[V ]
ρV,U

// P[U ]

This generalizes Schmitt’s notion of coherent exponential species with restrictions
[322, Section 3.3].

Let p be the linearization of a monoid P in (Spr, ·). Since P is a species with
restrictions, p is a linearized cocommutative comonoid. Since a monoid in set
species with respect to the Cauchy product is the same as a linearized monoid, p is
a linearized monoid. In addition, the commutativity of (8.51) is equivalent to the
compatibility axioms (8.45). We thus have the first part of the following result.

Proposition 8.31. The following categories are equivalent.

(i) The category of monoids in (Spr, ·).
(ii) The category of linearized cocommutative bimonoids.
(iii) The category of linearized right E-comodule-monoids.
(iv) The category of linearized left E-comodule-monoids.

Proof. The equivalence between (i) and (ii) follows from the preceding dis-
cussion, and the remaining follow as in Proposition 8.29. �

Similarly, we have the companion result to Proposition 8.30.

Proposition 8.32. The following categories are equivalent.

(i) The category of linearized bimonoids.
(ii) The category of linearized E-bicomodule-monoids.

Example 8.33. We know that E = kE and L = kL are linearized cocommutative
bimonoids. Hence by Proposition 8.31, E and L are monoids in (Spr, ·). The
restriction maps are:

ρV,U : E[V ]
∼=
−−→ E[U ] ∗V 7→ ∗U and ρV,U : L[V ]→ L[U ] l 7→ l|U ,

where l|U denotes the restriction of a linear order l on V to the subset U . One can
check directly that the products on E and L satisfy (8.51).

Remark 8.34. In [322, Section 3], Schmitt gave an interesting construction of coal-
gebras and bialgebras from certain species. Our constructions in Propositions 8.29
and 8.31 are a reformulation of Schmitt’s. The link to the original construction is
made later in Section 17.5.6.

8.8. Bimonoids as bilax monoidal functors

We now turn to some general properties of bimonoids in (Sp, ·). They are simple
but somewhat surprising in that they are specific to species; there are no analogous
properties satisfied by graded bialgebras. They are based on a fruitful observation
made to us by Chase. It involves the notion of bilax monoidal functors, which is
discussed in Section 3.1.
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8.8.1. Bimonoids as bilax monoidal functors. View the category Set× of finite
sets and bijections as a monoidal category under disjoint union. We use the notation
S ∐ T to distinguish it from S ⊔ T which is used when S and T are given to us as
disjoint subsets of a given set. View the category Vec of vector spaces as a monoidal
category under the ordinary tensor product ⊗. Both categories are symmetric.

Let p be a bimonoid in (Sp, ·) with structure maps µ and ∆. The species p is a
functor Set× → Vec and we may use the components of µ and ∆ to define natural
transformations

p[S]⊗ p[T ]
ϕS,T :=µS,T

// p[S ∐ T ] and p[S ∐ T ]
ψS,T :=∆S,T

// p[S]⊗ p[T ].

Here we use (8.9) and (8.16) with I = S ∐ T and we view S and T as disjoint
subsets of I. Similarly, we use ι and ǫ to define

k
ϕ0:=ι∅ // p[∅] and p[∅]

ψ0:=ǫ∅ // k.

The explicit description of the monoid axioms for (p, µ, ι) given in Section 8.2.1
shows that they are equivalent to the statement that (p, ϕ, ϕ0) : (Set×,∐)→(Vec,⊗)
is a lax monoidal functor. Similarly, the comonoid axioms for (p,∆, ǫ) are equivalent
to the statement that (p, ψ, ψ0) is a colax monoidal functor (Set×,∐) → (Vec,⊗).
The work in Section 8.3.1 shows that the corresponding statement for bimonoids
and bilax monoidal functors is also true (though less evident; see Remark 8.36
below). We state this next.

Proposition 8.35 (Chase). Let p : Set× → Vec be a species. The above con-
structions define equivalences between monoid (comonoid, bimonoid) structures in
(Sp, ·) on the species p and lax (colax, bilax ) monoidal structures on the functor

(8.52) p : (Set×,∐)→ (Vec,⊗).

Moreover, the bimonoid is connected if and only if the corresponding bilax monoidal
functor is normal.

Remark 8.36. There are similar equivalences between graded algebras (coalge-
bras) and certain lax (colax) monoidal functors, but not for graded bialgebras.
This is explained in detail in Example 3.18 and corresponds to the different behav-
ior between graded bialgebras and bimonoids in species discussed in Remark 8.8.
Ultimately, the reason for the failure for graded bialgebras is that Lemma 8.7 does
not hold if one replaces sets by numbers.

Let P be a set species and p = kP its linearization. Recall from Section 8.7.2
that p is a linearized monoid if and only if P is a monoid in the monoidal category of
set species. On the other hand, the analogous statements for linearized comonoids
and linearized bimonoids do not hold.

There is an analogue of Proposition 8.35 for set species which allows us to view
linearized (co, bi)monoids in a uniform manner and without reference to vector
spaces. We view Set× as a monoidal category under disjoint union, as above, and
Set as a monoidal category under Cartesian product.

Proposition 8.37. Let P be a set species. Then p is a linearized monoid (comon-
oid, bimonoid) if and only if

P: (Set×,∐)→ (Set,×)
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is a lax (colax, bilax) monoidal functor. Moreover, the linearized bimonoid is con-
nected if and only if the corresponding bilax monoidal functor is normal.

The proof is as for Proposition 8.35.

8.8.2. Properties of bimonoids. We can now use general results on bilax mon-
oidal functors to deduce properties of bimonoids in species that do not have a
parallel for graded bialgebras.

Corollary 8.38. Let p be a connected bimonoid in (Sp, ·). The following diagrams
involving the components of the product and coproduct of p are commutative.

(i) For any decomposition I = S ⊔ T ,

p[I]

∆S,T

$$I
IIIIIIII

p[S]⊗ p[T ]

µS,T
::uuuuuuuuu

idS⊗idT

// p[S]⊗ p[T ]

p[I]

∆T,S

$$I
IIIIIIII

p[S]⊗ p[T ]

µS,T
::uuuuuuuuu

βS,T

// p[T ]⊗ p[S]

(ii) For any decomposition I = R ⊔ S ⊔ T ,

p[R]⊗ p[S ⊔ T ]
idR⊗∆S,T

//

µR,S⊔T

��

p[R]⊗ p[S]⊗ p[T ]

µR,S⊗idT

��

p[R ⊔ S ⊔ T ]
∆R⊔S,T

// p[R ⊔ S]⊗ p[T ]

p[R ⊔ S]⊗ p[T ]
∆R,S⊗idT

//

µR⊔S,T

��

p[R]⊗ p[S]⊗ p[T ]

idR⊗µS,T

��

p[R ⊔ S ⊔ T ]
∆R,S⊔T

// p[R]⊗ p[S ⊔ T ]

Proof. This is Proposition 3.41 applied to the bilax monoidal functor (8.52).
This functor is normal because p is connected (Proposition 8.35). �

The diagrams in Corollary 8.38 can also be deduced directly from those in
Sections 8.2.1 and 8.3.1 expressing the definition of monoid, comonoid and bimonoid
in terms of components. For example, for the proof of the first diagram in (i), we
set B = C = ∅ in (8.18) and proceed from there. This is essentially unwinding the
proof of Proposition 3.41.

Example 8.39. For the bimonoid L of linear orders (Example 8.16), the properties
of Corollary 8.38 boil down to the following relations between concatenation and
restriction of linear orders:

(l1 · l2)|S = l1, (l1 · l2)|T = l2

for l1 ∈ L[S] and l2 ∈ L[T ], and more generally

(l1 · l2)|R⊔S = l1 · (l2|S), (l1 · l2)|T = l2|T
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for l1 ∈ L[R] and l2 ∈ L[S ⊔ T ], and

(l1 · l2)|R = l1|R, (l1 · l2)|S⊔T = (l1|S) · l2

for l1 ∈ L[R ⊔ S] and l2 ∈ L[T ].

The reader may enjoy verifying the properties of Corollary 8.38 for the other
(connected) bimonoids in Chapters 12 and 13.

8.8.3. Hopf monoids and Hopf lax functors. Let h be a bimonoid in (Sp, ·)
and

h : (Set×,∐)→ (Vec,⊗)

be the corresponding bilax monoidal functor. For each finite set I, let sI : h[I] →
h[I] be a linear map, commuting with bijections.

The condition for h to be a Hopf monoid with antipode s is different from the
one for h to be a Hopf lax functor with antipode s (Definition 3.54). To see this,
fix a decomposition (R,S, T ) of I. Then the composite map

h[R]⊗ h[S]⊗ h[T ]
idR⊗sS ⊗idT // h[R]⊗ h[S]⊗ h[T ]

µR,S,T

��

h[I]

∆R,S,T

OO

h[I]

is identity in the latter case by axiom (3.29). In the former case however, it is the
identity only after summing over all decompositions (R,S, T ) of I.

Proposition 8.40. Under the correspondence in Proposition 8.35, a Hopf lax func-
tor gives rise to a Hopf monoid.

Proof. If h is Hopf lax, then (3.32) implies that h[∅] is a Hopf algebra (since
∅ is the unit object in (Set×,∐)). Hence by Proposition 8.10, it follows that h is a
Hopf monoid (Of course, the two antipodes will be different). �

As an example, E is a Hopf lax functor with antipode s(∗I) = ∗I . Hence it is
also a Hopf monoid but the antipode is given by s(∗I) = (−1)|I|∗I .

The converse to Proposition 8.40 does not hold. Indeed, let h be any Hopf
monoid for which ∆R,S,T is not injective (this holds for most of our examples; take
L for a concrete example). Then the composite in the above diagram cannot be
the identity and hence h is not Hopf lax.

8.9. Connected and positive species

This section collects a number of simple but technical observations about the
categories of connected and positive species and monoids and Hopf monoids therein.
The concept of bistrong monoidal functors (Section 3.6) is relevant to this discus-
sion.

8.9.1. Connected species. A species q is connected if there is a specified iso-
morphism

(8.53) q[∅]
∼=
−−→ k.

Warning. Our use of the term connected differs from the one by Fresse [137, Sec-
tion 1.2.1].
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A morphism of connected species is a morphism of species q1 → q2 such that

q1[∅] //

∼=
!!C

CC
CC

CC
C

q2[∅]

∼=
}}{{

{{
{{

{{

k

commutes. Let Spo be the category of connected species. If p and q are connected,
then so is p · q, with (8.53) given by

(p · q)[∅] = p[∅]⊗ q[∅]
∼=
−→ k⊗ k ∼= k.

Further, the species 1 is connected in the obvious manner. This yields a monoidal
category (Spo, ·).

Definition 8.41. A connected monoid (comonoid, bimonoid) is a monoid (comon-
oid, bimonoid) in (Spo, ·).

It follows that a connected (co)monoid is the same as a (co)monoid in species
whose (co)unit map is an isomorphism. For a connected monoid, the isomor-
phism (8.53) coincides with ι−1

∅ , and for a connected comonoid with ǫ∅. For a

connected bimonoid, it coincides with both ǫ∅ and ι−1
∅ . This shows that the above

definition of connected bimonoid agrees with Definition 8.12.
There is a functor Spo → Sp which forgets the isomorphism (8.53). It is bistrong

with respect to the Cauchy product and hence preserves monoids, comonoids, and
Hopf monoids. We denote the induced functors on these categories by inc. As
mentioned above, on these categories the isomorphism (8.53) is the counit of the
comonoid (or the inverse of the unit of the monoid). Therefore, inc identifies the
category of connected monoids (comonoids, Hopf monoids) with a full subcategory
of the category of monoids (comonoids, Hopf monoids).

Consider the functor (−)o : Sp→ Spo which sends q to qo where

(8.54) qo[I] :=

{
k if I = ∅,

q[I] otherwise,

with the isomorphism (8.53) being the identity. This functor preserves monoids,
comonoids, and Hopf monoids. For instance, if q is a monoid in (Sp, ·), then the
components of the product of qo are: If S and T are nonempty, then µo

S,T := µS,T ,
while µo

∅,I and µo
I,∅ are the composites

k⊗q[I]
ι∅⊗idI
−−−−→ q[∅]⊗q[I]

µ∅,I
−−−→ q[I] and q[I]⊗k

idI⊗ι∅−−−−→ q[I]⊗q[∅]
µI,∅
−−−→ q[I].

The functors (−)o and inc are not adjoint. However, the functors they induce
at the level of monoids, comonoids, and Hopf monoids are adjoint, as indicated by
the following diagrams, in which the functors above the arrows are left adjoint to
the functors below the arrows:

Mon(Spo, ·)
inc

%%

(−)o

ee Mon(Sp, ·), Comon(Sp, ·)

(−)o

%%

inc

ee Comon(Spo, ·),

Hopf(Spo, ·, β)
inc

%%

(−)o

ee Hopf(Sp, ·, β), Hopf(Sp, ·, β)

(−)o

%%

inc

ee Hopf(Spo, ·, β).
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The verification of the adjunctions is straightforward.

8.9.2. Positive species. A species q is positive if it satisfies q[∅] = 0. Let Sp+

be the category of positive species. It is a full subcategory of Sp. The Cauchy
product of two positive species is again positive; however, 1 is not a positive species.
Thus, the category (Sp+, ·) is a monoidal subcategory of (Sp, ·), but without a unit
object. This only allows us to define nonunital monoids and noncounital comonoids
in (Sp+, ·) (Section 1.2.1).

The following standard construction allows us to transform (Sp+, ·) into a unital
monoidal category. Let

(8.55) p⊙ q := p · q + p + q.

We call this the modified Cauchy product. Then (Sp+,⊙, β) is a symmetric monoidal
category, with the zero species as the unit object.

The identity functor induces equivalences of categories

Mon(Sp+,⊙) ∼= Mon(Sp+, ·) and Comon(Sp+,⊙) ∼= Comon(Sp+, ·),

where Mon(Sp+,⊙) stands for the category of unital monoids in (Sp+,⊙) while
Mon(Sp+, ·) stands for the category of nonunital monoids in (Sp+, ·), and similarly
for comonoids. In view of the above equivalences, we define:

Definition 8.42. A positive (co)monoid is a (co)monoid in (Sp+,⊙), or equiva-
lently, a non(co)unital (co)monoid in (Sp+, ·).

A positive bimonoid (Hopf monoid) is a bimonoid (Hopf monoid) in (Sp+,⊙, β).

We write Mon(Sp+) and Comon(Sp+) for the category of positive monoids and
positive comonoids. If the context requires us to be more specific about the view-
point, then we either provide the tensor product · or ⊙ or say in words that we are
dealing with the Cauchy or modified Cauchy product, as may be the case.

Consider the functor (−)+ : Sp→ Sp+ which sends q to q+ where

(8.56) q+[I] :=

{
0 if I = ∅,

q[I] otherwise.

Let inc denote the inclusion functor Sp+ → Sp. The following are pairs of adjoint
functors, the functors above the arrows being left adjoints to the functors below
the arrows:

(8.57) Sp+

inc
%%

(−)+

ee Sp

(−)+
%%

inc

ee Sp+.

In other words, (−)+ and inc are adjoint on both sides.
The functor (−)+ preserves monoids and comonoids. For instance, if h is a

comonoid in Sp with coproduct ∆, then h+ is a noncounital comonoid in Sp+ with
coproduct

(8.58) ∆+ : h+ → h+ · h+

being the morphism of species whose components are the components ∆S,T of the
coproduct ∆ of h, where S and T are nonempty. We refer to ∆+ as the positive
part of the coproduct.
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We may view this construction more formally as follows. First, note that for
any nonempty finite set I we have

(8.59) (p · q)+[I] = (p+ · q+)[I]⊕ (p+[I]⊗ q[∅])⊕ (p[∅]⊗ q+[I]).

This gives rise to two canonical maps, one from (p · q)+[I] to (p+ · q+)[I] and the
other one back (the projection and the inclusion). These maps turn

(−)+ : (Sp, ·)→ (Sp+, ·)

into a bilax monoidal functor, so the (nonunital version of the) results of Sec-
tion 3.4.3 can be applied. Here we view both monoidal categories (Sp, ·) and (Sp+, ·)
as nonunital.

The functor

inc : (Sp+, ·)→ (Sp, ·)

is strong monoidal. Proposition 3.94 then implies the existence of a lax and a colax
structure on its two-sided adjoint functor (−)+. It is easy to see that these coincide
with the structures of the preceding paragraph.

8.9.3. Interaction between connected and positive species. Let Sp+ → Spo

be the functor obtained by restricting the functor (−)o of Section 8.9.1 to the
subcategory Sp+. This restricted functor is also denoted (−)o. Similarly, we restrict
the functor (−)+ of Section 8.9.2 to Spo and obtain (−)+ : Spo → Sp+.

Proposition 8.43. The following is a bistrong adjoint equivalence.

(Spo, ·)

(−)+
%%

(−)o

ee (Sp+,⊙)

Proof. First observe that the above is an adjoint equivalence. Now let p and q
be connected species. In this case, (8.59) shows that there is a natural isomorphism

(8.60) (p · q)+ ∼= p+ ⊙ q+.

Similarly, for positive species p and q, there is a natural isomorphism

(1 + p) · (1 + q) ∼= 1 + p⊙ q.

It follows that (−)+ and (−)o are bistrong monoidal functors. One checks that the
unit and counit of the adjunction are isomorphisms of bistrong functors and the
result follows. �

The above functors induce equivalences of categories as follows:

(8.61)

Mon(Spo, ·) ∼= Mon(Sp+,⊙),

Comon(Spo, ·) ∼= Comon(Sp+,⊙),

Bimon(Spo, ·, β) ∼= Bimon(Sp+,⊙, β),

Hopf(Spo, ·, β) ∼= Hopf(Sp+,⊙, β).

In particular, we have:

Proposition 8.44. A connected (co, bi, Hopf ) monoid is equivalent to a positive
(co, bi, Hopf ) monoid.
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8.10. Primitive elements and the coradical filtration

Associated to any positive comonoid there is a canonical filtration. Primitive
elements form the first step in this filtration.

Let (q,∆) be a positive comonoid. The primitive elements of q is the positive
species defined by

P(q) := ker∆.

The functor P is left adjoint to the functor inc which views a positive species
as a positive comonoid with zero coproduct:

Sp+

inc
%%

P

ee Comon(Sp+).

Consider more generally the positive species

P(k)(q) := ker∆(k),

for k ≥ 1, where ∆(k) is the k-fold iteration of the coproduct. This is the k-th term
of the coradical filtration of q. Each P(k)(q) is by definition a subspecies of q.

Proposition 8.45. For any positive comonoid q, we have

P(1)(q) ⊆ P(2)(q) ⊆ · · · ⊆ q,(8.62)
⋃

k≥1

P(k)(q) = q,(8.63)

∆(k−1)
(
P(k)(q)

)
⊆ P(q)·k.(8.64)

Proof. Coassociativity implies (8.62). Since q is positive, the only compo-
nents ∆S,T of the coproduct which may be nonzero are those for which S and T

are nonempty. It follows that ∆(k−1) vanishes on q[I] as soon as k > |I|, and (8.63)
follows.

By coassociativity,
(
id·(i−1) ·∆ · id·(k−i)

)
∆(k−1)(P(k)(q)

)
= ∆(k)

(
P(k)(q)

)
= 0,

for 1 ≤ i ≤ k. Thus,

∆(k−1)(P(k)(q)
)
⊆

k⋂

i=1

ker
(
id·(i−1) ·∆ · id·(k−i)

)
=

k⋂

i=1

q·(i−1) ·P(q)·q·(k−i) =P(q)·k

as needed. �

The following is a useful result.

Proposition 8.46. Let f : q→ p be a morphism of positive comonoids. Then

f
(
P(k)(q)

)
⊆ P(k)(p).

In addition, if the restriction f : P(q) → P(p) is injective, then f : q → p is
injective.
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Proof. The first assertion holds since f commutes with ∆(k). For the second,
we proceed by induction. Choose z ∈ ker(f). By (8.63), there exists k ≥ 1 such
that z ∈ P(k)(q). If k = 1, then z = 0 by hypothesis. Suppose k ≥ 2. We have

f ·k
(
∆(k−1)(z)

)
= ∆(k−1) (f(z)) = 0.

Thus,

∆(k−1)(z) ∈ ker(f ·k) =

k∑

i=1

q·(i−1) · ker(f) · q·(k−i).

Combining this with (8.64) we obtain

∆(k−1)(z) ∈
k∑

i=1

P(q)·(i−1) ·
(
ker(f) ∩ P(q)

)
· P(q)·(k−i) = 0.

Hence z ∈ P(k−1)(q). By induction hypothesis, z = 0. �

In view of the equivalence between positive comonoids and connected comon-
oids (Proposition 8.44), the above notions can be formulated for connected comon-
oids. If (q,∆, ǫ) is such a comonoid, we set

P(k)(q) = P(k)(q+) = ker∆
(k)
+ ,

where ∆+ is the positive part of the coproduct (8.58). In this context, the k-th
term of the coradical filtration is

q[∅]⊕ P(k)(q).

Remark 8.47. For some of the above arguments we made use of the fact that we
are working over a field. The analogous results for connected coalgebras go back
to [274, Proposition 3.9] and [300, Appendix B.3]. The former reference works over
more general commutative rings. For information on the coradical filtration of not
necessarily connected coalgebras, see [279, Chapter 5].

8.11. Derivatives and internal Hom

The Cauchy product in the category of species admits an internal Hom, which
is described in terms of derivatives. We briefly discuss these notions in this section.

8.11.1. The derivatives of a species. The notion of derivative of a species
appears in [181, §2.3] and [40, Section 1.4]. We recall this notion and extend it
to higher derivatives. It is the analogue of the operator on graded vector spaces,
which shifts the grading of each component by 1.

Definition 8.48. The derivative of a species p is the species p′ defined by

p′[I] := p[I+] where I+ := I ⊔ {∗I}.

Here, as elsewhere in the monograph, ∗I denotes a new element (an element not in
I) canonically associated to I, which for definiteness we may take to be ∗I := I.

Given a bijection σ : I → J , we let σ+ : I+ → J+ be

σ+(i) := σ(i) for i ∈ I and σ(∗I) := ∗J ,

and define

p′[σ] := p[σ+].
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Convention 8.49. We view [n]+ = [1 + n] by shifting all elements of [n] up by 1
and identifying ∗[n] with 1. With this convention,

p′[n] = p[1 + n].

The action of σ ∈ Sn on p[n + 1] is by means of p[σ+], where σ+ ∈ Sn+1 is the
permutation given by

(8.65) σ+(1) = 1 and σ+(i+ 1) = σ(i) + 1

for 1 ≤ i ≤ n.

Derivation p 7→ p′ is a functor on the category of species: given a morphism
p→ q, its derivative p′ → q′ is defined by means of the diagram below.

p′[I] //____ q′[I]

p[I+] // q[I+]

It behaves as follows with respect to the Cauchy product:

(8.66) (p · q)′ = p · q′ + p′ · q, 1′ = 0

(see Section 8.1.2 for the relevant definitions). The former follows from the fact
that a decomposition of I+ into two disjoint subsets is of the form S ⊔T+ or of the
form S+ ⊔ T , where I = S ⊔ T is a decomposition of I.

Derivation preserves duality of species (Section 8.6); we have

(8.67) (p∗)′ = (p′)∗.

Indeed, on a finite set I, both species evaluate to p[I+]∗.

We now discuss higher derivatives.

Definition 8.50. Let X be a finite set. The X-derivative of a species p is the
species p[X] defined by

p[X][I] := p[X ∐ I].

Here X ∐ I denotes the disjoint union of X and I, which for definiteness we
may take to be

X ∐ I := (X × {0}) ∪ (I × {1}).

Higher derivatives satisfy the following properties:

(p[X])[Y ] ∼= p[X∐Y ],

(p · q)[X] ∼=
∑

S⊔T=X

p[S] · q[T ],

E[X] ∼= E,

1[X] ∼=

{
1 if X is empty,

0 otherwise.

Here, p,q are arbitrary species, X,Y are finite sets, and E is the exponential species
(Example 8.3). The notion of derivative is recovered by taking X to be a singleton
set.



272 8. MONOIDAL STRUCTURES ON SPECIES

8.11.2. Internal Hom for the Cauchy product. Recall the notion of internal
Hom for monoidal categories from Section 1.3.

For species p1 and p2, let H·(p1,p2) denote the species defined by

H·(p1,p2)[I] := HomSp(p1,p
[I]
2 ),

where p
[I]
2 is the I-derivative of p2. The right-hand side is the vector space of

morphisms from p1 to p
[I]
2 in the category Sp. Note that this is isomorphic to

∏

n≥0

HomSn

(
p1[n],p2[i+ n]

)

if i := |I|. The action of Sn on p2[i + n] is dictated by Convention 8.49. It is
as follows. Sn acts on [i + n] by fixing the first i letters and acting on the subset
[i+ 1, 1 +n] via conjugation with the order-preserving bijection [n]→ [i+ 1, 1 +n].

This defines a functor

H· : Spop × Sp→ Sp (p1,p2) 7→ H
·(p1,p2)

where Spop denotes the opposite of the category Sp.

Proposition 8.51. For any species p, m, and n, there is a natural isomorphism

HomSp(p ·m,n) ∼= HomSp

(
p,H·(m,n)

)
.

The proof is straightforward. The above result states that H· is the internal
Hom for the monoidal category (Sp, ·). A similar discussion is given by Kelly [197,
Equation (2.6)].

8.12. Species with up-down operators

We now discuss up-down operators on species. These are analogues of the
creation-annihilation operators for graded vector spaces discussed in Section 2.8.

8.12.1. Up-down operators. For a species p, let p′ denote the derivative of p
as explained in Section 8.11.1.

Definition 8.52. A species with up operators is a species p with a morphism of
species

u : p→ p′.

A species with down operators is a species p with a morphism of species

d : p′ → p.

A morphism of species with up operators (p, u) → (q, v) is a morphism of
species p → q that intertwines u with v. This defines the category Spu of species
with up operators. The categories Spd of species with down operators and Spu

d of
species with up and down operators are defined similarly.
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8.12.2. The Cauchy product. Define the Cauchy product of two species with
up operators (p, u) and (q, v) to be (p · q, w) where

(8.68) w : p · q
u·id+id·v
−−−−−−→ p′ · q + p · q′ = (p · q)′.

This turns Spu into a symmetric monoidal category, which we denote by (Spu, ·, β).
The unit object is the species 1, equipped with the unique (zero) map to 1′ = 0.

For any scalar q ∈ k, one can deform the above monoidal structure by defining
w as follows.

p[S]⊗ q[T ]
u⊗idT+q|S|idS⊗v
−−−−−−−−−−−−→ p[S+]⊗ q[T ]⊕ p[S]⊗ q[T+].

To write this in compact form, for any species p, let

τq : p→ p

be defined by

(8.69) p[I]→ p[I] x 7→ q|I|x.

The definition of w can now be rewritten as

(8.70) w = u · id + τq · v.

This defines a monoidal category which we denote by (Spu, ·q). Only the cases
q = ±1 yield braided monoidal categories and these are in fact symmetric.

The above constructions also work for the categories Spd and Spu
d.

8.12.3. Duality. Suppose (p, u) is a species with up operators. Then, by (8.67),
we have

u∗ : (p∗)′ → p∗

and (p∗, u∗) is a species with down operators. Similarly, the dual of a species with
down operators is a species with up operators. On finite-dimensional species, this
defines inverse strong monoidal contravariant functors

(Spu, ·q)
∗ // (Spd, ·q).
∗

oo

One can avoid the contravariant usage by replacing Spu by its opposite category.

Remark 8.53. Suppose (p, u, d) is a species with up and down operators. The
composites

du : p→ p and ud : p′ → p′

are morphisms of species, so for each bijection between finite sets σ : I → J we have
commutative diagrams

p[I]

p[σ]

��

du // p[I]

p[σ]

��

p[J ]
du

// p[J ]

p[I+]

p[σ+]

��

ud // p[I+]

p[σ+]

��

p[J+]
ud

// p[J+].

In particular, the maps

du : p[n]→ p[n] and ud : p[n+ 1]→ p[n+ 1]

are both Sn-equivariant. The action of Sn on [n+1] is described in Convention 8.49.
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8.12.4. Derivations and coderivations. Let (p, µ, ι) be a monoid in (Sp, ·). An
up derivation of p is an up operator u : p → p′ such that the following diagrams
commute.

p · p

µ

��

u·id+id·u
// (p · p)′

µ′

��

p
u

// p′

p u // p′

1

ι

OO

0

??�������
(8.71)

In fact, the commutativity of the first diagram implies the commutativity of the
second; so it need not be a part of the definition.

Dually, let (p,∆, ǫ) be a comonoid in (Sp, ·). An up coderivation of p is an up
operator u : p→ p′ such that the following diagrams commute.

p u //

∆

��

p′

∆′

��

p · p
u·id+id·u

// (p · p)′

p

0
��

>>
>>

>>
>>
u // p′

ǫ′

��

1′

(8.72)

The second diagram commutes trivially since 1′ = 0, the zero species; so it need
not be a part of the definition.

Down (co)derivations are defined similarly. More generally, one defines a q-
version of both up and down (co)derivations by replacing

u · id + id · u by u · id + τq · u, and d · id + id · d by d · id + τq · d

in the corresponding definitions, with τq as in (8.69).

Remark 8.54. Up and down (co)derivations on (co)monoids in species are the ana-
logues of (co)derivations of degree 1 and −1 respectively on graded vector spaces.
Keeping this in mind, one expects (co)derivations on (co)monoids in species of
higher degrees. This can be done, however it is not required for our present pur-
poses, so we omit it.

8.12.5. Monoids and comonoids with up or down operators. We have seen
that a (co)monoid in gVecc is a graded (co)algebra equipped with a derivation of
degree 1. (Co)monoids in Spu admit a similar description. More precisely:

A monoid in (Spu, ·) is a monoid (p, µ, ι) in species equipped with an up deriva-
tion u : p→ p′, that is, diagram (8.71) commutes.

A comonoid in (Spu, ·) is a comonoid (p,∆, ǫ) in species equipped with an up
coderivation u : p→ p′, that is, diagram (8.72) commutes.

Monoids and comonoids in (Spd, ·) and (Spu
d, ·) admit similar descriptions. For

the deformed Cauchy product ·q, one replaces (co)derivations by q-(co)derivations.
Duality exchanges monoids and comonoids and up and down operators.

Example 8.55. The exponential species (Example 8.3) is a species with up-down
operators. Indeed, there is an isomorphism of species

E′ ∼= E

which for each finite set I identifies the basis element ∗I+ of E′[I] = E[I+] with the
basis element ∗I of E[I]. We let u : E→ E′ and d : E′ → E be the identity maps.
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Recall that E is a Hopf monoid in species (Example 8.15). Note that d is a
down derivation but u is not an up derivation; the first diagram below commutes
but the second does not.

(E · E)′

µ′

��

d·id+id·d
// E ·E

µ

��

E′
d

// E

E · E

µ

��

u·id+id·u
//

No

(E · E)′

µ′

��

E u
// E′

For the second diagram, the image of a basis element ∗S ⊗∗T under uµ is ∗I+ , but
the image under µ′(u · id + id · u) is 2 times ∗I+ .

Similarly, u is an up coderivation but d is not a down coderivation. Thus, (E, d)
is a monoid in Spd and (E, u) is a comonoid in Spu, but we cannot view E as a
bimonoid in either category.

Example 8.56. Consider now the species L of linear orders (Example 8.3). We
turn L into a species with up-down operators by defining

L[I]
u // L[I+]
d

oo

by
u(l1|l2| · · · |ln) := ∗I |l

1|l2| · · · |ln for l1|l2| · · · |ln ∈ L[I]

and

d(l1|l2| · · · |ln|ln+1) :=

{
l2| · · · |ln|ln+1 if l1 = ∗I ,

0 otherwise,
for l1|l2| · · · |ln|ln+1 ∈ L[I+].

In other words, u extends l to a linear order on I+ by adding the new element ∗I
as the minimum, while d removes this element from a linear order on I+ if it is the
minimum, otherwise it sends the order to 0.

One can check that (L, u) is a comonoid in (Spu, ·) but not a monoid. By using
the same d as above for L∗, it follows by duality that (L∗, d) is a monoid in (Spd, ·).

Deformations of these examples are given in Sections 9.3 and 9.5.5.

8.13. The Hadamard product and an interchange law on species

We study the interplay between the Cauchy and Hadamard product on species
and derive constructions of Hopf monoids and self-dual Hopf monoids as an appli-
cation.

8.13.1. The Hadamard product as a bilax monoidal functor. Consider the
functor

(− ×−) : Sp× Sp→ Sp (p1,p2) 7→ p1 × p2,

where p1 × p2 is the Hadamard product on species (8.7). Let (Sp × Sp, ·) be the
monoidal category obtained by taking the Cartesian product of (Sp, ·) with itself.
We proceed to turn the Hadamard functor into a bilax monoidal functor.

Define maps

(p1 × p2) · (q1 × q2)

ϕ
%%

ψ

ee (p1 · q1)× (p2 · q2)
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as follows. For any finite set I, we define

(8.73)

⊕

I=S⊔T

(p1[S]⊗ p2[S])⊗ (q1[T ]⊗ q2[T ])

ϕ

		( ⊕

I=S1⊔T1

p1[S1]⊗ q1[T1]

)
⊗

( ⊕

I=S2⊔T2

p2[S2]⊗ q2[T2]

)
ψ

GG

where ϕ is the natural embedding given by switching the middle factors and ψ is
the surjection which is identity if S1 = S2 and T1 = T2 and zero otherwise.

In addition, let

(8.74) 1

ϕ0

%%

ψ0

ee 1× 1

be the obvious isomorphisms.
The fact that ϕ and ψ endow the Hadamard functor with a bilax monoidal

structure is more subtle than one may expect, so we give a detailed proof below.
Indeed, the corresponding result for graded vector spaces fails; see Remark 8.65.

Lemma 8.57. Let S1, S2, T1, T2, U1, U2 and V1, V2 be subsets of a set such that

S1 ⊔ T1 = S2 ⊔ T2, U1 ⊔ V1 = U2 ⊔ V2

and let these two sets be disjoint from each other. Then

S1 ⊔ U1 = S2 ⊔ U2, T1 ⊔ V1 = T2 ⊔ V2 ⇐⇒ S1 = S2, T1 = T2, U1 = U2, V1 = V2.

This result is a reformulation of Lemma 8.7.

Proposition 8.58. The Hadamard functor

(×, ϕ, ψ) : (Sp× Sp, ·)→ (Sp, ·)

is a normal braided bilax monoidal functor.

Proof. It is straightforward to check that the functor (×, ϕ) is braided lax
and that (×, ψ) is braided colax. For clarity of notation, we write F instead of ×
for the rest of the proof. To show that F is bilax, we first check that it satisfies the
braiding axiom (3.11). It takes the following form.
(8.75)

F(p1 · q1,p2 · q2) · F(r1 · s1, r2 · s2)
ψ·ψ

//

ϕ

��

F(p1,p2) · F(q1,q2) · F(r1, r2) · F(s1, s2)

id·β·id

��

F(p1 · q1 · r1 · s1,p2 · q2 · r2 · s2)

F(id·β·id)

��

F(p1,p2) · F(r1, r2) · F(q1,q2) · F(s1, s2)

ϕ·ϕ

��

F(p1 · r1 · q1 · s1,p2 · r2 · q2 · s2)
ψ

// F(p1 · r1,p2 · r2) · F(q1 · s1,q2 · s2)
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For definiteness, let us start in the component

p1[S1]⊗ q1[T1]⊗ p2[S2]⊗ q2[T2]⊗ r1[U1]⊗ s1[V1]⊗ r2[U2]⊗ s2[V2],

where the sets S1, S2, etc., satisfy the hypothesis of Lemma 8.57. Following along
the two directions in (8.75), we note that this component survives in the end pre-
cisely when the two equivalent conditions in the conclusion of Lemma 8.57 hold.
Hence (8.75) commutes. We remark that the vertical maps in the diagram play a
passive role in the check.

The fact that F satisfies the unitality axioms (3.12) and (3.13) is straightfor-
ward and we conclude that F is bilax. Normality is clear since ϕ0 and ψ0 are
inverse isomorphisms. �

Corollary 8.59. If h1 and h2 are bimonoids (Hopf monoids) in (Sp, ·), then so is
their Hadamard product h1 × h2. Further, if h1 and h2 are (co)commutative, then
so is h1 × h2.

Proof. Note that a bimonoid in (Sp × Sp, ·) consists of a pair of bimonoids
in (Sp, ·). Since the Hadamard functor is bilax, it preserves bimonoids by Propo-
sition 3.31. Hence, if h1 and h2 are bimonoids in (Sp, ·), then so is h1 × h2. For
the case of Hopf monoids, we use Proposition 8.10 and the observation that if h1[∅]
and h2[∅] are Hopf algebras, then so is (h1 × h2)[∅] = h1[∅] ⊗ h2[∅]. This proves
the first claim.

Since the Hadamard functor is braided (co)lax, it preserves (co)commutativity
by Proposition 3.37. This implies the second claim. �

The product and coproduct in h1×h2 involve the maps ϕ and ψ, as well as the
products and coproducts of h1 and h2; see Proposition 3.31. On the other hand,
the Hadamard functor is neither bistrong nor Hopf lax; the latter follows from the
former by Proposition 3.60. Hence the antipode of h1 × h2 is not directly related
to the antipodes of h1 and h2.

8.13.2. Self-duality of the Hadamard functor. Let us restrict the Hadamard
functor to finite-dimensional species. Consider its contragredient functor (Sec-
tion 3.10). It is clear that

(8.76) ϕ∨ = ψ and ψ∨ = ϕ,

with ϕ∨ and ψ∨ defined as in Proposition 3.102 (and with the canonical identifica-
tion of the double dual of a finite-dimensional vector space with itself). Therefore,
by Definition 3.105, we conclude:

Proposition 8.60. On finite-dimensional species, the Hadamard functor is self-
dual. Namely,

(8.77) (×, ϕ, ψ)∨ ∼= (×, ϕ, ψ).

We now state a couple of straightforward consequences.

Corollary 8.61. If h is a finite-dimensional Hopf monoid, then h∗×h is a self-dual
Hopf monoid.

Proof. We first note that h∗ is a Hopf monoid, and hence by Corollary 8.59,
h∗ × h is a Hopf monoid. It is the image under the Hadamard functor of (h∗,h)
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which is a Hopf monoid in Sp×Sp. To show that it is self-dual, we note that (h∗,h)
is self-dual by

(h∗,h)∗ ∼= (h,h∗) ∼= (h∗,h),

the second isomorphism given by switching the factors. Hence the result follows
from Propositions 3.107 and 8.60. �

An important example of the above construction is given by the Hopf monoid
L× L∗, which is studied in detail in Section 12.3.

Corollary 8.62. If h1 and h2 are finite-dimensional Hopf monoids, then

(h1 × h2)
∗ ∼= h∗

1 × h∗
2 and (h∗

1)
∗ ∼= h1

as Hopf monoids.

8.13.3. Internal Hom for the Hadamard product. The Hadamard product
admits an internal Hom (Section 1.3). We describe this functor and show that it is
bilax monoidal.

For vector spaces V and W , let HomVec(V,W ) denote the space of linear maps
from V to W , and let

EndVec(V ) := HomVec(V, V ).

For species p1 and p2, let H×(p1,p2) denote the species defined as follows. For
any finite set I,

H×(p1,p2)[I] := HomVec(p1[I],p2[I]),

and for any bijection σ : I → J ,

H×(p1,p2)[σ]

is the map

HomVec(p1[I],p2[I])
HomVec(p1[σ

−1],p2[σ])
−−−−−−−−−−−−−−→ HomVec(p1[J ],p2[J ]).

This defines a functor

H× : Spop × Sp→ Sp (p1,p2) 7→ H
×(p1,p2)

where Spop denotes the opposite of the category Sp.

Proposition 8.63. For any species p, m, and n, there is a natural isomorphism

HomSp(p×m,n) ∼= HomSp

(
p,H×(m,n)

)
.

The proof is straightforward. The above result states that H× is the internal
Hom for the monoidal category (Sp,×).

There is a natural map

(8.78) m∗ × n→ H×(m,n),

which is an isomorphism if the species m is finite-dimensional.
We now endow H× with a bilax structure. Let maps

(8.79) H×(p1,p2) · H
×(q1,q2)

ϕ
%%

ψ

ee H×(p1 · q1,p2 · q2)

be defined by mimicking (8.73). Let the maps ϕ0 and ψ0 between 1 and H×(1,1)
be the obvious isomorphisms.



8.13. THE HADAMARD PRODUCT AND AN INTERCHANGE LAW ON SPECIES 279

Proposition 8.64. The functor (H×, ϕ, ψ) : (Spop × Sp, ·) → (Sp, ·) is a normal
braided bilax monoidal functor.

Proof. The proof of Proposition 8.58 applies, with F = H×. �

It follows that if m and n are Hopf monoids, then so is H×(m,n).
The map (8.78) yields a morphism of bilax monoidal functors

(−)∗ × (−) → H×(−,−),

where the left-hand term is viewed as a composite of bilax monoidal functors. In
particular, if m and n are Hopf monoids, then (8.78) is a morphism of Hopf monoids
(an isomorphism if m is finite-dimensional).

For a species p, let

(8.80) E×(p) := H×(p,p).

There is a natural map

p∗ × p→ E×(p),

which is an isomorphism if p is finite-dimensional.
It follows from Propositions 1.28 and 8.63 that E×(p) is a monoid in (Sp,×).

Explicitly,

E×(p)[I] = EndVec(p[I]),

is an algebra under composition for each I. It follows from Proposition 8.64 that if
p is a Hopf monoid, then so is E×(p).

Remark 8.65. Consider the Hadamard and internal Hom functors for the category
of graded vector spaces

(−×−) : gVec× gVec→ gVec and H× : gVecop × gVec→ gVec.

They are respectively defined in Sections 2.1.1 and 2.1.5. Analogues of the structure
maps ϕ and ψ exist for both functors; they can be defined along the lines of (8.73).
For the Hadamard functor, they are explicitly discussed in Example 6.22. Both
functors are lax and colax with respect to the Cauchy product on gVec; however,
they are not bilax. The reason for this can be again traced back to the failure of
Lemmas 8.7 or 8.57 when sets are replaced by numbers, as in Remark 8.8.

8.13.4. The functor m × (−). Let I be the one-arrow category. Consider the
composite of functors

Sp
∼= // I× Sp

Fm×id
// Sp× Sp

×
// Sp,

where the functor Fm sends the unique object of I to m as in Section 3.4.1. We
denote the above composite by m× (−) since it sends p to m× p.

Proposition 8.66. If m is a monoid (comonoid, bimonoid) in species, then the
functor m × (−) is lax (colax, bilax ). Further, if m is (co)commutative, then
m× (−) is braided (co)lax.

Proof. Let m be a monoid. Then the functor Fm is lax with structure mor-
phisms as in (3.22). Since m × (−) is the composite of lax functors, it is also lax
by Theorem 3.21.

The proof when m is a comonoid or a bimonoid or (co)commutative is similar.
�
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Let m be a finite-dimensional species. The existence of an internal Hom for the
Hadamard product says that the functor m× (−) has a right adjoint and by (8.78),
it is given by m∗ × (−). Observe that the unit and counit of this adjunction are
defined using (8.32). If m is a comonoid, then by Proposition 8.66, the former
functor is colax while the latter functor is lax. In this setting, we have the following
result.

Proposition 8.67. For a finite-dimensional (cocommutative) comonoid m, the
adjunction

(8.81) (Sp, ·)

m×(−)

((

m∗×(−)

hh (Sp, ·)

is (braided) colax-lax. Further, the adjunction is self-dual (Definition 3.109).

Proof. The diagrams in (3.41) reduce to the following.

m[I]⊗m∗[S]⊗m∗[T ]
idI⊗µS,T

//

∆S,T⊗idS⊗idT

��

m[I]⊗m∗[I]

��

m[S]⊗m[T ]⊗m∗[S]⊗m∗[T ] // k

m[∅]⊗ k
id∅⊗ι∅ //

ǫ∅⊗id

��

m[∅]⊗m∗[∅]

��

k⊗ k ∼=
// k

The unlabeled maps are induced by the canonical map V ⊗ V ∗ → k for a vector
space V . It is clear that the diagrams commute and hence the adjunction is colax-
lax.

If m is cocommutative, then the functors in question are braided colax and
braided lax respectively, and hence the adjunction is braided colax-lax.

Since the contragredient of Fm is Fm∗ and the Hadamard functor is self-
dual (8.77), it follows that

(8.82)
(
m× (−)

)∨ ∼= m∗ × (−)

as lax functors. It follows that the adjunction is self-dual. �

8.13.5. Cauchy and Hadamard as a 2-monoidal category. The interaction
between the Cauchy and Hadamard products is best understood in the language of
2-monoidal categories (Section 6.1).

The maps in (8.73) provide interchange laws between the Cauchy and Hada-
mard products in both directions. Further, on finite-dimensional species, they are
contragredients of each other (8.76). This can be expressed as follows.

Proposition 8.68. With the structure maps (8.73) and (8.74),

(Sp, ·,×) and (Sp,×, ·)

are braided 2-monoidal categories. The subcategories of finite-dimensional species
are contragredients of each other.

The corresponding result for graded vector spaces is given in Example 6.22. To
prove the above result, one needs to verify the axioms in Definitions 6.1 and 6.5.
This is straightforward. Propositions 6.4 and 6.6 then imply that the Hadamard
functor is both braided lax and braided colax. This is part of the claim made in
Proposition 8.58. To understand how the rest of the claim in that proposition fits
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in, we need to go one step further and invoke 3-monoidal categories (Section 7.1)
as follows.

Proposition 8.69. We have that (Sp, ·,×, ·) is a 3-monoidal category. The sub-
category of finite-dimensional species is self-dual.

The self-duality follows from (8.76). To prove the rest, one needs to check
the list of axioms for a 3-monoidal category given in Definition 7.1. By Proposi-
tion 7.3, this is equivalent to checking that the Hadamard functor is bilax and E
is a bimonoid, both for the Cauchy product. The former is the content of Propo-
sition 8.58, while the latter was one of the first examples of bimonoids in species
(Example 8.15).

8.13.6. Cauchy and Hadamard on species with restrictions. The Cauchy
and Hadamard products also give rise to a 2-monoidal structure on the category of
species with restrictions (Section 8.7.8).

The Hadamard product, denoted ×, is defined for species with restrictions as it
is for set species (8.36). This defines the monoidal category (Spr,×); the unit object
is the exponential set species E (the restriction maps are as in Example 8.33).

Proposition 8.70. We have that (Spr, ·,×) is a braided 2-monoidal category.

As for set species (Remark 8.25), the Hadamard product for species with re-
strictions coincides with the categorical product. Hence the above result can be
deduced from Example 6.19.

We now provide an alternative approach to Schmitt’s comonoid construction
(Section 8.7.8).

Observe that a species with restrictions can be turned into a species by forget-
ting the restriction maps and linearizing. This defines a functor

F : Spr→ Sp.

We proceed to turn this into a bilax monoidal functor (Spr, ·,×)→ (Sp, ·, ·). Define

ϕP,Q : F(P) · F(Q)→ F(P ·Q) and ϕ0 : 1→ F(1)

to be the identity morphisms. Next, we define

ψP,Q : F(P×Q)→ F(P) · F(Q) and ψ0 : F(E)→ 1

as follows. The first morphism is defined by adding the linearization of the maps

(ρI,S , ρI,T ) : P[I]×Q[I]→ P[S]×Q[T ]

over all decompositions (S, T ) of I. The second morphism is defined using the
identification kE[∅] = 1[∅].

Proposition 8.71. The functor

(8.83) (F , ϕ, ψ) : (Spr, ·,×)→ (Sp, ·, ·)

is braided bilax.

The proof is straightforward. Recall that in the source category, × coincides
with the categorical product. Therefore by Example 6.42, a cocommutative comon-
oid with respect to × is the same as an object, and a cocommutative bimonoid with
respect to (·,×) is the same as a monoid with respect to ·.
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A braided colax functor preserves cocommutative comonoids, and a bilax func-
tor preserves bimonoids (Propositions 3.31 and 3.37). Thus, using the observation
in the preceding paragraph, the functor (8.83) induces functors

Spr→ coComon(Sp, ·) and Mon(Spr, ·)→ coBimon(Sp, ·, ·).

These functors are those entering in the equivalences described in Propositions 8.29
and 8.31; in particular, the first one is the construction of Schmitt which associates
a cocommutative comonoid to a species with restrictions.

8.13.7. Pointing and the species of elements. Let e be the species defined by

e[I] = kI,

the vector space with basis the elements of I. This is the species of elements [40,
Section 1.1.3]. It is positive (e[∅] = 0) and self-dual:

e ∼= e∗.

Given a species p, its pointing is the species defined by

p• := p× e.

Pointing satisfies the following properties:

1• ∼= 0,

E• ∼= e,

(p · q)• ∼= p• · q + p · q•,

p• ∼= X · p′,

(p∗)• ∼= (p•)∗.

In Section B.6.3 we relate pointing to the substitution operation (8.8).



CHAPTER 9

Deformations of Hopf Monoids

One can perform a one-parameter deformation of the braiding on the category
of species equipped with the Cauchy product. The parallel of this feature for graded
vector spaces was explained in Section 2.3. This allows us to define a q-Hopf monoid
which is the species analogue of a q-Hopf algebra. Letting q = 1 recovers the notion
of Hopf monoid studied in Chapter 8.

Many ideas and constructions pertaining to bimonoids and Hopf monoids carry
over to this deformed setting: We define connected and positive q-bimonoids and
show that these are equivalent notions. We elaborate on the case of 0-bimonoids
which is of independent interest. The duality and Hadamard functors are defined
the same way as before. The former continues to be bistrong and the latter continues
to be braided bilax (for suitable choices of the braiding parameters).

In addition to the above, the deformed theory has some new things to offer as
well. We construct the signature functor whose main property is to send a q-Hopf
monoid to a (−q)-Hopf monoid. The parity shift explains why this functor was not
visible in the undeformed theory.

The main examples we provide are those of the signed exponential species
denoted E− and a one-parameter deformation of the linear order species denoted
Lq. The former is indeed the value of the signature functor on the exponential
species E.

We also introduce a cohomology theory for linearized comonoids in species. Our
main emphasis is on the fact that a 2-cocycle on such a comonoid can be used to
construct a deformation of that comonoid. As an example, we define two interesting
2-cocycles on L, namely the Schubert and descent cocycles. The former is related to
the Schubert statistic (2.13) and the latter to the descent statistic on permutations.
We further show that Lq is precisely the deformation of L corresponding to the
Schubert cocycle.

9.1. q-Hopf monoids

In this section, q ∈ k denotes a fixed scalar, possibly zero.

9.1.1. A family of braidings on species. We endow the monoidal category
(Sp, ·) of species with a twist map

βq : p · q→ q · p

that depends on q. The components of this map are as follows.

(9.1) (βq)S,T : p[S]⊗ q[T ]→ q[T ]⊗ p[S], x⊗ y 7→ q|S||T |y ⊗ x.

Note that β1 = β as given in (8.13). If q is nonzero, then βq defines a braiding. The
inverse braiding is βq−1 , so βq is a symmetry if and only if q = ±1. Now consider

283
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the case q = 0. Note that β0 is not invertible, hence it is not a braiding. However,
it is a lax braiding.

The duality functor on the category of finite-dimensional species continues to
be a bistrong monoidal functor

(−)∗ : (Spop, ·, βop
q )→ (Sp, ·, βq)

and it continues to play an important role in the general theory.

9.1.2. q-Hopf monoids. A q-bimonoid is defined to be a bimonoid in the lax
braided monoidal category (Sp, ·, βq). A q-Hopf monoid is defined similarly as
a Hopf monoid in (Sp, ·, βq). (Recall that Hopf monoids can be defined in any
lax braided monoidal category; this allows us to consider 0-bimonoids and 0-Hopf
monoids and treat them on a par with the rest.)

On the other hand, the concept of a monoid or a comonoid does not involve
the braiding, so a (co)monoid in (Sp, ·, βq) is simply a (co)monoid in species.

We denote the category of q-bimonoids either by Bimon(Sp, ·, βq) or by
q-Bimon(Sp), depending on convenience of the context. Similarly, we denote the
category of q-Hopf monoids either by Hopf(Sp, ·, βq) or by q-Hopf(Sp). We employ
similar notations for related categories.

9.1.3. Connected and positive q-bimonoids. Recall the symmetric monoidal
categories (Spo, ·, β) and (Sp+,⊙, β) of connected and positive species (Section 8.9).
In both cases, one may replace β by βq to obtain lax braided monoidal categories.
For the former, one essentially uses the twist map βq for the Cauchy product, while
for the latter,

βq : p + q + p · q→ q + p + q · p

interchanges the first two terms and uses the twist map βq for the Cauchy product
on the third term.

A connected q-bimonoid is defined to be a bimonoid in (Spo, ·, βq). A positive
q-bimonoid is defined to be a bimonoid in (Sp+,⊙, βq).

We have seen that positive and connected bimonoids (or Hopf monoids) are
equivalent notions (Proposition 8.44). This generalizes to the deformed setting.
More precisely, as a generalization of (8.61), there are equivalences of categories

(9.2)
Bimon(Spo, ·, βq) ∼= Bimon(Sp+,⊙, βq),

Hopf(Spo, ·, βq) ∼= Hopf(Sp+,⊙, βq).

As for bimonoids (Proposition 8.10), a q-bimonoid for which the ∅-component
is a Hopf algebra is automatically a q-Hopf monoid. In particular, a connected
q-bimonoid, that is, a q-bimonoid whose ∅-component is of dimension 1, is always
a q-Hopf monoid. In this case, Takeuchi’s formula (8.27) for the antipode is still
valid.

9.2. Connected 0-bimonoids

Positive (or equivalently, connected) q-bimonoids are of independent interest
when q = 0. In this section, we discuss these objects in explicit terms. These
0-bimonoids are similar to the 0-bialgebras of Section 2.3.6.

This section is largely independent of the rest of the chapter.
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9.2.1. A diagrammatic characterization. The compatibility conditions for a
connected 0-bimonoid has features common with as well as distinct from those for
a usual bimonoid. These conditions are provided in the result below which gives
an explicit characterization of connected 0-bimonoids.

Proposition 9.1. A connected 0-bimonoid is a 5-tuple (h, µ, ι,∆, ǫ) such that h is a
connected species, (h, µ, ι) is a connected monoid, (h,∆, ǫ) is a connected comonoid,
and the following diagrams commute.

(9.3)

h[∅]

ǫ∅

∼=
!!B

BB
BB

BB
B

k

ι∅

∼=

>>}}}}}}}}

id
// k.

For any decomposition I = S ⊔ T into subsets,

(9.4)

h[I]
∆S,T

%%K
KKKKKKKKK

h[S]⊗ h[T ]

µS,T
99ssssssssss

idS⊗idT

// h[S]⊗ h[T ].

For any pair of decompositions I = S ⊔ T = S′ ⊔ T ′ such that neither S ⊆ S′ nor
S′ ⊆ S, or equivalently neither T ⊆ T ′ nor T ′ ⊆ T ,

(9.5)

h[I]
∆S′,T ′

&&LLLLLLLLLL

h[S]⊗ h[T ]

µS,T
99ssssssssss

0
// h[S′]⊗ h[T ′].

For any decomposition I = R ⊔ S ⊔ T ,

h[R]⊗ h[S ⊔ T ]
idR⊗∆S,T

//

µR,S⊔T

��

h[R]⊗ h[S]⊗ h[T ]

µR,S⊗idT

��

h[R ⊔ S ⊔ T ]
∆R⊔S,T

// h[R ⊔ S]⊗ h[T ],

(9.6)

h[R ⊔ S]⊗ h[T ]
∆R,S⊗idT

//

µR⊔S,T

��

h[R]⊗ h[S]⊗ h[T ]

idR⊗µS,T

��

h[R ⊔ S ⊔ T ]
∆R,S⊔T

// h[R]⊗ h[S ⊔ T ].

(9.7)

Proof. The compatibility conditions for a q-bimonoid are the same as those for
an ordinary bimonoid (Section 8.3.1), inserting the braiding βq where appropriate.

Diagram (9.3) is the compatibility condition (8.20). This implies that ι∅ and
ǫ∅ are inverse maps, given that h is connected. The remaining compatibility con-
ditions (8.19) follow from the (co)monoid axioms.



286 9. DEFORMATIONS OF HOPF MONOIDS

It remains to consider the compatibility condition (8.18) involving the lax braid-
ing β0. Consider the situation of Lemma 8.7: we choose two arbitrary decompo-
sitions I = S ⊔ T = S′ ⊔ T ′ of a nonempty set I and let A,B,C,D denote the
resulting intersections, as in Figure 8.1. According to (9.1), the map (β0)B,C is 0
unless B = ∅ or C = ∅, in which case it is an identity.

It follows that if B 6= ∅ and C 6= ∅, then ∆S′,T ′µS,T = 0. This happens precisely
when neither S ⊆ S′ nor S′ ⊆ S, thus (9.5).

If both B = ∅ and C = ∅, then all maps along the top of diagram (8.18) are
identities, and therefore ∆S′,T ′µS,T = id. But this happens precisely when S = S′

and T = T ′, resulting in (9.3).
If B = ∅ but C 6= ∅, then renaming (S,C,D) to (R,S, T ), diagram (8.18)

becomes (9.6). Similarly, the case B 6= ∅, C = ∅ of diagram (8.18) is equivalent
to (9.7). �

The following is an immediate consequence of Proposition 9.1, in view of the
equivalence between connected and positive q-bimonoids.

Proposition 9.2. A positive 0-bimonoid is a triple (h, µ,∆) such that h is a pos-
itive species, (h, µ) is a positive monoid, (h,∆) is a positive comonoid, and for all
decompositions of a nonempty set I into nonempty subsets as in Proposition 9.1,
diagrams (9.4)–(9.7) commute.

Remark 9.3. There is an important overlap between the conditions in Proposi-
tion 9.1 and those in Corollary 8.38. This corollary states that axioms (9.4), (9.6),
and (9.7) all hold for an ordinary connected bimonoid. Axiom (9.3) does too. It is
axiom (9.5) that prevents an ordinary bimonoid from becoming a 0-bimonoid. An
illustrative example is given in Section 9.5.3.

As for q-Hopf monoids, connected 0-bimonoids are always 0-Hopf monoids. A
structure theorem for connected 0-Hopf monoids is given in Section 11.10.3.

9.2.2. An alternative characterization. There is an alternative way to char-
acterize 0-bimonoids, which is parallel to the description of 0-bialgebras given in
Propositions 2.11 and 2.12. Indeed, the compatibility condition for a positive 0-
bimonoid can be written as follows. For each decomposition I = S⊔T of a nonempty
finite set I into nonempty subsets,

(9.8) ∆(ab) = ab(1) ⊗ b(2) + a(1) ⊗ a(2)b+ a⊗ b,

where a ∈ h[S], b ∈ h[T ], the product µ(a, b) is denoted by ab, and Sweedler’s
notation is used for the coproduct: ∆(a) = a(1) ⊗ a(2).

This follows as for 0-bialgebras, examining the compatibility condition (1.9) in
terms of the Cauchy product of positive species and the lax braiding β0. It can also
be directly related to the conditions in Proposition 9.2 as follows. Considering the
components of µ and ∆, the equality (9.8) is equivalent to a set of equalities, one
for each pair of decompositions I = S ⊔ T = S′ ⊔ T ′ into nonempty subsets. As
in the proof of Proposition 9.1, there are four possible cases, according to whether
the intersections S ∩ T ′ and S′ ∩ T are empty or not.

The term a⊗ b contributes to the component for which both intersections are
empty and is responsible for (9.4). The terms of the form ab(1)⊗ b(2) contribute to
the components for which S ∩ T ′ = ∅ and S′ ∩ T 6= ∅, and are responsible for (9.6).
Similarly, the terms of the form a(1)⊗a(2)b correspond to (9.7). There are no terms



9.3. THE SIGNED EXPONENTIAL SPECIES 287

in the right-hand side of (9.8) contributing to the components for which neither
intersection is empty; this yields (9.5).

Similarly, the compatibility condition for a connected 0-bimonoid is

∆(ab) = ab(1) ⊗ b(2) + a(1) ⊗ a(2)b− a⊗ b,

with a and b as above, for each arbitrary decomposition I = S ⊔ T of a finite set I.

Recall the species of primitive elements from Section 8.10. When restricted to
primitive elements, the product of a positive 0-bimonoid splits the coproduct.

Lemma 9.4. Let (h, µ,∆) be a positive 0-bimonoid. Then, for any k ≥ 0,

∆(k)µ(k) = id

on P(h)·k.

Proof. This follows from (9.8), by induction. �

9.3. The signed exponential species

Recall the Hopf monoid associated to the exponential species E (Example 8.15).
In this section, we construct its signed analogue. It is an example of a (−1)-Hopf
monoid. It displays the same features as E but in the world of (−1)-Hopf monoids.

9.3.1. The signed exponential species. Consider the species defined by

(9.9) E−[I] := Det(kI)

where Det(V ) denotes the highest exterior power of a finite-dimensional vector
space V , and kI denotes the vector space over k with basis I. We call it the
signed exponential species. The Det notation appears in the work of Ginzburg and
Kapranov [146, Section (3.2.0)]. Note that the element

l1 ∧ l2 ∧ · · · ∧ li ∈ E−[I]

provides a basis for E−[I] for any linear order l1| · · · |li on I. The basis elements
corresponding to two linear orders differ at most by a sign. Note that E−[n] is the
sign representation of Sn.

9.3.2. (−1)-Hopf monoid. We now turn E− into a (−1)-Hopf monoid. The
coproduct is given by

E−[I]→ E−[S]⊗E−[T ]

l1 ∧ · · · ∧ li 7→ (−1)schS,T (l) (li1 ∧ · · · ∧ lis)⊗ (lj1 ∧ · · · ∧ ljt)

where {i1 < · · · < is} = S, and {j1 < · · · < jt} = T , and l = l1| · · · |li, and schS,T (l)
is the Schubert cocycle defined later in (9.12). We note that the coproduct is well-
defined (independent of which linear order on I is used).

The product is given by

E−[S]⊗E−[T ]→ E−[I]

(l1 ∧ · · · ∧ ls)⊗ (m1 ∧ · · · ∧mt) 7→ l1 ∧ · · · ∧ ls ∧m1 ∧ · · · ∧mt,

where S = {l1, . . . , ls} and T = {m1, . . . ,mt}.
For example,

u ∧m ∧ a 7→ 1⊗ (u ∧m ∧ a) + u⊗ (m ∧ a)−m⊗ (u ∧ a) + a⊗ (u ∧m)

+ (u ∧m)⊗ a− (u ∧ a)⊗m+ (m ∧ a)⊗ u+ (u ∧m ∧ a)⊗ 1.
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(l ∧ a ∧ k)⊗ (s ∧ h ∧m ∧ i) 7→ l ∧ a ∧ k ∧ s ∧ h ∧m ∧ i.

It is routine to check that E− is a (−1)-Hopf monoid; we call it the signed partner
of the exponential species E. The antipode is given by

s : E−[I]→ E−[I] x 7→ (−1)|I| x.

For example,

s(s ∧ h ∧ i ∧ v ∧ a) = −(s ∧ h ∧ i ∧ v ∧ a).

Further, E− is commutative, cocommutative and self-dual (over any field), just
as E.

9.3.3. Up-down operators. Recall that the exponential species carries up-down
operators (Example 8.55). The signed exponential species is also a species with
up-down operators:

d : E−[I+]→ E−[I] u : E−[I]→ E−[I+]

∗I ∧ (−) 7→ (−) (−) 7→ ∗I ∧ (−)

In other words, the special element ∗I should be inserted in front while going up,
and brought to the front and deleted while going down.

Let the deformation ·−1 be as defined in (8.70). Analogous to the case of the
exponential species, one can check that (E−, d) is a monoid in (Spd, ·−1), and dually
(E−, u) is a comonoid in (Spu, ·−1).

9.4. The Hadamard and signature functors

Recall that the Hadamard product of two bimonoids is again a bimonoid (Sec-
tion 8.13.1). In this section, we note that the Hadamard product of a p-bimonoid
and a q-bimonoid is a pq-bimonoid and discuss some related results.

The consideration of q-bimonoids opens up a new possibility: a functor to
transform a q-bimonoid into a (−q)-bimonoid. We call this the signature functor,
see Corollary 9.10.

Throughout this section, p and q are fixed scalars, possibly zero.

9.4.1. The Hadamard functor. Recall that using an interchange law on species,
we constructed a bilax monoidal functor

(×, ϕ, ψ) : (Sp× Sp, ·, β)→ (Sp, ·, β)

(Proposition 8.58). We call this the Hadamard functor since it sends a pair (p1,p2)
to their Hadamard product p1 × p2. We now show that the Hadamard functor
continues to be bilax provided the braidings on species are deformed appropriately.

Proposition 9.5. The functor

(×, ϕ, ψ) : (Sp× Sp, ·, βp × βq)→ (Sp, ·, βpq)

is a normal braided bilax monoidal functor. On finite-dimensional species, it is
self-dual.

Proof. We follow the notation in the proof of Proposition 8.58. The main
diagram to check for commutativity is (8.75); the two occurrences of β in that
diagram are now replaced by βpq and βp × βq. From Proposition 8.58, this new
diagram commutes up to a power of p and q. Following the two sides of the diagram,
one checks that the powers of p and q are both tu where t = |T1| = |T2| and
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u = |U1| = |U2|. The remaining diagrams are checked similarly. This shows that
the Hadamard functor is bilax. The fact that it is braided boils down to the identity

(pq)|S| |T | = p|S| |T |q|S| |T |.

Since the structure maps ϕ and ψ are the same as before, the normal property and
self-duality follow from Propositions 8.58 and 8.60. �

We record some consequences; they provide q-analogues to Corollaries 8.59,
8.61 and 8.62.

Corollary 9.6. If h1 is a p-bimonoid and h2 is a q-bimonoid, then h1 × h2 is a
pq-bimonoid. Further, if h1 and h2 are (co)commutative, then so is h1 × h2.

The same statement holds for Hopf monoids.

Corollary 9.7. If h is a finite-dimensional q-Hopf monoid, then h∗ × h is a self-
dual q2-Hopf monoid.

Corollary 9.8. If h1 and h2 are finite-dimensional p- and q-Hopf monoids respec-
tively, then

(h1 × h2)
∗ ∼= h∗

1 × h∗
2

as pq-Hopf monoids.

9.4.2. The signature functor on species. In Section 9.3, we discussed the
signed analogue E− of the exponential species E. We now show that the situation
is quite general. Namely, there is a correspondence between p-Hopf monoids and
(−p)-Hopf monoids.

Define the signature functor to be the functor (−)− : Sp → Sp that sends a
species p to the species

(9.10) p− := p×E−.

Since E is the unit for the Hadamard product, the notation E−, which gets defined
twice, is unambiguous. We refer to p− as the signed partner of p.

The signature functor is an involution:

(p−)− ∼= p.

This is because E− ×E− ∼= E.

Proposition 9.9. The signature functor (−)− gives rise to a bistrong monoidal
functor

(Sp, ·, βp)→ (Sp, ·, β−p).

Proof. The signature functor is bilax since E− is a (−1)-Hopf monoid, and
the Hadamard functor is bilax (Proposition 9.5). Further, each component of the
product and coproduct of E− is bijective; so the structure morphisms of the signa-
ture functor are invertible, and hence it is bistrong. �

This establishes a correspondence between p-Hopf monoids and (−p)-Hopf mon-
oids:

Corollary 9.10. The signature functor (−)− takes a p-Hopf monoid to a (−p)-

Hopf monoid. Further, the transformation
(
(−)−

)−
⇒ id is an isomorphism of

bilax monoidal functors.
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The duality and the signature functors commute (up to an isomorphism of
bilax functors). This follows from the self-duality of E− and Corollary 9.8. As a
consequence:

Proposition 9.11. On finite-dimensional species, the signature functor is self-
dual.

Proposition 9.12. The following diagram commutes (up to isomorphism) as bilax
monoidal functors.

(Sp× Sp, ·, βp × βq)
×

//

(id,(−)−)

��

(Sp, ·, βpq)

(−)−

��

(Sp× Sp, ·, βp × β−q)
×

// (Sp, ·, β−pq)

Proof. Starting with say (p1,p2), following the two directions, one ends up
with (p1 × p2) × E− and p1 × (p2 × E−). We identify these via the associativity
constraint in (Sp,×). The commutativity of the following diagram implies that the
lax structures match up.

(p1 × p2 ×E−) · (q1 × q2 ×E−)

��

//
(
(p1 × p2) · (q1 × q2)

)
×E−

��

(p1 · q1)×
(
(p2 ×E−) · (q2 ×E−)

)
// (p1 · q1)× (p2 · q2)×E−.

The maps are defined using the lax structure of the Hadamard functor and the
monoid structure of E−.

For the colax structures, one verifies the commutativity of the above diagram
with the arrows reversed. This is again straightforward. �

9.5. The q-Hopf monoids of linear orders

Recall from Examples 8.16 and 8.24 the Hopf monoids L and L∗ based on linear
orders. In this section, we show that these Hopf monoids admit one-parameter
deformations. We denote them by Lq and L∗

q . These are examples of q-Hopf
monoids and dual to each other.

9.5.1. The Schubert cocycle. Let L[I] denote the set of linear orders on a finite
set I. Given l ∈ L[I] and a decomposition I = S ⊔ T , let

(9.11) SchS,T (l) := {(i, j) ∈ S × T | i > j according to l}

and

(9.12) schS,T (l) := |SchS,T (l)|.

For instance, if

l = s|h|i|v|a, S = {i, s, a}, T = {v, h},

then

SchS,T (l) = {(i, h), (a, h), (a, v)} and schS,T (l) = 3.
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This is a reformulation of the Schubert statistic (2.13). If I = [n] and l =
1| · · · |n, then

(9.13) SchS,T (l) = Schn(S) and schS,T (l) = schn(S).

We view schS,T as an integer-valued function on L[I] and refer to the family of
maps schS,T as the Schubert cocycle.

It satisfies the following properties. These are analogues of (2.14)–(2.18), and
can be deduced from them.

schI,∅(l) = sch∅,I(l) = 0.(9.14)

schS,T (l) + schT,S(l) = |S| |T |.(9.15)

schS,T (l) = schT,S(l),(9.16)

where l denotes the linear order opposite to l.
For any decomposition I = R ⊔ S ⊔ T , and for any linear order l on I,

(9.17) schR,S⊔T (l) + schS,T (l|S⊔T ) = schR⊔S,T (l) + schR,S(l|R⊔S).

This is the cocycle condition.
Consider a pair of decompositions I = S ⊔ T = S′ ⊔ T ′ and let A, B, C, and D

be the resulting intersections, as in Lemma 8.7. Then

(9.18) schS′,T ′(l ·m) = schA,B(l) + schC,D(m) + |B||C|,

for any linear order l on S, and linear order m on T . This is the multiplicative
property of the cocycle.

Cocycles and related notions are explained in more depth in Section 9.6.

9.5.2. q-Hopf monoid.

Definition 9.13. For the species Lq of linear orders, the product and coproduct
are:

Lq[S]⊗ Lq[T ]→ Lq[I] Lq[I]→ Lq[S]⊗ Lq[T ]

l1 ⊗ l2 7→ l1 · l2 l 7→ qschS,T (l) l|S ⊗ l|T ,

where schS,T (l) is the Schubert cocycle (9.12).

For example,

l|a|k ⊗ s|h|m|i 7→ l|a|k|s|h|m|i,

u|m|a 7→ 1⊗ u|m|a+ u⊗m|a+ q(m⊗ u|a) + q2(a⊗ u|m)

+ u|m⊗ a+ q(u|a⊗m) + q2(m|a⊗ u) + u|m|a⊗ 1.

A comparison with Example 8.16 shows that the product is as before, while
the coproduct is deformed by a power of q. We need to check that Lq is a q-
Hopf monoid. It is clear that the necessary diagrams commute up to a power of
q. Checking that the powers of q work out correctly boils down to basic properties
of the Schubert cocycle. For example, the coassociativity of the coproduct follows
from the cocycle condition (9.17). The compatibility between the product and
coproduct follows from (9.18).
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Proposition 9.14. The antipode of Lq is given by

sI(l) = (−1)|I|q(
|I|
2 ) l,

where l is the reversal of the linear order l on a set I.

Proof. This formula can be most easily derived by direct verification of ax-
ioms (8.21)–(8.23), or by reducing to the case of singletons, as in Example 8.16.
We provide details on how Takeuchi’s formula (8.27) also yields the result.

The formula gives

sI(l) =
∑

S1⊔···⊔Sk=I
Si 6=∅ k≥1

(−1)kqschS1,...,Sk
(l) l|S1 · · · l|Sk ,

where schS1,...,Sk(l) is inductively defined by

schI(l) := 0,

schS,T (l) is the Schubert cocycle (9.12),

schS1,...,Sk(l) := schS1,...,Sk−1
(l|S1⊔···⊔Sk−1

) + schS1⊔···⊔Sk−1,Sk(l).

Equivalently, schS1,...,Sk(l) is the number of pairs (i, j) ∈ I2 such that i > j accord-
ing to l and there are h < k with i ∈ Sh and j ∈ Sk.

The result follows once we show that for any pair of linear orders l and l′ on I,
we have

∑

(S1,...,Sk)
k≥1

(−1)kqschS1,...,Sk
(l) =

{
(−1)|I|q(

|I|
2 ) if l′ = l

0 otherwise,

where the sum is over all ordered decompositions I = S1 ⊔ · · · ⊔ Sk into nonempty
intervals of l′ on which l and l′ agree.

To prove the above claim, we begin by noting that the term involving q in the
left-hand side only depends on l and l′. So it can be pulled out of the sum. The
claim now follows by applying (8.30). �

For example,

s(u|m|a) = −q3(a|m|u).

Let L∗
q be the q-Hopf monoid dual to Lq. Its product, coproduct, and antipode

can be written down by dualizing the above formulas.

9.5.3. 0-Hopf monoid. We now briefly discuss the connected 0-Hopf monoid L0

(set q = 0 in the above discussion). The product is concatenation of linear orders

L0[S]⊗ L0[T ]→ L0[I], l1 ⊗ l2 7→ l1 · l2.

Note that the Schubert statistic schS,T (l) is 0 precisely when S is an initial segment
of l. The coproduct of L0 is therefore deconcatenation:

L0[I]→ L0[S]⊗ L0[T ], l 7→

{
l|S ⊗ l|T if S is an initial segment of l,

0 otherwise.

We comment on the conditions of Proposition 9.1. Consider decompositions I =
S⊔T = S′⊔T ′. If l is the concatenation of linear orders l1 on S and l2 on T , and S′

is an initial segment of l, then necessarily S ⊆ S′ or S′ ⊆ S. This is why (9.5) holds.
Note this axiom fails for the bimonoid L, for which the coproduct is restriction.
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The remaining conditions in Proposition 9.1 express further compatibilities between
concatenation and deconcatenation of linear orders which are easily verified.

It follows from Proposition 9.14 that the components of the antipode of L0 are
simply

(9.19) (s0)I =





id if I = ∅,

−id if I is a singleton,

0 otherwise.

It is interesting to note that L0 is self-dual: the map

L0 → (L0)
∗, l 7→ l∗

is an isomorphism of 0-Hopf monoids. This fact will be generalized later in Propo-
sition 12.6.

9.5.4. The signed partners. There is an isomorphism

Lq × E− → L−q (l1| · · · |li)⊗ (l1 ∧ · · · ∧ li) 7→ l1| · · · |li.

of (−q)-Hopf monoids. The same result holds with L∗
q instead of Lq. It follows that

the signed partners of Lq and L∗
q are:

(9.20) L−
q
∼= L−q and (L∗

q)
− ∼= L∗

−q.

In particular, L and L−1 are signed partners.
Now applying the signature functor to the morphism L → E of (8.31) yields

the morphism

π−1 : L−1 → E− l1| · · · |li 7→ l1 ∧ · · · ∧ li.

of (−1)-Hopf monoids. More generally, applying the signature functor to (8.34)
yields the following commutative diagram.

(9.21)

L−1
//

π−1

��

L∗
−1

E−
id

// (E−)∗

π∗
−1

OO

The top horizontal map is given by

L−1 → L∗
−1 l′ 7→

∑
(−1)dist(l′,l)l∗,

where the sum is over all linear orders l on I, and dist(l′, l) is as defined in (10.27).
It counts the numbers of adjacent transpositions necessary to go from l′ to l. For
example,

u|m|a 7→ u|m|a−m|u|a− u|a|m+m|a|u+ a|u|m− a|m|u.

9.5.5. Up-down operators. In Example 8.56, we saw that the linear order
species is a species with up-down operators, and further (L, u) is a comonoid in
(Spu, ·). In the present context, this fact can be generalized as follows. Consider
the deformation ·q defined in (8.70). Then, (Lq, u) is a comonoid in (Spu, ·q), and
dually (L∗

q , d) is a monoid in (Spd, ·q).
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9.6. Cohomology of linearized comonoids in species

In this section, we lay out the basics of a cohomology theory of linearized co-
monoids in species, with emphasis on the deformation corresponding to a 2-cocycle.
This theory is related to the cohomology of the comonoid E with coefficients in a
bicomodule. More general constructions are possible, but we do not consider them.

Examples of cocycles and the associated deformations are given in Section 9.7
and Chapter 13.

Throughout Part II, we are assuming that k is a field. In this section however,
we prefer to work in greater generality and let k be a commutative ring. Accord-
ingly, vector species take values in the category of k-modules, and the linearization
of a set species is performed over the ring k.

Let Z denote the group of integers under addition and N the set of nonnegative
integers. We also work with an arbitrary abelian group A. Throughout this section,
we assume that p := kP is a linearized comonoid, as in Section 8.7.2.

9.6.1. Low dimensional cocycles. Let p = kP be as above. A 1-cochain on p
is a family α of (set) maps

αI : P[I]→ Z,
one for each finite set I, which is natural in I. In other words, for any bijection
σ : I → J we have a commutative diagram

P[I]
αI

''NNNNNN

P[σ]

��

Z.

P[J ]
αJ

88pppppp

The 1-cochain α is normal if

(9.22) α∅(x) = 0

for any x ∈ P[∅]. It is a 1-cocycle if

(9.23) αI(x) = αS(x|S) + αT (x/S)

for any x ∈ P[I] and any decomposition I = S ⊔ T .

A 2-cochain on p is a family γ of (set) maps

γS,T : P[I]→ Z,

one for each decomposition I = S ⊔ T , which is natural in I. In other words, for
any bijection σ : I → J we have a commutative diagram

P[I]
γS,T

((QQQQQQQQ

P[σ]

��

Z.

P[J ]
γσ(S),σ(T )

66mmmmmmmm

The 2-cochain γ is normal if

(9.24) γI,∅(x) = γ∅,I(x) = 0

for any x ∈ P[I]. It is a 2-cocycle if

(9.25) γR,S⊔T (x) + γS,T (x/R) = γR⊔S,T (x) + γR,S(x|R⊔S)
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for any x ∈ P[I] and any decomposition I = R ⊔ S ⊔ T .

Let α be a 1-cochain. Consider the 2-cochain d(α) given by

(9.26) d(α)S,T (x) := αS(x|S) + αT (x/S)− αI(x).

Lemma 9.15. The 2-cochain d(α) is in fact a 2-cocycle. If α is normal, then so
is d(α).

Proof. The left-hand side of (9.25) is

d(α)R,S⊔T (x) + d(α)S,T (x/R)

= αR(x|R) + αS⊔T (x/R)− αI(x) + αS
(
(x/R)|S

)
+ αT

(
(x/R)/S

)
− αS⊔T (x/R).

In view of (8.43), this equals

αR
(
(x|R⊔S)R

)
− αI(x) + αS

(
(x|R⊔S)/R

)
+ αT (x/R⊔S)

= αR⊔S(x|R⊔S) + αR
(
(x|R⊔S)R

)
− αI(x) + αS

(
(x|R⊔S)/R

)

+ αT (x/R⊔S)− αR⊔S(x|R⊔S)

= d(α)R⊔S,T (x) + d(α)R,S(x|R⊔S). �

The 2-cocycles of the form d(α) for some 1-cochain α are called 2-coboundaries.

Let C1(p,Z) denote the set of 1-cochains on p. It is a group under pointwise
addition: given 1-cochains α and β, we set

(α+ β)I(x) := αI(x) + βI(x)

for all x ∈ P[I]. Similarly, the set C2(p,Z) of 2-cochains on p is a group under
addition, and the map

d : C1(p,Z)→ C2(p,Z)

defined by (9.26) is a morphism of groups.
Let Zk(p,Z) denote the set of k-cocycles, k = 1, 2, and B2(p,Z) the set of

2-coboundaries. The set Z1(p,Z) is the kernel of d and the set B2(p,Z) is the
image. By Lemma 9.15, B2(p,Z) ⊆ Z2(p,Z).

The second cohomology group of p is the quotient

(9.27) H2(p,Z) := Z2(p,Z)/B2(p,Z).

Two 2-cocycles are cohomologous if they differ by a 2-coboundary; that is, if
they have the same image in the second cohomology group.

9.6.2. Comonoid deformations. Let p = kP be a linearized comonoid, as
above. Fix a scalar q ∈ k and a normal 2-cocycle γ on p. Assume either that
γ takes values in N, or q is invertible in k. In this situation, we may define a map

∆γ : p→ p · p

as follows. Given a decomposition I = S ⊔ T , we set

(9.28) (∆γ)S,T : p[I]→ p[S]⊗ p[T ], x 7→ qγS,T (x)x|S ⊗ x/S ,

for any x ∈ P[I] (and extend by linearity).
The dependence of ∆γ on q is not reflected in the notation. However, in contexts

where γ is understood, we may write ∆q instead of ∆γ .

Proposition 9.16. In the above situation, (p,∆γ , ǫ) is a comonoid in (Sp, ·).
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Proof. Coassociativity of ∆γ follows from that of ∆ plus (9.25). Counitality
follows similarly from (9.24). �

We say that the coproduct ∆γ is a deformation of ∆.
Let γ1 and γ2 be two cohomologous normal 2-cocycles, and α a normal 1-cochain

such that

γ2 − γ1 = d(α).

Assume either that α takes values in N, or q is invertible in k. In this situation, we
may define a map fα : p→ p by

(9.29) (fα)I : p[I]→ p[I], x 7→ qαI(x)x,

for any x ∈ P[I] (and extend by linearity).

Proposition 9.17. The map fα is a morphism of comonoids

(p,∆γ1 , ǫ)→ (p,∆γ2 , ǫ).

If q is invertible in k, then fα is an isomorphism.

Proof. The hypothesis and (9.26) give

(γ2)S,T (x)− (γ1)S,T (x) = αS(x|S) + αT (x/S)− αI(x).

which implies the commutativity of

p[I]
(∆γ1)S,T

//

(fα)I

��

p[S]⊗ p[T ]

(fα)S⊗(fα)T

��

p[I]
(∆γ2)S,T

// p[S]⊗ p[T ].

Thus, fα preserves coproducts. Similarly, fα preserves counits by (9.22). �

Suppose that γ is a 2-coboundary. The coproduct corresponding to the trivial
cocycle (the zero map) is just the original coproduct ∆. Therefore, if q is invert-
ible, the deformed comonoid (p,∆γ , ǫ) is isomorphic to the undeformed comonoid
(p,∆, ǫ). If q is not invertible (and γ and α take values in N), we only obtain a
morphism

fα : (p,∆, ǫ)→ (p,∆γ , ǫ).

If q = 0, then the coproduct ∆γ takes the form

(9.30) x 7→

{
x|S ⊗ x/S if γS,T (x) = 0,

0 otherwise,

and the morphism fα is

x 7→

{
x if αI(x) = 0,

0 otherwise.
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9.6.3. Multiplicative cocycles. We assume now that p = kP is a linearized
bimonoid in (Sp, ·, β), as in Section 8.7.3.

We say that a 1-cochain α on the linearized bimonoid p is multiplicative if

(9.31) αI(x · y) = αS(x) + αT (y),

for any decomposition I = S ⊔ T , x ∈ P[S], y ∈ P[T ].

Lemma 9.18. Let α be a multiplicative 1-cochain on a linearized bimonoid p.

(i) The cochain α satisfies the unit condition

(9.32) α∅(1) = 0.

(ii) If p is connected, then α is normal.

Proof. Choosing I = ∅, and x = y = 1 in (9.31), we deduce (9.32). If p is
connected, then P[∅] = {1}, and normality (9.22) boils down to (9.32). �

Fix an integer m ∈ Z. Consider a pair of decompositions I = S ⊔ T = S′ ⊔ T ′

and let A, B, C, and D be the resulting intersections, as in Lemma 8.7. We say
that a 2-cochain γ on the bimonoid p is multiplicative of twist m if

γS′,T ′(x · y) = γA,B(x) + γC,D(y) +m · |B| · |C|,(9.33)

for any pair of decompositions I = S ⊔ T = S′ ⊔ T ′ as above, x ∈ P[S], y ∈ P[T ].
We note a few consequences of the axioms.

Lemma 9.19. Let γ be a multiplicative 2-cochain of twist m on p.

(i) The cochain γ satisfies the unit condition

(9.34) γ∅,∅(1) = 0.

(ii) If p is connected, the cochain γ is normal.
(iii) If γ is normal, then

(9.35) γS,T (x · y) = 0 and γT,S(x · y) = m · |S| · |T |

for any x ∈ P[S], y ∈ P[T ].

Proof. First, choosing I = ∅ and x = y = 1 in (9.33) we deduce (9.34).
Assume now that p is connected. Then P[∅] = {1}, so

x/I = 1 = x|∅

for any x ∈ P[I]. Choosing R = I, S = T = ∅ in (9.25) we obtain

γI,∅(x) + γ∅,∅(x/I) = γI,∅(x) + γI,∅(x|I).

It follows, in view of (8.44) and (9.34), that γI,∅(x) = 0. Similarly, choosing
R = S = ∅, T = I in (9.25) we obtain γ∅,I(x) = 0. Thus, γ is normal.

Finally, assume that γ is normal. Choose S = S′ and T = T ′ in (9.33). Then
A = S, B = C = ∅, D = T , and using (9.24) we deduce the first equality in (9.35).
Similarly, choosing S = T ′ and T = S′ we deduce the second. �

Let k = 1, 2. A multiplicative k-cocycle is a multiplicative k-cochain that is a
cocycle.

The set of multiplicative k-cochains is a subgroup of the group Ck(p,Z) of all
cochains. We denote it by Ckmul(p,Z). Similarly let Zkmul(p,Z) denote the subgroup
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of multiplicative k-cocycles of the group Zk(p,Z) of all cocycles. Observe that the
map

C2
mul(p,Z)→ Z, γ 7→ m

which sends a multiplicative 2-cochain to its twist, is a morphism of groups.
The map d : C1(p,Z)→ C2(p,Z) (9.26) restricts to multiplicative cochains, as

follows.

Lemma 9.20. If the 1-cochain α is multiplicative, then the 2-coboundary d(α) is
multiplicative of twist 0.

The proof is straightforward.
The image of C1

mul(p,Z) under d is a subgroup of

Z2
mul(p,Z) ∩B2(p,Z)

denoted B2
mul(p,Z), the multiplicative 2-coboundaries. This leads to the quotient

group

(9.36) H2
mul(p,Z) := Z2

mul(p,Z)/B2
mul(p,Z).

which maps canonically to the cohomology group H2(p,Z) defined in (9.27).
In Theorem 9.27, we determine this group for the bimonoid of linear orders L.

9.6.4. Bimonoid deformations. We continue to assume that p = kP is a lin-
earized bimonoid in (Sp, ·, β).

Let γ be a normal multiplicative 2-cocycle of twist m on p.
Fix a scalar q ∈ k. Assume either that q is invertible, or that γ takes values in

N and m ∈ N. Consider the deformed comonoid (p,∆γ , ǫ) defined in Section 9.6.2.

Proposition 9.21. Let γ be a normal 2-cocycle on the linearized bimonoid
(p, µ, ι,∆, ǫ). If γ is multiplicative of twist m, then (p, µ, ι,∆γ , ǫ) is a bimonoid
in (Sp, ·, βqm).

Proof. The compatibility axiom (8.18) relating µ, ∆γ and the braiding βqm
follows from the corresponding axiom for µ and ∆ plus (9.33).

The unit condition (9.34) (or the stronger condition (9.24)) implies (∆γ)∅,∅(1) =
1⊗ 1. This guarantees the compatibility between ∆γ and ι in (8.19). �

In particular, if γ is multiplicative of twist m = 0, then the deformed bimonoid
is still an ordinary bimonoid (though no longer linearized), and if γ is of twist
m = 1, then the deformed bimonoid is a q-bimonoid.

Let α be a 1-cochain and fα : p→ p the map defined in (9.29). Suppose γ1 and
γ2 are two cohomologous 2-cocycles which differ by d(α), as in Proposition 9.17.

Proposition 9.22. Suppose γ1 and γ2 are both normal and multiplicative of twist
m. Suppose α is multiplicative and normal. Then the map fα is a morphism of
qm-bimonoids

(p, µ, ι,∆γ1 , ǫ)→ (p, µ, ι,∆γ2 , ǫ).

If q is invertible in k, then fα is an isomorphism.

Proof. We know that fα is a morphism of comonoids from Proposition 9.17.
Equation (9.31) implies that it preserves products, and (9.32) that it preserves
units. �
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9.6.5. Abelian group coefficients. The discussion in the preceding sections can
be carried out for an arbitrary abelian group A in place of the group of integers
Z. All cocycle conditions such as (9.23) and (9.25) are understood as equalities in
A. The twist m intervening in the definition of multiplicative cocycle is now an
element of A, and the term m · |B| · |C| in (9.33) is

m+ · · ·+m︸ ︷︷ ︸
|B|·|C|

(repeated addition in the group A).
This leads to the second cohomology group of a linearized comonoid p with

coefficients on A
H2(p,A) := Z2(p,A)/B2(p,A)

and its multiplicative version

H2
mul(p,A).

Let χ : A→ k× be a character on the group A. In other words, χ is a morphism
of groups from A to the group of invertible elements in k. In this situation, given
a normal 2-cocycle γ on p with values on A, we may deform the coproduct of p as
follows. Given a decomposition I = S ⊔ T , we set

(∆γ)S,T : p[I]→ p[S]⊗ p[T ], x 7→ χ
(
γS,T (x)

)
x|S ⊗ x/S ,

for any x ∈ P[I]. The morphism associated to a 1-cochain α on p with values on A
is similarly defined by

(fα)I : p[I]→ p[I], x 7→ χ
(
αI(x)

)
x.

The results of Sections 9.6.2 and 9.6.4 continue to hold.

Let q ∈ k× be an invertible scalar. The q-deformations considered in Sec-
tions 9.6.2 and 9.6.4 correspond to the case when A = Z and χ(i) = qi for any
integer i.

9.6.6. Higher cohomology groups. Let p = kP be a linearized comonoid in
species. We will make use of the notions of restriction and contraction introduced
in (8.42).

We proceed to define a sequence of categories {Bk(p)}k≥0. Given k ∈ N, the
objects of Bk(p) are sequences

(I, x, S1, . . . , Sk)

where I is a finite set, x ∈ P[I], and S1 ⊔ · · · ⊔ Sk = I (in the terminology of Sec-
tion 10.1.2, (S1, . . . , Sk) is a weak composition of I into k blocks). The morphisms

(I, x, S1, . . . , Sk)→ (J, y, T1, . . . , Tk)

of Bk(p) are bijections σ : I → J such that

P[σ](x) = y and σ(Si) = Ti for all i.

We now turn the sequence {Bk(p)}k≥0 into a simplicial category (Section 5.1.1).
Take i = 0, . . . , k. Define functors

di : Bk(p)→ Bk−1(p) and si : Bk(p)→ Bk+1(p)
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as follows. Given x ∈ P[I] and S1 ⊔ · · · ⊔ Sk = I,

di(I, x, S1, . . . , Sk) :=





(I \ S1, x/S1, S2 . . . , Sk) if i = 0,

(I, x, S1, . . . , Si ⊔ Si+1, . . . , Sk) if 0 < i < k,

(I \ Sk, x|S1⊔···⊔Sk−1
, S1, . . . , Sk−1) if i = k,

(9.37)

si(I, x, S1, . . . , Sk) := (I, x, S1, . . . , Si, ∅, Si+1, . . . , Sk).(9.38)

On a morphism σ : (I, x, S1, . . . , Sk)→ (J, y, T1, . . . , Tk), we set

di(σ) :=





σ|I\S1
if i = 0,

σ if 0 < i < k,

σ|I\Sk if i = k,

si(σ) := σ.

These are well-defined by naturality of restriction and contraction (which in turn
follow from naturality of the coproduct of p).

Lemma 9.23. The functors di and si satisfy the simplicial relations (5.4).

Proof. Consider the relations didj = dj−1di for 0 ≤ i < j ≤ k. The cases in
which (i, j) equals (k− 1, k), (0, k) and (0, 1) are respectively equivalent to each of
the equalities in (8.42). The other cases are straightforward.

The relations dksk = id = d0s0 are equivalent to (8.44). All other simplicial
relations are straightforward. �

Therefore by Lemma 5.2, we have a simplicial category {Bk(p)}k≥0.
Let A be an abelian group. Consider the associated discrete category in which

the objects are the elements of A and the only morphisms are the identities. We
define

Ck(p,A) := HomCat(Bk(p),A).

In other words, the elements of Ck(p,A) are functors from the category Bk(p) to
the discrete category on A. The set Ck(p,A) is a group under pointwise addition.
We refer to Ck(p,A) as the group of k-cochains on p.

Given a functor Bk(p)→ A, let

γS1,...,Sk(x) ∈ A

denote the image of the object (I, x, S1, . . . , Sk) of Bk(p). Functoriality boils down
to the following condition: for any bijection σ : I → J we must have a commutative
diagram

(9.39)

P[I]
γS1,...,Sk

((QQQQQQQQ

P[σ]

��

A.

P[J ]
γσ(S1),...,σ(Sk)

66mmmmmmmm

Thus, a k-cochain is a family of maps γS1,...,Sk : P[I]→ A, one for each decomposi-
tion I = S1 ⊔ · · · ⊔ Sk, which is natural in I in the sense that the above diagrams
commute. In particular, low dimensional cochains are as defined in Section 9.6.1.

Let (Ab,⊗) denote the category of abelian groups. The functor

HomCat(−,A) : Cat→ Ab
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is contravariant. Therefore, the sequence {Ck(p,A)}k≥0 is a cosimplicial abelian
group. The associated cochain complex defines the cohomology of p with coeffi-
cients in A. The low dimensional structure is as described in Section 9.6.1.

When p is a linearized bimonoid, multiplicative versions of these cohomology
groups can also be defined, extending the notions of Section 9.6.3. The details are
omitted.

We thank Paulo Lima-Filho for useful comments regarding this construction.

9.6.7. Connection with cohomology with coefficients in a bicomodule.
Let c be a comonoid in (Sp, ·) (not necessarily linearized) and m a c-bicomodule.
Recall the cochain complex C(c,m) from Section 8.2.3.

Let us now set k = Z. Let E be the exponential species with its usual comonoid
structure (Example 8.15). Suppose that p = ZP is a linearized comonoid. Recall
that such a structure is equivalent to a linearized E-bicomodule structure on p
(Proposition 8.30). Therefore, the cochain complex C(E,p) is defined.

According to the definition in Section 8.2.3, the Z-module Cn(E,p) consists of
morphisms of species

f : p→ E·n.

Note that

E·n[I] =
⊕

S1⊔···⊔Sn=I

Z.

Hence, such a morphism f is equivalent to a family of maps

fS1,...,Sn : P[I]→ Z

satisfying the naturality condition (9.39). Thus, the space Cn(p,Z) defined in
Section 9.6.6 coincides with the space Cn(E,p) defined in Section 8.2.3. Moreover,
a comparison of (8.17) and (9.37) shows that the differential is the same for both
cochain complexes.

In conclusion, the cohomology groups of the Z-linearized comonoid p with
coefficients in Z from Section 9.6.6 coincide with the cohomology groups of the
comonoid E with coefficients in the bimodule p from Section 8.2.3.

9.7. The Schubert and descent cocycles

Consider the Hopf monoid of linear orders L from Example 8.16. It is a lin-
earized bimonoid. Thus, we may speak of (multiplicative) cocycles on L (Sec-
tion 9.6). Note that the notions of restriction and contraction defined in (8.42) both
coincide with ordinary restriction of linear orders (as defined in Example 8.16).

In this section, we discuss two important 2-cocycles on L: the Schubert cocycle
and the descent cocycle.

9.7.1. Uniqueness of the Schubert cocycle. Consider the Schubert cocycle
defined in Section 9.5.1. Note that the family of maps schS,T : L[I]→ N is natural.
Further:

Proposition 9.24. The Schubert cocycle defines a normal 2-cocycle on the comon-
oid L. Moreover, this cocycle is multiplicative of twist 1.

Proof. Normality (9.24) follows from (9.14), the cocycle condition (9.25) fol-
lows from (9.17), and multiplicativity (9.33) (with m = 1) follows from (9.18). �
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We point out that this cocycle is not a coboundary. Indeed, since L is cocom-
mutative, any 2-coboundary d(α) satisfies d(α)S,T = d(α)T,S , in view of (9.26).
However, schS,T 6= schT,S ; see (9.16) in this regard.

We now proceed to establish an important uniqueness property of the Schu-
bert cocycle: up to scalar multiples, it is the unique multiplicative cocycle on L
(Theorem 9.27).

First, we determine the group of multiplicative 1-cochains (9.31) on the comon-
oid L. Given an integer k ∈ Z, let

(αk)I(l) := |I| · k

for any linear order l on a finite set I.

Proposition 9.25. The family of maps αk is a multiplicative 1-cochain on L.
Moreover, the map

Z→ C1
mul(L,Z), k 7→ αk

is an isomorphism of groups.

Proof. The first assertion is clear. To prove the converse, let α denote an
arbitrary multiplicative 1-cochain on L. On the empty set, α and αk agree by (9.32).
Let {i} be a singleton, and define k := α{i}(∗i), where ∗i denotes the unique linear
order on {i}. This is independent of the choice of the singleton, by naturality of α.
Now let I be an arbitrary nonempty set and l = l1| · · · |ln a linear order on I. Then
l is the concatenation of ∗l1 , . . . , ∗ln , and by (9.31),

αI(l) = α{l1}(∗l1) + · · ·+ α{ln}(∗ln) = |I| · k.

Thus, α = αk as needed. �

Next, we show that there are no nontrivial multiplicative 2-coboundaries on L.

Proposition 9.26. Any multiplicative 1-cochain on L is a 1-cocycle. Thus,

B2
mul(L,Z) = 0 and H2

mul(L,Z) = Z2
mul(L,Z).

Proof. Let αk be a multiplicative 1-cochain. Given a linear order l on I and
a decomposition I = S ⊔ T , we have

(αk)S(l|S) + (αk)T (l|T ) = |S| · k + |T | · k = |I| · k = (αk)I(l).

Thus, (9.23) holds and αk is a 1-cocycle. �

Theorem 9.27. Let γ be a multiplicative 2-cocycle on L of twist m. Then

γ = m · sch

where sch is the Schubert cocycle. Thus,

H2
mul(L,Z) = Z2

mul(L,Z) ∼= Z

under the map m 7→ m · sch.

Proof. Let I = S ⊔ T . We show γS,T = m · schS,T by induction on |I|.
If |I| ≤ 1, then at least one of S and T is empty, and

γS,T = 0 = schS,T

since both cocycles are normal: γ by Lemma 9.19 (since L is connected) and sch
by Proposition 9.24.
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Suppose |I| ≥ 2. Let l be a linear order on I. Choose any proper, nonempty,
initial segment S′ of l, and let T ′ be its complement. Then both |S′| and |T ′| are
smaller than |I|, and l is the concatenation of l|S′ with l|T ′ :

l = l|S′ · l|T ′ .

Let A,B,C,D be the intersections of S and T with S′ and T ′, as in Lemma 8.7.
Since γ is multiplicative of twist m (9.33), we have

γS,T (l) = γA,C(l|S′) + γB,D(l|T ′) +m · |B| · |C|

(the roles of S, T and S′, T ′ here are reversed from their roles in (9.33)).
By induction hypothesis, and since sch is multiplicative of twist 1, the above

sum equals

m · schA,C(l|S′) +m · schB,D(l|T ′) +m · |B| · |C| = m · schS,T (l).

Thus, γS,T (l) = m · schS,T (l) as needed.
The assertion about the cohomology group now follows from Proposition 9.26.

�

Let q ∈ k be an arbitrary scalar (not necessarily invertible). According to
Propositions 9.21 and 9.24, we may deform the bimonoid L using the Schubert
cocycle and obtain a q-bimonoid. The result is in fact a q-Hopf monoid, by con-
nectedness. It follows from (9.28) that this q-Hopf monoid is indeed Lq (Defini-
tion 9.13). Theorem 9.27 implies that there are no other such deformations, up to
reparametrizations q 7→ qm.

9.7.2. The descent cocycle. Given a linear order l on I and a decomposition
I = S ⊔ T , let

(9.40) DS,T (l) := {(i, j) ∈ S × T | i immediately succeeds j according to l}

and

(9.41) dS,T (l) := |DS,T (l)|.

For instance, if

l = s|h|i|v|a, S = {i, s, a}, T = {v, h},

then
DS,T (l) = {(i, h), (a, v)} and dS,T (l) = 2.

The statistic d admits the following description in terms of lattice paths: if we
walk east when we read an element of S and north when we read an element of T ,
then dS,T (l) is the number of right turns made when reading the elements of l from
left to right. See Figure 9.1 for an illustration.

s
h

i
v

a

t
t

d d
d

d

Figure 9.1. The descent statistic as the right turns in a lattice path.
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Proposition 9.28. The family of maps dS,T : L[I]→ N defines a normal 2-cocycle
on the comonoid L.

Proof. Let l be a linear order on I = R ⊔ S ⊔ T . Let (i, j) ∈ I2 be such that
i immediately succeeds j. The pair is counted by

dR,S⊔T (l) + dS,T (l|R)

if i is in R and j is in S or T , or if i is in S and j is in T . Similarly, (i, j) is counted
by

dR⊔S,T (l) + dR,S(l|R⊔S)

if i is in R or S and j is in T , or i is in R and j is in S. Thus, both counts are
equal and the cocycle condition (9.25) holds. Normality (9.24) is clear. �

Suppose I = [n] and l = 1| · · · |n. Given S ⊔ T = [n], let ζ ∈ Sn be the
corresponding shuffle as in (2.26). Then

(9.42) dS,T (l) = des(ζ−1),

the number of descents of the permutation ζ (Section 10.7.1). By naturality, the
computation of dS,T can always be reduced to this situation.

We refer to the family of maps dS,T as the descent cocycle. As the Schubert
cocycle, the descent cocycle is not symmetric: dS,T 6= dT,S , hence it is not a
coboundary.

The descent cocycle is not multiplicative. This can be understood in terms of
lattice paths. Consider decompositions I = S ⊔ T = S′ ⊔ T ′ and sets A,B,C,D
as in Lemma 8.7. The concatenation of linear orders l1 on S and l2 on T yields a
path which is the concatenation of the paths corresponding to l1 and l2. The steps
east correspond to S′ = A ⊔ C and the steps north to T ′ = B ⊔D, as schematized
below.

dA,B

dC,D

The total number of right turns is either the sum of the number of right turns
of each smaller path, or this number plus 1, in the case when the first path ends
north and the second starts east. This last possibility violates condition (9.33).
The descent cocycle may be used to deform the comonoid structure of L, but since
it is not multiplicative, the resulting coproduct is not compatible with the monoid
structure of L. We do not consider this deformation in this monograph.



CHAPTER 10

The Coxeter Complex of Type A

Coxeter groups play an important role in many areas of mathematics. A concise
introduction to Coxeter groups particularly relevant to the ideas presented here is
given in [12, Chapter 1]. Supplementary material can be found in the books by
Abramenko and Brown [3], Davis [89], Grove and Benson [156], Humphreys [174],
Björner and Brenti [51] or Bourbaki [62]. Material related to the general context of
hyperplane arrangements and oriented matroids can be found in [52, 257, 344, 286].

In this chapter, we only deal with the symmetric group, which is the Coxeter
group of type A. This is because our main interest here is to tie Coxeter theory
to species. The theory for the symmetric group can be understood explicitly; this
makes our exposition fairly self-contained. We begin with a discussion of a number
of combinatorial structures that play a fundamental role here and elsewhere in
the monograph (Section 10.1). In Sections 10.2, 10.3, 10.4 and 10.5, we review
some standard material, namely, the braid arrangement, faces and flats therein, the
Coxeter complex of type A, Tits projection maps, the gallery metric, and the gate
property. Of particular importance is a monoid structure carried by the set of faces.
It is defined in terms of the projection maps and lifts the lattice structure of the set
of flats. Sections 10.6 and 10.7 deal with shuffles (and their geometric meaning),
and the descent and global descent maps. The action of faces on chambers by
multiplication yields an embedding of the algebra of faces in the endomorphism
algebra of the space of chambers. In Section 10.8 we explain how this relates to the
notion of descents and Solomon’s descent algebra.

Section 10.9 deals with directed faces and directed flats. Just as faces and
flats carry a monoid structure, directed faces and directed flats carry a dimonoid
structure. The inter-relationships between these algebraic objects are studied in
Section 10.10. In Section 10.11, we discuss the break and join maps. These are
natural companions to the projection maps and together they explain how various
combinatorial and geometric objects compose and decompose. These ideas will be
used to construct a number of Hopf monoids in Chapter 12.

In Section 10.12, we discuss a weighted version of the gallery metric. The
starting data is an integer square matrix A of size r. Letting A = [1] recovers
the usual gallery metric. Interesting distinctions occur when A is symmetric or
antisymmetric. We relate them to the unoriented and oriented cases which occur in
integration theory. In Section 10.13, we return to the (weighted) Schubert statistic
of Section 2.2 and relate it to the ideas of this chapter by interpreting it in terms
of the (weighted) gallery metric. In Sections 10.14 and 10.15, we define some
interesting bilinear forms on faces, directed faces and chambers (maximal faces)
and study conditions under which they are nondegenerate. We will see later in
Chapter 12 that the nondegeneracy of these forms implies (among other things)
the self-duality of related Hopf monoids.

305
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10.1. Partitions and compositions

Partitions and compositions are basic combinatorial structures. They play an
important role in the theory of species. In this section we review these and some
related structures.

10.1.1. Partitions and compositions of a number. Let n be a nonnegative
integer. A partition λ = (λ1, λ2, . . . , λk) of n is a finite sequence of positive integers
such that

λ1 ≥ λ2 ≥ · · · ≥ λk and λ1 + λ2 + · · ·+ λk = n.

A composition α = (α1, α2, . . . , αk) of n is a finite sequence of positive integers such
that

α1 + α2 + · · ·+ αk = n.

If the numbers αi are allowed to be nonnegative, we say that α is a weak composition
of n.

We write λ ⊢ n and α � n to indicate that λ is a partition of n and α a
composition of n. The numbers λi and αi are the parts of λ and α. The empty
sequence is the only partition (and composition) of 0; it has no parts.

Fix a positive integer k. The number of partitions of n into k parts is denoted
pk(n). The generating function is

∑

n≥1

pk(n)xn =
xk

(1− x)(1 − x2) · · · (1− xk)
.

The number of compositions of n into k parts is the binomial coefficient
(
n−1
k−1

)
, with

generating function
∑

n≥1

(
n− 1

k − 1

)
xn =

xk

(1− x)k
.

For n ≥ k ≥ 1, there is a bijection between compositions of n into k parts and
subsets of [n− 1] of cardinality k − 1 given by

(10.1) (α1, α2, . . . , αk) 7→ {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}.

10.1.2. Partitions and compositions of a set. Let I be a finite set. A partition
X of I is an unordered collection X of disjoint nonempty subsets of I such that

I =
⋃

S∈X

S.

A composition of I is an ordered sequence F = (F 1, . . . , F k) of disjoint nonempty
subsets of I such that

I =
k⋃

i=1

F i.

If the subsets F i are allowed to be empty, we say that F is a weak composition of I.
When confusion with compositions and partitions of numbers may arise, we

may use the terms set compositions and set partitions. The subsets S of I which
belong to X and the subsets F i in the sequence F are the blocks or parts of X and
F , respectively. We agree that there is only one composition and one partition of
the empty set (with no blocks). We write X ⊢ I and F � I to indicate that X is
a partition of I and F a composition of I. We often write F = F 1| · · · |F k instead
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of F = (F 1, . . . , F k). For partitions, we may choose an arbitrary ordering of its
blocks and write X = {X1, . . . , Xk}.

Decomposition is just another term for weak composition. In contexts where
we are interested in compositions as a combinatorial structure, we stick to the latter
terminology. In other contexts, we prefer to speak of decompositions (S1, . . . , Sk)
of a finite set I and write

I = S1 ⊔ · · · ⊔ Sk.

Sometimes, for emphasis, we may add that the decomposition is disjoint and or-
dered, even though this is always assumed when using this notation.

Decompositions are called partages by Joyal [181, Section 2.1]. Set composi-
tions are often called ordered set partitions, preferential arrangements [202, Exer-
cise 5.3.1.3], [341, Example 3.15.10], or ballots [40].

Fix a positive integer k. The number of partitions of [n] into k blocks is denoted
S(n, k) and called the Stirling number of the second kind. The generating function
is

∑

n≥1

S(n, k)xn =
xk

(1− x)(1 − 2x) · · · (1− kx)
.

The number of compositions of [n] into k blocks is k!S(n, k), with generating func-
tion ∑

n≥1

k!S(n, k)xn =
x

1− x
·

2x

1− 2x
· · ·

kx

1− kx
.

Given a surjective function f : I ։ [k], the sequence of fibers f−1(1)| · · · |f−1(k) is
a composition of I into k blocks. This sets up a bijective correspondence between
compositions of I into k blocks and surjective functions I ։ [k].

10.1.3. Linear partitions and linear compositions of a set. Let I be a finite
set. A linear partition (composition) of I is a partition (composition) of I together
with a linear order on each of its blocks. A disposition of I is a weak composition
of I with a linear order on each block.

The terminology used here is that of Rota et al [180, 57]. Linear partitions are
also called partitions into ordered blocks. In [12, Section 5.4.2] we used fully nested
set partition (composition) for linear partition (composition).

We extend the notation employed for linear orders (Example 8.3) to these
structures as follows. To specify a linear partition, we give the set of blocks and
display the order in each block by listing the elements from left to right in increasing
order, separated by bars. To specify a linear composition, we further indicate the
order among blocks by listing them from left to right separated by long bars. For
example,

{n|a, i|r, k|h|s} and a|n|r|i|s|k|h
are respectively a linear partition and a linear composition of {k, r, i, s, h, n, a}. The
former is equal to {i|r, n|a, k|h|s} but not to {a|n, i|r, s|h|k}.

Note that a linear composition may be equivalently described by a pair (F,C),
where F is a composition of I and C is a linear order on I which refines F , or even
as a linear order on I together with a composition of |I|. For example,

(na|ri|ksh, a|n|r|i|s|k|h) and
(
a|n|r|i|s|k|h, (2, 2, 3)

)
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both correspond to the linear composition a|n|r|i|s|k|h of {k, r, i, s, h, n, a}.

It follows that the number of linear compositions of [n] into k blocks and the
number of linear partitions of [n] into k blocks are respectively

n!

(
n− 1

k − 1

)
and

n!

k!

(
n− 1

k − 1

)
.

The latter is called the Lah number.

10.1.4. Refinement and partial orders. Let X and Y be partitions of I. We
say that Y refines X if each block of Y is contained in a block of X , or equivalently
if each block of X is a union of blocks of Y . In this case we write X ≤ Y . This
defines a partial order on the set of partitions of I which is in fact a lattice. The
top element is the partition into singletons and the bottom element is the partition
whose only block is the whole set I.

Warning. Sometimes the opposite partial order on partitions is used in the litera-
ture.

Refinement is defined similarly for compositions of I and for compositions of
n. The bijection (10.1) defines an isomorphism between the poset of compositions
of n and the poset of subsets of [n− 1] (a Boolean poset).

We also define a partial order on the set of linear compositions of I as follows.
We view them as pairs consisting of a set composition and a finer linear order and
declare (F,C) ≤ (G,D) if C = D and F ≤ G (G refines F ). In the bar notation,
this means that we go up in the partial order by turning some short bars into long
bars.

We consider two partial orders on linear partitions. To this end, we make use
of the notions of restriction, shuffle and concatenation of linear orders discussed in
Examples 8.16 and 8.24.

Let L and M be two linear partitions of I. First, we write L ≤′ M if each
ordered block of M is a restriction of an ordered block of L, or equivalently if each
ordered block of L is a shuffle of ordered blocks of M . For instance,

{l|a|k, s|h|m|i} ≤′ {l|k, a, s|m,h|i}.

Second, we write L ≤M if the ordered blocks ofM are obtained by deconcatenating
the ordered blocks of L, or equivalently, if each ordered block of L is a concatenation
of ordered blocks of M . For instance,

{l|a|k, s|h|m|i} ≤ {l|a, k, s|h,m|i}.

Note that

L ≤M =⇒ L ≤′ M.

10.1.5. Type, support, and base. The type of a composition F of I is the
composition of |I| whose parts are the sizes of the blocks of F . The type of a
partition X of I is the partition of |I| whose parts are the sizes of the blocks of X
(listed in decreasing order).

The support of a composition F of I is the partition supp(F ) of I obtained by
forgetting the order among the blocks. The support of a composition of n is the
partition of n obtained by reordering the parts in decreasing order.
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The support and type maps commute with each other. This can be illustrated
as follows.

la|ksh|mi � supp
//

_

type

��

{la, ksh,mi}
_

type

��

(2, 3, 2)
�

supp
// (3, 2, 2).

The support of a linear composition (F,C) is the linear partition supp(F,C) ob-
tained by forgetting the order among the blocks (but keeping the order within each
block).

The base of a linear composition (partition) is the composition (partition) ob-
tained by forgetting the orders within each block, or equivalently, by removing the
short bars.

The support and base maps commute with each other. This can be illustrated
as follows.

l|a|k|s|h|m|i � supp
//

_

base

��

{l|a, k|s, h|m|i}
_

base

��

la|ks|hmi �
supp

// {la, ks, hmi}.

10.1.6. Concatenation, restriction, shuffles and quasi-shuffles. Through-
out this section, we fix an ordered disjoint decomposition I = S ⊔ T of a finite
set I.

Given a composition F of I, the restriction F |S is the composition of S whose
blocks are the nonempty intersections of the blocks of F with S. If F = F 1| · · · |F k,
we write

F |S = (F 1 ∩ S| · · · |F k ∩ S)̂
where the hat indicates that empty intersections are removed from the list.

Given compositions F = F 1| · · · |F k of S and G = G1| · · · |Gl of T , their con-
catenation is the composition F ·G of I defined by

F ·G := F 1| · · · |F k|G1| · · · |Gl.

A quasi-shuffle of F and G is a composition H of I such that H |S = F and
H |T = G. It follows that each block of H is either a block of F , or a block of G, or
a union of a block of F and a block of G;

A shuffle of F and G is a quasi-shuffle H such that each block of H is either a
block of F or a block of G.

In other words, in a shuffle H the blocks F i are listed in H in the same order as
in F , and similarly for the blocks of G. A quasi-shuffle is obtained from a shuffle by
substituting any number of pairs of blocks (F i, Gj) for F i⊔Gj , if they are adjacent
in the shuffle.

For example,

g|sh|i|au|ri|va is a shuffle of sh|i|va and g|au|ri,

and
vla|i|shksh|mi|nu is a quasi-shuffle of v|i|sh|nu and la|ksh|mi.

The notion of shuffle and quasi-shuffle can be extended to any finite number of set
compositions.
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Given a partition X of I, the restriction X |S is defined in the same manner as
for compositions.

Given partitions X of S and Y of T , their union is the partition X ⊔ Y of I
whose blocks are the blocks of X and the blocks of Y . A quasi-shuffle of X and Y
is any partition of I whose restriction to S is X and whose restriction to T is Y .
For example,

{sh, i, va} is the union of {sh, i} and {va},

and
{sh, i, va}, {sh, iva} and {shva, i} are all their quasi-shuffles.

Given a linear partition L of I, the restriction L|S is the linear partition of I
whose blocks are the nonempty intersections of the blocks of L with S, ordered as
in L.

Given linear partitions L of S and M of T , their union is the linear partition
L⊔M of I whose ordered blocks are those of L and those of M . A quasi-shuffle of
L and M of I is any linear partition of I each of whose ordered blocks is either an
ordered block of L, or one of M , or a concatenation of one of L followed by one of
M . For example, the quasi-shuffles of {v|i|s, h} and {n|u} are

{v|i|s, h, n|u}, {v|i|s, h|n|u}, and {v|i|s|n|u, h}.

10.1.7. Factorials and related numbers. The factorial of a set partition X is

(10.2) X ! :=
∏

S∈X

|S|!.

It counts the number of ways of endowing each block of X with a linear order. The
cyclic factorial of X is

X !b := ∏

S∈X

(|S| − 1)!.

It counts the number of ways of endowing each block of X with a cyclic order. Note
that

(10.3) (X ⊔ Y )! = X !Y ! and (X ⊔ Y )!b= X !bY !b.
The following relation between factorials and cyclic factorials is of importance.

(10.4)
∑

Y :X≤Y

Y !b= X !.

It may be derived as follows. Suppose X has only one block I. Each permutation
of I determines a partition Y of I whose blocks are the cycles of the permutation.
The left hand side counts the number of permutations of I according to these cycle
partitions, while the right hand side counts all permutations. The general case
follows using (10.3).

The coefficients X !b appear in the work of Brown [70, Theorem 1] in the gen-
eral setting of left regular bands; also see [12, Sections 2.5.5 and 2.6.2]. In these
references, the notations nX and cX are used instead of X !b and X !.

Given set partitions X and Y with Y refining X , let

(10.5) (X : Y )! :=
∏

S∈X

(nS)!,

where nS is the number of blocks of Y that refine the block S of X . Note that if
Y is the unique partition into singletons, then X ! = (X : Y )!.
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Let F be any set composition with support X . Then

(10.6) (X : Y )! = |{G | F ≤ G, supp(G) = Y }|.

The factorial of a set composition F = F 1| · · · |F k is

(10.7) F ! :=
k∏

i=1

|F i|!.

This is the number of linear orders that refine F . The factorial of a composition
α = (α1, . . . , αk) of an integer is

(10.8) α! :=

k∏

i=1

αi!.

Note that

F ! = (suppF )! = (typeF )!.

10.2. Faces, chambers, flats and cones

In this section, we discuss the braid arrangement, along with the basic notions
of faces, flats and cones which are attached to it. These notions are closely related
to the notions of partitions and compositions discussed in Section 10.1. More details
on the braid arrangement can be found in [45, 46, 47, 72].

10.2.1. The braid arrangement. The braid arrangement in Euclidean space Rn

consists of the
(
n
2

)
hyperplanes defined by

xi = xj ,

where 1 ≤ i < j ≤ n. The symmetric group Sn acts on this arrangement by
permuting the coordinates.

One may replace the set [n] by any finite set I. Let RI be the vector space
consisting of all functions from I to R. The braid arrangement in RI consists of
the hyperplanes Hij defined by

xi = xj ,

where i 6= j range over the elements of I. Note that Hij = Hji. Let

Br[I] := {Hij | i, j ∈ I, i 6= j}

denote the arrangement.
A bijection I ∼= J induces a linear isomorphism RI ∼= RJ which sends Br[I] to

Br[J ]. Thus, Br is a set species, and so will be each of the objects associated to it
throughout this chapter.

10.2.2. Faces and chambers. For each pair (i, j) ∈ I2 with i 6= j, the subset of
RI defined by

xi ≤ xj

is a half-space of the braid arrangement. Its supporting hyperplane is Hij . Note
that each hyperplane supports two half-spaces.

Two points x, y ∈ RI lie on opposite sides of a hyperplane H if x belongs to one
half-space supported by H, y belongs to the other half-space, and neither belongs
to H. We say that two points are separated if they lie on opposite sides of at least
one hyperplane H ∈ Br[I].
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A face of the braid arrangement Br[I] is a nonempty subset of RI with the
following two properties.

• If two points lie in the set, then they are not separated.
• If a point lies in the set, then any point that is not separated from it also

lies in the set.

A face is defined by a system of equalities and inequalities which may be en-
coded by a composition of I: the equalities are used to define the blocks and the
inequalities to order them. For example, for I = {a, b, c, d},

xa = xc ≤ xb = xd ←→ ac|bd.

Thus, faces correspond to compositions of the set I.
Let Σ[I] denote the set of faces of the arrangement Br[I]. It is partially or-

dered by inclusion. The partial order on Σ[I] corresponds to refinement of set
compositions. The minimum element is the face

{x ∈ RI | xi = xj for all i, j in I}.

It corresponds to the composition with one block. The maximal faces are called
chambers. They correspond to linear orders on I. For example,

xa ≤ xc ≤ xb ≤ xd ←→ a|c|b|d.

Let L[I] denote the set of chambers.
This defines the set species Σ (of faces or set compositions) and L (of chambers

or linear orders). The linearized species are denoted Σ and L. The latter is the
species of Example 8.3.

Since the braid arrangement is central (all hyperplanes pass through the origin),
every face has an opposite face. In terms of set compositions, the opposite F of a
face F is obtained by reversing the order of the blocks: if F = F 1| · · · |F l, then

F = F l| · · · |F 1.

The hyperplane Hij is called a wall of a chamber C if i and j are consecutive
in the linear order C.

In particular, Σ[n] and L[n] denote the sets of faces and chambers of the braid
arrangement in Rn. The action of Sn on Σ[n] corresponds to its obvious action
on compositions of [n]. This action is simply transitive on L[n]. Hence, one may
identify

(10.9) Sn → L[n] w 7→ wC(n),

where C(n) := 1| · · · |n is the canonical linear order on [n]. We refer to C(n) as the
fundamental chamber.

Since there is no canonical order on I, for the arrangement Br[I] there is no
canonical choice of fundamental chamber. On the other hand, let n be the cardi-
nality of the set I and let Bij([n], I) be the set of bijections from [n] to I. Then
there is a bijection

(10.10) Bij([n], I)→ L[I] w 7→ wC(n),

where

C(n) = 1| · · · |n and wC(n) = w(1)|w(2)| · · · |w(n).

For I = [n], this recovers (10.9).
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10.2.3. Flats. A flat is a subspace obtained by intersecting some of the hyper-
planes in the arrangement. Let Π[I] denote the set of flats in the braid arrangement
Br[I]. It is partially ordered by inclusion. The poset of flats is a lattice.

Flats correspond to partitions of I. For example, for I = {k, r, i, s, h, n, a},

(xk = xi) ∩ (xr = xi) ∩ (xn = xa) ←→ {kri, s, h, na}.

We identify Π[I] with the lattice of partitions of I.
This defines the set species Π of flats, or equivalently, set partitions. The

linearized species is denoted Π. The partial order on flats given by inclusion corre-
sponds to the partial order on set partitions given by refinement (Section 10.1.4).

Let supp: Σ[I]→ Π[I] be the map which sends a face to its linear span. Equiv-
alently, supp(F ) is the intersection of the hyperplanes containing the face F . In
combinatorial terms, this coincides with the support map which sends a set com-
position to its underlying set partition (Section 10.1.5).

10.2.4. Cones. A cone of the braid arrangement Br[I] is defined to be an inter-
section of a subset of its half-spaces.

For example, for I = {a, b, c, d},

{x ∈ RI | xa = xc ≤ xb, xd ≤ xb}

is a cone. Note that a face of the arrangement is a cone. Similarly, a flat of the
arrangement is also a cone.

A top-dimensional cone is a cone with a nonempty interior. In other words, it
is a cone which contains a chamber. Note that a chamber of the arrangement is
a top-dimensional cone and conversely a top-dimensional cone is the union of the
chambers which belong to it. This defines the species of cones and the species of
top-dimensional cones, both of whose I-components are posets under inclusion.

Observe that any flat in the braid arrangement inherits a hyperplane arrange-
ment which is in fact isomorphic to a smaller braid arrangement. Now let R be a
cone. Define X to be the flat obtained by intersecting all the hyperplanes which
contain R. It follows that R is a top-dimensional cone in the induced arrangement
on X . Thus, every cone is a top-dimensional cone in some flat.

10.2.5. The spherical representation. Note that the intersection of all hyper-
planes in the braid arrangement is the one-dimensional space where all coordinates
are equal: ⋂

i6=j

Hij = {x ∈ RI | xi = xj for all i, j}.

Let

H0 =

{
x ∈ RI

∣∣∣∣
∑

i∈I

xi = 0

}

be the orthogonal complement. We intersect all hyperplanes Hij with H0 and no
information is lost. Then we intersect with the unit sphere in H0 and we only lose
the center of the arrangement. This is the spherical representation of the braid
arrangement.

The procedure for I = {a, b, c} is shown in Figure 10.1: H0 is shown in per-
spective as a horizontal plane, with the 3 vertical hyperplanes Hab, Hbc and Hac

cutting through it. The spherical representation is seen on the unit circle on the
plane H0. It is shown in more detail in Figure 10.2.
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Figure 10.1. Euclidean and spherical representations.

10.3. The Coxeter complex of type A

In this section, we associate a simplicial complex to the braid arrangement.
This is the Coxeter complex of type A. We discuss this along with explicit low
dimensional examples.

10.3.1. Simplicial complexes. We begin with a quick review of simplicial com-
plexes. More information can be found in [3, Appendix A.1] and [340].

Let I be a finite set and 2I the set of subsets of I ordered by inclusion:

S ≤ S′ ⇐⇒ S ⊆ S′.

This is the Boolean poset.
Let V be a finite set. A simplicial complex with vertex set V consists of a

nonempty collection k of subsets of V with the following properties:

• for each v ∈ V , the singleton {v} belongs to k;
• if K ∈ k and J ⊆ K, then J ∈ k.

The collection of all subsets of V is a simplicial complex, called the simplex with
vertex set V and denoted ∆V .

Let k be a simplicial complex. The subsets of V which belong to k are its
faces. Note that the empty set is a face of any simplicial complex. If K is a face
of k, then the collection of subfaces of K forms a simplicial complex, equal to the
simplex ∆K .

If k is a simplicial complex, the collection k is partially ordered by inclusion
and satisfies properties (10.11a)–(10.11c) below. Conversely, any poset satisfying
these properties is isomorphic to the poset of faces of a unique simplicial complex [3,
Exercise A.3].

The poset k has a minimum element.(10.11a)

For any K ∈ k, the subposet {J ∈ k | J ≤ K} is isomorphic to a
Boolean poset.

(10.11b)

If J,K ∈ k have an upper bound, then they have a least upper bound.(10.11c)

The simplex ∆V corresponds in this manner to the Boolean poset 2V .
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Let k be a simplicial complex and K ∈ k a face. The dimension of K is one
less than its cardinality. In particular, the dimension of the empty face is −1. The
star of K consists of the faces of k which contain K:

Stark(K) := {J ∈ k | K ≤ J}.

It is a simplicial complex whose vertices are the faces of k in which K has codimen-
sion 1.

The complex k is pure of dimension d if all maximal faces, called chambers,
have the same dimension d.

The Cartesian product k1×k2 of two simplicial complexes k1 and k2 is another
simplicial complex, called the join of k1 and k2. The empty face gives rise to a
canonical embedding of each factor in the join. For instance,

k1 →֒ k1 × k2, K 7→ (K, ∅).

The vertex set of k1 × k2 is the disjoint union of the vertex sets of k1 and k2.
A balanced simplicial complex is a pair (k, ϕ) where k is a simplicial complex

and ϕ : V → [n] is a function that restricts to a bijection

C
∼=
−→ [n]

for each maximal face C of k. This implies that k is pure of dimension n− 1.
Balanced complexes are called colored complexes in [3] and labeled complexes

in [68]. If we think of ϕ(K) as a color assigned to a vertexK ∈ k, then the condition
on ϕ implies that all vertices in a face receive different colors.

A simplicial map f : k → k′ between simplicial complexes with vertex sets
V and V ′ is a map f : V → V ′ such that f(K) is a face of k′ for every face
K of k. The simplicial map is nondegenerate if it preserves face dimensions. A
simplicial isomorphism is necessarily nondegenerate. A nondegenerate simplicial
map f : k → k′ restricts to an isomorphism ∆K → ∆f(K) for each face K of k.

10.3.2. The Coxeter complex. Recall the poset of faces Σ[I] associated to the
braid arrangement in RI . One can easily check that it is the poset of faces of a
simplicial complex. It admits the following (equivalent) descriptions:

• it is the reduced order complex of the Boolean poset 2I (Example 13.21),
• it is the barycentric subdivision of the boundary of the simplex

{
(xi)i∈I ∈ RI

∣∣∣∣
∑

i∈I

xi = 1, xi ≥ 0

}
,

• it is the triangulation of the unit sphere in the spherical representation of
the braid arrangement.

From now on, we will identify Σ[I] with this simplicial complex.
A significant property of Σ[I] is that it is a Coxeter complex. The theory of

Coxeter complexes was developed by Tits [360]. We recall some important features
of these complexes: A Coxeter complex is balanced, gallery-connected, and it satis-
fies the gate property. The star of any face in a Coxeter complex is again a Coxeter
complex. The join of two Coxeter complexes is again a Coxeter complex. Further,
the set of faces of a Coxeter complex is a monoid; the product is constructed using
the projection maps of Tits.

We will discuss some of these properties explicitly for the Coxeter complex of
type A, namely Σ[I]. For this example, these properties can be checked directly.
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1|2|3

2|1|3

1|3|2

3|1|2

3|2|1

2|3|1

1|23

3|12

2|13

12|3

13|2

23|1

a|b|c

b|a|c

a|c|b

c|b|a

b|c|a

c|a|b

b|ca

a|bc

c|ba

bc|a

ba|c

ca|b

Figure 10.2. The simplicial complexes Σ[3] and Σ[{a, b, c}].

Hence familiarity with the general theory is not essential to follow the present
discussion.

Let n := |I|. Note that the simplicial complex Σ[I] is pure of dimension n− 2.
Let ∆[n−1] denote the set of compositions of n (the simplex of dimension n − 2).
Recall from Section 10.1.5 the type map

(10.12) Σ[I]→ ∆[n−1]

which sends a composition F of I to the composition of n whose parts are the sizes
of the blocks of F . The type map is a nondegenerate simplicial map which turns
Σ[I] into a balanced complex (also see Proposition 13.18).

10.3.3. Low dimensional examples. Figure 10.2 shows the simplicial complexes
Σ[3] and Σ[{a, b, c}]. The circle is the same as the one shown in Figure 10.1. The
vertices are of two types, shown in black and white. The set composition abc (all
elements in one block) indexes the center of the arrangement and does not show in
the spherical representation.

The simplicial complex Σ[{a, b, c, d}] is shown in Figure 10.3. It has been
essentially reproduced from the paper of Brown, Billera and Diaconis [47]. This
complex triangulates the sphere into twenty four triangles, eighteen of which can
be seen (either partly or completely) in the figure. The edges and vertices have
not been labeled for space constraints. Observe that the vertex in the center of the
figure has label abc|d and its star is isomorphic to the simplicial complex Σ[{a, b, c}]
shown on the right in Figure 10.2. The vertices are of three types. Those shown
in black are of type (1, 3), those in white are of type (2, 2), and the vertex in the
center is of type (3, 1).

One can flatten the spherical representation so that all chambers except d|c|b|a
are visible. This is shown in Figure 10.4. The six hyperplanes can be seen in full
as the six ovals.

10.4. Tits projection maps and the monoid of faces

There is an operation on the set of faces of the Coxeter complex which turns
this set into a monoid. The operation is given by the projection maps of Tits. This
section discusses these notions from a combinatorial perspective. The underlying
geometry is discussed later in Section 10.5.
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a|b|c|d

b|a|c|d

a|c|b|d

b|c|a|d

c|a|b|d

c|b|a|d
a|b|d|c

a|d|b|c

a|d|c|b a|c|d|b

b|a|d|c

b|d|a|c
b|d|c|a

b|c|d|a

c|b|d|a

c|d|b|a

c|d|a|b

c|a|d|b

Figure 10.3. The simplicial complex Σ[{a, b, c, d}].

10.4.1. The monoid of faces. The set Σ[I] has the structure of a monoid. We
view faces as set compositions of I and multiply two such by intersecting their
blocks and ordering them lexicographically. More precisely, if F = F 1| · · · |F l and
G = G1| · · · |Gm, then

(10.13) FG := (F 1 ∩G1| · · · |F 1 ∩Gm| · · · |F l ∩G1| · · · |F l ∩Gm) ,̂

where the hat indicates that any empty intersections should be deleted. For exam-
ple,

(kri|shna)(s|khna|ri) = k|ri|s|hna.

It is clear that this product is associative. The set composition with one part serves
as the unit. Thus, Σ[I] is a monoid. It is not commutative. In fact,

(10.14) FG = GF ⇐⇒ F and G are joinable,

where joinable means that there is a face which contains both F and G.

Proposition 10.1. The product on Σ[I] satisfies the following properties.

(i) F ≤ FG.
(ii) F ≤ G ⇐⇒ FG = G.
(iii) If G ≤ H , then FG ≤ FH.
(iv) If C is a chamber, then CF = C and FC is a chamber.
(v) If FG = K and F ≤ H ≤ K, then HG = K.
(vi) If H1F = K and H2F = K, then (H1 ∧H2)F = K.
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a|b|c|d

b|a|c|d

a|c|b|d

b|c|a|d

c|a|b|d

c|b|a|d

a|b|d|c

a|d|b|c

a|d|c|b

a|c|d|b

b|a|d|c

b|d|a|c b|d|c|a

b|c|d|a

c|b|d|a

c|d|b|a

c|d|a|b

c|a|d|b

d|a|b|c

d|b|a|c

d|a|c|b

d|b|c|a

d|c|a|b

a–b

a–c

a–d

b–c

b–d

c–d

Figure 10.4. The flattened simplicial complex Σ[{a, b, c, d}].

(vii) If E and F are subfaces of a face, that is, if E and F have an upper bound,
then H(E ∨ F ) = HE ∨HF for any face H.

(viii) FF = F .
(ix) FGF = FG.
(x) If FPG = FPG, then FP = FP = F .
(xi) If F is a face and D is a chamber, and HF 6= D for any proper face H

of D, then F ≤ D.

For any bijection J → I, the corresponding map

(10.15) Σ[J ]→ Σ[I]

is both type and product preserving. In particular, the product of each Σ[I] yields
a morphism of set species

(10.16) Σ× Σ→ Σ,

where × denotes the Hadamard product on set species (8.36).



10.4. TITS PROJECTION MAPS AND THE MONOID OF FACES 319

Remark 10.2. Property (ix) states that the monoid Σ[I] is a left regular band
(Section 8.7.7). Some of the properties listed above hold for all left regular bands.

10.4.2. The lattice of flats as a quotient of the monoid of faces. We have
seen that the poset of flats Π[I] is a lattice. We now view it as a commutative
monoid with the product given by the join. The join X ∨Y is the smallest common
refinement of X and Y . It is obtained by intersecting the parts of X with the parts
of Y and deleting empty intersections. The similarity between the product in Σ[I]
and Π[I] says that

(10.17) supp(FK) = supp(F ) ∨ supp(K).

Thus, the support map is a morphism of monoids. Using this fact, one may view
Π[I] as a left module over Σ[I] via

(10.18) K ·X := supp(K) ∨X.

An alternative description of Π[I] can be given as follows. Define an equivalence
relation on Σ[I]:

(10.19) F ∼ G ⇐⇒ FG = F and GF = G.

It follows from (10.17) that

F ∼ G ⇐⇒ supp(F ) = supp(G).

Thus, equivalence classes can be identified with flats and the canonical quotient
map which sends a face to its equivalence class is the support map.

We reformulate the preceding discussion in combinatorial terms. Let F and G
be two set compositions. Then (10.13) implies that

FG = F and GF = G ⇐⇒ F and G consist of the same blocks.

In other words, the equivalence class of F consists of all its reorderings G. Thus,
flats are identified with set partitions.

10.4.3. Shuffles, quasi-shuffles, and the product of faces. The monoid of
faces is far from being a group. However, given faces F and H with F ≤ H , there
is always a face G such that

FG = H.

In fact, we may just choose G = H . We now discuss all solutions G to this equation,
from a combinatorial perspective. A related point is addressed in Section 10.7.5.

We view faces as set compositions and make use of the operations of concate-
nation, shuffle and quasi-shuffle of Section 10.1.6. The statements below are direct
consequences of (10.13).

Let (F,H) be a pair of set compositions with F ≤ H . Write F = F 1| · · · |F i.
Since H refines F , it is the concatenation of a composition of F 1, followed by a
composition of F 2, and so on. We refer to these compositions as the blocks of
(F,H). For example, if

F = 135|24789|6 and H = 3|15|7|48|29|6,

then the blocks of (F,H) are

3|15, 7|48|29 and 6.

Note that H is a linear order if and only if the blocks of (F,H) are linear orders.
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Now let G be another set composition. Then,

(10.20) FG = H ⇐⇒ G is a quasi-shuffle of the blocks of (F,H).

In addition,

(10.21) FG = H and GF = G ⇐⇒ G is a shuffle of the blocks of (F,H).

In particular, let (F,D) be a linear set composition (so that the linear order D
refines F ) and let C be another linear order. Then,

(10.22) FC = D ⇐⇒ C is a shuffle of the blocks of (F,D).

10.4.4. Tits projection maps. Let F be a fixed face. The map given by left
multiplication by F ,

(10.23) pF : Σ[I]→ StarΣ[I](F ), G 7→ FG

is called the Tits projection [360, Section 2.30]. Properties (i) and (ii) in Proposi-
tion 10.1 imply that the image of pF is the star of F and that pF is idempotent.
We say that FG is the projection of G on F .

10.5. The gallery metric and the gate property

In this section, we introduce the gallery metric on chambers. The Tits pro-
jection of a chamber onto a face is the closest chamber in the star of the face.
Its existence is guaranteed by the gate property of the gallery metric. This is the
geometric meaning of the product of faces of Section 10.4. In addition to reviewing
these facts, we discuss a distance function on faces which generalizes the one on
chambers.

10.5.1. A distance function on chambers. The gallery metric. We say two
chambers are adjacent if they have a common codimension 1 face. A gallery is a
sequence of chambers such that consecutive chambers are adjacent. Its length is
one less than the number of chambers in the sequence. We have remarked earlier
that Σ[I] is a gallery-connected simplicial complex. This means that for any two
chambers C and D, there is a gallery from C to D. We then define the gallery
distance dist(C,D) to be the minimal length of a gallery connecting C and D.
Any gallery which achieves this minimum is called a minimum gallery from C to
D. This defines the gallery metric on L[I]. It verifies the familiar properties of a
metric:

dist(C,D) ≥ 0, with equality if and only if C = D,

dist(C,D) = dist(D,C),

dist(C,E) ≤ dist(C,D) + dist(D,E),

with equality if and only if there is a minimum gallery from C to E which passes
through the chamber D. We use the notation C − D − E for such a minimum
gallery.

The gallery metric is natural in I: For any bijection σ : I → J ,

(10.24) dist(C,D) = dist(σC, σD).

Further, it is compatible with the opposite map:

(10.25) dist(C,D) = dist(D,C).
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If we view Σ[I] as the set of faces of the braid arrangement, then dist(C,D) is the
number of hyperplanes which separate C and D. Let us make this more explicit.
Write C = C1| · · · |Cn, where n = |I|. Define the inversion set of (C,D) to be

Inv(C,D) := {(i, j) ∈ [n]× [n] | i < j and Ci appears after Cj in D}.

Then

(10.26) dist(C,D) = | Inv(C,D)|.

Let us now relate this to the inversion set (2.19) and the number of inversions (2.20)
of an appropriate permutation. From (10.10), there are unique bijections u and v
from [n] to I such that C = uC(n) and D = vC(n). Then

Inv(C,D) = Inv(uC(n), vC(n)) = Inv(C(n), u
−1vC(n)) = Inv(v−1u).

Note that w := u−1v is a permutation. The second equality follows from naturality
of the inversion set, and the last equality from the definitions (note that w gets
replaced by its inverse). It follows that

(10.27) dist(C,D) = inv(v−1u) = l(v−1u).

Recall from Section 2.2.3 that l(w) denotes the length of w, which coincides with
the number of inversions of w. Note that (2.25) can be seen as a consequence of
the symmetry of the distance function.

It is convenient to define, with notation as above,

(10.28) d(C,D) := u−1v.

This is known as the Weyl-valued distance between C and D. It takes values in
the symmetric group. In particular, for I = [n], we obtain, for any permutation σ,

(10.29) σ = d(C(n), σC(n)) and hence inv(σ) = l(σ) = dist(C(n), σC(n)).

It is clear that for any chambers C, D and E,

(10.30) d(C,E) = d(C,D) d(D,E).

10.5.2. Gate property. There is a geometric way of describing Tits projections,
and hence the product of Σ[I], which we discuss briefly. It relies on the fact that
Σ[I] has the gate property.

Proposition 10.3 (Gate property). Let F be a face and D a chamber. Among
the chambers containing F , there is a unique one that is closest to D in the gallery
metric. This unique chamber is FD.

In other words, FD, which is the projection of D on F , is the gate of the star
of F viewed from D. This is illustrated in Figure 10.5 which shows the relevant
portion of a simplicial complex of dimension two. The big dot is a vertex named
F , and both D and FD are chambers, which in dimension two are triangles.

The product of two arbitrary faces turns out to be

FG =
∧
FD,

where the meet is taken over all chambers D which contain G.
The following is a consequence of Proposition 10.3.
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FD FD

Figure 10.5. The projection map at work.

Proposition 10.4. Let C and D be chambers and F be a face of C. Then there
exists a minimum gallery C − FD −D. In particular,

(10.31) dist(C,D) = dist(C,FD) + dist(FD,D).

The gate property originated in the work of Tits [360, Section 3.19.6], and was
abstracted later by Dress and Scharlau [320, 103]. It also appears in the work of
Abels [2], Mühlherr [281] and Mahajan [253] (to name a few references). Some
basic information on this property can be found in [12, Section 1.1.1]. The poset
of faces of any real hyperplane arrangement satisfies this property. This fact can
be used to define a semigroup structure on the set of faces of any real hyperplane
arrangement [12, Equation (1.1)]. If the arrangement is central, the semigroup is
in fact a monoid.

10.5.3. A distance function on faces. For a face F , let LF denote the set of
chambers containing F . It is straightforward [12, Lemma 2.2.1] to show that if
faces F and G have the same support, then the projection

(10.32) pG : LF → LG C 7→ GC

is a bijection with inverse given by the projection pF : D 7→ FD.
Now let F and G be any two faces. Since FG and GF have the same support,

the projection

pGF : LFG → LGF

is a bijection, with inverse pFG. Further, if C is any chamber containing FG,
then by using the compatibility of the symmetric group action with the distance
function and the projection map, we see that dist

(
C, pGF (C)

)
is independent of the

particular choice of C.
This observation allows us to define the distance between any two faces F and

G:

(10.33) dist(F,G) := dist
(
C, pGF (C)

)
,

where C is any chamber containing the face FG. Since pGF is a bijection with
inverse pFG, it follows that

dist(F,G) = dist(pFG(D), D),

where D is any chamber containing GF . This shows that the distance function is
symmetric. It is also clear that

(10.34) dist(F,G) = dist(FG,GF ).

Remark 10.5. The above definition can in fact be made for the faces of any
central hyperplane arrangement. The right-hand side of (10.33) is independent of
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the particular choice of C and equals the number of hyperplanes which separate F
and G (meaning that F and G lie on opposite sides of the hyperplane).

The distance function on faces does not define a metric. However, it does
restrict to a metric on the set of faces with a fixed support. In particular,

(10.35) dist(F,G) = 0 and suppF = suppG ⇐⇒ F = G.

Since FG and GF have the same support, it follows from (10.34) and (10.14) that

(10.36) dist(F,G) = 0 ⇐⇒ FG = GF ⇐⇒ F and G are joinable.

In particular, the distance between a face and a subface is always 0. It follows
that the triangle inequality fails as well; so the distance function on faces is not a
pseudometric either.

Let us make the distance function more explicit. We first deal with the case of
equal support. Let F and G be faces with the same support. Write F = F 1| · · · |F k.
Then G is a set composition obtained by permuting the F i’s in some order. Define
the inversion set of (F,G) to be

Inv(F,G) := {(i, j) ∈ [k]× [k] | i < j and F i appears after F j in G}.

Then

(10.37) dist(F,G) =
∑

(i,j)∈Inv(F,G)

|F i| |F j|.

Note that if F and G are both chambers, then dist(F,G) = | Inv(F,G)| as noted
in (10.26).

Now we go to the general case. Here, we have

(10.38) dist(F,G) =
∑

i<k
j>l

|F i ∩Gj | |F k ∩Gl|,

where i and k index the blocks of F while j and l index the blocks of G.

10.6. Shuffle permutations

The set Sh (s, t) of (s, t)-shuffle permutations was defined in (2.21). In this
section, we extend this notion to any composition, and then relate it to the gallery
metric and Tits projection maps.

10.6.1. T -shuffle permutations and faces of type T . Let T = (t1, . . . , tk) be
a composition of n. A permutation ζ ∈ Sn is a T -shuffle if

ζ(1) < · · · < ζ(t1), ζ(t1+1) < · · · < ζ(t1+t2), . . . , ζ(t1+· · ·+tk−1+1) < · · · < ζ(n).

We now discuss the geometric meaning of this notion. The definitions imply:

Proposition 10.6. There is a canonical bijection between faces of type T in the
Coxeter complex Σ[n] and T -shuffle permutations : For a face F of type T , the
corresponding T -shuffle permutation ζ is determined by

(10.39) FC(n) = ζC(n).

The left-hand side is the projection of C(n) on F , while the right-hand side is the
action of ζ on C(n).
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C(n)

ζ FFC(n)

Figure 10.6. Faces of type T correspond to T -shuffle permutations.

A more general result is given in [12, Lemma 5.3.1]. As a special case, we note
that Sh (s, t) can be identified with the set of vertices of type (s, t) in Σ[n].

In view of Proposition 10.3, we note that under (10.9), T -shuffle permutations
correspond to gates of the stars of faces of type T . This is illustrated in Figure 10.6.
The black dot is a face F of type T , and the six triangles around it are the chambers
in its star. The T -shuffle permutation that corresponds to F is ζ = d(C(n), FC(n)).
It is shown as a vector pointing from C(n) to FC(n).

10.6.2. Shuffles as coset representatives. Recall from (2.22) that (s, t)-shuffle
permutations are coset representatives for Ss × St as a subgroup of Sn. We now
explain the geometric meaning of this decomposition.

Proposition 10.7. Let G denote the face of C(n) of type T . Any chamber in
the Coxeter complex Σ[n] is uniquely determined by a T -shuffle permutation and a
chamber in the star of G.

Proof. Let C be any chamber. It has a unique face of type T ; call it F . Let
ζ be the corresponding T -shuffle permutation given by Proposition 10.6. Then the
action of ζ maps the star of G bijectively to the star of F . Thus, C is uniquely
determined by ζ and the chamber ζ−1C which belongs to the star of G. �

Let G be a vertex. Then the chambers in the star of G correspond under (10.9)
precisely to those permutations which can be written in the form σ×τ for σ ∈ Ss and
τ ∈ St. The notation is as in (2.23). This observation along with Proposition 10.7
yields the decomposition (2.22).

10.7. The descent and global descent maps

In this section, we discuss the descent and global descent maps which associate
a face to a pair of chambers, and further relate them to the descent and global
descent maps on permutations.

The descent map on permutations is classical. The notion of global descents
is closely related to that of connected permutations, which is also classical. The
order properties of the global descent map on permutations were studied in [14].
Both descent and global descent maps on pairs of chambers were introduced in [12,
Chapter 5] in the generality of finite Coxeter groups.

10.7.1. Descents and global descents of permutations. A permutation w
has a descent at position p if w(p) > w(p + 1). Let Des(w) denote the set of
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descents of w. If w is a permutation on n letters, then Des(w) is a subset of [n−1],
or equivalently by (10.1), it is a composition of n. For example,

Des(45132) = {2, 4} = (2, 2, 1).

A permutation w has a global descent at position p if for all i ≤ p and j ≥ p+1, we
have w(i) > w(j). Let gDes(w) denote the set of global descents of w. It is clear
that gDes(w) ⊆ Des(w), but these are not equal in general. For example,

gDes(45132) = {2} = (2, 3).

We view Des and gDes as maps from Sn to ∆[n−1], where the latter denotes the set
of compositions of n.

We let des(w) and gdes(w) stand for the number of descents and global descents
of a w. These are the cardinalities of Des(w) and gDes(w) respectively.

10.7.2. Descents and global descents of pairs of chambers. Let IL[I] be the
set whose elements are pairs of linear orders on I. For example,

(k|r|i|s|h|n|a, n|a|r|i|k|s|h)

is an element of IL[{k, r, i, s, h, n, a}]. This defines the set species IL. The linearized
species is denoted IL. We now proceed to define morphisms of species

Des : IL→ Σ and gDes: IL→ Σ.

We will refer to these as the descent and global descent maps.
Let D be a linear order on I. A subset S is called a segment of D if all its

elements appear contigously in D. For example,

{k, s, h} is a segment of l|a|k|s|h|m|i.

Now let C be another linear order. A segment of D is compatible with respect to
C if the elements of that segment appear in the same order in C and D. Partially
order the set of compatible segments by inclusion. It is clear that the maximal
compatible segments yield a partition of I.

Definition 10.8. Let C and D be two linear orders on I. Define Des(C,D) to be
the face of D whose blocks are the maximal compatible segments of D with respect
to C.

For example,

Des(m|k|s|i|h|l|a, l|a|k|s|h|m|i) = la|ksh|mi.

In more geometric terms, Des(C,D) keeps track of those walls of D which separate
C and D.

Definition 10.9. Let C and D be two linear orders on I. Define gDes(C,D) to be
the maximal face F of D such that its opposite F is a face of C. In other words,

gDes(C,D) = C ∧D.

For example,

gDes(m|k|s|i|h|l|a, l|a|k|s|h|m|i) = la|kshmi.
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Remark 10.10. Recall the descent cocycle from Section 9.7.2. The descent map on
pairs of chambers is related to the descent cocycle as follows. Let C be any chamber.
Then the set DS,T (C) defined in (9.40) consists of those walls of C which separate
C and KC. Therefore, dS,T (C) is the number of blocks of the face Des(KC,C),
where K = S|T .

In particular, by letting C = C(n) and using (10.39), we see that dS,T (C(n)) is
the number of blocks of Des(ζC(n), C(n)). This yields (9.42).

10.7.3. Relating the (global) descent maps. The (global) descent maps on
pairs of chambers and on permutations are related by the following commutative
diagrams.

IL[n]
Des //

d

��

Σ[n]

type

��

Sn
Des

// ∆[n−1]

IL[n]
gDes

//

d

��

Σ[n]

type

��

Sn
gDes

// ∆[n−1]

(10.40)

10.7.4. The weak order on permutations. Let Inv(σ) be the set of inversions
of a permutation σ as in (2.19). Given permutations σ and τ , let

σ ≤ τ if Inv(σ) ⊆ Inv(τ).

This is the weak left Bruhat order on permutations. Equivalently, σ ≤ τ if there is
a minimum gallery E −D − C such that d(D,C) = u and d(E,C) = v. That is,

σ ≤ τ ⇐⇒ τ−1C(n) − σ
−1C(n) − C(n).

The equivalence between the two definitions follows by noting that Inv(σ) can be
identified with the set of hyperplanes which separate C(n) and σ−1C(n) by letting
the pair (i, j) correspond to the hyperplane xi = xj .

Figure 10.7, which is taken from [14], shows the weak left Bruhat order on S4.

3214 3142 2413 23414123 1432

3124 2143 1423 13422314

1324 1243

4213 4132 3412 24313241

4312 3421

1234

2134

4321

4231

Figure 10.7. The weak left Bruhat order on S4.
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C1

C2 D

Figure 10.8. The partial order on the set of pairs of chambers.

We now define a partial order on the set of pairs of chambers:

(10.41) (C1, D1) ≤ (C2, D2) if D1 = D2 = D and C2 − C1 −D,

where C2 − C1 −D is a minimum gallery from C2 to D passing through C1.
This partial order is illustrated in Figure 10.8 by a schematic two-dimensional

picture. It stands for a minimal sequence of triangles starting with C2, ending at
D and containing C1 such that adjacent triangles share a common edge.

It is clear that the Weyl-distance map d : IL[n] → Sn is order-preserving. Fur-
ther, (10.40) may now be viewed as commutative diagrams of posets.

10.7.5. Descents and the product of faces. The discussion here complements
the one in Section 10.4.3.

Let H be a set composition and C and D two linear orders. It follows from the
definition of the product of faces (10.13) that HC = D if and only if the blocks of
H are compatible segments of D with respect to C. In view of Definition 10.8, this
may be expressed as follows:

(10.42) HC = D ⇐⇒ Des(C,D) ≤ H ≤ D.

In other words, Des(C,D) is the smallest face H of D such that HC = D. This
observation is due to Brown [70, Proposition 4], see also [12, Proposition 5.2.2].

We also note that

Des(C,D) = D ⇐⇒ C = D.

To summarize:

Proposition 10.11. Let C and D be chambers. Then the set of solutions to the
equation HC = D is a Boolean poset with minimal element Des(C,D) and maximal
element D. The solution is unique precisely if C = D.

A more general result is given below.

Proposition 10.12. Let F and G be any faces, and consider the equation HF = G.
If GF 6= G, then it has no solutions. If GF = G, then the set of solutions is a
Boolean poset with maximal element G. A solution exists and is unique if and only
if F ≤ G.

Proof. Suppose there is a H such that HF = G. Multiplying by F on the
right we deduce HF = GF (since FF = F ), and hence G = GF . This proves the
first claim.

For the second claim: Suppose GF = G. Let A be the nonempty set of solutions
to the equation HF = G. Using properties (v) and (vi) in Proposition 10.1, it
follows that

• if H ∈ A and H ≤ L ≤ G, then L ∈ A,
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• if H1, H2 ∈ A, then H1 ∧H2 ∈ A.

This shows that A is a Boolean poset under containment of faces (refinement of
compositions). The maximal element is clearly G.

For the third claim: Suppose F ≤ G. Then G = GF . Multiplying by F on the
right and using property (viii), we deduce thatGF = G. SoG is a solution. To show
that it is unique, let HF = G. Multiplying by F on the left we deduce FH = G.
Since F and H are joinable (both being faces of G), it follows from (10.14) that
HF = HF = G. By property (x), we conclude that H = G proving uniqueness.
Conversely, suppose a solution exists and is unique. So GF = G and HF 6= G for
any proper face H of G. One can then deduce from property (xi) that F ≤ G. �

It is natural to ask whether the minimal element in the Boolean poset A can
be interpreted using descents, as is the case for chambers. In this regard, note the
following. If F and G have the same support, sayX , then the mimimal element of A
is precisely the face Des(F,G) obtained by applying Definition 10.8 to the complex
Σ[X ]. In the general case, the description of the mimimal element requires a more
general notion of descents. We plan to explain this in a future work.

10.8. The action of faces on chambers and the descent algebra

Consider the species of faces Σ and the species of pairs of chambers IL. Let Σ
and IL denote their linearizations.

In this section, we equip IL with a product which is compatible with the product
of Σ given by (10.13). Further, we show that by passing to invariants under the
action of the symmetric group, the relation between Σ and IL recovers a well-known
relation between Solomon’s descent algebra and the group algebra of the symmetric
group.

10.8.1. Solomon’s descent algebra. Let des : Sn → ∆[n−1] be the descent map
on permutations as defined in Section 10.7.1. Let k be a field and let kSn be the
group algebra of Sn over k. Solomon [333] showed that the subspace of kSn linearly
spanned by the elements

(10.43) dT :=
∑

w: des(w)≤T

w,

as T varies over subsets of [n−1], is a subalgebra of kSn. This subalgebra is known
as the descent algebra. A geometric formulation of the descent algebra was given
by Bidigare [45] and further clarified by Brown [70, Section 9.6]. An exposition is
provided below. The relevant statement is given in Theorem 10.13.

10.8.2. The action on chambers. The set L[I] of chambers is a two-sided ideal
of the monoid Σ[I] of faces. This follows from property (iv) in Proposition 10.1.
The right action is trivial, while the left action is given by the Tits projection

pF : L[I]→ L[I], D 7→ FD.

Linearizing we obtain that L[I] is a left ideal in the algebra Σ[I]. This gives rise to
a morphism of algebras

Σ[I]→ EndVec(L[I]) F 7→ pF ,
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one for each finite set I. Further, one can check that these morphisms are injective.
These maps define an injective morphism of monoids

(10.44) Σ→ E×(L)

where E× is as in (8.80). Here the monoids are with respect to the Hadamard
product on species. In other words, both Σ and E×(L) are species with values in
the category of algebras.

We now point out the following canonical identifications.

E×(L) ∼= L∗ × L ∼= IL

The first one views a basis element D∗ ⊗ C ∈ L[I]∗ ⊗ L[I] as the endomorphism

E 7→

{
C if D = E,

0 if not.

The second one identifies D∗ ⊗ C with the pair (D,C) ∈ L[I]× L[I].
Under these identifications, the product of the algebra IL[I] is as follows.

(10.45) (D2, C2) (D1, C1) =

{
(D1, C2) if D2 = C1,

0 otherwise.

The morphism of monoids (10.44) takes the form

(10.46) Σ→ IL, F 7→
∑

(D,C):FD=C

(D,C).

10.8.3. Invariant subalgebras. Since Σ and IL are species, the components Σ[n]
and IL[n] are Sn-modules. Further, since these species are monoids with respect
to the Hadamard product, the components are algebras whose products commute
with the Sn-action. This yields subalgebras of Sn-invariants

(Σ[n])Sn →֒ Σ[n] and (IL[n])Sn →֒ IL[n].

We make these subalgebras explicit.
A basis for the subalgebra (Σ[n])Sn is given by

(10.47) σT :=
∑

F : type(F )=T

F,

as T ranges over all subsets of S.
The subalgebra (IL[n])Sn can be identified with the opposite of the group alge-

bra as follows.

(kSn)op
∼=
−−→ (IL[n])Sn , w 7→

∑

(D,C): d(D,C)=w

(D,C).

The main assertion here is that this is a morphism of algebras. This is a consequence
of (10.30) and (10.45).

Now consider the following commutative diagram of algebras.

Σ[n] // IL[n]

(Σ[n])Sn

OO

// (kSn)op

OO
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It follows from (10.42) and the first diagram in (10.40) that the bottom horizontal
map sends σT to dT as defined in (10.43) and (10.47). Hence the image of the
bottom horizontal map is precisely the descent algebra. As a consequence:

Theorem 10.13 (Bidigare). The descent algebra is isomorphic to
(
(Σ[n])Sn

)op
.

10.9. Directed faces and directed flats

Recall that there are two fundamental objects associated to the Coxeter com-
plex of type A, namely, faces and flats, and they are related by the support map.
In this section, we show that there is a parallel theory for directed faces and di-
rected flats. In combinatorial terms, this means that we replace set compositions
(partitions) by linear set compositions (partitions).

We mainly follow the exposition in [12, Section 2.3], where this theory is ex-
plained in the generality of left regular bands. In that work, directed faces are
called pointed faces and directed flats are called lunes.

10.9.1. Directed faces and directed flats. A directed face of the complex Σ[I]
is a pair (G,D) where G is a face and D is a chamber containing G.

Directed faces of Σ[I] are the same as linear compositions of I: The face G is
a composition of the set I and the chamber D determines a linear order on each
block of G. Since D refines G, the pair (G,D) can be recovered from the linear set
composition.

Directed faces may be visualized as in Figure 10.9. The pair (G,D) tells us to
stand at the face G and look in the direction of the chamber D.

Let
−→
Σ[I] denote the set of directed faces. This defines the set species

−→
Σ of

directed faces, or equivalently, of linear set compositions. The linearized species is

denoted
−→
Σ .

Define an equivalence relation on
−→
Σ[I] as follows.

(10.48) (G,D) ∼ (F,C) ⇐⇒ GF = G, GC = D, FG = F and FD = C.

The equivalence classes are called directed flats.
It follows from (10.13) that (G,D) ∼ (F,C) if and only if the compositions F

and G differ only in the ordering of the blocks, and the linear orders C and D agree
on each of these blocks. Thus, directed flats are the same as linear partitions of I.

Let
−→
Π[I] denote the set of directed flats. This defines the set species

−→
Π of

directed flats, or equivalently, of linear set partitions. The linearized species is

denoted
−→
Π.

G

D

Figure 10.9. A directed face.
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F G
C D

Figure 10.10. A schematic picture of a directed flat in dimension two.

10.9.2. The base and support maps. Let supp:
−→
Σ[I] →

−→
Π[I] be the canon-

ical quotient map and base:
−→
Σ[I] → Σ[I] the projection on the first coordinate.

From (10.19) and (10.48) we have that

(G,D) ∼ (F,C) =⇒ G ∼ F.

It follows that there is an induced map
−→
Π[I] → Π[I], also denoted base, fitting in

the commutative diagram below.

(10.49)

−→
Σ[I]

base //

supp

��

Σ[I]

supp

��−→
Π[I]

base
// Π[I]

These maps coincide with the support and base maps defined in Section 10.1.5. In
particular, if supp(F,C) = L, then the blocks of L are the blocks of F ordered
according to C.

10.9.3. Directed flats as top-dimensional cones. A directed flat may be visu-
alized as follows. Let (G,D) be a directed face. Imagine all hyperplanes containing
G are opaque. Standing at G and looking in the direction of D one overlooks a
portion of the ambient space. Two directed faces are equivalent under (10.48) if
they overlook the same region. From this perspective, diagram (10.49) expresses
the following fact: If two directed faces (F,C) and (G,D) overlook the same region,
then the faces F and G have the same support.

This is illustrated in Figure 10.10. The directed faces (F,C) and (G,D) are
equivalent: the oval in the figure is the region overlooked from either directed face.
It is the intersection of the half-spaces (hemispheres) which contain C and whose
supporting hyperplane (great circle) contains F . Among these half-spaces, only
those whose supporting hyperplanes are walls of C are essential to determine the
intersection. There are two of these in this case. The support of either F or G is
the set {F,G}.

We now define the region overlooked from a directed face more precisely. To
any directed face (F,C), we associate a top-dimensional cone: intersect those half-
spaces which contain C and whose supporting hyperplane contains F . This cone is
the region overlooked from (F,C); we denote it by Ψ(F,C).

We now describe the set of faces contained in this cone.

Proposition 10.14. Let (F,C) be a directed face. For any face K,

K ⊆ Ψ(F,C) ⇐⇒ FK ≤ C.
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In particular, for any chamber D,

D ⊆ Ψ(F,C) ⇐⇒ FD = C.

Proof. For simplicity we consider the second statement only. It follows from
the definition of the cone that D ⊆ Ψ(F,C) if and only if C and D lie on the same
side of every hyperplane containing F . According to the description of chambers in
Section 10.2.2, the latter is equivalent to the statement that if two elements i and
j belong to the same block of F , then they appear in the same order in C and D.
In view of (10.13), this is in turn equivalent to FD = C. �

Proposition 10.15. Two directed faces yield the same cone if and only if they are
equivalent under (10.48). Explicitly,

(F,C) ∼ (G,D) ⇐⇒ Ψ(F,C) = Ψ(G,D).

In other words, the map Ψ induces a bijection between the set of directed flats
and the set of cones associated to directed faces. We continue to denote the induced
map by Ψ. This bijection allows us to visualize directed flats as top-dimensional
cones.

Proof. Using symmetry, it is enough to show that

(10.50) GF = G and GC = D ⇐⇒ Ψ(F,C) ⊆ Ψ(G,D).

Take a face K in Ψ(F,C). By Proposition 10.14, FK ≤ C. If GF = G and
GC = D, then using property (iii) in Proposition 10.1 we have

FK ≤ C =⇒ GFK ≤ GC =⇒ GK ≤ D.

This shows that K is in Ψ(G,D).
Conversely, assume Ψ(F,C) ⊆ Ψ(G,D). Since C ⊆ Ψ(F,C), then C ⊆

Ψ(G,D), and by Proposition 10.14, we have GC = D. In addition, since both
F and F are in Ψ(F,C), they are also in Ψ(G,D), and GF ≤ D and GF ≤ D.
Now from property (ii) in Proposition 10.1 we derive GFD = GFD = D, and from
property (x) it follows that GF = G. �

Generalizations of Propositions 10.14 and 10.15 are given in [12, Lemmas 2.3.2
and 2.3.3].

Let L be the support of the directed face (F,C). Viewing L as a linear set
composition, the blocks of L are the blocks of (F,C) as in Section 10.4.3. It follows
from Proposition 10.14 and (10.22) that

D ⊆ Ψ(L) ⇐⇒ D is a shuffle of the blocks of L.

Let us now look at a specific example to illustrate the preceding discussion. Two
directed flats in the simplicial complex Σ[{a, b, c, d}] are shown in Figure 10.11. The
first directed flat is bounded by the hyperplanes xa = xd and xc = xd. As a linear
set partition, it is given by {b, a|d|c}. It is the cone associated to the directed
face (b|acd, b|a|d|c), or equivalently to (acd|b, a|d|c|b). The four chambers that it
contains are

b|a|d|c, a|b|d|c, a|d|b|c, and a|d|c|b.

These are precisely the shuffles of b and a|d|c. The base of this directed flat is the
set partition {b, adc}. This is the precisely the support of the vertices b|acd and
acd|b, which can be seen at the two corners of the directed flat.
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a|b|c|d

a|c|b|d

c|a|b|d

a|b|d|c

a|d|b|c

a|d|c|b

a|c|d|b

b|a|d|c

c|d|a|b

c|a|d|b

ab|cd

cd|ab

b|adc

adc|b

xa = xd

xc = xdxc = xd xa = xb

Figure 10.11. Two directed flats in the simplicial complex Σ[{a, b, c, d}].

The second directed flat is bounded by the hyperplanes xa = xb and xc = xd.
As a linear set partition, it is given by {a|b, c|d}. It is the cone associated to the
directed face (ab|cd, a|b|c|d), or equivalently to (cd|ab, c|d|a|b). The six chambers
that it contains are

a|b|c|d, a|c|b|d, a|c|d|b, c|a|b|d, c|a|d|b, and c|d|a|b.

These are precisely the shuffles of a|b and c|d. The base of this directed flat is the
set partition {ab, cd}. This is the precisely the support of the vertices ab|cd and
cd|ab, which can be seen at the two corners of the directed flat.

These are two typical directed flats bounded by two hyperplanes, but general
directed flats involve an arbitrary number of hyperplanes and range from the whole
space and half-spaces at one end, to chambers at the other.

10.9.4. Left modules over faces. Given a face K and a directed face (G,D),
define

(10.51) K · (G,D) := (KG,KD).

In view of properties (iii) and (iv) in Proposition 10.1, (KG,KD) is a directed face.

In this manner, the set of directed faces
−→
Σ[I] is a left module over the monoid of

faces Σ[I]. Note that (10.48) can be rewritten as:

(G,D) ∼ (F,C) ⇐⇒ G · (F,C) = (G,D) and F · (G,D) = (F,C).

Observe that for any face K,

(G,D) ∼ (F,C) =⇒ K · (G,D) ∼ K · (F,C).

It follows that
−→
Π[I] is also a left module over Σ[I]:

(10.52) F ·M := supp(FG,FD),
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where (G,D) is any directed face whose support is M . For example,

(lak|shmi) · {s|h|k, l|a,m|i} = {l|a, k, s|h,m|i}.

By construction, the support map from directed faces to directed flats is a morphism
of left modules.

10.9.5. Partial orders. Recall from Section 10.1.4 that we have a partial order
on linear compositions, and two partial orders on linear partitions. We now phrase
them in geometric terms.

The partial order on the set of directed faces is given by:

(10.53) (F,C) ≤ (G,D) if C = D and F ≤ G.

This is a disjoint union of Boolean posets, one for each chamber C.
We now discuss the two partial orders on the set of directed flats.

(10.54) L ≤′ M if H · L = M for some face H,

where · denotes the left module structure of directed flats (10.52).
Let (F,C) and (G,D) be directed faces. Each has an associated cone as in

Section 10.9.3. We have:

Ψ(F,C) ⊆ Ψ(G,D) ⇐⇒ GF = G and GC = D

⇐⇒ G · (F,C) = (G,D)

⇐⇒ H · (F,C) = (G,D) for some face H

⇐⇒ supp(F,C) ≤′ supp(G,D).

The first equivalence is (10.50). For the converse of the last implication, choose H ′

as in (10.54), and let H = GH ′. The remaining implications are straightforward.

Proposition 10.16. Let L and M be directed flats. We have

L ≤′ M ⇐⇒ Ψ(L) ⊆ Ψ(M).

Proof. This follows by applying the above to any directed faces (F,C) and
(G,D) with supports L and M respectively. �

Figure 10.4 shows that the cone associated to {a|d|b, c} is contained in the cone
associated to {a|b, c, d}. So

{a|d|b, c} ≤′ {a|b, c, d}.

Let us now discuss the second partial order on directed flats.

(10.55) L ≤M if H · L = M, H ⊆ Ψ(L) for some face H,

where Ψ(L) is the cone defined in Section 10.9.3 and · denotes the left module
structure of directed flats (10.52).

Observe that for any directed faces (F,C) and (G,D),

supp(FG,C) = supp(G,D) ⇐⇒ GF = G, GC = D, FD = C

⇐⇒ GF = G, GC = D, FG ≤ C

⇐⇒ G · (F,C) = (G,D), FG ≤ C

⇐⇒ H · (F,C) = (G,D), FH ≤ C for some face H

=⇒ supp(F,C) ≤ supp(G,D).
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Note that the backward implication on the last line may fail. What one can say
instead is the following: supp(F,C) ≤ M if and only if there is a directed face
(G,D) with support M such that G · (F,C) = (G,D) and FG ≤ C (or any of
the above equivalent condition) holds. This further implies that L ≤ M if and
only if there is a directed face with support L which is less than a directed face
with support M : Take directed faces (F,C) and (G,D) with supports L and M as
above, and replace (G,D) with (FG,C).

Proposition 10.17. Let (F,C) and (G,D) be directed faces such that G · (F,C) =
(G,D) and FG ≤ C. Then for any face H ,

H · (F,C) = (G,D), FH ≤ C ⇐⇒ HF = G.

Proof. The forward implication is clear. For the backward implication, we
note that

HC = HFC = GC = D and FH ≤ FG ≤ C.

Thus, HC = D and FH ≤ C as required. �

If L ≤M , then L ≤′ M , and hence the cone associated to L is contained in the
cone associated to M . The converse, of course, is false since the two partial orders
are distinct. For example,

{a|d|b, c} ≤′ {a|b, c, d} but {a|d|b, c} � {a|b, c, d}.

10.10. The dimonoid of directed faces

The monoid structure of the set of faces of the Coxeter complex has played a
central role in the preceding sections. The set of faces Σ[I] is a monoid and the
set of flats Π[I] is a quotient monoid under the support map (Section 10.4). It is

natural to ask whether there is a similar structure on the set of directed faces
−→
Σ[I]

and the set of directed flats
−→
Π[I]. It turns out that

−→
Σ[I] is a bimodule over Σ[I]

and
−→
Π[I] is a bimodule over Π[I]. Moreover, there is a finer structure of dimonoid

on each of these bimodules.

10.10.1. Dimonoids. We now take a small detour to the world of dimonoids.
This notion was introduced by Loday [238, Section 1].

Definition 10.18. A dimonoid is a set D equipped with two binary operations ⊢
and ⊣ such that:

(i) x ⊣ (y ⊣ c) = (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),
(ii) (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),
(iii) (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z) = (x ⊢ y) ⊢ z.

A bar-unit is an element 1 ∈ D such that

1 ⊢ x = x = x ⊢ 1

for every x ∈ D.

Bar-units need not be unique.
A monoid M can be viewed as a dimonoid by setting

x ⊢ y := xy =: x ⊣ y.
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More generally, suppose B is a bimodule over a monoid M , and there is a map
δ : B → M a bimodules. Then [238, Example 2.2.d] B can be turned into a
dimonoid by setting

x ⊢ y := δ(x) · y and x ⊣ y := x · δ(y).

Every dimonoid arises in this manner from such a map δ [134, Proposition 1.6]. In
fact, given a dimonoid D, let M be the quotient by the dimonoid-ideal generated
by the relations

x ⊢ y ≡ x ⊣ y.

Then M is a dimonoid in which ⊢=⊣, and so it is a monoid. Let δ : D →M denote
the quotient map. Then

δ(x) · y := x ⊢ y and x · δ(y) := x ⊣ y

yield a well-defined M -bimodule structure on D. The dimonoid associated to δ is
the original one.

These constructions define a pair of adjoint functors between the category of
dimonoids and a suitable category of maps δ as above. The functor from dimonoids
is the left adjoint.

10.10.2. The dimonoids of directed faces and of directed flats. The set of
directed faces

−→
Σ[I] is a bimodule over Σ[I]. The left and right module structures

are:

F · (G,D) := (FG,FD),

(F,C) ·G := (FG,FGC).

The left module structure is the same as in Section 10.9.4. For the right module
structure, note that (FG,FGC) is a directed face in view of properties (i) and (iii)
in Proposition 10.1. In addition, property (ix) guarantees that the right structure
is associative. The fact that the two structures commute follows.

Recall the base and support maps from Section 10.9.2. The map

base:
−→
Σ[I]→ Σ[I]

(which simply projects on the first coordinate) is a map of Σ[I]-bimodules.

It then follows that
−→
Σ[I] is a dimonoid. The operations are

(F,C) ⊢ (G,D) := F · (G,D) = (FG,FD),

(F,C) ⊣ (G,D) := (F,C) ·G = (FG,FGC).

Directed faces of the form (∅, C) are the bar-units of this dimonoid.

Similarly, the set of directed flats
−→
Π[I] is a bimodule over Π[I]:

X ·M := supp(KG,KD),

L ·X := supp(FK,FKC),

where K is any face with support X , and (F,C) and (G,D) are directed faces with
supports L and M respectively. The map

base:
−→
Π[I]→ Π[I]

is a map of Π[I]-bimodules, and it follows that
−→
Π[I] is a dimonoid.

Thus the monoids Σ[I] and Π[I] are dimonoids as well. One can now check
that:
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Proposition 10.19. Diagram (10.49) is a commutative diagram of dimonoids.

We observe that since Σ[I] → Π[I] is a morphism of monoids,
−→
Π[I] is also a

bimodule over Σ[I]. Explicitly,

K ·M := supp(KG,KD),

L ·K := supp(FK,FKC),

where (F,C) and (G,D) are directed faces with supports L and M respectively.

As explained above, the dimonoids
−→
Σ[I] and

−→
Π[I] arise from the base maps

−→
Σ[I] → Σ[I] and

−→
Π[I] → Π[I] by means of the construction of Section 10.10.1.

One can check that if one applies the left adjoint construction to these dimonoids
one retrieves the monoids Σ[I] and Π[I] and the base maps.

10.10.3. The Jacobson radical. We now linearize the preceding discussion. The
linearization of a dimonoid is a dialgebra. Proposition 10.19 yields the following
commutative diagram of dialgebras.

(10.56)

−→
Σ [I]

base //

supp

��

Σ[I]

supp

��
−→
Π[I]

base
// Π[I]

We discuss this diagram in more detail below. We pause to recall a basic fact.
Let A be an algebra and J be a two-sided ideal. Then A/J is an algebra and the
quotient map A→ A/J is a morphism of algebras. Now let M be an A-bimodule.
Then M/JMJ is an (A/J)-bimodule and, in particular, an A-bimodule.

We proceed. Let A be the algebra of faces Σ[I], and let J be its Jacob-
son radical. Bidigare [45] showed that J is precisely the kernel of its support
map. This result was generalized to left regular bands by Brown [70], also see [12,
Lemma 2.5.5]. Thus, A/J is the algebra of flats Π[I], and the quotient map is the

support map. Now let M be the bimodule of directed faces
−→
Σ [I]. One can check

that JMJ = JM = MJ and that this subbimodule is the kernel of the support
map from directed faces to directed flats. Thus, M/JMJ is the space of directed

flats
−→
Π[I]. It is a bimodule over Π[I].

10.11. The break and join maps

We mentioned earlier that Coxeter complexes are closed under the star and
join operations. In this section, we explain how this property can be used to define
break and join maps on the faces, flats, directed faces and directed flats of the
Coxeter complex of type A. These maps along with Tits projection maps will play
an important role in the construction of Hopf monoids in species (Chapter 12).

10.11.1. The break and join maps for faces. Let K = S|T be a vertex of Σ[I].
A face F which contains K consists of a composition of S followed by a composition
of T . This yields a canonical identification

Star(S|T ) ∼= Σ[S]× Σ[T ]
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between the star of the vertex S|T in Σ[I] and the join of the complexes Σ[S] and
Σ[T ]. We use

(10.57) Star(S|T )
bS|T

//
Σ[S]× Σ[T ]

jS|T

oo

to denote the inverse isomorphisms of simplicial complexes. We refer to bS|T and

jS|T as the break and join maps, respectively. Explicitly, if F = F 1| · · · |F i is a

composition of S and G = G1| · · · |Gj is a composition of T , then

jS|T (F,G) = F 1| · · · |F i|G1| · · · |Gj .

The star and join operations preserve Coxeter complexes; thus the break and join
maps are simplicial isomorphisms between Coxeter complexes.

More generally, the break and join maps can be defined for any face: For
K = K1|K2| · · · |Kj, there are inverse isomorphisms of simplicial complexes

(10.58) Star(K1|K2| · · · |Kj)
bK //

Σ[K1]× Σ[K2]× · · · × Σ[Kj]
jK

oo

where Star(K) is the star of the face K in Σ[I].
The following is a useful way to picture the break map; the figure illustrates

the case when K has three parts. The disc at the center is an apparatus which
takes one input larger than K and produces three ordered outputs.

GFED@ABCbK

66lllllllll
//

((RRRRRRRRR

A similar picture can be drawn for the join map by reversing the arrows.

10.11.2. Compatibilities. The break and join maps are associative in the fol-
lowing sense: Let K be a face of F , and let bK(F ) = (F1, . . . , Fk). Then

bF = (bF1 × bF2 × · · · × bFk) ◦ bK .

Equivalently, with the same setup,

jF = jK ◦ (jF1 × jF2 × · · · × jFk).

An illustration for the associativity of the break map is provided below.

GFED@ABCbF1

rrr
r

88rrr

&&LLL

GFED@ABCbK

99rrrr
//

%%LL
LL

GFED@ABCbF2
//

GFED@ABCbF3

LLLL 88rrr

&&LLL

= ONMLHIJKbF

66mmmmmmmmm

??~~~~~~~~

((QQQQQQQQQ

  
@@

@@
@@

@@
//

The break and join maps are compatible with the projection maps: For faces F
and G which contain K,

bK(FG) = bK(F )bK(G),
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the product on the right being taken componentwise. Equivalently, for K =
K1|K2| · · · |Kj,

jK(F1, . . . , Fj)jK(G1, . . . , Gj) = jK(F1G1, . . . , FjGj),

where Fi and Gi are compositions of Ki, as i varies from 1 to j.
The break and join maps are compatible with the distance function on faces,

and hence in particular with the gallery metric on chambers.

(10.59) dist
(
jK(F1, . . . , Fj), jK(G1, . . . , Gj)

)
=

j∑

i=1

dist(Fi, Gi).

Equivalently, for faces F and G which contain K,

(10.60) dist(F,G) =

j∑

i=1

dist(Fi, Gi),

where bK(F ) = (F1, . . . , Fj) and bK(G) = (G1, . . . , Gj).

The compatibility of the distance function with projection maps (10.31), in
conjunction with (10.60) yields the following important consequence.

Let I = S ⊔ T be a decomposition, and let K = S|T . Further, let C and D
be linear orders on I, C1 and D1 be linear orders on S, and C2 and D2 be linear
orders on T , such that bK(KC) = (C1, C2) and bK(D) = (D1, D2). Then

(10.61) dist(C,D) = dist(C1, D1) + dist(C2, D2) + dist(C,KC).

It is clear that this can be generalized by replacing the vertex K by any face.

10.11.3. Relation with shuffles and quasi-shuffles. Recall the notions of shuf-
fles and quasi-shuffles from Section 10.1.6. We now explain how they fit into the
framework of break and join maps.

Let K = S|T be a vertex of Σ[I]. Let F , F1 and F2 be faces of Σ[I], Σ[S] and
Σ[T ] respectively. It follows from (10.20) that

(10.62)
bK(KF ) = (F1, F2) ⇐⇒ KF = jK(F1, F2)

⇐⇒ F is a quasi-shuffle of F1 and F2.

For example, let I = {l, a, k, s, h,m, i}, S = {a, k, l} and T = {h, i,m, s}. If the
vertex K is alk|sihm, then the set compositions

F = lsh|m|aki, F1 = l|ak, and F2 = sh|m|i

satisfy the conditions (10.62).
Going back to the general discussion, it follows from (10.21) that

(10.63)
bK(KF ) = (F1, F2) and FK = F ⇐⇒ KF = jK(F1, F2) and FK = F

⇐⇒ F is a shuffle of F1 and F2.

With I, S, T and K as in the above example, the set compositions

F = l|sh|m|ak|i, F1 = l|ak, and F2 = sh|m|i.

satisfy conditions (10.63).
Let C, C1 and C2 are linear orders on I, S and T respectively and K = S|T .

It follows from (10.22) that

(10.64)
bK(KC) = (C1, C2) ⇐⇒ KC = jK(C1, C2)

⇐⇒ C is a shuffle of C1 and C2.
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With I, S, T and K as before, the linear orders

C = l|s|h|m|a|k|i, C1 = l|a|k, and C2 = s|h|m|i

satisfy conditions (10.64).

The above discussion can be generalized by replacing the vertex K by any face.

10.11.4. The break and join maps for flats. We now discuss the analogues
of the break and join maps for set partitions. For a partition X of I, let Star(X)
denote the star of X in Π[I]. It consists of those partitions of I which refine X .
For K = K1|K2| · · · |Kj, there are inverse isomorphisms

(10.65) Star
(
supp(K)

) bK //
Π[K1]×Π[K2]× · · · ×Π[Kj ].

jK
oo

These are the break and join maps for flats. Note that Star
(
supp(K)

)
consists

precisely of those flats X for which K · X = X , with the module structure as
in (10.18).

10.11.5. The break and join maps for directed faces. We now discuss the
analogues of the break and join maps for linear set compositions.

For a set composition K = K1|K2| · · · |Kj of I, let

Star−→
Σ[I]

(K)

denote the set of those linear set compositions (G,D) for which K ≤ G, or equiva-
lently, K · (G,D) = (G,D), with the left module structure as in (10.51). In other
words, it is the set of directed faces of the simplicial complex Star(K). Note that
an element of this set is a linear set composition of K1, followed by a linear set
composition of K2, and so on. This observation yields inverse bijections

(10.66) Star−→
Σ[I]

(K)
bK // −→

Σ[K1]×
−→
Σ[K2]× · · · ×

−→
Σ[Kj ].

jK
oo

These are the break and join maps for directed faces.
Note that these break and join maps are defined by using the break and join

maps for faces in both coordinates. For example, for a vertexK, if bK(F ) = (F1, F2)
and bK(D) = (D1, D2), then bK(F,D) =

(
(F1, D1), (F2, D2)

)
.

10.11.6. The break and join maps for directed flats. For a set composition
K = K1|K2| · · · |Kj of I, let

Star−→
Π[I]

(K)

denote the image of Star−→
Σ[I]

(K) under the support map. It consists of precisely

those directed flats M for which K ·M = M , with the left module structure as
in (10.52). Alternatively, it is the set of directed flats of the simplicial complex
Star(K). More explicitly, an element of this set is a disjoint union of a linear set
partition ofK1, a linear set partition ofK2, and so on. This yields inverse bijections

(10.67) Star−→
Π[I]

(K)
bK // −→

Π[K1]×
−→
Π[K2]× · · · ×

−→
Π[Kj ].

jK
oo

These are the break and join maps for directed flats.
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10.12. The weighted distance function

In this section we discuss the weighted version of the distance function on
chambers and faces (Section 10.5). These come in two flavors: additive and multi-
plicative. They depend on a matrix of size r and a function f : I → [r]. We denote
the matrix by A in the additive case, and by Q in the multiplicative case. The two
cases can be related by (2.33).

10.12.1. The additive case. Let A be a fixed integer matrix of size r and f : I →
[r]. To each half-space in the braid arrangement in RI , we assign a weight as follows:

(10.68) wAf (xj ≤ xi) := af(i)f(j).

Given chambers C and D, define the weighted additive distance from C to D by

(10.69) distAf (C,D) :=
∑

wAf (H),

where the sum is over all half-spaces H which contain C but do not contain D.
Explicitly, if C = C1| · · · |Cn, with n = |I|, then (10.26) generalizes as follows.

(10.70) distAf (C,D) =
∑

(i,j)∈Inv(C,D)

af(Cj)f(Ci).

Note that if all entries of A are 1, then distAf (C,D) is simply the gallery distance
between C and D.

Some basic properties of the weighted distance function are as follows. Let C,
D and E be chambers in Σ[I]. Then

(10.71) distAf (C,D) = distA
t

f (D,C),

for any bijection σ : I → J ,

(10.72) distAf (C,D) = distAfσ−1(σC, σD),

if C −D − E is a minimum gallery, then

(10.73) distAf (C,E) = distAf (C,D) + distAf (D,E).

Further,

(10.74) distAf (C,D) = distAf (D,C).

Interesting special cases are when A is symmetric or antisymmetric. We explain
them briefly.

Proposition 10.20. Let A be a symmetric matrix with positive real entries. Then

distAf (C,C) = 0,

distAf (C,D) = distAf (D,C),

distAf (C,D) + distAf (D,E) ≥ distAf (C,E),

with equality if C −D − E is a minimum gallery.

These are the familiar properties of “distance”.
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Figure 10.12. Additivity of antisymmetrically weighted distance.

Proposition 10.21. Let A be an antisymmetric matrix. Then

distAf (C,C) = 0,

distAf (C,D) + distAf (D,C) = 0,

distAf (C,D) + distAf (D,E) = distAf (C,E).

These are the familiar properties of “displacement”.

Proof. We prove the last equality. For that, refer to Figure 10.12. We may
assume that C, D and E are all distinct (the remaining cases are straightforward).
Then there are three kinds of hyperplanes as shown in Figure 10.12 whose associated
half-spaces may contribute to the weighted distances. The hyperplanes labeled 1
and 3 contribute once to both the left- and right-hand side via the half-space which
contains C. The hyperplane labeled 2 does not contribute to the right-hand side
and contributes twice to the left-hand side via the two half-spaces it supports. Since
A is antisymmetric, these contributions cancel. �

10.12.2. The multiplicative case. Let Q be a matrix of size r and f : I → [r]
a function. Given chambers C and D, define the weighted multiplicative distance
from C to D by

(10.75) distQf (C,D) :=
∏

wQf (H),

where wQf (H) is as in (10.68) and the product is over all half-spacesH which contain

C but do not contain D. Clearly, if the matrices Q and A are related by (2.33),
then

distQf (C,D) = qdistAf (C,D).

The multiplicative analogue of (10.70) is the following.

(10.76) distQf (C,D) =
∏

(i,j)∈Inv(C,D)

qf(Cj)f(Ci).
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The multiplicative analogues of (10.71), (10.72) and (10.73) are as follows.

(10.77) distQf (C,D) = distQ
t

f (D,C),

for any bijection σ : I → J ,

(10.78) distQf (C,D) = distQfσ−1(σC, σD),

if C −D − E is a minimum gallery, then

(10.79) distQf (C,E) = distQf (C,D) distQf (D,E).

Further,

(10.80) distQf (C,D) = distQf (D,C).

The following is a multiplicative analogue of Proposition 10.21.

Proposition 10.22. Let Q be a log-antisymmetric matrix. Then

distQf (C,C) = 1,

distQf (C,D) distQf (D,C) = 1,

distQf (C,D) distQf (D,E) = distQf (C,E).

10.12.3. Compatibility with breaks, joins and projections. We now discuss
compatibilities of the weighted distance function with the break, join and projection
maps. To start with, Proposition 10.4 in conjunction with (10.73) in the additive
case and (10.79) in the multiplicative case yields:

Proposition 10.23. Let C and D be chambers and F be a face of C. Then there
exists a minimum gallery C − FD −D. In particular,

(10.81)
distAf (C,D) = distAf (C,FD) + distAf (FD,D),

distQf (C,D) = distQf (C,FD) distQf (FD,D).

The following are weighted analogues of (10.59) and (10.60) for the case of
chambers. The notations are the same as before, so we do not repeat them here.

(10.82)

distAf
(
jK(C1, . . . , Cj), jK(D1, . . . , Dj)

)
=

j∑

i=1

distAfi(Ci, Di),

distQf
(
jK(C1, . . . , Cj), jK(D1, . . . , Dj)

)
=

j∏

i=1

distQfi(Ci, Di),

where the fi’s are appropriate restrictions of f . Equivalently, for chambers C and
D which contain K,

(10.83) distAf (C,D) =

j∑

i=1

distAfi(Ci, Di), distQf (C,D) =

j∏

i=1

distQfi(Ci, Di),

where bK(C) = (C1, . . . , Cj) and bK(D) = (D1, . . . , Dj).
By combining the above compatibilities, one obtains the following weighted

analogue of (10.61).
Let I = S ⊔ T be a decomposition, and let K = S|T . Let f : I → [r] and let g

and h be the restrictions of f to S and T . Further, let C and D be linear orders
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on I, C1 and D1 be linear orders on S, and C2 and D2 be linear orders on T , such
that bK(KC) = (C1, C2) and bK(D) = (D1, D2). Then

(10.84)
distAf (C,D) = distAg (C1, D1) + distAh (C2, D2) + distAf (C,KC),

distQf (C,D) = distQg (C1, D1) distQh (C2, D2) distQf (C,KC).

10.12.4. Integration over galleries. We now view the weighted distance func-
tion on chambers as an integral. Since integration is traditionally defined using
summations we formulate the discusssion for the weighted additive distance func-
tion. The same discussion can be carried out for the multiplicative case by replacing
sums by products.

Let G(C,D) stand for the following gallery starting at C and ending at D:

C = C1
H1

C2
H2 . . .

Hn−1

Cn = D.

The chambers Ci and Ci+1 are distinct and adjacent, that is, they share a codi-
mension 1 face and Hi is the half-space containing Ci whose supporting hyperplane
supports the common codimension 1 face of Ci and Ci+1. We view G(C,D) as an
oriented path in the complex. Now define

(10.85)

∫

G(C,D)

(A, f) :=

n−1∑

k=1

wAf (Hk)

with wAf (Hk) as in (10.68). In other words, to integrate over a gallery we add the

weights of all the half-spaces relevant to that gallery (in the above sense).
We now show that the weighted distance can be interpreted as an integral.

Proposition 10.24. We have

distAf (C,D) =

∫

G(C,D)

(A, f)

where G(C,D) is any minimum gallery from C to D.

Proof. The proof follows from the following chain of equalities.

(10.86) distAf (C,D) =
n−1∑

i=1

distAf (Ci, Ci+1) =
n−1∑

i=1

wAf (Hi) =

∫

G(C,D)

(A, f)

The first equality follows from (10.73), while the remaining two follow from the
definitions. �

This result along with (10.71) implies that
∫

G

(A, f) =

∫

−G

(At, f),

where −G denotes the gallery from D to C which traverses the chambers in the
order opposite to that of G.

We elaborate on the cases when A is symmetric and antisymmetric.
If A is symmetric, then one can assign a weight to each hyperplane using f by:

wAf (xi = xj) := af(i)f(j) = af(j)f(i).

It is clear that in this case the integral only depends on the path joining C and D
and not on the orientation. That is, it does not matter whether one goes from C
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to D or from D to C. Hence in this case, one may view (10.85) as an integral over
an unoriented domain.

If A is antisymmetric, then one can assign a weight to each hyperplane using f
but only up to a sign. In other words, the weights of the two half-spaces supported
by a hyperplane differ by a sign. Hence in this case, one may view (A, f) as a “1-
form” on the complex and (10.85) as an integral over an oriented domain. Further:

Proposition 10.25. If A is antisymmetric, then

distAf (C,D) =

∫

G(C,D)

(A, f)

where G(C,D) is any gallery from C to D.

Proof. This follows from (10.86); the first equality in that chain now holds
due to Proposition 10.21. �

The above result says that the 1-form (A, f) is in fact “exact”. By arbitrarily
choosing the potential at a chamber, (A, f) determines the potential at all other

chambers and distAf (C,D) is then the potential difference between C and D.

10.12.5. A weighted distance function on faces. So far in this section, we
have been discussing the gallery metric on chambers. Now we turn our attention
to the weighted versions of the distance function on faces. To avoid repetition, we
will freely use the setup of Section 10.5.3.

The weighted additive distance between faces F and G is defined as follows.

(10.87) distAf (F,G) := distAf
(
C, pGF (C)

)
= distAf (pFG(D), D),

where C is any chamber containing FG, and D is any chamber containing GF . It
is necessary to show (and one can show) that the definition is independent of the
particular choice of C or D. In fact, from (10.68) and (10.69), one can see that

distAf (F,G) is the sum of the weights of the half-spaces H which contain FG but
do not contain GF . It follows that

(10.88) distAf (F,G) = distAf (FG,GF ).

More explicitly, if F and G have the same support, with F = F 1| · · · |F k,
then (10.37) generalizes as follows.

(10.89) distAf (F,G) =
∑

(i,j)∈Inv(F,G)

∑

s∈F i

t∈F j

af(t)f(s).

In the general case, (10.38) generalizes as follows.

(10.90) distAf (F,G) =
∑

i<k
j>l

∑

s∈F i∩Gj

t∈Fk∩Gl

af(t)f(s),

where i and k index the blocks of F while j and l index the blocks of G.

The weighted multiplicative distance between faces F and G is defined similarly
as follows.

(10.91) distQf (F,G) := distQf
(
C, pGF (C)

)
= distQf (pFG(D), D),

where C is any chamber containing FG, and D is any chamber containing GF .
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The remaining discussion works in an analogous manner: (10.88) holds, and
(10.89) and (10.90) hold with sums replaced by products as follows. For equal
supports,

(10.92) distQf (F,G) =
∏

(i,j)∈Inv(F,G)

∏

s∈F i

t∈F j

qf(t)f(s),

and in the general case,

(10.93) distQf (F,G) =
∏

i<k
j>l

∏

s∈F i∩Gj

t∈Fk∩Gl

qf(t)f(s).

10.13. The Schubert cocycle and the gallery metric

The Schubert statistic was introduced in Section 2.2. An equivalent formulation
in terms of the Schubert cocycle was given in Section 9.7. We begin this section by
relating them to the gallery metric by using projection maps.

A weighted version of the Schubert statistic was also discussed in Section 2.2.
In this section, we give an equivalent formulation in terms of the weighted Schubert
cocycle. We then relate these to the weighted gallery metric.

We conclude by introducing the Schubert cocycle on faces, along with its
weighted version, and relating it to the distance function on faces. This gener-
alizes the previous discussion.

10.13.1. The Schubert cocycle and the gallery metric. Let I = S ⊔ T and
let C be a linear order on I. Also let K = S|T . Then it follows from the definitions
that

(10.94) schS,T (C) = dist(C,KC),

where the left-hand side is the Schubert cocycle (9.12). In particular, apply-
ing (9.13),

(10.95) schn(S) = dist(C(n),KC(n)),

where the left-hand side is the Schubert statistic (2.13).
We illustrate how properties of the Schubert statistic or cocycle can be estab-

lished using this geometric interpretation. For example, for (2.15) or (9.15), we
note that

dist(KC,C) + dist(C,KC) = dist(KC,KC)

and the right-hand side, by (10.26), is equal to st, where s = |S| and t = |T |.
Recall that ωn is the permutation which sends i to n + 1 − i for each i. The

following sequence of equalities establishes (2.16). The proof of (9.16) is contained
in this argument.

schn
(
ωn(S)

)
= dist(C(n), ωn(K)C(n))

= dist(ωn(C(n)), ωn
(
KC(n))

)

= dist(C(n),KC(n))

= dist(C(n),KC(n))

= schn(T )
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The first and last equalities follow from (10.95) (note that K = T |S). The second
equality uses the fact that the projection map commutes with the group action, and
that ωn switches C(n) and its opposite C(n). The third equality follows from (10.24),
and the fourth follows from (10.25).

The cocycle condition (9.17) boils down to the following. For any decomposition
I = R ⊔ S ⊔ T , and for any linear order l on I,

(10.96) dist(l, (R|S ⊔ T )l) + dist
(
(R|S ⊔ T )l, (R|S|T )l

)

= dist(l, (R ⊔ S|T )l) + dist
(
(R ⊔ S|T )l, (R|S|T )l

)
.

This identity can be proved as follows. The gate property implies that

l− (R|S ⊔ T )l − (R|S|T )l and l − (R ⊔ S|T )l− (R|S|T )l

are minimum galleries and hence both sides of the above identity equal
dist(l, (R|S|T )l).

The multiplicative property of the cocycle (9.18) boils down to the following.
Consider a pair of decompositions I = S ⊔ T = S′ ⊔ T ′ and let A, B, C, and D be
the resulting intersections, as in Lemma 8.7. Then
(10.97)

dist(l ·m, (S′|T ′)l ·m) = dist(l, (A|B)l) + dist(m, (C|D)m) + dist(B|C,C|B),

for any linear order l on S, and linear order m on T . This identity follows from the
following sequence of equalities.

dist(l ·m, (S′|T ′)l ·m)

= dist(l ·m, (A|C|B|D)l ·m)

= dist(l ·m, (A|B|C|D)l ·m) + dist
(
(A|B|C|D)l ·m, (A|C|B|D)l ·m

)

= dist(l ·m, (A|B|C|D)l ·m) + dist(B|C,C|B)

= dist(l, (A|B)l) + dist(m, (C|D)m) + dist(B|C,C|B).

The first equality follows by noting that

(S′|T ′)l ·m = (A|C|B|D)l ·m.

The gate property applied to the star of the face A|B ⊔ C|D yields a minimum
gallery

l ·m− (A|B|C|D)l ·m− (A|C|B|D)l ·m

which implies the second equality. The third equality uses the fact that to compute
the distance between a face and its opposite it does not matter which chamber is
used to do the computation. The last equality follows from the compatibility of the
distance function with the join map (10.59).

The connection of the Schubert statistic with inversions (2.26) can be estab-
lished as follows.

(10.98) schn(S) = dist(C(n),KC(n)) = dist(C(n), ζC(n)) = l(ζ) = inv(ζ).

The first equality is (10.95). The (s, t)-shuffle permutation ζ is defined using (10.39)
from which the second equality follows. Explicitly, ζ is the unique permutation
which sends [s] to S and [s + 1, s + t] to T in an order-preserving manner. The
third and fourth equalities follow from (10.29).
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10.13.2. The weighted Schubert cocycle and the gallery metric. Let A be
a square matrix of size r. Let l be a linear order on a finite set I, S a subset of I,
and f : I → [r] a function. The weighted additive Schubert cocycle is defined to be

(10.99) schAS,T,f (l) :=
∑

(i,j)∈SchS,T (l)

af(i)f(j)

where SchS,T (l) is as in (9.11). This is a reformulation of the weighted additive
Schubert statistic (2.13). If I = [n] and C(n) is the canonical linear order on [n],
then

(10.100) SchS,T (C(n)) = Schn(S) and schAS,T,f(C(n)) = schAn (S, f).

Letting all the entries of A to be 1 recovers the Schubert cocycle.
We now relate the weighted additive Schubert cocycle to the weighted distance

function (10.69). Let I = S⊔T and let C be a linear order on I. Also let K = S|T .
Then

(10.101) schAS,T,f(C) = distAf (C,KC).

This generalizes (10.94).

Proof. Let us look at the right-hand side. Note that the half-space xj ≤ xi
contains C precisely if j <C i, that is, if i is greater than j with respect to the
linear order C on I. In addition, the half-space xj ≤ xi does not contain KC
precisely if i ∈ S and j ∈ T . Thus, the set of half-spaces which are used to define
distAf (C,KC) is in correspondence with the set SchS,T (C) which is used to define

schAS,T,f(C). One then checks that the corresponding weights match and the result
follows. �

We now go to the multiplicative case. Let Q be a square matrix of size r. Let
l be a linear order on a finite set I, S a subset of I, and f : I → [r] a function. The
weighted multiplicative Schubert cocycle is

(10.102) schQS,T,f(l) :=
∏

(i,j)∈SchS,T (l)

qf(i)f(j)

where SchS,T (l) is as in (9.11). In terms of the weighted multiplicative distance
function, this can be written as

(10.103) schQS,T,f(C) = distQf (C,KC).

10.13.3. The braid coefficients. We now introduce the braid coefficients, which
are closely related to those introduced in Section 2.2.7. The motivation for the
terminology will become clear in Chapter 14 where we will use these coefficients to
construct braidings on colored species.

Fix a decomposition I = S⊔T . Let f : I → [r] and let g and h be the restrictions
of f to S and T respectively. Define

(10.104) brdAS,T,f :=
∑

s∈S
t∈T

ah(t)g(s) and brdQS,T,f :=
∏

s∈S
t∈T

qh(t)g(s).

We refer to these as the additive and multiplicative braid coefficients respectively.
If Q and A are related by (2.33), then

brdQS,T,f = qbrdAS,T,f .
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If further, r = 1, A = [1] and Q = [q], then

brdAS,T,f = |S| |T | and brdQS,T,f = q|S| |T |.

It also follows that

(10.105) brdAS,T,f = brdA
t

T,S,f and brdQS,T,f = brdQ
t

T,S,f .

It is convenient to view the braid coefficients as the result of a multistep process:
a step consists of an interchange of an element of S and an element of T . To such
a step, we associate a weight depending on the colors of the elements involved and
then look up the corresponding entry in the matrix A or Q. To get the braid
coefficient, we add or multiply the weights of all possible interchanges, as may be
the case. It follows that

(10.106) brdAS,T,f = brdAd(g),d(h) and brdQS,T,f = brdQ
d(g),d(h)

where the right-hand sides are the braid coefficients of (2.36) and d(g) and d(h) are
the multidegrees of the fibers of g and h, as defined in (2.38).

We now provide a geometric interpretation for the braid coefficients in terms of
the weighted distance function. First recall that S|T and T |S are opposite vertices
in this complex; let us call them K and K for simplicity. Then

(10.107) brdAS,T,f = distAf (KC,KC) and brdQS,T,f = distQf (KC,KC),

for any chamber C, or equivalently,

brdAS,T,f = distAf (K,K) and brdQS,T,f = distQf (K,K).

Proof. The essential observation is that the set S×T which is used to define
the braid coefficients (10.104) is in correspondence with the set of half-spaces which
contain the vertex K but do not contain K, where K = S|T via

(s, t)←→ xs ≥ xt.

The result then follows from the definitions. �

The multistep process described for the braid coefficients is equivalent to a
choice of a path from K to K. More precisely, it is a choice of a minimum gallery
from KC and KC, where C is any chamber. Further, the weight associated to each
step may be viewed as a weight associated to the corresponding half-space in the
gallery. Thus, the braid coefficient can be viewed as an integral over a minimum
gallery, see Proposition 10.24.

10.13.4. Properties of the weighted Schubert cocycle. We now record the
weighted analogues of (9.14)–(9.18). They are reformulations of the properties
of the weighted Schubert statistic (2.39)–(2.43). We also give the corresponding
identities in terms of the gallery metric.

schAI,∅,f(l) = schA∅,I,f (l) = 0,

schQI,∅,f(l) = schQ∅,I,f (l) = 1.
(10.108)

schA
t

S,T,f(l) + schAT,S,f (l) = brdAS,T,f ,

schQ
t

S,T,f(l) schQT,S,f (l) = brdQS,T,f .
(10.109)
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We see here an instance of how the braid coefficients relate to the Schubert cocyle.
We will see another instance a little below. In geometric terms, the identities boil
down to

(10.110)
distA

t

f (C,KC) + distAf (C,KC) = distAf (KC,KC),

distQ
t

f (C,KC) distQf (C,KC) = distQf (KC,KC),

where K = S|T . To prove either of these, apply (10.73) or (10.79) to the minimum
gallery

KC − C −KC

and then use (10.71) or (10.77).

(10.111)
schAS,T,f(l) = schA

t

T,S,f (l),

schQS,T,f(l) = schQ
t

T,S,f (l),

where l is the linear order opposite to l. This follows from either (10.74) or (10.80).
For any decomposition I = R ⊔ S ⊔ T , and for any linear order l on I, and

f : I → [r],

schAR,S⊔T,f (l) + schAS,T,f |S⊔T
(l|S⊔T ) = schAR⊔S,T,f (l) + schAR,S,f |R⊔S

(l|R⊔S),

schQR,S⊔T,f (l) schQS,T,f |S⊔T
(l|S⊔T ) = schQR⊔S,T,f (l) schQR,S,f |R⊔S

(l|R⊔S).

(10.112)

This is the cocycle condition. In geometric terms, it boils down to the following.

(10.113)

distAf (l, (R|S ⊔ T )l) + distAf
(
(R|S ⊔ T )l, (R|S|T )l

)

= distAf (l, (R ⊔ S|T )l) + distAf
(
(R ⊔ S|T )l, (R|S|T )l

)
,

distQf (l, (R|S ⊔ T )l) distQf
(
(R|S ⊔ T )l, (R|S|T )l

)

= distQf (l, (R ⊔ S|T )l) distQf
(
(R ⊔ S|T )l, (R|S|T )l

)
.

This can be proved the same way as (10.96).
Consider a pair of decompositions I = S ⊔ T = S′ ⊔ T ′ and let A, B, C, and

D be the resulting intersections, as in Lemma 8.7. Also, let f : I → [r]. Then, for
any linear order l on S, and linear order m on T ,

(10.114)
schAS′,T ′,f (l ·m) = schAA,B,f |S(l) + schAC,D,f |T (m) + brdAB,C,f |B⊔C

,

schQS′,T ′,f (l ·m) = schQA,B,f |S(l) schQC,D,f |T (m) brdQB,C,f |B⊔C
.

This is the multiplicative property of the weighted Schubert cocycle. In geometric
terms,

(10.115)

distAf (l ·m, (S′|T ′)l ·m) = distAf |S(l, (A|B)l) + distAf |T (m, (C|D)m)

+ distQf |B⊔C
(B|C,C|B),

distQf (l ·m, (S′|T ′)l ·m) = distQf |S(l, (A|B)l) distQf |T (m, (C|D)m)

distQf |B⊔C
(B|C,C|B).

This can be proved the same way as (10.97).
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10.13.5. The weighted inversion statistic and the gallery metric. The
weighted inversion statistic (2.44) and (2.45) is related to the weighted distance
by:

(10.116)
invAf (σ−1) = distAf (C(n), σC(n)),

invQf (σ−1) = distQf (C(n), σC(n)).

The connection of the weighted Schubert statistic and the weighted inversion statis-
tic given in (2.46) can be established along the lines of (10.98): Use (10.101),
(10.103) and (10.116).

The relation between the weighted inversion statistic of a permutation and its
inverse given in (2.47) can be derived as follows.

invQf (σ−1) = distQf (C(n), σC(n))

= distQfσ(σ
−1C(n), C(n))

= distQ
t

fσ(C(n), σ
−1C(n))

= invQ
t

fσ(σ).

The equalities follow from (10.77), (10.78) and (10.116).
Let us now establish (2.49). In view of (10.116), this identity is equivalent to

(10.117) distQf (C(n), ρC(n))

= distQf (C(n), ζC(n)) distQg (C(s), σC(s)) distQ
h

(C(t), τC(t)),

where g and h are as in (2.48). To prove this, we apply (10.84): Put C = C(n) and
D = ρC(n). Now note from Proposition 10.6 that ζC(n) = KC(n), where K = S|T .
Further, using the naturality of the weighted distance (10.78), it follows that

distQg (C1, D1) = distQg (C(s), σC(s)) and distQh (C2, D2) = distQ
h

(C(t), τC(t)).

The required identity now follows.

10.13.6. The Schubert cocycle on faces. Given a set composition H ∈ Σ[I]
and a decomposition I = S ⊔ T , let

(10.118) SchS,T (H) := {(i, j) ∈ S × T | i > j according to H},

where i > j according to H means that i appears in a strictly later block of H than
j. Let

(10.119) schS,T (H) := |SchS,T (H)|.

For instance, if

H = sh|iv|a, S = {i, s, a}, T = {v, h},

then

SchS,T (H) = {(i, h), (a, h), (a, v)} and schS,T (H) = 3.

Alternatively,

schS,T (H) =
∑

1≤i<j≤k

|Hi ∩ T | |Hj ∩ S|,

where H = H1| · · · |Hk.
We view schS,T as an integer-valued function on Σ[I] and refer to the family

of maps schS,T as the Schubert cocycle on faces. Its restriction to L[I] is the usual
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Schubert cocycle. The Schubert cocycle on faces can be interpreted using the
distance function on faces:

schS,T (H) = dist(H,K),

where K is the vertex S|T . This follows from (10.38).
It satisfies the following generalizations of (9.14)–(9.18).

schI,∅(H) = sch∅,I(H) = 0.(10.120)

schS,T (H) + schT,S(H) +

k∑

i=1

|Hi ∩ S| |Hi ∩ T | = |S| |T |,(10.121)

where H = H1| · · · |Hk.

(10.122) schS,T (H) = schT,S(H),

where H = Hk| · · · |H1 denotes the face opposite to H .
For any decomposition I = R ⊔ S ⊔ T , and for any composition H of I,

(10.123) schR,S⊔T (H) + schS,T (H |S⊔T ) = schR⊔S,T (H) + schR,S(H |R⊔S).

This is the cocycle condition.
Consider a pair of decompositions I = S ⊔ T = S′ ⊔ T ′ and let A, B, C, and D

be the resulting intersections, as in Lemma 8.7. Then

(10.124) schS′,T ′(F ·G) = schA,B(F ) + schC,D(G) + |B||C|,

for any composition F of S, and composition G of T . Here F · G stands for the
concatenation of F and G. This is the multiplicative property of the cocycle.

We now briefly consider the weighted versions of the Schubert cocycle on faces.
The setup is as for chambers. The weighted additive Schubert cocycle on faces is
defined to be

(10.125) schAS,T,f (H) :=
∑

(i,j)∈SchS,T (H)

af(i)f(j).

The weighted multiplicative Schubert cocycle on faces is

(10.126) schQS,T,f(H) :=
∏

(i,j)∈SchS,T (H)

qf(i)f(j).

Alternatively,

schAS,T,f(H) =
∑

1≤i<j≤k

∑

t∈F i∩T
s∈F j∩S

af(s)f(t),

and

schQS,T,f (H) =
∏

1≤i<j≤k

∏

t∈F i∩T
s∈F j∩S

qf(s)f(t),

where H = H1| · · · |Hk. It follows from (10.90) and (10.93) that the relation to the
weighted distance function on faces is given by

schAS,T,f(H) = distAf (H,K) and schQS,T,f(H) = distQf (H,K).

One can also write down weighted analogues of (10.120)–(10.124). The cocycle
condition, for example, takes the following form.
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For any decomposition I = R ⊔ S ⊔ T , and for any composition H of I, and
f : I → [r],

(10.127)

schAR,S⊔T,f (H) + schAS,T,f |S⊔T
(H |S⊔T )

= schAR⊔S,T,f(H) + schAR,S,f |R⊔S
(H |R⊔S),

schQR,S⊔T,f (H) schQS,T,f |S⊔T
(H |S⊔T )

= schQR⊔S,T,f(H) schQR,S,f |R⊔S
(H |R⊔S).

This property may also be formulated in terms of the distance function; the details
are omitted.

10.14. A bilinear form on chambers. Varchenko’s result

In this section, we review some work of Varchenko [367]. It involves the fac-
torization of a bilinear form on the set of chambers of a hyperplane arrangement.
Special cases of relevance to this monograph are also discussed. They pertain to
the braid arrangement.

10.14.1. Weights on hyperplanes. Fix a central hyperplane arrangement, and
let L be its set of chambers. The bilinear form is defined on the linearization kL,
where k is assumed to have characteristic zero. It is as follows. Assign a weight
to each hyperplane in the arrangement, and let wtdist(C,D) be the product of the
weights of the hyperplanes which separate C and D. Define a symmetric bilinear
form on kL:

(10.128) 〈C,D〉 := wtdist(C,D).

The determinant of this bilinear form [367, Theorem (1.1)] or [366, Theorem 2.6.2]
is given by:

(10.129)
∏

X

(1− a(X)2)l(X),

where the product is over all proper flats X in the arrangement, a(X) is the product
of the weights of all hyperplanes that contain X , and l(X) denotes the multiplicity
of X defined as follows. Pick any hyperplane H which contains X . Then l(X) is
half the number of chambers C which have the property that X is the support of
C ∩H.

Varchenko’s proof of the factorization (10.129) is geometric in nature and sim-
ilar to the spirit of the present chapter. It makes crucial use of directed flats which
he calls cones. (In our terminology, directed flats are examples of top-dimensional
cones.) The use of minimum galleries and the gate property is also evident in his
proof.

10.14.2. Weights on half-spaces. It is useful to work in a slightly more general
setup, where instead of hyperplanes, one assigns weights to half-spaces. Details
follow. Assign a weight to each half-space in the arrangement, and let wtdist(C,D)
be the product of the weights of the half-spaces which contain C but do not contain
D. Define a bilinear form on kL:

(10.130) 〈C,D〉 := wtdist(C,D).
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It is not symmetric in general. In fact, it is symmetric precisely if for each hyper-
plane, the weights of the two half-spaces it supports are equal. The determinant of
this more general bilinear form is given by:

(10.131)
∏

X

(1− b(X))l(X),

where the product is over all proper flats X in the arrangement, b(X) is the product
of the weights of all half-spaces whose supporting hyperplane contains X , and l(X)
is as in (10.129).

If for each hyperplane, the weights of the two half-spaces it supports are equal,
then b(X) = a(X)2 and (10.131) reduces to (10.129). The factorization (10.131)
can be established by generalizing Varchenko’s proof.

The following is an immediate consequence of (10.131). To keep the exposition
self-contained, we give a direct proof following Varchenko.

Lemma 10.26. If b(X) 6= 1 for any proper flat X in the arrangement, then the
bilinear form (10.130) on kL is nondegenerate.

Proof. Let γ : kL→ kL∗ be the map induced by the bilinear form. Explicitly,

γ(C) =
∑

D

wtdist(C,D)D∗.

Assume that b(X) 6= 1 for any proper flat X in the arrangement. We want to show
that γ is an isomorphism, or equivalently that it is surjective.

For any directed face (F,C), define

m(F,C) =
∑

D⊆Ψ(F,C)

wtdist(C,D)D∗,

where Ψ(F,C) is the cone associated to (F,C) as in Proposition 10.14.
We claim that m(F,C) belongs to the image of γ. The proof proceeds by

backward induction on the dimension of F . Note that m(C,C) = γ(C), so the
claim holds if F has full dimension.

Let F be any face and let C and D be chambers opposite to each other in
Star(F ). Then

∑

G:F≤G≤C

(−1)deg(G)m(G,C) = (−1)deg(C) wtdist(C,D)m(F,D).

This is a consequence of inclusion-exclusion. Rearranging the terms,

m(F,C)− (−1)deg(C)−deg(F ) wtdist(C,D)m(F,D) =
∑

G:F≤G≤C,G 6=F

(−1)deg(G)−deg(F )+1m(G,C).

The right-hand side belongs to the image of γ by the induction hypothesis. Inter-
changing the roles of C and D, we note that

m(F,D) − (−1)deg(D)−deg(F ) wtdist(D,C)m(F,C)

also belongs to the image of γ.
Let X denote the support of F . Since by assumption b(X) 6= 1, we have

1− wtdist(C,D)wtdist(D,C) = 1− b(X) 6= 0.
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It follows that both m(F,C) and m(F,D) belong to the image of γ. The claim
follows.

To finish the proof, we note that for any chamber C, we have m(∅, C) = C∗.
By our claim, this is in the image of γ. Hence, γ is surjective as required. �

Let w(H) denote the weight of the half-space H . View it as a variable. Note
that for any proper flat X , b(X) is a square free monomial in these variables. This
yields the following.

Lemma 10.27. Let w(H) denote the weight of the half-space H. If no square
free monomial in the w(H)’s equals 1, then the bilinear form (10.130) on kL is
nondegenerate.

This result will be required in this monograph for questions related both to
Hopf monoids in species and to Fock functors.

10.14.3. Specialization: Equal weights. Let q ∈ k be any scalar. Define a
symmetric bilinear form on the space kL indexed by chambers by:

(10.132) 〈C,D〉 := qdist(C,D).

This is a special case of (10.128) in which weights of all hyperplanes are equal to q.
Note that a monomial in the hyperplane weights equals 1 if and only if q is a

root of unity. Hence, applying Lemma 10.27, we obtain:

Lemma 10.28. If q is not a root of unity, then the bilinear form (10.132) on kL
is nondegenerate.

A weaker result with a direct proof is given below.

Lemma 10.29. If q is not an algebraic integer, then the bilinear form (10.132) on
kL is nondegenerate.

Proof. The determinant of the bilinear form on kL is a polynomial in q over
Z. The degree of this polynomial is the product of the number of chambers and the
number of hyperplanes in the arrangement. Exactly one term in the determinant
expansion gives the leading term: for each C, take inner product with C. It follows
that the coefficient of the leading term is either 1 or −1. Since q is not an algebraic
integer, the value of the polynomial will not be zero. �

Example 10.30. The bilinear form (10.132) for the braid arrangement in Rn has
been studied in several papers, including [96, 108, 159, 268, 380]. Its determinant
is explicitly given by

(10.133)

n∏

i=2

(
1− qi(i−1)

)(ni)(i−2)!(n−i+1)!

.

This formula was first proved by Zagier [380, Theorem 2]. Zagier’s formula (10.133)
holds in the polynomial ring Z[q], and hence over a field of any characteristic. It is a
specialization of Varchenko’s formula (10.129). Details regarding this are given by
Hanlon and Stanley [159]; additional information can be found in Krattenthaler’s
surveys [208, Theorem 55] and [209, Section 5.7]. Varchenko’s bilinear form is also
studied by Denham and Hanlon [97, 98, 96].

Let us explicitly look at the case n = 2. Then

L[2] = {1|2, 2|1},
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and the matrix of the bilinear form (10.132) on kL is given by
(

1 q
q 1

)
.

Its determinant is 1− q2; so the roots are 1 and −1. This agrees with (10.133).

10.14.4. Specialization: Power weights. Consider the more general case when
all weights are a positive integral power of q. Again, applying Lemma 10.27, we
obtain:

Lemma 10.31. Let q be a scalar which is not a root of unity. If all the hyperplane
weights are a positive integral power of q, then the bilinear form (10.128) on kL is
nondegenerate.

Example 10.32. Let X be a partition of I. Let Σ[X ] be the poset of faces asso-
ciated to the braid arrangement in RX . Similarly, let L[X ] be the set of chambers.
Observe that Σ[X ] can be identified with those compositions of I whose support is
less than X , and L[X ] with those compositions of I whose support is exactly X .

Now consider the following bilinear form on L[X ].

〈F,G〉 := qdist(F,G),

where dist(F,G) is as given in (10.37). Note that dist(F,G) is not the gallery metric
in Σ[X ], rather it is the distance function between faces in Σ[I]. Nevertheless, it
can be interpreted as a weighted distance function between chambers of Σ[X ] as
follows.

Let X = {X1, . . . , Xk}. Then hyperplanes in Σ[X ] are given by X i = Xj

where i and j vary between 1 and k. To each such hyperplane, we associate the
weight

q|X
i| |Xj|.

Then observe that qdist(F,G) is the product of the weights of the hyperplanes in
Σ[X ] which separate F and G.

It follows from Lemma 10.31 that, for q not a root of unity, the bilinear form
on L[X ] is nondegenerate.

10.14.5. Specialization: Matrix weights. We work with the braid arrange-
ment. Let Q be a square matrix of size r, and let f : I → [r]. Define a bilinear form
on kL:

(10.134) 〈C,D〉 := distQf (C,D),

where the right-hand side is the weighted multiplicative distance (10.75). This
bilinear form can be interpreted as follows. To the half-space xj ≤ xi, assign the
weight qf(i)f(j). Then 〈C,D〉 is the product of the weights of the half-spaces which
contain C but do not contain D. Thus, (10.134) is a special case of (10.130). If all
entries of Q are equal to say q, then we recover (10.132).

Applying Lemma 10.27, we obtain:

Lemma 10.33. If no monomial in the qij ’s equals 1, then the bilinear form (10.134)
on kL is nondegenerate.
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Example 10.34. We work with the setup of Example 10.32 and generalize it as
follows. Let Q be a square matrix of size r, and let f : I → [r]. To the hyperplane
Xj ≤ X i, we associate the weight

∏

a∈Xi

b∈Xj

qf(a)f(b),

where qij denotes the ij-th entry of Q. Note that the weight is a monomial in the
qij ’s. Now consider the bilinear form on L[X ]:

〈F,G〉 :=
∏

H

w(H)

where the product is over all half-spaces H which contain F but do not contain G
and w(H) denotes the weight of H . If all entries of Q are equal to (say) q, then we
recover the bilinear form of Example 10.32.

It follows from Lemma 10.33 that, if no monomial in the qij ’s equals one, then
the bilinear form on L[X ] is nondegenerate.

10.15. Bilinear forms on directed faces and faces

In this section, we define bilinear forms on directed faces and faces, and study
their nondegeneracy. This complements the discussion in Section 10.14. We con-
tinue to work in the setting of central hyperplane arrangements (though we are
mainly interested in the braid arrangement).

Fix a central hyperplane arrangement, and let Σ be its set of faces, and
−→
Σ be

its set of directed faces. The bilinear forms are defined on the linearizations k
−→
Σ

and kΣ, where k is assumed to have characteristic zero. A key role is played by the
gallery metric and Tits projection maps. These can be defined for a central hyper-
plane arrangement in the same manner as for the braid arrangement (Section 10.5).

10.15.1. A bilinear form on directed faces. Define a symmetric bilinear form

on the space k
−→
Σ indexed by directed faces:

(10.135) 〈(F,C), (G,D)〉 :=

{
qdist(C,D) if GC = D and FD = C,

0 otherwise.

Lemma 10.35. If q is not an algebraic integer, then the bilinear form on k
−→
Σ is

nondegenerate.

Proof. We follow the pattern of the proof given for Lemma 10.29; the argu-
ment however is much more delicate. Firstly, FC belongs to the set Ψ(F,C) (as in
Proposition 10.14) and secondly, for any chamber D in this set, there is a minimum
gallery C −D − FC by [12, Fact 5.2.1]. Hence

dist(C,D) ≤ dist(C, FC).

It follows that

〈(F,C), (G,D)〉 = qdist(C,FC) if D = FC, F ≤ G ≤ D.

This is illustrated in Figure 10.13.
Further, for any other directed face (G,D), the bilinear form evaluates either

to 0 or a strictly smaller power of q.
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F F

G

C D

Figure 10.13. The bilinear form on directed faces.

By a backward induction on the dimension of F , it follows that the determinant

of the bilinear form on k
−→
Σ is a polynomial in q of degree

∑

(F,C)∈
−→
Σ

dist(C, FC)

and whose coefficient of the leading term is either 1 or −1. Exactly one term in the
determinant expansion gives the leading term: for each (F,C), take inner product
with (F , FC). Since q is not an algebraic integer, the value of this polynomial will
not be zero. �

Example 10.36. Let Σ[2] be the Coxeter complex of the symmetric group S2.
Then

−→
Σ[2] = {(12, 1|2), (1|2, 1|2), (12, 2|1), (2|1, 2|1)}.

The matrix of the bilinear form on k
−→
Σ[2], indexed in the above order, is




1 1 0 0
1 1 0 q
0 0 1 1
0 q 1 1


 .

Its determinant is −q2. Observe directly that exactly one summand in the deter-
minant expansion yields this term; the rest cancel out.

10.15.2. A bilinear form on faces. Define a symmetric bilinear form on the
space kΣ indexed by faces as follows:

(10.136) 〈F,G〉 :=
∑

C:FG≤C

qdist(C,pGF (C)).

Recall that pGF (C) is the projection of the chamber C on the face GF . It follows
from (10.33) (also see Remark 10.5) that

〈F,G〉 = |LFG| q
dist(F,G),

where LFG is the set of chambers containing FG. In view of (10.7), we have

〈F,G〉 = (FG)! qdist(F,G).

Note that this bilinear form is induced from the one on k
−→
Σ by viewing kΣ as

a subspace of k
−→
Σ via the map F 7→

∑
(F,C), where the sum is over all chambers

C containing F . Explicitly,

(10.137) 〈F,G〉 =
∑

C,D:F≤C,G≤D

〈(F,C), (G,D)〉.

Lemma 10.37. If q is not an algebraic number, then the bilinear form on kΣ is
nondegenerate.
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Proof. The proof is similar to that of Lemma 10.35; we explain it briefly. For
F fixed and G varying, the highest power of q which appears in 〈F,G〉 is dist(F, F )
and this happens precisely if F ≤ G. By a backward induction on the dimension of
F , it then follows that the determinant of the bilinear form on kΣ is a polynomial
in q of degree ∑

G∈Σ

dist(G,G),

with integer coefficients, and whose leading coefficient is
∏

G

G!.

Exactly one term in the determinant expansion gives the leading term: for each G,
take inner product with G. Since q does not satisfy any polynomial over Q, the
result follows. �

Example 10.38. Let Σ[2] be the Coxeter complex of the symmetric group S2.
Then

Σ[2] = {12, 1|2, 2|1}.

The matrix of the bilinear form on kΣ[2], indexed in the above order, is



2 1 1
1 1 q
1 q 1


 .

Its determinant is −2q2 + 2q. Observe directly that exactly one summand in the
determinant expansion contributes to the leading term −2q2.

Question 10.39. For a central hyperplane arrangement, are there analogues of
Varchenko’s theorem for the bilinear forms on faces and directed faces? In other
words, can one describe how the determinants of these bilinear forms factorize?

The roots of these determinants are important since for such values of q, one
may then take the quotient by the radical of the form to construct new objects. The
only case considered in the literature seems to be q = 1 and we discuss it briefly.

For q = 1, the radical of the bilinear form on kΣ is described in [12, Sec-
tion 2.5.5]. The quotient by the radical is kΠ where Π is the lattice of flats. The

situation appears to be much more complicated for k
−→
Σ. For q = 1, it is shown in

the Coxeter case that the bilinear form on k
−→
Σ is degenerate in general [12, Sec-

tion 2.5.1]. In particular, for the braid arrangement, the form is degenerate for
n ≥ 3. However, a description of the radical is not known, even in the case of the
braid arrangement.

Remark 10.40. The bilinear forms on faces and directed faces for q = 1 were
defined in the wider context of left regular bands in [12, Section 2.5]. Left regular
bands, however, may be too general for defining these bilinear forms for general q,
since this requires the notion of a distance.

10.15.3. A bilinear form on compositions and partitions. Let W be a Cox-
eter group and let S be the set of generators in its standard presentation. For the
symmetric group, S can be taken to be the set of adjacent transpositions. More
information about Coxeter presentations can be found in the references cited at the
beginning of the chapter.
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Let Σ be the Coxeter complex associated to W and S. The action of W on Σ
is type-preserving and further, faces with the same type are in the same W -orbit.
Since types of faces correspond to subsets of S, it follows that a basis for (kΣ)W ,
the space of W -invariants, is given by

σT :=
∑

F : type(F )=T

F,

as T ranges over all subsets of S. For the symmetric group, these are the elements
considered in (10.47).

Since the bilinear form on faces (10.136) commutes with the W -action, one
obtains a bilinear form on (kΣ)W . By Lemma 10.37, this form is nondegenerate if
q is not an algebraic integer. Explicitly, it is given by

1

|W |
〈σT , σU 〉 =

∑

w∈W : Des(w)≤T,Des(w−1)≤U

ql(w),

where Des(w) stands for the descent set of w (Section 10.7.1). The main steps in
the calculation are indicated below.

〈σT , σU 〉 =
∑

F,G:
type(F )=T, type(G)=U

〈F,G〉

=
∑

(F,C),(G,D):
type(F )=T, type(G)=U

〈(F,C), (G,D)〉

=
∑

(F,C),(G,D):
type(F )=T, type(G)=U

FD=C,GC=D

qdist(C,D)

=
∑

(C,D):
Des(C,D)≤G,Des(D.C)≤F

qdist(C,D)

= |W |
∑

w∈W :
Des(w)≤T,Des(w−1)≤U

ql(w).

The first step is the definition, the second step uses (10.137), the third step uses
definition (10.135), the fourth step uses (10.42) (F and G are dropped from the
summation index since they are determined by C and D), the last step replaces
(C,D) by w = d(C,D) and uses the first diagram in (10.40) (which is valid for any
finite Coxeter group).

We define the H basis for the space of invariants by setting σT =
√
|W |HT .

This normalization implies that

(10.138) 〈HT , HU 〉 =
∑

w∈W :
Des(w)≤T,Des(w−1)≤U

ql(w).

Now define the K basis for the space of invariants by

HT =
∑

U≤T

KU .
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A straightforward calculation shows that

〈KT ,KU 〉 =
∑

w∈W :
Des(w)=T,Des(w−1)=U

ql(w).

We note two special cases.

• For the Coxeter group of type A, the form (10.138) has been considered
by Thibon and Ung [358, Formula (39)].
• The case of arbitrary finite Coxeter groups and q = 1 is discussed in

detail in [12, Section 2.6]; some related references are [333, Theorem 3],
[27], [139], [211, Corollary 3.11] and [70]. In this case, the bilinear form
on (kΣ)W is degenerate. The quotient by the radical is (kΠ)W where Π
is the lattice of flats.

Consider now the case of type A and set q = 1. For each n, we obtain a bilinear
form on the space spanned by all compositions of n, or equivalently, subsets of
[n− 1] (10.1), given by

(10.139) 〈KT ,KU 〉 = |{w ∈ Sn : Des(w) = T, Des(w−1) = U}|.

This form is degenerate and the quotient by the radical is the space spanned by
all partitions of n. The resulting nondegenerate form can be identified with the
standard inner product of symmetric functions, which we recall has a basis indexed
by partitions. Under this identification, the quotient map sends HT to hλ, where
λ is the underlying partition of T and h denotes the basis of complete symmetric
functions [252, Section I.2], [343, Section 7.5]. The ribbon Schur functions are the
spanning set of the space of symmetric functions obtained as the image of the K
basis [359, Section 2.2]. The ribbon Schur functions are a special kind of skew
Schur functions (for which the skew shape is a ribbon, also called rim-hook or
border strip). Formula (10.139) recovers a result of Gessel [144, Theorem 5]; also
see [343, Corollary 7.23.8] and [358, Formula (39)].





CHAPTER 11

Universal Constructions of Hopf Monoids

Joyal described the free monoid and the free commutative monoid in (Sp, ·)
on a species [181, Examples 42 and 43, Section 7]. In Section 11.2, we review the
explicit construction of the free monoid and introduce the free Hopf monoid on
a positive comonoid. The former is analogous to the tensor algebra of a vector
space, the latter to the free Hopf algebra on a positively graded coalgebra; these
constructions were reviewed in Sections 2.6.4 and 2.6.5. In Section 11.3 we present
the corresponding constructions for free commutative monoids, analogous to the
symmetric algebra of a vector space.

The dual results on cofree (and cofree cocommutative) comonoids are given in
Sections 11.4 and 11.5. For finite-dimensional species, these results can be deduced
from the preceding by duality, but we present direct proofs that do not require this
assumption and allow us to be more concrete.

The notations for these universal objects for vector spaces and species are
summarized in Table 11.1. In both cases, the universal objects are constructed as
values of four functors: T , S, T ∨ and S∨. For vector spaces, these yield the tensor,
symmetric and shuffle algebras which were reviewed in Section 2.6.1. For species,
the definitions of these functors involve the exponential species E, the linear order
species L and the substitution product ◦ on species. Note that T (q) and T ∨(q) are
identical as species; however they differ in the Hopf monoid structure. A similar
remark applies to S(q) and S∨(q).

In Section 11.6, we relate the functors T , S, T ∨ and S∨ via the norm and
abelianization transformations. In Section 11.7, we consider deformations Tq and
T ∨
q which take values in the category of q-Hopf monoids. The parameter value
q = 1 recovers T and T ∨. Similarly, we also consider signed analogues of S and
S∨. We denote them by Λ and Λ∨. They take values in the category of (−1)-Hopf
monoids. These objects are summarized in Table 11.2. The functors T−1, Λ, T ∨

−1

and Λ∨ relate via signed versions of the norm and abelianization transformations.

Table 11.1. Universal objects.

Vector spaces Universal property Species

T (V ) tensor algebra free T (q) = L ◦ q Section 11.2

T ∨(V ) shuffle algebra cofree T ∨(q) = L ◦ q Section 11.4

S(V ) symmetric algebra free commutative S(q) = E ◦ q Section 11.3

S∨(V ) cofree cocommutative S∨(q) = E ◦ q Section 11.5

363
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Table 11.2. Universal objects. Deformed and signed versions.

Vector spaces Species

Tq(V ) q-tensor algebra Tq(q)

T ∨
q (V ) q-shuffle algebra T ∨

q (q)

Λ(V ) exterior algebra Λ(q)

Λ∨(V ) Λ∨(q)

In Section 11.8, we provide antipode formulas for q-Hopf monoids that arise as
values of any of the above functors. In Section 11.9, we discuss related functors.
These include the primitive element functor and the universal algebra functor.

The parameter value q = 0 is also of interest. This case is treated in Sec-
tion 11.10. In particular, we provide a version for species of the rigidity result of
Loday and Ronco given in Theorem 2.13.

11.1. The underlying species for the universal objects

Recall the exponential species E and the linear order species L of Example 8.3
and the substitution product ◦ on species (8.8). Let q be a positive species, that
is, q[∅] = 0 (Section 8.9.2). As shown in Table 11.1, the underlying species for the
universal objects are given by L ◦ q and E ◦ q.

In this short section, we elaborate on these definitions and set up notations
that will be used throughout the rest of this chapter.

Notation 11.1. Given a composition F = F 1| · · · |F k � I, we write

q(F ) := q[F 1]⊗ · · · ⊗ q[F k].

Similarly, given a partition X ⊢ I, we write

q(X) :=
⊗

S∈X

q[S].

These are the unbracketed and unordered tensor products of vector spaces, as in
Example 1.30.

There are canonical identifications

q(F )⊗ q(G) ∼= q(F ·G),(11.1)

q(X)⊗ q(Y ) ∼= q(X ⊔ Y ),(11.2)

where F ·G denotes concatenation of set compositions and X ⊔ Y denotes disjoint
union of set partitions (Section 10.1.6).

We claim that

(L ◦ q)[I] =
⊕

F�I

q(F ) =
⊕

k≥0

q·k[I],(11.3)

(E ◦ q)[I] =
⊕

X⊢I

q(X) =
⊕

k≥0

(q·k[I])Sk =
⊕

k≥0

(q·k[I])Sk .(11.4)

We begin by explaining (11.3). According to (8.8), an (L◦q)-structure on I consists
of a partition X of I together with a linear order on X and a q-structure on each
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block of X . This is the same thing as a composition F of I together with a q-
structure on each block of F , which explains the first equality in (11.3). The
second equality follows by repeated application of (8.6).

For (11.4), the first equality follows from (8.8), and the rest from Lemma B.18.
We repeat the argument in the proof of that lemma in this special case. We have

q·k[I] =
⊕

F�I

q(F ),

the sum being over all compositions F of I with k blocks. The action of Sk on this set
of compositions has no fixed points; hence, q·k[I] is free as Sk-module. Therefore,
invariants and coinvariants can be canonically identified (also see Lemma 2.20, (ii)).
This proves the last equality. The second equality follows by noting that an orbit for
the action of Sk on the above set of compositions can be identified with a partition
X of I.

11.2. The free monoid and the free Hopf monoid

In Section 2.6.5 we reviewed the construction of the free bialgebra on a coal-
gebra, including the case of noncounital and positively graded coalgebras. After
reviewing Joyal’s construction of the free monoid on a positive species, we describe
in this section the free Hopf monoid on a positive comonoid.

11.2.1. The free monoid on a species.

Definition 11.2. Define a functor

(11.5) T : Sp+ → Mon(Sp) by T (q) = L ◦ q,

where L is the linear order species. To define the product on T (q) we make use
of (11.3) and concatenation (11.1). Fix a decomposition I = S⊔T . The component
µS,T of the product

T (q)[S]⊗ T (q)[T ]→ T (q)[I]

is the direct sum of all identity maps of the form

q(F ) ⊗ q(G)
id
−→ q(F ·G)

where F � S and G � T . The unit is the identification k = T (q)[∅].

We call T the free monoid functor ; the monoid T (q) is the free monoid on the
species q in view of the result below. Let

(−)+ : Mon(Sp)→ Sp+

be the functor which sends a monoid q to the positive species q+ defined in (8.56).

Theorem 11.3. The functor T is left adjoint to the (−)+ functor. In other words,
we have isomorphisms

(11.6) HomSp+
(q,p+) ∼= HomMon(Sp)(T (q),p)

which are natural in p and q.

Proof. Note that (11.6) can be viewed as a composite of two adjunctions as
below.

Sp+

inc
%%

(−)+

ee Sp
T

%%

fℓ

ee Mon(Sp).
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The first adjunction was discussed in (8.57) and the second adjunction follows by
applying Proposition 6.69 to the category (Sp, ·). �

The unit and counit of the adjunction (T , (−)+) in (11.6) are maps

(11.7) η(q) : q→ T (q)+ and ξ(p) : T (p+)→ p,

which are morphisms of species and monoids respectively.
The map η(q) is the natural inclusion of q in T (q)+, and the map ξ(p) is the

direct sum of the iterated products

(p+)·n → p

(for n = 1 this is the inclusion of p+ in p and for n = 0 this is the unit map of p).
By general results on adjunctions [250, Theorem IV.1.2], the freeness of T (q)

may be formulated in terms of a universal property.

Theorem 11.4. Let p be a monoid, q a positive species, and ζ : q → p+ a
morphism of positive species. Then there exists a unique morphism of monoids

ζ̂ : T (q)→ p such that

(11.8)

T (q)+
ζ̂+

// p+

q

ζ

<<yyyyyyyyy
η(q)

bbEEEEEEEEE

is a commutative diagram of positive species, where η(q) is as in (11.7).

It follows from the considerations preceding the proof of Theorem 11.3 that

the morphism ζ̂ : T (q) → p has the following explicit form. For any composition
F = F 1| · · · |F k of a finite set I, let

µF 1,...,Fk : p(F ) = p[F 1]⊗ · · · ⊗ p[F k]→ p[I]

denote the corresponding component of the iterated product of p. In addition, let
ζF 1,...,Fk : q(F )→ p(F ) denote the map

ζF 1,...,Fk := ζF 1 ⊗ · · · ⊗ ζFk ,

where ζI : p[I] → q[I] denotes the I-component of ζ. The I-component of the

morphism ζ̂ is given by

(11.9) ζ̂I = ι∅ if I = ∅, ζ̂I =
∑

F�I

µF 1,...,FkζF 1,...,Fk otherwise,

where ι∅ is the nonzero component of the unit map of the monoid p.

Remark 11.5. The adjunction in (11.6) can be viewed as a composite of adjunc-
tions in another way as follows.

Sp+

T
%%

(−)+

ee Mon(Spo)
inc

%%

(−)o

ee Mon(Sp)

The second adjunction was discussed in Section 8.9. The first one can be seen as a
consequence of (11.6) and Proposition A.5 by noting: For a positive species q, the
species T (q) is connected, with T (q)[∅] identified with k via the identity. Further,
Mon(Spo) is a full subcategory of Mon(Sp) as noted in Section 8.9.1.
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11.2.2. The free monoid as a Hopf monoid. For a positive species q, the
monoid T (q) carries a canonical Hopf monoid structure. In order to define a co-
product on this species, fix a decomposition I = S ⊔ T . The component ∆S,T of
the coproduct

T (q)[I]→ T (q)[S]⊗ T (q)[T ]

is the direct sum of the following maps: for each composition F � I for which S
(and hence also T ) is a union of blocks of F , there is one map

q(F )→ q(F |S)⊗ q(F |T )

obtained by reordering the factors (with the restriction F |S as in Section 10.1.6).
We refer to this map as deshuffling.

One verifies that, with this structure, T (q) is a cocommutative bimonoid. Since
it is connected, it is also a Hopf monoid.

11.2.3. A colax-colax adjunction. Consider the adjunction

(11.10) Sp+

T
%%

(−)+

ee Mon(Spo)

mentioned in Remark 11.5. Observe that both categories are symmetric monoidal
categories, the latter with the Cauchy product and the former with the modified
Cauchy product (8.55). It is then natural to wonder about the monoidal properties
of this adjunction. In this regard, observe that (8.60) implies that the functor

(−)+ : Mon(Spo, ·)→ (Sp+,⊙)

is braided strong. It is crucial here that we are working with monoids in con-
nected species. This is why we prefer to work with (11.10) rather than with (11.6).
Proposition 3.95 implies:

Lemma 11.6. There is a unique braided colax structure on T such that the ad-
junction (T , (−)+) in (11.10) is braided colax-colax.

Using the descriptions of the unit and counit of the adjunction (T , (−)+) given
in (11.7), one can explicitly describe the colax structure on T as follows. Let maps

ψp,q : T (p⊙ q)→ T (p) · T (q)

be as follows. Consider a summand of T (p⊙ q) as below.

(p⊙ q)·k = (p · q + p + q)·k

A factor in this k-fold product is a word in the letters p and q of length at most 2k.
We map from this word to a rearrangement of itself where the p’s appear before
the q’s. The letters are rearranged by replacing occurrences of q · p for p · q using
the braiding of (Sp, ·), that is, simply by reordering the tensor factors.

Further, define the map

ψ0 : T (0)→ 1

to be the obvious isomorphism.
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11.2.4. A Hopf monoid starting from a positive comonoid. Given a positive
comonoid q (Definition 8.42), the monoid T (q) of Definition 11.2 carries a natural
Hopf monoid structure as follows.

Proposition 11.7. If q is a positive comonoid, then T (q) is a Hopf monoid.

Proof. By Lemma 11.6 the functor (T , ψ) is colax, so it preserves comonoids
by Proposition 3.29. Hence if q is a comonoid in (Sp+,⊙), that is, a positive
comonoid, then T (q) is a comonoid in Mon(Spo), that is, a connected bimonoid.
Since T (q) is connected, by Proposition 8.11 it follows that T (q) is a Hopf monoid.

�

The above construction defines a functor

(11.11) Comon(Sp+)→ Hopf(Sp),

which we again denote by T .
The product on T (q) is given by concatenation, as described in Definition 11.2.

It is easy to see that the coproduct admits the following description in terms of
dequasi-shuffles. Fix a decomposition I = S ⊔ T . The component ∆S,T of the
coproduct

T (q)[I]→ T (q)[S]⊗ T (q)[T ]

is the direct sum of the following maps: for each composition F = F 1| · · · |F k � I
there is a map

(11.12) q(F )→ q(F |S)⊗ q(F |T )

(with the restriction F |S as in Section 10.1.6). obtained by taking the tensor
product of the maps below for 1 ≤ i ≤ k and then reordering the factors:

q[F i]→

{
q[F i] if F i ∩ S = ∅ or F i ∩ T = ∅,

q[F i ∩ S]⊗ q[F i ∩ T ] otherwise.

If F i ∩ S = ∅ or F i ∩ T = ∅, then we use the identity map; otherwise we use the
appropriate component of the coproduct of q.

We refer to the map (11.12) as dequasi-shuffling. Note that among all compo-
sitions F � I, there are those for which S and T are unions of blocks of F . For
such compositions we always have either F i ∩ S = ∅ or F i ∩ T = ∅, so in this
case dequasi-shuffling simply involves reordering of the factors; it coincides with
deshuffling.

Remark 11.8. The Hopf monoid described in Section 11.2.2 is a special case of
the above construction as follows. Any positive species is a positive comonoid as
follows: view it as a noncounital comonoid with the trivial coproduct (the zero
map). We call it a trivial positive comonoid. In this case, the only dequasi-shuffles
that contribute to the coproduct are the deshuffles. Thus, the above construction
applied to a trivial positive comonoid yields the construction in Section 11.2.2.

11.2.5. The free Hopf monoid on a positive comonoid. We now show that
the Hopf monoid T (q) is in fact the free Hopf monoid on the positive comonoid q.
This is essentially a consequence of the fact that a colax-colax adjunction induces
an adjunction on the corresponding categories of comonoids. Details are as below.

There is a functor

(−)+ : Hopf(Sp)→ Comon(Sp+)
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which sends a Hopf monoid q to the noncounital comonoid q+ (which is the same
as a positive comonoid).

Theorem 11.9. The functor

T : Comon(Sp+)→ Hopf(Sp)

is left adjoint to the (−)+ functor. In other words, we have isomorphisms

HomComon(Sp+)(q,p+) ∼= HomHopf(Sp)(T (q),p),

which are natural in p and q.

Proof. The above adjunction can be viewed as a composite of two adjunctions
as below.

(11.13) Comon(Sp+)
T

%%

(−)+

ee Hopf(Spo)
inc

%%

(−)o

ee Hopf(Sp).

The second adjunction was discussed in Section 8.9. The first adjunction follows
from Lemma 11.6 and Proposition 3.91. �

A restatement in terms of a universal property is given below.

Theorem 11.10. Let p be a Hopf monoid, q a positive comonoid, and ζ : q→ p+

a morphism of positive comonoids. Then there exists a unique morphism of Hopf

monoids ζ̂ : T (q)→ p such that

(11.14)

T (q)+
ζ̂+

// p+

q

ζ

<<yyyyyyyyy
η(q)

bbEEEEEEEEE

is a commutative diagram of positive comonoids, where η(q) is as in (11.7).

Many familiar Hopf monoids and morphisms between Hopf monoids arise from
the universal construction under discussion.

Example 11.11. View the positive species X in (8.3) as a trivial positive comonoid
(as in Remark 11.8). Then

T (X) = L

and one recovers the Hopf monoid structure on L defined in Example 8.16. In
particular, L is the free monoid on one generator.

More generally, view the positive species XV in (8.4) as a trivial positive co-
monoid. Then

T (XV ) = L×EV ,

where EV is the decorated exponential species of Example 8.18. If V = k, then EV

is the exponential species which is the unit for the Hadamard product; thus one
recovers the previous result in this case.

The Hopf monoids
−→
Σ = T (L∗

+) and Σ = T (E∗
+) studied in Chapter 12 provide

additional examples of free Hopf monoids; see Proposition 12.59.
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11.3. The free commutative Hopf monoid

In this section, we outline a commutative version of the theory developed in
Section 11.2. The role of the linear order species L is now played by the exponential
species E.

11.3.1. The free commutative monoid. Let Monco(Sp) and Hopfco(Sp) be the
categories of commutative monoids and commutative Hopf monoids in species.

Definition 11.12. Define a functor

S : Sp+ → Monco(Sp) by S(q) = E ◦ q.

To define a product on S(q), we make use of (11.4) and union of partitions (11.2).
The component µS,T of the product

S(q)[S] ⊗ S(q)[T ]→ S(q)[I]

is the direct sum of the following maps

q(X)⊗ q(Y )
∼=
−→ q(X ⊔ Y ),

as X and Y run over all partitions of S and T . The unit is the identification of
k = S(q)[∅].

This turns S(q) into a commutative monoid in (Sp, ·). It is the free commutative
monoid on the species q in the sense that

Sp+

S
%%

(−)+

ee Monco(Sp)

is an adjunction, the functor S being the left adjoint to the functor (−)+.
The restatement in terms of a universal property is given below.

Theorem 11.13. Let q a positive species. Given a commutative monoid p and
a morphism of positive species ζ : q → p+, there exists a unique morphism of

commutative monoids ζ̂ : S(q)→ p such that the diagram

S(q)+
ζ̂+

// p+

q

ζ

<<yyyyyyyyy
η(q)

bbEEEEEEEE

commutes, where η(q) is the natural inclusion of q in S(q).

11.3.2. The free commutative Hopf monoid on a positive comonoid. Now
suppose that q is a positive comonoid. A variant of the dequasi-shuffle coproduct of
Section 11.2.5 then turns S(q) into a Hopf monoid. Fix a decomposition I = S⊔T .
The component ∆S,T of the coproduct

S(q)[I] → S(q)[S]⊗ S(q)[T ]

is defined to be the direct sum of the following maps: for each partition X ⊢ I
there is a map

(11.15) q(X)→ q(X |S)⊗ q(X |T )
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(with the restriction X |S as in Section 10.1.6) obtained as the tensor product over
the blocks X i of X of the maps below:

q[X i]→

{
q[X i] if X i ∩ S = ∅ or X i ∩ T = ∅,

q[X i ∩ S]⊗ q[X i ∩ T ] otherwise.

If X i ∩ S = ∅ or X i ∩ T = ∅, then we use the identity map; otherwise we use the
appropriate component of the coproduct of q.

This turns S(q) into a connected commutative Hopf monoid. This leads to an
adjunction

Comon(Sp+)
S

%%

(−)+

ee Hopfco(Sp),

the functor S being the left adjoint to the functor (−)+.

Theorem 11.14. Let q be a positive comonoid. Given a commutative Hopf monoid
p and a morphism of positive comonoids ζ : q→ p+, there exists a unique morphism

of commutative Hopf monoids ζ̂ : S(q)→ p such that the diagram

S(q)+
ζ̂+

// p+

q

ζ

<<yyyyyyyyy
η(q)

bbEEEEEEEE

commutes.

Example 11.15. View the positive species X in (8.3) as a trivial positive comonoid
(as in Remark 11.8). Then

S(X) = E

and one recovers the Hopf monoid structure on E defined in Example 8.15. In
particular, E is the free commutative monoid on one generator.

More generally, for the positive species XV in (8.4),

S(XV ) = EV ,

and one recovers the decorated exponential species of Example 8.18. In particular,
EV is the free commutative monoid on XV . This says that one should view this
Hopf monoid as an analogue of the symmetric algebra of a vector space, rather than
the tensor algebra.

The Hopf monoids
−→
Π = S(L∗

+) and Π = S(E∗
+) discussed in Chapter 12

provide additional examples of free commutative monoids; see Proposition 12.59.

Example 11.16. Let I be a set of cardinality n. The cyclic group of order n acts
on the set of linear orders on I. An orbit of this action is a cycle on I. Let c be
the species of cycles and b the species of permutations. Thus, c[I] is the k-span of
the set of all cycles on I and b[I] is the k-span of the set of all bijections I → I.
By convention, c[∅] = 0. The species b should not be confused with the species L
of linear orders; see [40, Section 1.2, p. 15]. Since a permutation is an unordered
list of cycles, we have

b = E ◦ c = S(c).

Hence, if we view c as a trivial positive comonoid, we obtain a Hopf monoid struc-
ture on b.



372 11. UNIVERSAL CONSTRUCTIONS OF HOPF MONOIDS

11.4. The cofree comonoid and the cofree Hopf monoid

In this section, we present results dual to those in Section 11.2. We choose
to provide direct proofs instead of appealing to duality, which would require more
restrictive hypotheses. We describe the cofree comonoid over a positive species and
the cofree Hopf monoid over a positive monoid.

11.4.1. The cofree comonoid on a positive species.

Definition 11.17. Define a functor

T ∨ : Sp+ → Comon(Sp) by T ∨(q) = L ◦ q.

To define a coproduct on T ∨(q), we make use of (11.3) and deconcatenation (11.1).
Fix a decomposition I = S ⊔ T . The component ∆S,T of the coproduct

T ∨(q)[I]→ T ∨(q)[S]⊗ T ∨(q)[T ]

is the direct sum of the following maps: for each composition F 1| · · · |F k � I for
which S is the union of the first i blocks (and hence T is the union of the last k− i
blocks), take the identity map

q(F 1| · · · |F k)→ q(F 1| · · · |F i)⊗ q(F i+1| · · · |F k).

We note that if I is empty, then S and T are necessarily empty and the component
∆∅,∅ is the canonical isomorphism k→ k⊗ k.

The comonoid T ∨(q) is the cofree comonoid on the species q in view of the
result below. There is a functor

(−)+ : Comon(Sp)→ Sp+

which sends a comonoid p to the positive species p+.

Theorem 11.18. The functor T ∨ is right adjoint to the (−)+ functor. In other
words, we have isomorphisms

HomSp+
(p+,q) ∼= HomComon(Sp)

(
p, T ∨(q)

)
,

which are natural in p and q.

Proof. To prove the result, we will use the adjunction formulation given
by (A.3). Accordingly, we first construct the counit and unit of the adjunction,
namely,

(11.16) ξ(q) : T ∨(q)+ → q and η(p) : p→ T ∨(p+).

Using (11.3), we may write

ξ(q) :
⊕

n≥1

q·n → q and η(p) : p→
⊕

n≥0

p·n
+ .

We define ξ(q) to be the projection that is the identity on q and annihilates q·n

for n 6= 1. This is clearly a morphism of species and a natural transformation. In
order to define η(p), let ∆: p→ p · p be the coproduct of p and

∆(n) : p→ p·(n+1) for n ≥ −1

be the iterated coproducts, where ∆(−1), by usual convention, is the counit map
p → 1, and ∆(0) is the identity map. Similarly, let ∆+ : p+ → p+ · p+ be the
positive part of the coproduct (8.58) and

∆
(n)
+ : p+ → p

·(n+1)
+ for n ≥ 0
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be its iterates. Define

η(p) = ∆(−1) ⊕
⊕

n≥0

(−)
·(n+1)
+ ◦∆(n)

= ∆(−1) ⊕
⊕

n≥0

∆
(n)
+ ◦ (−)+,

where (−)+ : p → p+ is the canonical projection. Since (−)+ is a morphism of
noncounital comonoids the second equality above is justified. In addition, note
that each component of η(p) involves a finite sum only. Indeed, in terms of (11.3),
these are the maps

η(p)I : p[I]→
⊕

F�I

p(F )

obtained by adding the components (with nonempty parts) of the iterated coprod-
uct of p. To show that η(p) is a morphism of comonoids, one needs to check that
the following diagrams commute.

p[I]
η(p)I

//

∆S,T

��

⊕
F�I

p(F )

∆S,T

��

p[S]⊗ p[T ]
η(p)S⊗η(p)T

//
⊕
F1�S
F2�T

p(F1)⊗ p(F2)

p[∅]
η(p)∅

//

ǫ∅

��
55

55
55

55
55

k

id

����
��

��
��

��

k

The first diagram commutes due to the coassociativity of the coproduct of p, and
the second diagram commutes by definition. Naturality in p of η(p) holds because
a morphism of comonoids commutes with all iterated coproducts.

We now check that the composites

T ∨(q)
η(T ∨(q))

// T ∨
(
(T ∨(q)+

) T ∨(ξ(q))
// T ∨(q)

p+
(η(p))+

// T ∨(p+)+
ξ(p+)

// p+

are the identity maps. The check for the bottom line is straightforward. The top
line may be rewritten as below.

⊕

n≥0

q·n −→
⊕

k≥0

⊕

n1,...,nk≥1

q·n1 · q·n2 · · · · · q·nk −→
⊕

n≥0

q·n

On the component with n = 0 and k = 0, the above reduces to 1 ∼= 1 ∼= 1. For a
fixed n ≥ 1, note that the first map takes q·n to the direct sum over all compositions
(n1, . . . , nk) of n. If we apply the second map to this sum, then, from the definition
of ξ, only the summand corresponding to n1 = n2 = · · · = nk = 1 survives in the
image. So it maps onto q·n and the composite map is seen to be the identity. �

We formulate Theorem 11.18 in terms of a universal property.

Theorem 11.19. Let p be a comonoid, q a positive species, and ζ : p+ → q a
morphism of positive species. Then there exists a unique morphism of comonoids
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ζ̂ : p→ T ∨(q) such that

(11.17)

p+
ζ̂+

//

ζ
""E

EE
EE

EE
EE

T ∨(q)+

ξ(q)
{{ww

ww
ww

ww
w

q

is a commutative diagram of positive species with ξ(q) as in (11.16).

The morphism ζ̂ : p→ T ∨(q) is given by the composite T ∨(ζ)η(p), with η(p) as
in (11.16). It has the following explicit form. For any composition F = F 1| · · · |F k

of a finite set I, let

∆F 1,...,Fk : p[I]→ p(F )

denote the component of the iterated coproduct of p as in (8.26). In addition, let
ζF 1,...,Fk : p(F )→ q(F ) denote the map

ζF 1,...,Fk := ζF 1 ⊗ · · · ⊗ ζFk ,

where ζI : p[I] → q[I] denotes the I-component of ζ. The I-component of the

morphism ζ̂ is given by

(11.18) ζ̂I = ǫ∅ if I = ∅, ζ̂I =
∑

F�I

ζF 1,...,Fk∆F 1,...,Fk otherwise,

where ǫ∅ is the nonzero component of the counit map of the comonoid p.

11.4.2. The cofree comonoid as a Hopf monoid. Let q be a positive species
and consider the comonoid T ∨(q) of Definition 11.17. To define a product on T ∨(q)
we make use of (11.3) and shuffles (Section 10.1.6). For each pair of compositions
F � S, G � T , and each shuffle H of F and G, there is a unique map

q(F ) ⊗ q(G)→ q(H)

obtained by reordering the factors. We refer to this map as shuffling. The compo-
nent µS,T of the product

T ∨(q)[S]⊗ T ∨(q)[T ]→ T ∨(q)[I]

is the direct sum of the above maps over all such choices of F , G, and H .
One verifies that, with this structure, T ∨(q) is a commutative bimonoid. Since

it is connected, it is also a Hopf monoid.

11.4.3. A Hopf monoid starting from a positive monoid. We now generalize
the above construction.

Proposition 11.20. Let q be a positive monoid. There is a unique structure of a
Hopf monoid on T ∨(q) for which the map ξ(q) : T ∨(q)+ → q defined in (11.16) is
a morphism of positive monoids.

Proof. We apply the universal property of Theorem 11.19. Consider

p = T ∨(q) · T ∨(q).

Since T ∨(q) is a comonoid, so is p. According to (8.60),

p+ =
(
T ∨(q) · T ∨(q)

)
+

= T ∨(q)+ ⊙ T
∨(q)+.
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Let µ : q ⊙ q → q be the product of q viewed as a monoid in (Sp,⊙). Also, let
ζ : p+ → q be the composite

p+ = T ∨(q)+ ⊙ T
∨(q)+

ξ(q)⊙ξ(q)
−−−−−−→ q⊙ q

µ
−→ q.

Theorem 11.19 then yields a unique morphism of comonoids

ζ̂ : T ∨(q) · T ∨(q)→ T ∨(q)

such that the following diagram (an instance of (11.17)) commutes:

(11.19)

T ∨(q)+ ⊙ T ∨(q)+
ζ̂+

//

ξ(q)⊙ξ(q)

��

T ∨(q)+

ξ(q)

��
q⊙ q µ

// q.

From the associativity of µ it follows that both maps ζ̂+(ζ̂+ ⊙ id) and ζ̂+(id⊙ ζ̂+),
which are morphisms of comonoids, fit in a commutative diagram of the form

T ∨(q)+ ⊙ T ∨(q)+ ⊙ T ∨(q)+ //____

ξ(q)⊙ξ(q)⊙ξ(q)

��

T ∨(q)+

ξ(q)

��
q⊙ q⊙ q

µ(2)

// q.

By uniqueness, those two maps must agree, and therefore ζ̂+ is an associative
product on T ∨(q)+. Similarly, from the unitality of µ one deduces the unitality of

ζ̂+. Thus, T ∨(q)+ is a monoid in (Sp+,⊙), that is, a positive monoid. Equivalently,
according to Proposition 8.44, T ∨(q) is a connected monoid. We claim that the

product of this monoid is the map ζ̂: One only has to check that the ∅-component

of ζ̂ is the identification k⊗k→ k. This is true since ζ̂ is a morphism of comonoids.

By construction ζ̂ is a morphism of comonoids, so T ∨(q) is a connected bi-
monoid and hence a Hopf monoid. In addition, diagram (11.19) says that ξ(q) is a
morphism of positive monoids.

The uniqueness in Theorem 11.19 guarantees that such a Hopf monoid structure
is unique. �

The monoid structure of T ∨(q) afforded by Proposition 11.20 can be made
explicit. We make use of (11.3) and quasi-shuffles (Section 10.1.6). Fix a decom-
position I = S ⊔ T , compositions F � S, G � T , and a quasi-shuffle H of F and
G. Recall that H shuffles the blocks of F and G, and then merges a certain num-
ber of pairs of adjacent blocks, one block coming from F and the other from G.
Associated to this data there is a unique map

(11.20) q(F ) ⊗ q(G)→ q(H)

obtained by first reordering the factors according to the shuffle and then taking the
tensor product of the maps below:

q[Hk]←

{
q[Hk] if Hk is a block of F or of G,

q[F i]⊗ q[Gj ] if Hk = F i ⊔Gj .
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If Hk is a block of F or of G we use the identity map, and if Hk = F i ⊔Gj we use
the appropriate component of the product of q.

We refer to the map q(F ) ⊗ q(G) → q(H) as quasi-shuffling. The component
µS,T of the product

T ∨(q)[S]⊗ T ∨(q)[T ]→ T ∨(q)[I]

is the direct sum of quasi-shuffling maps over all such choices of F , G, and H .
Note that among all quasi-shuffles H of F and G there are those that are

shuffles, that is, that do not involve any merging of blocks. For such H , quasi-
shuffling simply involves reordering of the factors, so it coincides with shuffling.

Remark 11.21. The Hopf monoid described in Section 11.4.2 is a special case
of the above construction as follows. Any positive species is a positive monoid as
follows: view it as a nonunital monoid with the trivial product (the zero map). We
call it a trivial positive monoid. In this case, the only quasi-shuffles that contribute
to the product are the shuffles. Thus the above construction applied to a trivial
positive monoid yields the construction in Section 11.4.2.

11.4.4. The cofree Hopf monoid on a positive monoid. In Section 11.4.3,
we constructed a Hopf monoid starting with a positive monoid. More formally, we
have a functor T ∨ : Mon(Sp+) → Hopf(Sp). There is also a functor which goes
in the other direction which sends a Hopf monoid p to the nonunital monoid p+

(which is the same as a positive monoid). The Hopf monoid T ∨(q) is the cofree
Hopf monoid on a positive monoid q in view of the following result.

Theorem 11.22. The functor

T ∨ : Mon(Sp+)→ Hopf(Sp)

is right adjoint to the (−)+ functor. In other words, we have isomorphisms

HomMon(Sp+)(p+,q) ∼= HomHopf(Sp)

(
p, T ∨(q)

)
,

which are natural in p and q.

We will prove the following equivalent formulation in terms of a universal prop-
erty.

Theorem 11.23. Let p be a Hopf monoid, q a positive monoid, and ζ : p+ → q
a morphism of positive monoids. Then there exists a unique morphism of Hopf

monoids ζ̂ : p→ T ∨(q) such that

(11.21)

p+
ζ̂+

//

ζ
""E

EE
EE

EE
EE

T ∨(q)+

ξ(q)
{{ww

ww
ww

ww
w

q

is a commutative diagram of positive monoids, with ξ(q) as in (11.16).

Proof. Note that Hopf(Spo) is a full subcategory of Hopf(Sp), so in view of
Proposition A.5, we may assume that p is connected. Theorem 11.19 yields a unique

morphism of comonoids ζ̂ for which (11.21) commutes. Thus, it suffices to show

that if ζ is a morphism of positive monoids, then ζ̂ is a morphism of monoids. In

turn, in view of the equivalences (8.61), it is enough to show that ζ̂+ is a morphism
of positive monoids.
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Consider the following diagram:

p+ ⊙ p+

ζ̂+⊙ζ̂+
//

ζ⊙ζ

''OOOOOOOOOOOOOOOOO

µ

��

T ∨(q)+ ⊙ T ∨(q)+
µ

//

ξ(q)⊙ξ(q)

��

T ∨(q)+

ξ(q)

��

p+

ζ̂+

��

ζ

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW q⊙ q

µ

''OOOOOOOOOOOOOOOOOO

T ∨(q)+
ξ(q)

// q

in which we have written µ for all the monoid structures. The squares commute be-
cause ζ and ξ(q) are morphisms of positive monoids (the former by hypothesis, the
latter by Proposition 11.20). The triangles commute because of diagram (11.21).

Therefore the outer diagram commutes. Since the maps µ(ζ̂+ ⊙ ζ̂+) and ζ̂+µ are
morphisms of positive comonoids, they must be equal by the uniqueness in Theo-

rem 11.19. This proves that ζ̂+ is a morphism of monoids. �

Example 11.24. View X as a trivial positive monoid (as in Remark 11.21). Then

T ∨(X) = L∗,

the dual of the Hopf monoid L discussed in Example 8.24. This can be derived
directly, or from Example 11.11 by noting that T ∨ is the contragredient of T , and
X is self-dual. More generally,

T ∨(XV ) = T (XV ∗)∗ = (L ×EV ∗)∗ = L∗ ×EV .

In Section 12.8, we give two examples of Hopf monoids of the form T ∨(q) and
we discuss instances of the above universal property for them; see Proposition 12.58
and Examples 12.61 and 12.62.

11.5. The cofree cocommutative Hopf monoid

We provide a brief outline of a cocommutative version of the theory developed
in Section 11.4. The constructions are dual to those in Section 11.3.

11.5.1. The cofree cocommutative comonoid. Let coComon(Sp) be the cate-
gory of cocommutative comonoids in species and coHopf(Sp) that of cocommutative
Hopf monoids.

Definition 11.25. Define a functor

S∨ : Sp+ →
coComon(Sp) by S∨(q) = E ◦ q.

To define a comonoid structure on S∨(q), we make use of (11.3) and (11.2) as
follows. Fix a decomposition I = S ⊔T . Given a partition X ⊢ I, for which S (and
hence T ) is a union of blocks of X , consider the identity map

q(X)→ q(X |S)⊗ q(X |T ).

The component ∆S,T of the coproduct

S∨(q)[I]→ S∨(q)[S]⊗ S∨(q)[T ]

is the direct sum of these maps over all such partitions X ⊢ I.
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This turns S∨(q) into a connected cocommutative comonoid in (Sp, ·). It is the
cofree cocommutative comonoid on the species q in the sense that

coComon(Sp)

(−)+
%%

S∨

ee Sp+

is an adjunction, the functor S∨ being the right adjoint to the functor (−)+. The
restatement in terms of a universal property is given below.

Theorem 11.26. Let p be a cocommutative comonoid, q a positive species, and
ζ : p+ → q a morphism of positive species. Then there exists a unique morphism

of cocommutative comonoids ζ̂ : p→ S∨(q) such that

p+
ζ̂+

//

ζ
""E

EE
EE

EE
EE

S∨(q)+

ξ(q)
{{xx

xx
xx

xx
x

q

is a commutative diagram of positive species, where ξ(q) is the natural projection
similar to (11.16).

11.5.2. The cofree cocommutative Hopf monoid on a positive monoid.
Now suppose that q is a positive monoid. A variant of the quasi-shuffle product
of Section 11.4.3 turns S∨(q) into a connected cocommutative Hopf monoid. This
leads to an adjunction

coHopf(Sp)

(−)+
%%

S∨

ee Mon(Sp+),

the functor S∨ being the right adjoint to the functor (−)+. Thus, S∨(q) is the cofree
cocommutative Hopf monoid on the positive monoid q. In terms of a universal
property, we have:

Theorem 11.27. Let p be a cocommutative Hopf monoid, q a positive monoid, and
ζ : p+ → q a morphism of positive monoids. Then there exists a unique morphism

of cocommutative Hopf monoids ζ̂ : p→ S∨(q) such that

(11.22)

p+
ζ̂+

//

ζ
""E

EE
EE

EE
EE

S∨(q)+

ξ(q)
{{xx

xx
xx

xx
x

q

is a commutative diagram of positive monoids, where ξ(q) is the natural projection
similar to (11.16).

Example 11.28. View X as a trivial positive monoid. Then

S∨(X) = E.

In particular, E is the cofree cocommutative comonoid on one generator. More
generally,

S∨(XV ) = EV .
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The Hopf monoids
−→
Π∗ = S∨(L+) and Π∗ = S∨(E+) discussed in Chapter 12

provide additional examples; see Proposition 12.58.

11.6. The norm transformation and the abelianization

In the preceding sections, we discussed the functors T , T ∨, S and S∨ in detail.
The goal of this section is to relate them. The discussion parallels the one for
graded vector spaces in Section 2.6.1.

11.6.1. The contragredient of the free monoid functor. The duality func-
tor (−)∗ is a contravariant bistrong monoidal functor on the category of finite-
dimensional species (Definition 8.2). Therefore, it takes monoids to comonoids
and viceversa, and Hopf monoids to Hopf monoids. For the present discussion, we
restrict to finite-dimensional species.

Consider the following two compositions of functors

Sp+

(−)∗
// Sp+

T // Mon(Sp)
(−)∗

// Comon(Sp)

Mon(Sp+)
(−)∗

// Comon(Sp+)
T // Hopf(Sp)

(−)∗
// Hopf(Sp)

where the middle functors T are as in (11.5) and (11.11). This defines two functors,
namely

Sp+ → Comon(Sp) and Mon(Sp+)→ Hopf(Sp).

This is an instance of the contragredient construction (Section 3.10). The same
construction can be carried out for the functor S.

Theorem 11.29. For finite-dimensional positive species (comonoids), the functors
T ∨ and S∨ are the contragredients of T and S respectively. In particular, for any
(finite-dimensional) positive comonoid q, there is a canonical isomorphism of Hopf
monoids

T (q)∗ ∼= T ∨(q∗) and S(q)∗ ∼= S∨(q∗).

Proof. The proof for T proceeds as follows. The image of an object q under
the contragredient of T is

(L ◦ q∗)∗ ∼= L∗ ◦ (q∗)∗ ∼= L∗ ◦ q ∼= L ◦ q.

The first isomorphism follows from (8.8); it relies on the fact that q is positive.
Since L is linearized, it is canonically isomorphic to its dual. This explains the
last isomorphism. Thus, as species, T ∨ agrees with contragredient of T . One
checks that the concatenation product dualizes to the deconcenation coproduct,
while the coproduct defined using dequasi-shuffling dualizes to the product defined
using shuffling.

The argument for S is similar and omitted. �

This result can be used to deduce results for T ∨ or S∨ using those for T or S
and viceversa.
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11.6.2. The abelianization. Let q be a positive comonoid and consider the free
Hopf monoid T (q) and the free commutative Hopf monoid S(q) on q. By freeness
of the former (Theorem 11.10), there is a unique morphism of Hopf monoids

πq : T (q)→ S(q)

such that

T (q)+
(πq)+

// S(q)+

q

<<yyyyyyyy

bbEEEEEEEEE

commutes, where the universal arrows are unlabeled. We refer to the map πq as
the abelianization. It defines a natural transformation π : T ⇒ S.

In terms of the decompositions (11.3), πq admits the following description.
For each composition F � I, let supp(F ) ⊢ I be the underlying partition (Sec-
tion 10.1.5). Then πq consists of the canonical isomorphisms

(11.23) q(F ) = q[F 1]⊗ · · · ⊗ q[F k]
∼=
−−→

⊗

F i∈supp(F )

q[F i] = q
(
supp(F )

)

between the unbracketed and the unordered tensor products (the map π is not an
isomorphism since a given partition underlies many compositions).

There is a natural transformation π∨ : S∨ ⇒ T ∨: For each partition X of I,
the map

(11.24) q(X)→
⊕

F :supp(F )=X

q(F )

identifies q(X) and q(F ), for each F in the direct sum. If one restricts to finite-
dimensional species, then the above transformation is the contragredient (Sec-
tion 3.10) of the abelianization.

The simplest instance of the abelianization map occurs when q = X. In this
case, πX coincides with the morphism π : L→ E given in (8.31). The contragredient
applied to the species X yields the dual morphism π∗ : E∗ → L∗ of (8.33).

11.6.3. The norm transformation. We now relate the functors T and T ∨. We
first note that these functors are defined on different categories: T is defined on
positive comonoids while T ∨ is defined on positive monoids. So in order to relate
these functors, we consider

T , T ∨ : Sp+ → Hopf(Sp)

by viewing a positive species as a positive (co)monoid in the trivial way. The norm
transformation

κ : T ⇒ T ∨

is defined as follows. Fix a composition F of I. Let G be any composition with the
same support as F . Consider the map

q(F )→ q(G)

which reorders the tensor factors. By summing over all such G, we obtain

(11.25) q(F )→
⊕

G

q(G).
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This is the norm transformation. One can check that it is a natural tranformation,
that is, κ(q) : T (q)→ T ∨(q) is a morphism of Hopf monoids.

Suppose now that the species q is finite-dimensional. Observe that κ is related
to its contragredient (3.47) as follows.

T ∨(q)∗
(κq)∗

// T (q)∗

T (q∗) κq∗
// T ∨(q∗)

This means that the norm transformation is self-dual (Definition 3.108).

11.6.4. Self-duality of S. If we view a positive species q as a trivial positive
monoid and as a trivial positive comonoid, then

S(q) = S∨(q)

as Hopf monoids. This follows directly from the definitions. We explain the co-
monoid part.

Fix a decomposition I = S ⊔ T . Among all partitions X ⊢ I, there are those
for which S and T are unions of blocks. For any block X i of such a partition X
we have either X i ∩ S = ∅ or X i ∩ T = ∅, so in this case the map (11.15) is the
identity. If q is a trivial positive comonoid, then the only partitions that contribute
to the coproduct of S(q) are those of this kind. In this case, the coproduct on S(q)
coincides with that of S∨(q) described in Section 11.5.

This shows that
S : Sp+ → Hopf(Sp)

is self-dual in the sense of Definition 3.105 (over a field of any characteristic).
Over a field of characteristic 0, any finite-dimensional Sn-module is isomorphic

to its dual (noncanonically). Therefore, in this case, any finite-dimensional positive
species q is isomorphic to q∗, and hence self-dual. Since self-dual functors preserve
self-dual objects (Proposition 3.107), it follows that for any finite-dimensional pos-
itive species q in characteristic 0, the Hopf monoid S(q) is self-dual (though non-
canonically). If, in addition, q is linearized, then the self-duality is canonical (send
a basis element to its dual basis element).

An instance is provided by EV = S(XV ); see the discussion in Example 8.23.

11.6.5. The image of the norm. The norm transformation is far from being an
isomorphism. In fact, it factors through the abelianization to yield the following
self-dual commutative diagram.

(11.26)

T
κ +3

π

��

T ∨

S
id

+3 S∨

π∨

KS

This is the species analogue of (2.66). The vertical transformations are the abelian-
ization and its contragredient. The transformation S ⇒ S∨ is the identity. The
commutativity of (11.26) follows from (11.23), (11.24) and (11.25). Thus, S (or
S∨) is the image of the norm transformation. The self-duality of S also follows
from the discussion in Section 3.11.6.
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Example 11.30. The simplest instance of the norm transformation is the map

κ(X) : L→ L∗ l′ 7→
∑

l∗,

where the sum is over all linear orders l on I. More generally, applying (11.26)
to the positive species X, one obtains the commutative diagram (8.34) of Hopf
monoids.

11.7. The deformed free and cofree Hopf monoids

In this section, we briefly sketch a deformation theory for the preceding sections.
This includes the construction of the functors Tq and T ∨

q which are one-parameter
deformations of T and T ∨ (with q = 1 recovering the latter), the construction of the
functors Λ and Λ∨ which are signed analogues of S and S∨, and the construction
of the norm transformation κq (which recovers κ for q = 1).

These constructions make use of some of the notions introduced in Chapter 10,
namely, the distance function on faces (Section 10.5.3) and the Schubert cocycle on
faces (Section 10.13.6). In addition, we employ a result of Varchenko concerning a
bilinear form on chambers studied in Section 10.15 to deduce the nondegeneracy of
the q-norm in the generic case.

The case q = 0 exhibits particular features and is treated separately in Sec-
tion 11.10.

11.7.1. The functor Tq. Recall that q-Hopf(Sp) is the category of q-Hopf mon-
oids in species (Section 9.1.2). Define a functor

Tq : Comon(Sp+)→ q-Hopf(Sp)

by

Tq(q) := L ◦ q,

where q is a positive comonoid. In other words, Tq(q) and T (q) have the same
underlying species. The product is the same as before, namely, concatenation. The
component ∆S,T of the coproduct is the direct sum over all compositions H � I of
the map

q(H)→ q(H |S)⊗ q(H |T )

which is defined as the map in (11.12) multiplied by the coefficient

(11.27) qschS,T (H),

where schS,T (H) is the Schubert cocycle on faces (10.119).
The functor Tq satisfies a universal property, namely, Tq(q) is the free q-Hopf

monoid on the positive comonoid q. This provides a q-analogue to Theorems 11.9
and 11.10.

Let q be a linearized positive comonoid. In this case, the q-bimonoid Tq(q) can
be viewed as a deformation of T (q) by a normal multiplicative 2-cocycle of twist 1
(Section 9.6.4). This cocycle is defined by

(11.28) γS,T (x) := schS,T (H),

where H is the composition of I such that x ∈ q(H).
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Example 11.31. View X as a trivial positive comonoid. Then

Tq(X) = Lq

and one recovers the Hopf monoid structure on Lq given in Definition 9.13. Thus,
Lq is the free q-Hopf monoid on one generator. Note that in this example, X(H)
is nonzero only if H is a linear order, say C. Further, for a linear order, X(C) is
one-dimensional and spanned by C. The cocycle (11.28) then specializes to

γS,T (C) = schS,T (C),

which is the Schubert cocycle on linear orders (9.12). This is consistent with our
earlier observation that Lq is the deformation of L by the Schubert cocycle.

More generally,

Tq(XV ) = Lq ×EV .

The q-Hopf monoids Σq = Tq(E∗
+) and

−→
Σq = Tq(L∗

+) studied in Chapter 12 provide
additional examples; see Proposition 12.63. These are based on set compositions
and linear set compositions. In these examples, q(H) is always nonzero; hence the
Schubert cocycle on faces is fully visible in the definitions of these q-Hopf monoids.

11.7.2. The functor T ∨

q . We now define the functor

T ∨
q : Mon(Sp+)→ q-Hopf(Sp)

as the contragredient to Tq. Explicitly, let q be a positive monoid. Define

T ∨
q (q) := L ◦ q.

The coproduct is deconcatenation as in the undeformed case. We now explain the
product. Fix a decomposition I = S ⊔ T . Let F � S and G � T be compositions,
and let H be a quasi-shuffle of F and G (Section 10.1.6). Now consider the map

q(F ) ⊗ q(G)→ q(H)

as in (11.20) multiplied by the coefficient (11.27). In terms of the blocks of F and
G, this coefficient is given by

q
P

|F i| |Gj |

where the sum is over i and j such that the block F i appears after Gj in the quasi-
shuffle H . The component µS,T of the product is given by summing over all choices
of F , G and H .

The functor T ∨
q satisfies a universal property, namely, T ∨

q (q) is the cofree
q-Hopf monoid on the positive monoid q. This provides a q-analogue to Theo-
rems 11.22 and 11.23.

Example 11.32. View X as a trivial positive monoid. Then

T ∨
q (X) = L∗

q ,

the dual to Lq. Thus, L∗
q is the cofree q-Hopf monoid on one generator. More

generally,

T ∨
q (XV ) = L∗

q ×EV .

The q-Hopf monoids Σ∗
q = T ∨

q (E+) and
−→
Σ∗
q = T ∨

q (L+) studied in Chapter 12
provide additional examples; see Proposition 12.63. These are based on set compo-
sitions and linear set compositions.
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11.7.3. The functors Λ and Λ∨. We now turn our attention to the functors

Λ: Comon(Sp+)→ (−1)-Hopfco(Sp)

and

Λ∨ : Mon(Sp+)→ (−1)-coHopf(Sp).

These are signed analogues of S and S∨.
Let q be a positive comonoid. Define

Λ(q)[I] :=
⊕

X⊢I

q(X)⊗Det(kX) =
⊕

k≥0

(q·k[I])Sk ,

where the Sk-coinvariants are taken with respect to the action induced by the braid-
ing β−1. The notation Det(kX) generalizes the notation of (9.9): It denotes the
one-dimensional subspace of the free graded commutative algebra on kX spanned by

X1 ∧ · · · ∧Xk

whereX = {X1, . . . , Xk}. Here we are using ∧ to denote the product of the algebra.
The grading on kX is defined by setting the degree of X i to be |X i|. For example,
for k = 3,

X1 ∧X2 ∧X3 = (−1)|X
2| |X3|X1 ∧X3 ∧X2

spans Det(kX). Note that if any block of X , say X1, has even degree, then X1 ∧
X1 is not zero, and the free graded commutative algebra on kX is not finite-
dimensional. If X is the partition of I into singletons, then Det(kX) coincides with
Det(kI) as in (9.9).

Remark 11.33. Let X = {X1, . . . , Xk} be a set partition. For any species q, view
q[X i] as a graded vector space concentrated in degree |X i|. Then

q(X)⊗Det(kX)

is the same as the unordered tensor product of q[X1],. . . , q[Xk] in the category
(gVec,⊗, β−1). If one takes the unordered tensor product with respect to the braid-
ing β, then one obtains q(X) as before.

We now turn Λ(q) into a (−1)-Hopf monoid. The component µS,T of the
product is given by tensoring the map (11.2) with the map

Det(kX)⊗ (kY )→ Det
(
k(X ⊔ Y )

)

(X1 ∧ · · · ∧Xk)⊗ (Y 1 ∧ · · · ∧ Y l) 7→ X1 ∧ · · · ∧Xk ∧ Y 1 ∧ · · · ∧ Y l,

and then summing over all X ⊢ S and Y ⊢ T .
The coproduct is given by tensoring the map

q(X)→ q(X |S)⊗ q(X |T )

as in (11.15) with the map

Det(kX)→ Det(kX |S)⊗ Det(kX |T )

given as follows.

X1 ∧ · · · ∧Xk 7→ (−1)schS,T (X1|···|Xk)(X1 ∩ S) ∧ · · · ∧ (Xk ∩ S)

⊗ (X1 ∩ T ) ∧ · · · ∧ (Xk ∩ T ),
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where schS,T (X1| · · · |Xk) is the Schubert cocycle on faces (10.119). The sign in
front makes this map well-defined. This map can also be viewed as a composite as
follows.

Let Y := X ∨ {S, T }. Let X1| · · · |Xk be a set composition with support
X . This is equivalent to choosing a linear order on the blocks of X . Then the
products (10.13)

(X1| · · · |Xk)(S|T ) and (S|T )(X1| · · · |Xk)

are two set compositions with support Y . They define two different linear orders
on the blocks of Y , and will be implicitly used in the definitions below. First define
the map

Det(kX)→ Det(kY )

by

X1 ∧ · · · ∧Xk 7→ (X1 ∩ S) ∧ (X1 ∩ T ) ∧ · · · ∧ (Xk ∩ S) ∧ (Xk ∩ T ).

Now define the map

Det(kY )→ Det(kX |S)⊗Det(kX |T )

by

(X1 ∩ S) ∧ · · · ∧ (Xk ∩ S) ∧ (X1 ∩ T ) ∧ · · · ∧ (Xk ∩ T )

7→ (X1 ∩ S) ∧ · · · ∧ (Xk ∩ S)⊗ (X1 ∩ T ) ∧ · · · ∧ (Xk ∩ T ).

We did not see the Schubert cocycle on faces explicitly in this description. It
is hidden in the fact that the two maps above used different basis elements for

DetQf (kY ).

The functor Λ∨ is the contragredient of Λ. An explicit description is omitted.
The functors Λ and Λ∨ satisfy the following universal properties: Λ(q) is the free
commutative (−1)-Hopf monoid on the positive comonoid q, while Λ∨(q) is the
cofree cocommutative (−1)-Hopf monoid on the positive monoid q. These provide
signed analogues to Theorems 11.14 and 11.27.

Example 11.34. View X as a trivial positive (co)monoid. Then

Λ(X) = Λ∨(X) = E−,

the signed exponential species of Section 9.3. In other words, E− is the free com-
mutative and cofree cocommutative (−1)-Hopf monoid on one generator.

More generally,

Λ(XV ) = Λ∨(XV ) = E−
V ,

the signed partner of the decorated exponential species. Explicitly,

E−
V [I] = V ⊗I ⊗Det(kI).

The right-hand side is the unordered tensor product of V over I with respect to
the braiding β−1 (viewing V as a graded vector space in degree 1).

Evaluating Λ∨ on E+ and L+, and Λ on E∗
+ and L∗

+, yields signed analogues of
the Hopf monoids of set partitions and linear set partitions. We do not consider the
signed analogues any further in this monograph. The unsigned objects are studied
in Chapter 12.
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11.7.4. The signed abelianization. There is a signed analogue of the abelian-
ization denoted

π−1 : T−1 ⇒ Λ.

We refer to it as the signed abelianization. It is defined by summing the maps

(11.29)
q(F ) = q[F 1]⊗ · · · ⊗ q[F k]

∼=
−−→ q(X)⊗Det(kX)

x 7−→ π(x) ⊗ (F 1 ∧ · · · ∧ F k),

where X = supp(F ) and π is as in (11.23).
There is a natural transformation

π∨
−1 : Λ∨ ⇒ T ∨

−1.

For each partition X of I, the map

q(X)⊗Det(kX)→
⊕

F :supp(F )=X

q(F )

identifies the left hand side with q(F ), using the inverse of (11.29), for each F
in the direct sum. If one restricts to finite-dimensional species, then the above
transformation is the contragredient of the signed abelianization.

11.7.5. The norm transformation. We now relate the functors Tq and T ∨
q by

a q-analogue of the norm transformation. First, we view

Tq, T
∨
q : Sp+ → q-Hopf(Sp)

by viewing a positive species as a positive (co)monoid in the trivial way. The q-norm
transformation

κq : Tq ⇒ T
∨
q

is defined as follows. Fix a composition F of I. Let G be any composition with the
same support as F . Consider the map

q(F )→ q(G)

which reorders the tensor factors and multiplies by the coefficient

qdist(F,G), or equivalently, q
P

(i,j)∈Inv(F,G) |F
i| |F j |,

with notation as in (10.37). By summing over all such G, we obtain

q(F )→
⊕

G

q(G).

This defines a map

κq(q) : Tq(q)→ T ∨
q (q)

which is a natural morphism of q-Hopf monoids. This is the q-norm transformation.
It continues to be self-dual.
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11.7.6. The image of the norm. The norm transformation is an isomorphism
in the generic case. More precisely:

Theorem 11.35. If q is not a root of unity, then κq is an isomorphism.

Proof. Fix a partitionX of I. It is enough to show that each of the restrictions

(11.30)
⊕

F :supp(F )=X

q(F )→
⊕

F :supp(F )=X

q(F )

of κq is an isomorphism.
For this, let us first do the case q = E+. Then (11.30) can be viewed as a map

L[X ]→ L[X ]

where we recall that L[X ] is the span of linear orders on X . Further, this map
arises from the bilinear form

〈F,G〉 = qdist(F,G),

where F and G are linear orders on X (which is the same as compositions with
underlying partition X). We showed in Example 10.32 that, for q not a root of
unity, the above bilinear form is nondegenerate; hence κq is an isomorphism.

Now let us go to the general case. Pick a basis for q[X i], for each block X i of
X . This determines a basis for q(F ) for each F with support X . Further, there is a
canonical bijection between the basis of q(F ) and the basis of q(G). Then (11.30)
is a direct sum of maps of the form

⊕

F :supp(F )=X

keF →
⊕

F :supp(F )=X

keF

where for each F , eF is a chosen basis element of q(F ) such that the choices for
varying F correspond to one another under the bijections mentioned above. The
above map is an isomorphism by the previous case, and the result follows. �

For q = 1, the situation is as in (11.26), while for q = −1, it is as follows.

(11.31)

T−1
κ−1 +3

π−1

��

T ∨
−1

Λ
id

+3 Λ∨

π∨
−1

KS

This is the species analogue of (2.68). The vertical maps are the signed abelian-
ization and its contragredient. Thus, Λ (or Λ∨) is the image of the signed norm
transformation. The facts in Section 11.6.4 hold for Λ as well. In particular,

Λ: Sp+ → (−1)-Hopf(Sp)

is canonically self-dual (over any characteristic). This also follows from the discus-
sion in Section 3.11.6.

Example 11.36. The simplest instance of the q-norm tranformation is its value
on the positive species X. It follows from Theorem 11.35 that if q is not a root of
unity, then

κq(X) : Lq → L∗
q
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is an isomorphism. In particular, Lq is self-dual if q is not a root of unity. This
result is explained in more detail in Proposition 12.6.

Now let us consider the case q = −1. Applying diagram (11.31) to the positive
species X, one obtains the commutative diagram (9.21) of (−1)-Hopf monoids.

11.8. Antipode formulas

In this section, we give antipode formulas for the Hopf monoids which arise as
the values of the functors Tq, S and Λ on some positive comonoid q. We also write
down similar formulas for the functors T ∨

q , S∨ and Λ∨. If q is finite-dimensional,
then one can pass from one situation to the other by applying the contragredient.
However, the formulas hold without this assumption.

11.8.1. The antipode for Tq and T ∨

q . Let F and G be compositions of I and
let F ≤ G. Let k be the number of blocks of F and write

(11.32) bF (G) = (G1, . . . , Gk),

where bF is the break map (10.58). Explicitly, Gi consists of those blocks of G
which refine the i-th block of F , i = 1, . . . , k. For example,

F = lak|sh|mi, G = la|k|s|h|m|i, bF (G) = (la|k, s|h,m|i).

We pause to review a notation. For any face H = H1| · · · |Hk, let

(11.33) µH := µH1,...,Hk and ∆H := ∆H1,...,Hk

where the right-hand sides are the components of the iterated product (8.25) and
coproduct (8.26). If H has only one part, then µH and ∆H are the identity. We
proceed.

Let q be a positive comonoid. Define, for F ≤ G,

∆G/F : q(F )→ q(G) by ∆G/F := ∆G1 ⊗ · · · ⊗∆Gk ,

where the Gi’s are as in (11.32) and the ∆Gi ’s are as in (11.33). In other words,
starting with an unbracketed tensor product over the blocks of F , we apply the
appropriate component of the iterated coproduct of q to each block to obtain an
unbracketed tensor product over the blocks of G. For example,

F = lak|sh|mi, G = la|k|s|h|m|i, ∆G/F = ∆la,k ⊗∆s,h ⊗∆m,i.

Dually, let q be a positive monoid. For F ≤ G, define

µF\G : q(G)→ q(F ) by µF\G := µG1 ⊗ · · · ⊗ µGk ,

where the Gi’s are as in (11.32) and the µGi ’s are as in (11.33).
For faces F and G having the same support, let

βG,F : q(F )→ q(G)

be the map which reorders the tensor factors. If F = S|T and G = T |S, then
βG,F = βS,T , the component of the braiding (8.13).

Before stating the antipode formulas, we prove a preliminary result.

Lemma 11.37. Let F and G be any faces. Then

∑

H:HF=G

(−1)deg(H) =

{
(−1)deg(G) if F ≤ G,

0 otherwise,
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where HF is the product of faces (10.13) and deg(H) denotes the number of blocks
in H.

Proof. We apply Proposition 10.12. Suppose GF 6= G. Then two things
happen. The index set of the sum in the left hand side is empty, and we do not
have F̄ ≤ G. So the result holds in this case (both sides being 0). Now supppose
GF = G. Then

A(F,G) = {H | HF = G}

is a Boolean poset under containment of faces, and it is a singleton precisely when
F ≤ G. So the result holds by inclusion-exclusion. �

Theorem 11.38. Let F be a composition of I and let q be a positive comonoid.
The antipode s : Tq(q)→ Tq(q) on the F -component is given by

q(F )→
⊕

G:G�I

q(G)

sI(x) = qdist(F,F )
∑

G:F≤G

(−1)deg(G)∆G/FβF,F (x),

where deg(G) is the number of blocks in G, F denotes the opposite of F , and
dist(F,G) is as in (10.33).

Proof. Using the definition of the product and coproduct for Tq(q), we see
that the iterated coproduct followed by the iterated product, µH∆H , sends the
component q(F ) to q(HF ). More precisely, it is the composite

q(F )
∆FH/F
−−−−−→ q(FH)

βHF,FH
−−−−−→ q(HF ),

multiplied by the coefficient qdist(F,H).
Applying Takeuchi’s formula (8.27), the result follows from the calculation

below. Let x belong to the F -component. Then

sI(x) =
∑

H

(−1)deg(H)qdist(F,H)βHF,FH∆FH/F (x)

=
∑

G

( ∑

H:HF=G

(−1)deg(H)

)
qdist(F,G)βG,FG∆FG/F (x)

=
∑

G:F≤G

(−1)deg(G)qdist(F,G)βG,FG∆FG/F (x)

= qdist(F,F )
∑

G:F≤G

(−1)deg(G) ∆G/FβF,F (x).

The main step where the cancellations occur is the third equality. It follows from
Lemma 11.37. The last equality follows from naturality of the braiding, and the
fact that dist(F,G) = dist(F, F ) if F ≤ G. �

Special cases of the above result along with examples are discussed in detail in
Chapter 12; see Proposition 12.3 and Theorems 12.24 and 12.36.

By dualizing Theorem 11.38 or by proceeding directly, one obtains:
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Theorem 11.39. Let G be a composition of I and let q be a positive monoid. The
antipode s : T ∨

q (q)→ T ∨
q (q) on the G-component is given by

q(G)→
⊕

F :F�I

q(F )

sI(x) = (−1)deg(G)
∑

F :F≤G

qdist(F,F ) βF,FµF\G(x),

where the notation is as in Theorem 11.38.

Special cases of the above result are discussed in Proposition 12.5 and Theo-
rems 12.21 and 12.34.

11.8.2. The antipode for S and S∨. Let X and Y be partitions of I and let
X ≤ Y . Fix a face F with support X . Write

(11.34) bF (Y ) = (Y 1, . . . , Y k),

where bF is the break map for set partitions (10.65). Explicitly, Y i consists of those
blocks of Y which refine the i-th block of F , i = 1, . . . , k. For example,

F = lak|sh|mi, Y = {la, k, s, h,m, i}, bF (Y ) = ({la, k}, {s, h}, {m, i}).

Let q be a positive comonoid and let X ≤ Y . Fix F to be any set composition with
support X . Define ∆Y/X by the commutativity of the following diagram.

q(F )

L

G:F≤G,supp(G)=Y

∆G/F

//

πq

��

⊕

G:F≤G
supp(G)=Y

q(G)

πq

��

q(X)
∆Y/X

//_______________ q(Y )

(11.35)

The vertical maps are the abelianizations.
Now assume for the moment that q is cocommutative. In this case, the map

∆Y/X can be understood more directly as follows. First note that if F and G have
the same support, then ∆F = βF,G∆G. Hence, for any partition X of I, by fixing
a composition F with support X , one obtains a map ∆X by the commutativity of
the diagram

q(F )

πq

��

q[I]

∆F
55kkkkkkkkkkk

∆X ))SSSSSS

q(X).

(11.36)

For example,
∆{la,ksh,mi} := πq∆la,ksh,mi = πq∆ksh,mi,la.

It now follows that

∆Y/X = (X : Y )!

(⊗

i

∆Y i

)
,
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where the Y i are as defined in (11.34) and

(X : Y )! = |{G | F ≤ G, supp(G) = Y }|

are the coefficients in (10.5).

Theorem 11.40. Let X be a partition of I and let q be a positive comonoid. The
antipode s : S(q)→ S(q) on the X-component is given by

q(X)→
⊕

Y :Y ⊢I

q(Y )

sI(x) =
∑

Y :X≤Y

(−1)deg(Y ) ∆Y/X(x),

where deg(Y ) is the number of blocks in Y .

The result follows by applying the abelianization to the antipode formula of
Theorem 11.38. The simplest example that illustrates this theorem is the antipode
of the exponential species (Example 8.15). Further examples are given in Chap-
ter 12; see Theorems 12.47 and 12.56.

Let q be a positive monoid and let X ≤ Y . Define µX\Y by the commutativity
of the following diagram.

⊕

G:supp(G)=Y

q(G)

L

µF\G
//

⊕

F :supp(F )=X

q(F )

q(Y )

π∨
q

OO

µX\Y

//_________________ q(X)

π∨
q

OO

(11.37)

The vertical maps are the contragredient of the abelianization. The top horizon-
tal map above is obtained by summing µF\G over all F with support X , and G
with support Y such that F ≤ G. Note that there exist G for which there is no
corresponding F ; these components map to zero.

If q is commutative, then

µX\Y = (X : Y )!

(⊗

i

µY i

)
,

where the Y i are as in (11.34), and µY i are defined by the dual of (11.36), and
(X : Y )! is as in (10.5).

By either dualizing Theorem 11.40, or by using the contragredient of the
abelianization along with Theorem 11.39, we obtain:

Theorem 11.41. Let Y be a partition of I and let q be a positive monoid. The
antipode s : S∨(q)→ S∨(q) on the Y -component is given by

q(Y )→
⊕

X:X⊢I

q(X)

sI(x) = (−1)deg(Y )
∑

X:X≤Y

µX\Y (x).



392 11. UNIVERSAL CONSTRUCTIONS OF HOPF MONOIDS

The simplest example that illustrates this theorem is again the antipode of the
exponential species (Example 8.15). Further examples are given in Theorems 12.44
and 12.51.

11.8.3. The antipode for Λ and Λ∨. We now consider the signed case. The
general setup is the same as in the unsigned case. Define ∆−

Y/X by the commuta-

tivity of the following diagram.

q(F )

L

G:F≤G,supp(G)=Y

∆G/F

//

(π−1)q

��

⊕

G:F≤G
supp(G)=Y

q(G)

(π−1)q

��

q(X)⊗Det(kX)
∆−
Y/X

//_____________ q(Y )⊗Det(kY )

This is similar to (11.35); the difference is that the vertical maps are the signed
abelianizations.

Now assume for the moment that q is graded cocommutative. In this case, for
any partition X of I, by fixing a composition F with support X , one obtains a map
∆−
X by the commutativity of the diagram

q(F )

(π−1)q

��

q[I]

∆F

33hhhhhhhhhhhhhhhh

∆−
X

++VVVVVVV

q(X)⊗Det(kX).

For example,

∆−
{la,ksh,mi} := (π−1)q∆la,ksh,mi = (π−1)q∆ksh,mi,la.

It follows that

∆−
Y/X = (X : Y )!

(⊗

i

∆−
Y i

)
.

Theorem 11.42. Let X be a partition of I and let q be a positive comonoid. The
antipode s : Λ(q)→ Λ(q) on the X-component is given by

q(X)→
⊕

Y :Y ⊢I

q(Y )

sI(x) =
∑

Y :X≤Y

(−1)deg(Y ) ∆−
Y/X(x).

The result follows by applying the signed abelianization to the antipode formula
of Theorem 11.38. The antipode of the signed exponential species (Section 9.3)
illustrates this theorem.

Let us now briefly consider the dual situation. Define µ−
X\Y along the lines

of (11.37) by using the contragredients of the signed abelianizations for the vertical
maps.
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Theorem 11.43. Let Y be a partition of I and let q be a positive monoid. The
antipode s : Λ∨(q)→ Λ∨(q) on the Y -component is given by

q(Y )→
⊕

X:X⊢I

q(X)

sI(x) = (−1)deg(Y )
∑

X:X≤Y

µ−
X\Y (x).

11.9. Primitive elements and related functors

Primitive elements were discussed in Section 8.10. In this section, we consider
the functor which associates the species of primitive elements to a Hopf monoid. It
is right adjoint to the free monoid functor of Section 11.2.

The species of primitive elements of a Hopf monoid h is a Lie submonoid of h,
when this is viewed as a Lie monoid under the commutator bracket. In this manner,
primitive elements give rise to another functor, this time from Hopf monoids to Lie
monoids. Its left adjoint yields the universal enveloping monoid of a Hopf monoid.
We review these notions briefly.

We also analyze the primitive elements of the universal Hopf monoids of earlier
sections.

11.9.1. Lie monoids in species. We recall that Lie monoids can be defined in
any linear symmetric monoidal category (possibly without a unit) (Definition 1.25).
Let Lie(Sp) and Lie(Sp+) be the categories of Lie monoids in (Sp, ·) and (Sp+, ·)
respectively. The latter is a full subcategory of the former. A Lie monoid in (Sp, ·)
is equivalent to a twisted Lie algebra in the sense of Barratt [33, Definition 4].

An important example of a Lie monoid in species is the Lie operad. It is
discussed in Appendix B, see Example B.5. Recall that as a species, Lie[I] is
spanned by bracket sequences on I. A bracket sequence on I is a way to parenthesize
the elements of I, each one appearing exactly once. For example, [[x y] [w z]] is a
bracket sequence on the set {x, y, z, w}. The space Lie[I] is the span of all bracket
sequences of I subject to the relations generated by antisymmetry and the Jacobi
identity. For example, Lie[{x, y}] is the span of [x y] and [y x] subject to the
relation

[x y] = −[y x];

hence it is one-dimensional. Also Lie[{∗}] = k.
We now turn Lie into a Lie monoid. Fix a decomposition I = S ⊔ T . The

component µS,T of the product sends a bracket sequence α on the set S and β on
the set T to the bracket sequence [αβ] on I. This structure in terms of twisted Lie
algebras is discussed in [11, Sections 5.1 and 5.3].

Define a functor

Lie : Sp+ → Lie(Sp+) by Lie(q) = Lie ◦ q.

The component µS,T of the product of Lie ◦ q is defined by: Let X and Y be
partitions of S and T respectively. Then
(
Lie[X ]⊗

⊗

Xi∈X

q[X i]

)
⊗

(
Lie[Y ]⊗

⊗

Y j∈Y

q[Y j ]

)
−→ Lie[X ⊔Y ]⊗

( ⊗

I′∈X⊔Y

q[I ′]

)

is defined using the component µX,Y of the product of Lie.
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The Lie monoid Lie ◦ q is the free Lie monoid on the species q, that is, there
is an adjunction

(11.38) Sp+

Lie
%%

fℓ

ee Lie(Sp+).

In particular, Lie is the free Lie monoid on X. In this sense, Lie plays the same
role for Lie monoids as L plays for monoids and E plays for commutative monoids.
The functor Lie is the Lie analogue of the functors T and S.

11.9.2. The primitive element functor. Recall that for a Hopf algebra H , its
space of primitive elements is defined by

P(H) := {x ∈ H | ∆(x) = 1⊗ x+ x⊗ 1},

where 1 is the unit element of H . Further, if one regards H as a Lie algebra via
the commutator, then the space of primitive elements is a Lie subalgebra of H .

We now discuss the analogue of this construction for species. Let h be a Hopf
monoid. Its species of primitive elements, denoted P(h), is given by

P(h)[I] := {x ∈ h[I] | ∆(x) = 1⊗ x+ x⊗ 1},

where we consider 1 as an element of h[∅] via the nonzero component ι∅ of the unit
map of h.

If one regards h as a Lie monoid via the commutator as in Proposition 1.26,
then it follows that P(h) is a Lie submonoid of h. This defines a functor

(11.39) P : Hopf(Sp)→ Lie(Sp).

We refer to it as the primitive element functor. Note that P(h)[∅] = P(h[∅]), where
the latter is the space of primitive elements of the Hopf algebra h[∅]. Further, if h
is connected, then

P(h)[∅] = 0 and P(h)[I] = ker∆+[I],

where ∆+ is as defined in (8.58). This agrees with the definition of primitive
elements given in Section 8.10. We obtain a functor

P : Hopf(Spo)→ Lie(Sp+).

Example 11.44. We record the species of primitive elements for the Hopf monoids
considered in Examples 8.15, 8.16, 8.22 and 8.24. We have

P(E) = P(E∗) = P(L∗) = X,

where X is the species in (8.3). Since these Hopf monoids are commutative, the
Lie bracket is trivial.

We have that P(L) is the operad Lie. This fact appears in work of Fresse [137,
Proposition 1.2.16] and of Patras and Reutenauer [291, Proposition 17]. We deduce
this from a more general result below, namely P(L◦q) = Lie◦q (Corollary 11.46).
A generalization of this fact appears in recent work of Livernet and Patras [234,
Theorem 3.2.1]. Since Lie = P(L), the Lie operad is a Lie submonoid of L. This
fact was obtained by other means in [11, Section 5.3].
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11.9.3. Adjoints to the primitive element functor. We turn to various ad-
joint functors to the primitive element functor. The results that follow are analogues
of well known results for primitive elements of connected Hopf algebras.

Let coHopf(Spo) be the category of cocommutative Hopf monoids in (Spo, ·).
Similarly, let coHopfco(Spo)) be the category of commutative and cocommutative
Hopf monoids in (Spo, ·). Note that they are full subcategories of Hopf(Spo).

Recall from Section 11.2.2 that the free monoid T (q) carries the structure of a
Hopf monoid. The same is true of the free commutative monoid S(q). This defines
functors

T : Sp+ →
coHopf(Spo) and S : Sp+ →

coHopfco(Spo).

We now show that these are the left adjoints to the primitive element functor
(defined with the appropriate source category).

Proposition 11.45. There are adjunctions

Sp+

T
%%

P

ee coHopf(Spo) and Sp+

S
%%

P

ee coHopfco(Spo),

the functors above the arrows being left adjoints to the functors below the arrows.

Proof. We explain the first adjunction, the second being similar. We claim
the following adjunctions:

Sp+

inc
%%

P

ee Comon(Sp+)
T

%%

(−)+

ee Hopf(Spo).

The first adjunction is as in Section 8.10. The second adjunction was proved
in (11.13). The composite of the two implies the first adjunction in the propo-
sition by noting that coHopf(Spo) is a full subcategory of Hopf(Spo) and using
Proposition A.5. �

The first adjunction in Proposition 11.45 can be viewed as the following com-
posite.

Sp+

Lie
%%

fℓ

ee Lie(Sp+)
U

%%

P

ee coHopf(Spo)

The Hopf monoid U(g) is the universal enveloping monoid of the Lie monoid g;
see [182, 346] for a definition. The first adjunction was discussed in (11.38). The
adjointness between U and P is part of the Cartier–Milnor–Moore theorem for
species and can be found in Stover [346, Proposition 7.10 and Theorem 8.4]. It says
that U and P define an adjoint equivalence, independent of the field characteristic.
In particular, for any Lie monoid g and any connected cocommutative Hopf monoid
h, we have

(11.40) P
(
U(g)

)
= g and U

(
P(h)

)
= h.

Corollary 11.46. For a positive species q, we have

P
(
S(q)

)
= q and P

(
T (q)

)
= Lie(q) = Lie ◦ q,

where Lie is the Lie operad. In particular, P(L) = Lie.
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Proof. Viewing q as a trivial Lie monoid, we have S(q) = U(q) as Hopf
monoids. Applying (11.40), the first assertion follows.

From the above discussion, we know that both T and U ◦ Lie are left adjoints
to the primitive element functor from connected cocommutative Hopf monoids to
positive species. By uniqueness of adjoints, we have T (q) = U

(
Lie(q)

)
. Apply-

ing (11.40), the second assertion follows. �

There is also an analogue of the Poincaré-Birkhoff-Witt theorem for species
which can be found in Joyal [182, Section 4.2, Theorem 2] and Stover [346, Theo-
rem 11.3]. It says that U(g) = S(g) as comonoids for any Lie monoid g.

Remark 11.47. The classical context for Lie theory is the category of vector
spaces. In this context the Poincaré–Birkhoff–Witt and Cartier–Milnor–Moore
theorems can be found in [300, Appendix B, Theorems 2.3 and 4.5] or [274, Theo-
rems 5.15 and 5.18]. Usually the field characteristic is assumed to be zero in these
theorems; however no such assumption is necessary if one works in the category of
species.

Fresse [135, Section 4] develops Lie theory in the symmetric monoidal category
of right modules over an operad p. The monoidal structure is given by the Cauchy
product. For p = X, this category coincides with that of species. Fresse discusses
the Poincaré–Birkhoff–Witt theorem [135, Theorem 4.1.5] and the Cartier–Milnor–
Moore theorem [135, Theorem 4.1.6] in this more general context. He also discusses
the cofree cocommutative comonoid in the category of right modules over an operad
p [135, Section 3.2]. This generalizes the functor S∨ of Definition 11.25.

11.9.4. Coradical filtrations. We now explicitly describe the species of primitive
elements P(h) and the coradical filtration P(k)(h) (Section 8.10) for the connected
Hopf monoids h which arise as values of the functors T ∨, S∨ and Λ∨. Since this
notion pertains only to the comonoid structure, the parameter q does not play any
part in this discussion. Thus the situation for T ∨

q is identical to that for T ∨. Recall
that these functors are evaluated on a positive monoid q. The monoid structure of
q plays no role for the same reason.

Let I be a nonempty set. We have

P(k)
(
T ∨(q)

)
[I] =

⊕
q(F ),

where the sum is over all compositions F � I into at most k blocks. This is a direct
consequence of Definition 11.17 of the deconcatenation coproduct. In particular,
the primitive element species is precisely q.

Similarly,

P(k)
(
S∨(q)

)
[I] =

⊕
q(X),

where the sum is over all partitions X ⊢ I into at most k blocks. In particular, the
primitive element species is again q. The same description works for Λ∨(q) with
q(X)⊗Det(kX) instead of q(X).

Example 11.48. Recall from Example 11.24 that L∗ is the value of T ∨ on the
species X characteristic of singletons. It follows that

P(k)(L∗)[I] =

{
L∗[I] if |I| ≤ k,

0 otherwise,

for any nonempty set I. In particular, the primitive element species of L∗ is X.
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Recall from Example 11.28 that E is the value of S∨ on the species X. It
follows that

P(k)(E)[I] =

{
E[I] if |I| ≤ k,

0 otherwise,

for any nonempty set I. In particular, the primitive element species of E is X.

The Hopf monoids Σ∗ and
−→
Σ∗ also arise as values of the functor T ∨. Their

coradical filtrations are described in Sections 12.4.1 and 12.5.2.

11.10. The free and cofree 0-Hopf monoids

Recall the constructions of universal q-Hopf monoids given in Section 11.7.
Along with parameter values q = ±1, the case q = 0 is also of considerable interest.
In this section, we look at this case in more detail. The relevant functors are

T0 : Comon(Sp+)→ 0-Hopf(Sp) and T ∨
0 : Mon(Sp+)→ 0-Hopf(Sp).

We describe these functors explicitly and also provide antipode formulas following
the results in Section 11.8.

The functors T0 and T ∨
0 agree on positive species (equipped with the trivial

coproduct and products). This feature is unique to the parameter value 0. Further,
it turns out that any connected 0-bimonoid is necessarily of the form T0(q) for some
positive species q (Theorem 11.49).

11.10.1. The free 0-Hopf monoid on a positive comonoid. Let q be a posi-
tive comonoid. The 0-Hopf monoid T0(q) has the same underlying species and the
same product as the Hopf monoid T (q) (concatenation). We now discuss the co-
product, by setting q = 0 in the description of Section 11.7.1. Fix a decomposition
I = S ⊔ T . Let H � I be such that no element of T appears in an earlier block of
H than an element of S. Equivalently, there are compositions F � S and G � T
such that H is either F ·G or F ` G. The former is the concatenation of F and G
and the latter is the unique quasishuffle of F and G in which the last block of F is
merged with the first block of G. Now consider the map

q(H)→ q(H |S)⊗ q(H |T )

as in (11.12). The component ∆S,T of the coproduct of T0(q) is the direct sum of
these maps over all H � I of the above form (in which case H |S = F and H |T = G).
Note that the coproduct of q is involved only when H = F ` G.

The antipode formula of Theorem 11.38 takes the following form for T0.

(s0)I(x) =





∑
G

(−1)deg(G) ∆G(x) if x ∈ q[I],

0 otherwise.

In particular, the antipode is 0 on q(F ) if F has more than one block.
For q = X, this formula specializes to the antipode formula for L0 given

in (9.19).

11.10.2. The cofree 0-Hopf monoid on a positive monoid. Let q be a pos-
itive monoid. The 0-Hopf monoid T ∨

0 (q) has the same underlying species and the
same coproduct as the Hopf monoid T ∨(q) (deconcatenation). We now discuss the
product, by setting q = 0 in the description of Section 11.7.2. Fix a decomposition
I = S ⊔ T . Let F � S and G � T be compositions, and let H be either F · G or
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F ` G, as above. In either case, H is a quasi-shuffle of F and G. Now consider the
map

q(F ) ⊗ q(G)→ q(H)

as in (11.20). The component µS,T of the product is given by summing over all
such choices of F , G and H . Note that the product of q is involved only when
H = F ` G.

The antipode formula of Theorem 11.39 takes the following form for T ∨
0 .

(s0)I(x) = (−1)deg(G)µG(x) for x ∈ q(G).

Note that the image always lies in q[I] irrespective of G.

11.10.3. The free and cofree 0-Hopf monoid on a positive species. Let
us now restrict the functors T0 and T ∨

0 to trivial positive comonoids and monoids
respectively:

T0, T
∨
0 : Sp+ → 0-Hopf(Sp).

In this case, the functors T0 and T ∨
0 coincide. Indeed, comparing the descriptions

of these functors given above, we see that for any positive species q, the 0-Hopf
monoid structure of

T0(q) = T ∨
0 (q)

is in both cases given by concatenation and deconcatenation. Moreover, the norm
κ0 (Section 11.7.5) is the identity. This follows from (10.35). Hence, on finite-
dimensional species, T0 is a self-dual functor.

It turns out that any connected 0-bimonoid is of this form. First, note that

(11.41) P
(
T0(q)

)
= q.

This follows from the results in Section 11.9.4, taking into account that

T0(q) = T ∨
0 (q) = T ∨(q)

(the latter as comonoids only). The precise result is:

Theorem 11.49. Let h be a connected 0-bimonoid. There is a canonical isomor-
phism of 0-Hopf monoids

h ∼= T0
(
P(h)

)
.

Proof. The universal property of T0 gives a morphism of 0-Hopf monoids

ϕ : T0
(
P(h)

)
→ h

extending the inclusion P(h) →֒ h. Explicitly,

ϕ = µ(k−1) on P(h)·k for each k ≥ 1.

By construction, and in view of (11.41), ϕ is injective on primitives. Therefore,
it is injective everywhere, by Proposition 8.46.

We now show it is surjective, by induction. Take z ∈ h. By (8.63), there exists
k ≥ 1 such that z ∈ P(k)(h). If k = 1, then z = ϕ(z). Suppose k ≥ 2. By (8.64),
we have

∆
(k−1)
+ (z) ∈ P(h)·k

and therefore
ϕ
(
∆

(k−1)
+ (z)

)
= µ(k−1)∆

(k−1)
+ (z).

On the other hand, from Lemma 9.4 we have

∆
(k−1)
+ µ(k−1)∆

(k−1)
+ (z) = ∆

(k−1)
+ (z).
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Hence,

z − µ(k−1)∆
(k−1)
+ (z) ∈ ker(∆

(k−1)
+ ) = P(k−1)(h).

By induction hypothesis, this element belongs to the image of ϕ. We conclude that

z = µ(k−1)∆
(k−1)
+ (z) +

(
z − µ(k−1)∆

(k−1)
+ (z)

)

= ϕ
(
∆

(k−1)
+ (z)

)
+
(
z − µ(k−1)∆

(k−1)
+ (z)

)

is also in the image of ϕ. �

The preceding is the version for species of the result of Loday and Ronco given
in Theorem 2.13. The proof above is essentially the same as theirs.





CHAPTER 12

Hopf Monoids from Geometry

The goal of this chapter is to construct Hopf monoids in species motivated
by the geometry of the Coxeter complex of type A. Since this complex can be
described in purely combinatorial terms, it follows that the Hopf monoids also
admit simple combinatorial descriptions. Throughout this chapter, we assume that
the characteristic of the base field k is zero.

The Hopf monoids we consider in this chapter are summarized in Table 12.1. We
begin by discussing the underlying species. The species E and L are the exponential
and linear order species respectively. The remaining species in Table 12.1 have all
been considered in Chapter 10: the ones pertaining to faces and flats in Section 10.2,
the ones pertaining to directed faces and directed flats in Section 10.9, and the one
pertaining to pair of chambers in Section 10.7. These geometric objects can be
interpreted combinatorially in terms of partitions and compositions; the relevant
terminology was given in Section 10.1. All species are connected and linearized and
hence naturally isomorphic to their duals. The letters H , K, and so on denote the
different bases that we consider on these species.

Each of these species can be turned into a Hopf monoid, the dual species being
given the dual structure. The functors T and S, and their contragredients T ∨ and
S∨ were constructed in Chapter 11. The functor E× is the internal endomorphism
functor for the Hadamard product on species (8.80). The Hopf monoids under
consideration can all be obtained as values of these functors as indicated in Ta-
ble 12.1. The Hopf monoids L and E were described explicitly in Examples 8.15

Table 12.1. Hopf monoids.

Hopf monoid Indexing sets Dual Hopf monoid

L T (X∗) linear orders chambers L∗ T ∨(X)

Σ T (E∗
+) H set compositions faces Σ∗ T ∨(E+) M

−→
Σ T (L∗

+) H,K
linear

set compositions
directed

faces

−→
Σ∗ T ∨(L+) M,F

IL E×(L) H,K
pairs of

linear orders
pairs of
chambers

IL∗ E×(L∗) M,F

E S(X∗)
one-block
partition

ambient
space

E∗ S∨(X)

Π S(E∗
+) h, q set partitions flats Π∗ S∨(E+) m, p

−→
Π S(L∗

+) h
linear

set partitions
directed

flats

−→
Π∗ S∨(L+) m

401
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and 8.16, and their duals were described in Examples 8.22 and 8.24. The remaining
Hopf monoids will be defined explicitly and studied in detail in this chapter. The
components of the product and coproduct of each of these Hopf monoids can be
understood via three geometric constructions: the projection, break and join maps.
These notions were explained in Sections 10.4, 10.5 and 10.11.

Some of these Hopf monoids can be deformed to q-Hopf monoids. In geometric
terms, the deformation is done using the gallery metric, while in combinatorial
terms, it is done using the Schubert cocycle. Whenever such a deformation is
possible, we directly study the q case. This avoids repetition and one can easily
recover the undeformed case by setting q = 1.

We begin this chapter with a discussion of the various bases (Section 12.1).
In Section 12.2, we revisit the q-Hopf monoid of linear orders Lq and its dual L∗

q ,
and explain this example in geometric terms. Subsequent Sections 12.3–12.7 discuss

more advanced examples: IL, Σ,
−→
Σ , Π and

−→
Π, and their duals. We provide explicit

antipode formulas in all cases. In Section 12.8, we explain the inter-relationships
between these Hopf monoids (see diagrams (12.14) and (12.20)) and provide details
on their universal properties.

12.1. Bases

It is useful to define more than one linear basis for many of the Hopf monoids
we consider. These are summarized in Table 12.1. Since the underlying species are
linearized, each Hopf monoid comes equipped with a canonical basis. The second
basis is then defined in terms of this one.

Notation 12.1. In this context, the letters H and M denote a pair of dual basis.
Thus, if a Hopf monoid H has a linear basis {Hx}, where x runs over a certain set,
then {Mx} denotes the dual basis of the Hopf monoid H∗:

(12.1) 〈Hx, My〉 = δ(x, y).

Besides (H,M), other pairs of dual bases that we employ are (K,F ), (h,m), and
(p, q):

(12.2) 〈Kx, Fy〉 = 〈hx, my〉 = 〈px, qy〉 = δ(x, y).

The letters used for each Hopf monoid are indicated in Table 12.1. For the basis of
the Hopf monoids E and L we do not employ any letters. This choice of notation
is the same as that in [12, Table 5.2].

12.1.1. Pairs of chambers. We begin with the species of pairs of linear orders
IL∗. Let F denote its canonical basis. We now proceed to define another basis on
it, called the M basis. Recall from (10.41) the partial order on the set of pairs of
chambers:

(C1, D1) ≤ (C2, D2) if D1 = D2 = D and C2 − C1 −D,

where C2 − C1 −D stands for a minimum gallery from C2 to D passing through
C1. The F and M bases are related to each other via the above partial order as
follows.

(12.3) F(E,D) =
∑

C:(E,D)≤(C,D)

M(C,D)
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In other words, an element in the F basis is obtained by summing those elements in
the M basis which are larger than itself in the partial order. This is the definition
of the M basis. It can be made more explicit by inverting the above equation.

By dualizing, we obtain two bases on IL: the dual to F is denoted K, and the
dual to M is denoted H . This is in agreement with Notation 12.1.

12.1.2. Directed faces. We now consider the species of directed faces
−→
Σ∗. Let

F denote its canonical basis. We proceed to define another basis on it, called the
M basis. Recall from (10.53) the partial order on the set of directed faces:

(F,C) ≤ (G,D) ⇐⇒ C = D and F ≤ G,

where F ≤ G denotes inclusion of faces. The F and M bases are related to each
other as follows.

(12.4) F(G,D) =
∑

H:G≤H≤D

M(H,D).

This is in analogy with what we did for pairs of chambers, namely, an element in
the F basis is obtained by summing those elements in the M basis which are larger
than itself in the partial order.

By dualizing, we obtain two bases on
−→
Σ : the dual to F is denoted K, and the

dual to M is denoted H . The relationship between the two bases of
−→
Σ is

H(H,C) =
∑

F :F≤H

K(F,C).

12.1.3. Flats. We now consider the species of flats Π∗. The situation here is
somewhat different. Let m denote its canonical basis. Define the p basis by

(12.5) pY =
∑

X:X≤Y

mX ,

where ≤ denotes the partial order on set partitions given by refinement (Sec-
tion 10.2.3).

By dualizing, we obtain two bases on Π: the dual to m is denoted h, and the
dual to p is denoted q, in agreement with Notation 12.1. The bases of Π are related
by

(12.6) hX =
∑

Y :X≤Y

qY .

The motivation for the p and q bases is as follows. View Π[I] as a commuta-
tive monoid with product given by the join as in Section 10.4.2. Then the monoid
algebra kΠ[I] is semisimple and the elements of the q basis are the primitive idem-
potents. This result is due to Solomon [332], see also Greene [153], Stanley [341,
Section 3.9] and [12, Lemma 5.6.3].

12.2. The q-Hopf monoid of chambers

Recall the q-Hopf monoids Lq and L∗
q of linear orders from Section 9.5. In this

section, we describe these objects in geometric terms. The starting point is the
observation that linear orders on I correspond to chambers in the Coxeter complex
Σ[I]. In this setting, it is convenient to describe the components of the product and
coproduct if the decomposition is into nonempty subsets. The descriptions involve
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the break and join maps, namely, bK and jK (10.57), and the notion of gallery
distance dist(C,D) between chambers C and D (Section 10.5.1).

We also show that Lq is self-dual for generic values of q. This will make use of
the bilinear form on chambers studied in Section 10.14.

12.2.1. A geometric description.

Proposition 12.2. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

Lq [I]→ Lq[S]⊗ Lq[T ]

C 7→ qdist(C,KC)C1 ⊗ C2,

where K is the vertex S|T in Σ[I], and the chambers C1 and C2 are defined by
bK(KC) = (C1, C2).

The product is given by

Lq[S]⊗ Lq[T ]→ Lq [I]

C1 ⊗ C2 7→ jK(C1, C2),

where K is the vertex S|T of Σ[I].

Proof. We need to show that this is equivalent to Definition 9.13. The equiv-
alence between the product formulas is immediate. To see the equivalence between
the coproduct formulas, the key observation is that

bK(KC) = (C1, C2) ⇐⇒ C1 = C|S and C2 = C|T .

This follows from (10.64). The power of q works out correctly because of the relation
between the gallery metric and the Schubert statistic (10.94). �

Let I = S1 ⊔ · · · ⊔ Sk be an ordered decomposition of I into nonempty subsets
Si. Let H = S1| · · · |Sk be the face corresponding to this ordered decomposition.
Then the component ∆S1,...,Sk of the iterated coproduct is given by

Lq[I]→ Lq[S1]⊗ · · · ⊗ Lq[Sk]

C 7→ qdist(C,HC) C1 ⊗ · · · ⊗ Ck,

where C1, . . . , Ck are defined by bH(HC) = (C1, . . . , Ck). Similarly, the component
µS1,...,Sk of the iterated product is given by

Lq[S1]⊗ · · · ⊗ Lq [Sk]→ Lq[I]

C1 ⊗ · · · ⊗ Ck 7→ jH(C1, . . . , Ck).

These formulas follow from the various compatibilities of the break and join map
discussed in Section 10.11.2.

Proposition 12.3. The antipode of s : Lq → Lq is given by

Lq[I]→ Lq[I]

sI(C) = (−1)deg(C)qdist(C,C) C.

This is a restatement of Proposition 9.14 in geometric terms: note that for any
chamber C in Σ[I],

(12.7) deg(C) = |I|, dist(C,C) =

(
|I|

2

)
,
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and if C is indexed by the linear order l, then the opposite chamber C is indexed
by the reversal l. We repeat the proof to clarify the geometric ideas that go into
the computation.

Proof. By the above formulas for the components of the iterated product and
coproduct, the fact that break and join are inverses, and Takeuchi’s formula (8.27),
we obtain:

sI(C) =
∑

H

(−1)deg(H)qdist(C,HC)HC

=
∑

D

( ∑

H:HC=D

(−1)deg(H)

)
qdist(C,D)D.

It follows from Proposition 10.11 that the sum in parenthesis above is over a Boolean
poset with minimal element Des(C,D) and maximal element D. The sum will be
zero unless Des(C,D) = D; this happens precisely when D = C. �

By dualizing the formulas, we obtain the following descriptions for L∗
q .

Proposition 12.4. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

L∗
q [I]→ L∗

q [S]⊗ L∗
q [T ]

D∗ 7→

{
D∗

1 ⊗D
∗
2 if K = S|T is a vertex of D,

0 otherwise,

where D1 and D2 are defined by bK(D) = (D1, D2).
The product is given by

L∗
q [S]⊗ L∗

q [T ]→ L∗
q [I]

D∗
1 ⊗D

∗
2 7→

∑

D:KD=jK(D1,D2)

qdist(KD,D)D∗.

The vertex K = S|T ∈ Σ[I] is fixed in the above sum.

Proposition 12.5. The antipode of s : L∗
q → L∗

q is given by

L∗
q [I]→ L∗

q [I]

sI(D
∗) = (−1)deg(D)qdist(D,D)D

∗
.

Recall that the above parameters depend only on |I| (12.7).

12.2.2. Self-duality. Recall that the Hopf monoid L is cocommutative but not
commutative. Hence it cannot be self-dual. However, it turns out that in the
generic case, Lq is self-dual. More precisely:

Proposition 12.6. The map

Lq → L∗
q C 7→

∑

D

qdist(C,D)D∗

is a morphism of q-Hopf monoids. Further, if q is not a root of unity, then it is an
isomorphism, and in this case, the Hopf monoid Lq is self-dual.

For q = 0, the q-coefficient is nonzero only if C = D. So, in this case, the map
sends a chamber to itself (viewed in the dual) and is clearly an isomorphism.



406 12. HOPF MONOIDS FROM GEOMETRY

Proof. It can be directly checked that the above map is a morphism of mon-
oids and comonoids. Both checks make use of (10.61). It then follows that the
above map is a morphism of q-Hopf monoids. The next observation is that the
above map is induced from the bilinear form on chambers given in (10.132). It is
shown in Lemma 10.28 that if q is not a root of unity, then this bilinear form is
nondegenerate. The result follows. �

The above result is an instance of a much more general result given in Theo-
rem 11.35; see the discussion in Example 11.36.

12.3. The q-Hopf monoid of pairs of chambers

In this section, we study the Hopf monoid IL∗ based on pairs of chambers in
detail. This Hopf monoid is self-dual, free and cofree. We first describe IL∗ in the
fundamental or F basis in both combinatorial and geometric terms, and then do
the same for the M basis. The advantage of the M basis it that it allows us to
describe explicitly the coradical filtration, and hence the primitive elements of IL∗

and conclude that IL∗ is cofree. We also describe the antipode in both the F and
the M basis.

The Hopf monoid IL∗ admits a one-parameter deformation to a q-Hopf monoid
IL∗
q meaning that IL∗ = IL∗

1 . To avoid repetition, we present everything directly for
IL∗
q . On a first reading one may restrict attention to Hopf monoids and replace all

occurrences of q for 1.
In the geometric setting, it is convenient to describe the components of the

product and coproduct if the decomposition is into nonempty subsets. The de-
scriptions involve the break and join maps (10.57).

12.3.1. The F and K bases.

Definition 12.7. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

IL∗
q [I]→ IL∗

q [S]⊗ IL∗
q [T ]

F(C,D) 7→

{
F(C1,D1) ⊗ F(C2,D2) if K = S|T is a vertex of D,

0 otherwise,

whereC1, C2,D1 andD2 are defined by bK(D) = (D1, D2) and bK(KC) = (C1, C2).
The product is given by

IL∗
q [S]⊗ IL∗

q [T ]→ IL∗
q [I]

F(C1,D1) ⊗ F(C2,D2) 7→
∑

D:KD=jK(D1,D2)

qdist(KD,D)F(jK(C1,C2),D).

The vertex K = S|T ∈ Σ[I] is fixed in the above sum.

By using the definitions of the projection, break and join maps, one obtains
the following combinatorial descriptions for the coproduct and product. We use
the notations of Examples 8.16 and 8.24.
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Proposition 12.8. Fix a decomposition I = S ⊔ T . The coproduct is given by

IL∗
q [I]→ IL∗

q [S]⊗ IL∗
q [T ]

F(C,D) 7→

{
F(C|S,D|S) ⊗ F(C|T ,D|T ) if S is an initial segment of D,

0 otherwise.

The product is given by

IL∗
q [S]⊗ IL∗

q [T ]→ IL∗
q [I]

F(C1,D1) ⊗ F(C2,D2) 7→
∑

D:D a shuffle of D1 and D2

qschS,T (D) F(C1·C2,D),

where schS,T (D) is the Schubert cocycle (9.12).

For example,

F(t|a|s|i,s|i|t|a) 7→ 1⊗ F(t|a|s|i,s|i|t|a) + F(s,s) ⊗ F(t|a|i,i|t|a)

+ F(s|i,s|i) ⊗ F(t|a,t|a) + F(t|s|i,s|i|t) ⊗ F(a,a) + F(t|a|s|i,s|i|t|a) ⊗ 1.

F(s|i,s|i) ⊗ F(t|a,a|t) 7→ F(s|i|t|a,s|i|a|t) + q F(s|i|t|a,s|a|i|t) + q2 F(s|i|t|a,a|s|i|t)

+ q2 F(s|i|t|a,s|a|t|i) + q3 F(s|i|t|a,a|s|t|i) + q4 F(s|i|t|a,a|t|s|i).

Let ILq denote the Hopf dual of IL∗
q . Recall that K denotes the basis of ILq

dual to the F basis of IL∗
q (12.2). The product and coproduct on the K basis are

as follows.

Proposition 12.9. Fix a decomposition I = S ⊔ T into nonempty subsets. The
product is given by

ILq[S]⊗ ILq[T ]→ ILq[I]

K(D1,C1) ⊗K(D2,C2) 7→
∑

D:KD=jK(D1,D2)

K(D,jK(C1,C2)).

The vertex K = S|T ∈ Σ[I] is fixed in the above sum.
The coproduct is given by

ILq [I]→ ILq [S]⊗ ILq [T ]

K(D,C) 7→

{
qdist(C,KC)K(D1,C1) ⊗K(D2,C2) if K = S|T is a vertex of D,

0 otherwise,

where C1, C2, D1 and D2 are defined by bK(D) = (D1, D2) and bK(KC) = (C1, C2).

12.3.2. Hadamard products and self-duality. Recall that the Hadamard
product of two bimonoids is again a bimonoid. It follows from the definitions
that

(12.8)
IL∗
q

∼=
−−→ L× L∗

q

F(C,D) 7→ (C,D∗)
and

ILq
∼=
−−→ L∗ × Lq

K(D,C) 7→ (D∗, C)

as q-Hopf monoids. One may also deduce one fact from the other by Corollary 8.62.
Applying the signature functor yields:

(ILq)
− ∼= IL−q and (IL∗

q)
− ∼= IL∗

−q .
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In other words, the signed partners of ILq and IL∗
q are IL−q and IL∗

−q respectively.
This follows from (12.8) and the corresponding results for the q-Hopf monoids of
linear orders (9.20).

In view of (12.8), one may be tempted to consider Lp ×L∗
q as a two parameter

deformation of IL∗. However, as the results below show, this generalization is
superficial; there is really only one parameter involved.

Proposition 12.10. Let q be a nonzero scalar, and p be any scalar. The map

Lq × L∗
p → L× L∗

pq (C,D∗)→ qdist(C,D) (C,D∗)

is an isomorphism of pq-Hopf monoids. In particular, as 0-Hopf monoids, for q 6= 0,

Lq × L∗
0
∼= L× L∗

0,

and hence, by duality,

L0 × L∗
q
∼= L0 × L∗.

Proof. The product and coproduct are preserved because of (10.61). �

Corollary 12.11. Let p, q, p′ and q′ be nonzero scalars such that pq = p′q′. Then

Lq × L∗
p
∼= Lq′ × L∗

p′

as pq-Hopf monoids.

The above results show that by working with IL∗
q instead of Lq × L∗

p, the only
object that gets left out is L0 × L∗

0.
Define a map sq : ILq → IL∗

q by

(12.9) K(D,C) 7→ qdist(C,D) F(C,D).

We refer to sq as the switch map on the q-Hopf monoid of pairs of linear orders.
Setting p = 1 in Proposition 12.10 and using (12.8) we deduce:

Proposition 12.12. For q 6= 0, the switch map sq is an isomorphism of q-Hopf
monoids. Hence, ILq is self-dual if q 6= 0.

The self-duality of IL (which is the case q = 1) follows more simply from
Corollary 8.61. It is also true that the 0-Hopf monoid IL0 is self-dual. This point
is addressed in Section 12.3.6.

12.3.3. The M and H bases. Recall that the M and F bases are related
by (12.3). The coproduct and product on the M basis are given by the follow-
ing formulas.

Theorem 12.13. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

IL∗
q [I]→ IL∗

q [S]⊗ IL∗
q [T ]

M(C,D) 7→

{
M(C1,D1) ⊗M(C2,D2) if K = S|T is a vertex of D and C,

0 otherwise,

where C denotes the chamber opposite to C, and C1, C2, D1 and D2 are defined by
bK(D) = (D1, D2) and bK(KC) = (C1, C2), or equivalently, bK(C) = (C2, C1).
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C

D

K

KC KD

Figure 12.1. A mimimal gallery from C to D via the vertex K.

The product is given by

IL∗
q [S]⊗ IL∗

q [T ]→ IL∗
q [I]

M(C1,D1) ⊗M(C2,D2) 7→
∑

(C,D):
KD=jK(D1,D2)
KC=jK(C1,C2)
C−KC−KD−D

qdist(KD,D)M(C,D).

The vertex K = S|T is fixed in the above sum.

The proof is similar to those of [12, Theorems 7.3.1 and 7.3.4].
The condition C−KC−KD−D says that there is a mimimal gallery from C to

D, which passes through KC and KD. This condition is illustrated in Figure 12.1,
using the notation of Figure 10.8. Roughly, it means that the vertex K lies in
between the chambers C and D.

We now write down the formulas on the M basis in combinatorial terms.

Theorem 12.14. Fix a decomposition I = S ⊔ T . The coproduct is given by

IL∗
q [I]→ IL∗

q [S]⊗ IL∗
q [T ]

M(C,D) 7→




M(C|S,D|S) ⊗M(C|T ,D|T ) if S is an initial segment of D and

a final segment of C,
0 otherwise.

The product is given by

IL∗
q [S]⊗ IL∗

q [T ]→ IL∗
q [I]

M(C1,D1) ⊗M(C2,D2) 7→
∑

qschS,T (D)M(C,D),

where the sum is over all (C,D) such that C is a shuffle of C1 and C2, D is a
shuffle of D1 and D2, and an element of T cannot precede an element of S in both
C and D.

For example,

M(t|a|s|i,s|i|t|a)) 7→ 1⊗M(t|a|s|i,s|i|t|a) +M(s|i,s|i) ⊗M(t|a,t|a) +M(t|a|s|i,s|i|t|a) ⊗ 1.

M(t|a,a|t) ⊗M(i,i) 7→M(t|a|i,a|t|i) +M(t|i|a,a|t|i) +M(i|t|a,a|t|i)

+ qM(t|a|i,a|i|t) + qM(t|i|a,a|i|t) + q2M(t|a|i,i|a|t).

Recall that H denotes the basis of ILq dual to the M basis of IL∗
q (12.1).

Dualizing the product and coproduct in Theorem 12.13, one obtains:
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Theorem 12.15. Fix a decomposition I = S ⊔ T into nonempty subsets. The
product is given by

ILq[S]⊗ ILq [T ]→ ILq [I]

H(D1,C1) ⊗H(D2,C2) 7→ H(jK(D2,D1),jK(C1,C2)),

where K = S|T and K = T |S.
The coproduct is given by

ILq [I]→ ILq [S]⊗ ILq [T ]

H(D,C) 7→

{
qdist(C,KC)H(D1,C1) ⊗H(D2,C2) if D −KD −KC − C,

0 otherwise,

where the chambers C1, C2, D1 and D2 are defined by bK(KD) = (D1, D2) and
bK(KC) = (C1, C2).

12.3.4. Interchanging the coordinates on the M and H bases. Assume
now that q 6= 0. Consider the map

(12.10) tq : IL∗
q → IL∗

q−1 M(C,D) 7→ q− dist(C,D)M(D,C).

The dual map is given by

t∗q : ILq−1 → ILq H(D,C) 7→ q− dist(C,D) H(C,D).

These maps are not to be confused with the switch map sq (12.9). In fact, we show
below that tq reverses coproducts, while sq preserves them.

Recall that for any Hopf monoidH , one can define Hopf monoids opH and Hcop

by twisting the product and coproduct on H by the braiding, see Proposition 1.21.

Corollary 12.16. The map tq : IL∗
q → (IL∗

q−1 )cop is an isomorphism of q-Hopf

monoids. Dually, the map t∗q : op(ILq−1 ) → ILq is an isomorphism of q-Hopf mon-
oids.

Proof. This follows directly from the symmetry of the two coordinates in
the M basis formulas in Theorem 12.13. The powers of q are controlled by for-
mula (10.61) and the interaction of the distance metric with the braiding. �

12.3.5. The coradical filtration. We now explicitly describe the species of prim-
itive elements and more generally the species P(k)(IL∗

q) (Section 11.9.4). This notion
pertains only to the comonoid structure and hence the parameter q does not play
any part in this discussion.

Given the factors M(C1,D1) and M(C2,D2) of the component ∆S,T of the coprod-
uct on the M basis, one can uniquely recover M(C,D) by

D = jK(D1, D2) and C = KjK(C1, C2)

where K = S|T . Equivalently,

D = D1 ·D2 and C = C2 · C1,

where · stands for concatenation of linear orders. This shows that

{M(C,D) | dim(D ∧ C) ≤ k − 2}
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is a linear basis of the species P(k)(IL∗
q). The condition on (C,D) can also be

phrased in terms of global descents (Definition 10.9). The case k = 1 yields the
primitive element species;

(12.11) {M(C,D) | D ∧ C = ∅}

is a linear basis. The dimensions of the first 3 components of P(IL∗
q) are 1, 2,

and 18.

12.3.6. 0-Hopf monoids. We now briefly discuss the connected 0-Hopf monoids
IL∗

0 and IL0. In this discussion, K denotes the vertex S|T . Recall from (12.8) that

IL∗
0

∼=
−−→ L× L∗

0 and IL0

∼=
−−→ L∗ × L0.

The coproduct of IL∗
0 is as for IL∗

q (since the coproduct of IL∗
q does not depend on

q). The product is given by

IL∗
0[S]⊗ IL∗

0[T ]→ IL∗
0[I]

F(C1,D1) ⊗ F(C2,D2) 7→ F(jK(C1,C2),jK(D1,D2))

M(C1,D1) ⊗M(C2,D2) 7→
∑

C:KC=jK(C1,C2)

M(C,jK(D1,D2)).

Dually, the product of IL0 is the same as for ILq . The coproduct is given by

IL0[I]→ IL0[S]⊗ IL0[T ]

K(D,C) 7→

{
K(D1,C1) ⊗K(D2,C2) if K is a vertex of D and C,

0 otherwise,

H(D,C) 7→

{
H(D1,C1) ⊗H(D2,C2) if K is a vertex of C,

0 otherwise,

where the chambers C1, C2, D1 and D2 are defined by bK(KD) = (D1, D2) and
bK(C) = (C1, C2).

It follows from these formulas that the map

IL0 → IL∗
0, K(D,C) 7→M(C,D)

is an isomorphism of comonoids, and the map

IL0 → IL∗
0, K(D,C) 7→M(D,C)

is an isomorphism of monoids. However, neither map is an isomorphism of Hopf
monoids. It turns out that these 0-Hopf monoids are nevertheless isomorphic, as
we now explain.

Recall that connected 0-Hopf monoids are determined by the subspecies of
primitive elements (Theorem 11.49). It is clear that

(12.12) {K(D,C) | D ∧ C = ∅}

is a linear basis for the primitive element species of IL0. The coproduct of IL∗
q does

not depend on q, so (12.11) tells us that

{M(C,D) | D ∧ C = ∅}

is a linear basis for the primitive element species of IL∗
0. It follows that there is an

isomorphism of species

P(IL0)→ P(IL∗
0) K(D,C) 7→M(C,D).
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In view of Theorem 11.49, we can now deduce that the 0-Hopf monoids IL0 and
IL∗

0 are isomorphic, and hence self-dual. This complements the result of Proposi-
tion 12.12.

We briefly consider the 0-Hopf monoid L0×L∗
0. (Recall from Section 12.3.2 that

this object is not of the form ILq or IL∗
q for any q.) The definition implies that the

product is concatenation in both coordinates and the coproduct is deconcatenation
in both coordinates. In particular, the primitive element species has a linear basis as
in (12.12). Again applying Theorem 11.49, we conclude that L0×L∗

0 is isomorphic
to IL0 and IL∗

0 .

12.3.7. The antipode on the F and M basis. Let deg(F ) be the number of
blocks in the set composition F . In other words, we have deg(F ) = dim(F ) + 2.

Theorem 12.17. The antipode of s : IL∗
q → IL∗

q on the F basis is given by

IL∗
q [I]→ IL∗

q [I]

sI(F(C,D)) =
∑

(−1)deg(C′∧D)qdist(D,D′) F(C′,D′),

where the sum is over the pairs (C′, D′) such that there is a unique face H with
HC = C′ and HD′ = D. (In this case, the face H must equal C′ ∧D).

Figure 12.2 illustrates this situation. The nice symmetry in the description of
the face H given above, which is manifest in the figure, underlies the fact that, up
to switching the coordinates, the dual of the above antipode formula is itself. In
this figure, the two instances of H represent the same face.

Proof. We will use Takeuchi’s formula (8.27) to prove the result. As a first
step, we compute µS,T∆S,T using the geometric Definition 12.7. Since the break
and join maps are inverses, we have,

µS,T
(
∆S,T (F(C,D))

)
=

∑

(C′,D′)

qdist(D,D′) F(C′,D′),

where the sum is over all (C′, D′) which for K = S|T satisfy KC = C′ and KD′ =
D. The same formula holds for all the iterated composites, namely for

µS1,...,Sk∆S1,...,Sk ,

the sum is over all (C′, D′) which for H = S1| · · · |Sk satisfy HC = C′ and HD′ =
D. Therefore by Takeuchi’s formula, we obtain:

(12.13) sI(F(C,D)) =
∑

(C′,D′)

( ∑

H∈A((C,D),(C′ ,D′))

(−1)deg(H)

)
qdist(D,D′) F(C′,D′),

C
C′ D

D′

H

H H

Figure 12.2. The antipode on the F basis of IL∗
q .
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where

A((C,D),(C′,D′)) = {H | HC = C′, HD′ = D}.

We make two simple observations about this set, which we abbreviate to A from
now on. These follow from properties (v) and (vi) of the projection product in
Proposition 10.1.

• If H ∈ A and H ≤ G ≤ C′ ∧D, then G ∈ A.
• If H1, H2 ∈ A, then H1 ∧H2 ∈ A.

In particular, if A is nonempty, then C′ ∧ D ∈ A. This shows that the set A is
a Boolean poset. So the alternating sum inside the parenthesis above will be zero
unless A consists of the singleton element C′ ∧D. This finishes the proof. �

The antipode formula given by (12.13) is also useful for working out specific
examples and can be rewritten as follows.

sI(F(C,D)) =
∑

H:H≤D

∑

D′:HD′=D

(−1)deg(H)qdist(D,D′) F(HC,D′).

For example, using this formula,

s(F(u|m|a,m|a|u)) = −F(u|m|a,m|a|u)

+ F(m|a|u,m|a|u) + q F(m|a|u,m|u|a) + q2 F(m|a|u,u|m|a)

+ F(m|u|a,m|a|u) + q F(m|u|a,a|m|u) + q2 F(m|u|a,a|u|m)

− F(m|a|u,m|a|u) − q F(m|a|u,m|u|a) − q
2 F(m|a|u,u|m|a)

− q F(m|a|u,a|m|u) − q
2 F(m|a|u,a|u|m) − q

3 F(m|a|u,u|a|m).

The above proof showed that terms which repeat must necessarily cancel. Thus we
have

s(F(u|m|a,m|a|u)) = −F(u|m|a,m|a|u)+F(m|u|a,m|a|u)+qF(m|u|a,a|m|u)+q
2F(m|u|a,a|u|m)

− qF(m|a|u,a|m|u) − q
2 F(m|a|u,a|u|m) − q

3 F(m|a|u,u|a|m).

This is the formula provided by Theorem 12.17, where all cancellations have been
accounted for. The coefficient of any term, up to a power of q, is either 0, 1 or −1.

Theorem 12.18. The antipode of s : IL∗
q → IL∗

q on the M basis is given by

IL∗
q [I]→ IL∗

q [I]

sI(M(C,D)) = (−1)deg(C∧D)
∑

qdist(D,D′)M(C′,D′),

where the sum is over all pairs (C′, D′) such that C′ −D −D′ and such that there
is a unique face H with HC′ = C and HD′ = D. (In this case, the face H must
equal C ∧D itself ).

Figure 12.3 illustrates this situation. It does not show the symmetry of Fig-
ure 12.2, because the relation between the M and its dual H basis is more compli-
cated than simply switching the coordinates. We point out that HC is not C. In
fact, these two chambers are opposite to each other in the star of H .
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C

HC
C′

D

D′

H

H H

Figure 12.3. The antipode on the M basis of IL∗
q .

Proof. The proof is along the lines of the proof of Theorem 12.17 and identical
in complexity; hence we will be brief. By the geometric formulations for the product
and coproduct given by Theorem 12.13, and Takeuchi’s formula (8.27), we obtain:

sI(M(C,D)) =
∑

(C′,D′):C′−D−D′

( ∑

H∈B((C,D),(C′ ,D′))

(−1)deg(H)

)
qdist(D,D′)M(C′,D′),

where

B((C,D),(C′,D′)) = {H | H ≤ C ∧D, HC′ = C, HD′ = D}.

We make two simple observations about this set, which we abbreviate to B from
now on. These follow from properties (v) and (vi) of the projection product in
Proposition 10.1.

• If H ∈ B and H ≤ G ≤ C ∧D, then G ∈ B.
• If H1, H2 ∈ B, then H1 ∧H2 ∈ B.

In particular if B is nonempty, then C ∧ D ∈ B. This shows that the set B is a
Boolean poset. So the alternating sum inside the parenthesis above will be zero
unless B consists of the singleton element C ∧D. Since the term C ∧D does not
depend on (C′, D′), we can pull the sign out of the sum. This finishes the proof. �

For example,

s(M(r|i|h|a,h|a|r|i)) = M(r|h|i|a,h|a|r|i) +M(h|r|i|a,h|a|r|i) +M(r|h|a|i,h|a|r|i)

+M(h|r|a|i,h|a|r|i) +M(h|a|r|i,h|a|r|i) + qM(h|a|r|i,h|r|a|i) + q2M(h|a|r|i,r|h|a|i)

+ q2M(h|a|r|i,h|r|i|a) + q3M(h|a|r|i,r|h|i|a) + q4M(h|a|r|i,r|i|h|a).

In this case, H = ha|ri, C = r|i|h|a and D = h|a|r|i; so HC = D (this will not
happen in general). Hence to satisfy C′ −D −D′, either C′ = D or D′ = D. This
explains why either the first or the second coordinate of each term on the right is
h|a|r|i.

Antipode formulas on theK andH bases of ILq can be derived by duality (12.2).

12.4. The q-Hopf monoids of faces

In this section, we study the Hopf monoids Σ∗ and Σ which are both based on
set compositions (or faces) and dual to each other. We write M for the basis of Σ∗

and H for the dual basis of Σ, in agreement with Notation 12.1.
These Hopf monoids admit one-parameter deformations to q-Hopf monoids

which we denote by Σ∗
q and Σq. This means that Σ∗ = Σ∗

1 and Σ = Σ1. The

deformed objects Σ∗
q and Σq are dual q-Hopf monoids. It is convenient to present

the theory directly for these q-Hopf monoids.
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There are a number of operations on set compositions such as concatenation,
restriction, shuffle, and quasi-shuffle (Section 10.1.6) which are relevant to this
section. On the geometric side, we make use of the break and join maps (10.57).

12.4.1. The M basis.

Definition 12.19. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

Σ∗
q [I]→ Σ∗

q [S]⊗Σ∗
q [T ]

MG 7→

{
MG1 ⊗MG2 if K = S|T is a vertex of G,

0 otherwise,

where bK(G) = (G1, G2).
The product is given by

Σ∗
q [S]⊗Σ∗

q [T ]→ Σ∗
q [I]

MG1 ⊗MG2 7→
∑

G:KG=jK(G1,G2)

qdist(K,G)MG,

where the vertex K = S|T is fixed, and dist(K,G) is as in (10.33).

We now give a combinatorial formulation of the above definitions. Let G be a
composition of I. The subset S is called an initial segment of G if it is the union
of the first few blocks of G.

Proposition 12.20. Fix a decomposition I = S ⊔ T . The coproduct is given by
deconcatenation, namely

Σ∗
q [I]→ Σ∗

q [S]⊗Σ∗
q [T ]

MG 7→

{
MG|S ⊗MG|T if S is an initial segment of G,

0 otherwise,

with the restriction G|S as in Section 10.1.6.
The product is given by quasi-shuffling, namely

Σ∗
q [S]⊗Σ∗

q [T ]→ Σ∗
q [I]

MG1 ⊗MG2 7→
∑

G:G a quasi-shuffle of G1 and G2

qschS,T (G)MG,

where schS,T (G) is the Schubert cocycle on faces (10.119).

For example,

Mvi|sh|nu 7→ 1⊗Mvi|sh|nu +Mvi ⊗Msh|nu +Mvi|sh ⊗Mnu +Mvi|sh|nu ⊗ 1

Mla|ksh ⊗Mmi 7→Mla|ksh|mi + q6Mla|mi|ksh + q10Mmi|la|ksh

+Mla|kshmi + q6Mlami|ksh.

The coradical filtration of Σ∗
q can be readily described using the coproduct

formula as follows. This discussion does not depend on the parameter q and is a
special case of that in Section 11.9.4.
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Given the factors MG1 and MG2 of the component ∆S,T of the coproduct, one
can uniquely recover MG by

G = jK(G1, G2), or equivalently, G = G1 ·G2,

where K = S|T and · denotes concatenation of faces. This shows that P(k)(Σ∗
q) is

the species spanned by

{MG | dim(G) ≤ k − 2}.

The case k = 1 yields the primitive element species. It is spanned by the empty
faces, or equivalently, the one-block compositions; so it is one-dimensional in each
component. In other words, the primitive element species is E+.

Theorem 12.21. The antipode s : Σ∗
q → Σ∗

q is given by

Σ∗
q [I]→ Σ∗

q [I]

sI(MG) = (−1)deg(G)
∑

F :F≤G

qdist(F,F )MF ,

where deg(G) is the number of blocks in G, and G denotes the opposite of G, and
dist(G,F ) is as in (10.33).

The above result is an instance of a much more general antipode formula given
in Theorem 11.39: set q = E+. The proof is briefly indicated below. It follows the
proof pattern of the antipode formulas for IL∗

q given in Section 12.3.7.

Proof. By the geometric Definition 12.19 for the product and coproduct and
Takeuchi’s formula (8.27), we obtain:

sI(MG) =
∑

F

( ∑

H:HF=G

(−1)deg(H)

)
qdist(G,F )MF .

The result now follows by applying Lemma 11.37 and noting that F ≤ G implies
dist(G,F ) = dist(F , F ). �

For example,

s
(
Mmi|ksh|la

)
= −Mlakshmi − q

10Mlaksh|mi − q
10Mla|kshmi − q

16Mla|ksh|mi.

12.4.2. The H basis. Recall that H denotes the basis of Σq dual to the M basis
of Σ∗

q (12.1). We now state the formulas for the coproduct, product and antipode
on the H basis of Σq obtained by duality from the formulas on the M basis.

Proposition 12.22. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

Σq[I]→ Σq[S]⊗Σq[T ]

HF 7→ qdist(F,K)HF1 ⊗HF2 ,

where K is the vertex S|T , and F1 and F2 are defined by bK(KF ) = (F1, F2), and
dist(K,F ) is as in (10.33).

The product is given by

Σq[S]⊗Σq[T ]→ Σq[I]

HF1 ⊗HF2 7→ HjK(F1,F2)

where the vertex K is defined to be S|T .
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We now formulate this in combinatorial terms.

Proposition 12.23. Fix a decomposition I = S ⊔ T . The coproduct is given by
dequasi-shuffling; namely,

Σq[I]→ Σq[S]⊗Σq[T ]

HF 7→ qschS,T (F )HF |S ⊗HF |T

where the restriction F |S is as in Section 10.1.6 and schS,T (F ) is the Schubert
cocycle on faces (10.119).

The product is given by concatenation, namely

Σq[S]⊗Σq[T ]→ Σq[I]

HF1 ⊗HF2 7→ HF1·F2 .

For example,

Hla|ksh ⊗Hmi 7→ Hla|ksh|mi

Hu|ma 7→ 1⊗Hu|ma +Hu ⊗Hma + q Hm ⊗Hu|a + q Ha ⊗Hu|m

+Hu|m ⊗Ha +Hu|a ⊗Hm + q2Hma ⊗Hu +Hu|ma ⊗ 1.

Theorem 12.24. The antipode s : Σq → Σq is given by

Σq[I]→ Σq[I]

sI(HF ) = qdist(F,F )
∑

G:F≤G

(−1)deg(G)HG.

For example,

s
(
Hma|u

)
= q2Hu|ma − q

2Hu|m|a − q
2Hu|a|m.

The above result is an instance of a much more general antipode formula given
in Theorem 11.38: set q = E∗

+. It is instructive to compare the proof of that
theorem with the proof that we gave for Theorem 12.21 (which is the dual case).

12.4.3. Deformation via the Schubert cocycle on faces. Consider the Hopf
monoid Σ; this is the case q = 1 in the preceding discussion. The components of
the product and coproduct preserve the H-basis elements of Σ. So Σ is a linearized
bimonoid in the sense of Section 8.7.3.

Proposition 12.25. The Schubert cocycle on faces defines a normal 2-cocycle on
the linearized comonoid Σ. Moreover, this cocycle is multiplicative of twist 1.

This is a generalization of Proposition 9.24; the proof is along similar lines:
Normality (9.24) follows from (10.120), and multiplicativity (9.33) (with m = 1)
follows from (10.124). It follows that Σq is a bimonoid deformation of Σ in the
sense of Proposition 9.21.

12.4.4. Self-duality.

Proposition 12.26. For q not an algebraic number, the Hopf monoid Σq is self-
dual. The isomorphism to its dual is given by

Σq → Σ∗
q HF 7→

∑

G

(FG)! qdist(F,G)MG,

where (FG)! is as in (10.7) and dist(F,G) is as in (10.33).
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Proof. It can be directly checked that the above map is a morphism of mon-
oids and comonoids. Hence it is a morphism of q-Hopf monoids. We next note that
the bilinear form on faces which induces the above map coincides with the bilinear
form in Lemma 10.37. The result follows. �

The signed partner of Σq is not Σ−q. Similarly, the signed partner of Σ∗
q

is not Σ∗
−q. In fact, Σ−1 and Σ− are not even isomorphic as species (this does

not depend on q). For example, Σ−1[2] is three-dimensional and contains 2 trivial
representations and one sign representation of S2; so clearly, it cannot be isomorphic
to Σ−[2], which displays the opposite feature.

12.4.5. 0-Hopf monoids. We now briefly discuss the connected 0-Hopf monoids
Σ∗

0 and Σ0.
The coproduct of Σ∗

0 is the same as given in Definition 12.19 (it does not depend
on q). The product is given by

Σ∗
0[S]⊗Σ∗

0[T ]→ Σ∗
0[I]

MG1 ⊗MG2 7→
∑

G:KG=jK(G1,G2)=GK

MG,

where the vertex K = S|T is fixed. This follows from (10.36). Explicitly, the sum
consists of exactly two summands: G is either the concatenation of G1 and G2, or
it is the concatenation with the last block of G1 merged with the first block of G2.

For example,

Mla|ksh ⊗Mmi 7→Mla|ksh|mi +Mla|kshmi.

This can also be seen by setting q = 0 in our product example for Σ∗
q .

The antipode is given by

Σ∗
0[I]→ Σ∗

0[I]

(s0)I(MG) = (−1)deg(G)M∅,

where ∅ is the empty face of the complex, or equivalently, the composition of I with
one block.

We now consider the dual situation. The product of Σ0 is the same as given
in Proposition 12.22 (it does not depend on q). The coproduct is given by

Σ0[I]→ Σ0[S]⊗Σ0[T ]

HF 7→

{
HF1 ⊗HF2 if FK = KF ,

0 otherwise,

where K is the vertex S|T , and F1 and F2 are defined by bK(KF ) = (F1, F2).
Explicitly, the coproduct is nonzero only if either F is a concatenation of a compo-
sition of S with a composition of T , or a concatenation in which the last block of
the first composition is merged with the first block of the second composition.

The antipode is given by

Σ0[I]→ Σ0[I]

(s0)I(HF ) =





∑
G

(−1)deg(G)HG if F = ∅,

0 otherwise.
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For example,

s0(Huma) = −Huma +Hu|ma +Hm|au +Ha|um +Hum|a +Hua|m +Hma|u

−Hu|m|a −Hu|a|m −Hm|u|a −Ha|u|m −Hm|a|u −Ha|m|u.

We now address the issue of self-duality. Recall that P(k)(Σ∗
0) is the species

spanned by

{MG | deg(G) ≤ k}.

For the dual Hopf monoid, one can show that P(k)(Σ0) is the species spanned by
{ ∑

G:F≤G

(−1)deg(G)HG | deg(F ) ≤ k

}
.

In particular, by letting k = 1, it follows that for each I, the I-component of the
primitive element species is one-dimensional with basis element

∑

G�I

(−1)deg(G)HG.

As a consequence,

P(Σ∗
0)
∼= P(Σ0) ∼= E+.

Hence by Theorem 11.49, the 0-Hopf monoids Σ0 and Σ∗
0 are isomorphic, and hence

self-dual. This complements the result of Proposition 12.26.

Question 12.27. Describe in explicit terms the coradical filtration and, in partic-
ular, the primitive element species of Σq. The answer for the case q = 0 is given
above.

12.5. The q-Hopf monoids of directed faces

In this section, we study the Hopf monoids
−→
Σ∗ and

−→
Σ which are both based

on linear set compositions (or directed faces) and dual to each other. These admit

one-parameter deformations to q-Hopf monoids which we denote by
−→
Σ∗
q and

−→
Σq.

This means that
−→
Σ∗ =

−→
Σ∗

1 and
−→
Σ =

−→
Σ1. The deformed objects

−→
Σ∗
q and

−→
Σq are

dual q-Hopf monoids. As done in earlier sections, we present the theory directly
for these q-Hopf monoids. The projection, break and join maps continue to play a

crucial role in describing the structure of the Hopf monoids. The bases for
−→
Σ∗ are

F and M and the bases for
−→
Σ are H and K.

12.5.1. The F basis.

Definition 12.28. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

−→
Σ∗
q [I]→

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]

F(G,D) 7→

{
F(G1,D1) ⊗ F(G2,D2) if K = S|T is a vertex of D,

0 otherwise,

where the directed faces (G1, D1) and (G2, D2) are defined by bK(KG) = (G1, G2)
and bK(D) = (D1, D2).
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The product is given by

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]→

−→
Σ∗
q [I]

F(G1,D1) ⊗ F(G2,D2) 7→
∑

D:KD=jK(D1,D2)

qdist(K,G) F(G,D),

where the vertex K = S|T is fixed, dist(K,G) is as in (10.33), and G is the smallest
face of D such that

GjK(G1, G2) ≤ D or equivalently jK(G1, G2) ≤ KG and GK ≤ D.

The equivalence mentioned above can be seen as a consequence of the following
result by letting H := jK(G1, G2) and H ′ := jK(G1, G2).

Proposition 12.29. Let K ≤ H ≤ KD and let H ′ be the face opposite to H in
Star(K). Then for any face G of D,

GH ′ ≤ D ⇐⇒ H ≤ KG and GK ≤ D.

If either of these equivalent statements holds, then

GH = GH ′ = GK.

Proof. We provide an outline. Let us begin with the forward implication.
Suppose GH ′ ≤ D. Then GK ≤ D. Hence GK ≤ GH ≤ GKD = D, and so
GH ≤ D. Since H and H ′ are opposite in Star(K), it follows that GH and GH ′

are opposite in Star(GK). But they are both faces of D, so GH = GH ′ = GK.
Now H and KG are faces of KD and KGH = KG. Hence H ≤ KG as required.

For the backward implication, suppose H ≤ KG and GK ≤ D. Then since H
and H ′ have the same support, we have GKH ′ = GK which implies GH ′ ≤ D. �

We now give a combinatorial formulation of Definition 12.28.

Proposition 12.30. Fix a decomposition I = S ⊔ T . The coproduct is given by

−→
Σ∗
q [I]→

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]

F(G,D) 7→

{
F(G|S ,D|S) ⊗ F(G|T ,D|T ) if S is an initial segment of D,

0 otherwise,

with the restriction G|S as in Section 10.1.6.
The product is given by

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]→

−→
Σ∗
q [I]

F(G1,D1) ⊗ F(G2,D2) 7→
∑

D:D a shuffle of D1 and D2

qschS,T (D) F(G,D),

where schS,T (D) is the Schubert cocycle (9.12) and G is the face of D determined
as follows. Let D = D1| · · · |Dn. Then Di and Di+1 occur in different blocks of G
if and only if

• Di occurs in G2 and Di+1 occurs in G1, or
• Di and Di+1 occur in different blocks of G1, or
• Di and Di+1 occur in different blocks of G2.
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In the situation of the above proposition, schS,T (D) = schS,T (G), the latter
being the Schubert cocycle on faces (9.12).

An example for the coproduct and product is given below.

F(sh|iv|a,s|h|i|v|a) 7→ 1⊗ F(sh|iv|a,s|h|i|v|a) + F(s,s) ⊗ F(h|iv|a,h|i|v|a)

+ F(sh,s|h) ⊗ F(iv|a,i|v|a) + F(sh|i,s|h|i) ⊗ F(v|a,v|a)

+ F(sh|iv,s|h|i|v) ⊗ F(a,a) + F(sh|iv|a,s|h|i|v|a) ⊗ 1.

F(ha,h|a) ⊗ F(r|i,r|i) 7→ F(har|i,h|a|r|i) + q F(hr|ai,h|r|a|i) + q2 F(r|hai,r|h|a|i)

+ q2 F(hr|i|a,h|r|i|a) + q3 F(r|hi|a,r|h|i|a) + q4 F(r|i|ha,r|i|h|a).

We provide a formula for the antipode on the F basis.

Theorem 12.31. The antipode s :
−→
Σ∗
q →

−→
Σ∗
q is given by

−→
Σ∗
q [I]→

−→
Σ∗
q [I]

sI(F(G,D)) =
∑

(F,H) :
F≤H≤D,G∨F=D

(−1)deg(D)−deg(H)+deg(F ) qdist(F,F ) F(FH,FD),

where deg(G) is the number of blocks in G, G denotes the opposite of G, and
dist(F,G) is as in (10.33).

The proof is omitted. As an example,

s
(
F(ha|ri,h|a|r|i)

)
= q5 F(i|ra|h,i|a|r|h) − q

5 F(i|a|r|h,i|a|r|h) + q6 F(i|r|a|h,h|a|r|i).

12.5.2. The M basis. Recall that the M and F bases are related by (12.4). The
coproduct and product on the M basis are given by the following formulas.

Theorem 12.32. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

−→
Σ∗
q [I]→

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]

M(G,D) 7→

{
M(G1,D1) ⊗M(G2,D2) if K = S|T is a vertex of G,

0 otherwise,

where G1, G2, D1 and D2 are defined by bK(G) = (G1, G2) and bK(D) = (D1, D2).
The product is given by

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]→

−→
Σ∗
q [I]

M(G1,D1) ⊗M(G2,D2) 7→
∑

G:KG=jK(G1,G2)

qdist(K,G)M(G,GjK(D1,D2)),

where the vertex K = S|T is fixed, and dist(K,G) is as in (10.33).

The proof is similar to those of [12, Theorems 8.2.1 and 8.2.3]; we omit it. We
now give a combinatorial formulation of the product and coproduct.

Theorem 12.33. Fix a decomposition I = S ⊔ T . The coproduct is given by
−→
Σ∗
q [I]→

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]

M(G,D) 7→

{
M(G|S,D|S) ⊗M(G|T ,D|T ) if S is an initial segment of G,

0 otherwise,
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with the restriction G|S as in Section 10.1.6.
The product is given by

−→
Σ∗
q [S]⊗

−→
Σ∗
q [T ]→

−→
Σ∗
q [I]

M(G1,D1) ⊗M(G2,D2) 7→
∑

G:G a quasi-shuffle of G1 and G2

qschS,T (D)M(G,D),

where schS,T (D) is the Schubert cocycle (9.12) and D is the unique shuffle of D1

and D2, that refines G and keeps the blocks of D1 before D2, whenever there is such
a choice.

In the situation of the above theorem, schS,T (D) = schS,T (G), the latter being
the Schubert cocycle on faces (9.12).

An example for the coproduct and product is given below.

M(sh|iv|a,s|h|i|v|a) 7→ 1⊗M(sh|iv|a,s|h|i|v|a) +M(sh,s|h) ⊗M(iv|a,i|v|a)

+M(sh|iv,s|h|i|v) ⊗M(a,a) +M(sh|iv|a,s|h|i|v|a) ⊗ 1.

M(ha,h|a) ⊗M(r|i,r|i) 7→M(ha|r|i,h|a|r|i) +M(har|i,h|a|r|i) + q2M(r|ha|i,r|h|a|i)

+ q2M(r|hai,r|h|a|i) + q4M(r|i|ha,r|i|h|a).

The coradical filtration of
−→
Σ∗
q can be readily described using the coproduct

formula as follows. This discussion does not depend on the parameter q and is a
special case of that in Section 11.9.4.

Given the factors M(G1,D1) and M(G2,D2) of the component ∆S,T of the co-
product, one can uniquely recover M(G,D) by

G = jK(G1, G2) and D = jK(D1, D2)

where K = S|T . This shows that P(k)(
−→
Σ∗
q) is the species spanned by

{M(G,D) | dim(G) ≤ k − 2}.

The case k = 1 yields the primitive element species. It is spanned by the elements
M(∅,D).

Theorem 12.34. The antipode s :
−→
Σ∗
q →

−→
Σ∗
q is given by

−→
Σ∗
q [I]→

−→
Σ∗
q [I]

sI(M(G,D)) = (−1)deg(G)
∑

F :F≤G

qdist(F,F )M(F,FD),

where deg(G) is the number of blocks in G, and G denotes the opposite of G, and
dist(F,G) is as in (10.33).

The proof is similar to that of the antipode formula for Σ∗
q given in Theo-

rem 12.21, and hence omitted. As an example,

s
(
M
m|i|k|s|h|l|a

)
= −Mm|i|k|s|h|l|a − q

10M
k|s|h|l|a|m|i

− q10M
l|a|m|i|k|s|h

− q16M
l|a|k|s|h|m|i

.
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12.5.3. The H basis. We now describe the coproduct, product and antipode of
−→
Σq on the H basis by dualizing the formulas on the M basis.

Theorem 12.35. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

−→
Σq[I]→

−→
Σq[S]⊗

−→
Σq[T ]

H(F,C) 7→

{
qdist(F,K) H(F1,C1) ⊗H(F2,C2) if K = S|T satisfies FK ≤ C,

0 otherwise,

where bK(KF ) = (F1, F2) and bK(KC) = (C1, C2).
The product is given by

−→
Σq[S]⊗

−→
Σq[T ]→

−→
Σq[I]

H(F1,C1) ⊗H(F2,C2) 7→ H(jK(F1,F2),jK(C1,C2)),

where the vertex K is defined to be S|T .

For example,

H
u|m|a 7→ 1⊗H

u|m|a + q2Ha ⊗Hu|m +Hu ⊗Hm|a

+ q H
u|a ⊗Hm +Hu|m ⊗Ha +H

u|m|a ⊗ 1.

H
l|a|k ⊗Hs|h|m|i

7→ H
l|a|k|s|h|m|i

.

Note that:

• only the vertices which belong to the cone Ψ(F,C) associated to the di-
rected face (F,C) as in Proposition 10.14 contribute to the coproduct,
• in the above definitions, we are implicitly using the break and join maps

on directed faces (10.66),
• for the coproduct, we are implicitly using the left module structure of

directed faces over the algebra of faces (10.51).

Theorem 12.36. The antipode s :
−→
Σq →

−→
Σq is given by

−→
Σq[I]→

−→
Σq[I]

sI(H(F,C)) = qdist(F,F )
∑

G:F≤G,FG≤C

(−1)deg(G)H(G,GC).

For example,
s
(
H
m|a|u

)
= q2H

u|m|a
− q2H

u|m|a.

The above result is an instance of a much more general antipode formula given
in Theorem 11.38: set q = L∗

+.

12.5.4. The K basis. The descriptions for the structure maps of
−→
Σq on the K

basis follow from those for
−→
Σ∗
q on the F basis by duality. The formula for the

product is worth-stating in combinatorial terms.

Theorem 12.37. The product is given by
−→
Σq[S]⊗

−→
Σq[T ]→

−→
Σq[I]

K(F1,C1) ⊗K(F2,C2) 7→ K(F1·F2,C1·C2) +K(F1`F2,C1·C2),
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where F1 · F2 is the concatenation of the set compositions F1 and F2, and F1 ` F2

is the unique quasishuffle of F1 and F2 in which the last block of F1 is merged with
the first block of F2.

12.5.5. Self-duality.

Proposition 12.38. For q not an algebraic integer, the Hopf monoid
−→
Σq is self-

dual. The isomorphism to its dual is given by
−→
Σq →

−→
Σ∗
q H(F,C) 7→

∑

(G,D):FD=C,GC=D

qdist(C,D)M(G,D).

Proof. It can be directly checked that the above map is a morphism of mon-
oids and comonoids. Hence it is a morphism of q-Hopf monoids. We next note that
the bilinear form on directed faces which induces the above map coincides with the
bilinear form in Lemma 10.35. The result follows. �

Applying the signature functor yields:

(
−→
Σq)

− ∼=
−→
Σ−q and (

−→
Σ∗
q)

− ∼=
−→
Σ∗

−q.

In other words,
−→
Σq and

−→
Σ−q are signed partners, and

−→
Σ∗
q and

−→
Σ∗

−q are signed
partners.

12.5.6. 0-Hopf monoids. We now briefly discuss the connected 0-Hopf monoids
−→
Σ∗

0 and
−→
Σ0 on the M and H basis.

The coproduct of
−→
Σ∗

0 is the same as given in Theorem 12.32 (it does not depend
on q). The product is given by

−→
Σ∗

0[S]⊗
−→
Σ∗

0[T ]→
−→
Σ∗

0[I]

M(G1,D1) ⊗M(G2,D2) 7→
∑

G:KG=jK(G1,G2)=GK

M(G,GjK(D1,D2)),

where the vertex K = S|T is fixed. This follows from (10.36). Explicitly, as
observed for Σ∗

0, the sum consists of exactly two summands.
For example,

M(la|ksh,l|a|k|s|h) ⊗M(mi,m|i) 7→M(la|ksh|mi,l|a|k|s|h|m|i) +M(la|kshmi,l|a|k|s|h|m|i).

The antipode is given by
−→
Σ∗

0[I]→
−→
Σ∗

0[I]

(s0)I(M(G,D)) = (−1)deg(G)M(∅,D),

where ∅ is the empty face of the complex, or equivalently, the composition of I with
one block.

We now consider the dual situation. The product of
−→
Σ0 is the same as given

in Theorem 12.35 (it does not depend on q). The coproduct is given by
−→
Σ0[I]→

−→
Σ0[S]⊗

−→
Σ0[T ]

H(F,C) 7→

{
H(F1,C1) ⊗H(F2,C2) if K = S|T satisfies K ≤ C,

0 otherwise,

where bK(KF ) = (F1, F2), bK(C) = (C1, C2). Explicitly, the coproduct is nonzero
only if C is a concatenation of an order on S with an order on T .
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For example,

H
s|h|i|v|a 7→ 1⊗H

s|h|i|v|a +Hs ⊗Hh|i|v|a +Hs|h ⊗Hi|v|a

+Hs|h|i ⊗Hv|a +H
s|h|i|v ⊗Ha +H

s|h|i|v|a ⊗ 1.

The antipode is given by
−→
Σ0[I]→

−→
Σ0[I]

(s0)I(H(F,C)) =





∑
G:G≤C

(−1)deg(G)H(G,C) if F = ∅,

0 otherwise.

For example,

s0(Hu|m|a) = −Hu|m|a +H
u|m|a

+H
u|m|a −Hu|m|a.

We now address the issue of self-duality. Recall that P(k)(
−→
Σ∗

0) is the species
spanned by

{M(G,D) | deg(G) ≤ k}.

For the dual Hopf monoid, one can show that P(k)(
−→
Σ0) is the species spanned by

{ ∑

G:F≤G≤C

(−1)deg(G)H(G,C) | F ≤ C and deg(F ) ≤ k

}
.

In particular, by letting k = 1, it follows that for each I, the I-component of the
primitive element species has basis

{ ∑

G:G≤C

(−1)deg(G)H(G,C)

}
,

one element for each linear order C on I. As a consequence,

P(
−→
Σ∗

0)
∼= P(

−→
Σ0) ∼= L+.

Hence by Theorem 11.49, the 0-Hopf monoids
−→
Σ0 and

−→
Σ∗

0 are isomorphic, and
hence self-dual. This complements the result of Proposition 12.38.

Question 12.39. Describe in explicit terms the coradical filtration and, in partic-

ular, the primitive element species of
−→
Σq. The answer for the case q = 0 is given

above.

12.5.7. An aside on lattice congruences. Going over the results and proofs of
the preceding sections reveals a striking parallel, particularly between those for the
Hopf monoid IL of pairs of chambers (Section 12.3) and those for the Hopf monoid
−→
Σ of directed faces (in this section).

In fact, it is possible to view both
−→
Σ and IL as special cases of a very gen-

eral construction of Hopf monoids. This is based on the notion of lattice congru-
ence [88, 150, 314]. We plan to pursue this theme in a future work. Ideas of Nathan
Reading play a key role in this. In a series of papers [303, 304, 306], Reading has
studied lattice congruences on the poset of regions of a hyperplane arrangement,
and in [305] he has applied the case of the braid arrangement to the construction of
Hopf algebras. His methods can be adapted to yield a construction of Hopf monoids

of which
−→
Σ and IL are extreme examples.
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12.6. The Hopf monoids of flats

In this section, we study the Hopf monoids Π and Π∗ which are both based
on set partitions (or flats) and dual to each other. Each one has two bases; we
use h and q for the former and m and p for the latter, in agreement with Nota-
tion (12.1). Duality is as indicated in (12.2). It turns out that these Hopf monoids
are isomorphic, and hence self-dual (Proposition 12.48). This may be regarded as
a commutative and cocommutative version of the situation for the Hopf monoids
of pairs of chambers.

The discussion below will make use of the break and join maps for flats (10.65)
and the module structure of flats over faces (10.18).

12.6.1. The m and p bases. We define the product and coproduct of Π∗ on the
m basis and then describe it on the p basis. Recall that these bases are related
by (12.5).

Definition 12.40. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

Π∗[I]→ Π∗[S]⊗Π∗[T ]

mX 7→

{
mX1 ⊗mX2 if K = S|T satisfies K ·X = X ,

0 otherwise,

where X1 and X2 are defined by bK(X) = (X1, X2).
The product is given by

Π∗[S]⊗Π∗[T ]→ Π∗[I]

mX1 ⊗mX2 7→
∑

X:K·X=jK(X1,X2)

mX .

The vertex K = S|T ∈ Σ[I] is fixed in the above sum.

Proposition 12.41. The coproduct of Π∗ is identical on the m and p bases. The
product on the p basis is given by

Π∗[S]⊗Π∗[T ]→ Π∗[I]

pX1 ⊗ pX2 7→ pjK(X1,X2).

The proof is omitted.
The product and coproduct can be described combinatorially using the notions

of restriction and quasi-shuffle of set partitions (Section 10.1.6). They are as follows.

Proposition 12.42. Fix a decomposition I = S ⊔ T . The coproduct is given by

Π∗[I]→ Π∗[S]⊗Π∗[T ]

mX 7→

{
mX|S ⊗mX|T if S is the union of some blocks of X ,

0 otherwise,

where X |S is the restriction of X to S. The coproduct on the p basis is given by
the same formula.
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The product is given by

Π∗[S]⊗Π∗[T ]→ Π∗[I]

mX1 ⊗mX2 7→
∑

X:X a quasi-shuffle of X1 and X2

mX

pX1 ⊗ pX2 7→ pX1⊔X2 .

For example,

m{um,a} 7→ 1⊗m{um,a} +m{um} ⊗m{a} +m{a} ⊗m{um} +m{um,a} ⊗ 1.

Since the coproduct is identical on the m and p basis, the same example can be
given on the p basis. For the product,

m{sh,i} ⊗m{va} 7→ m{sh,i,va} +m{sh,iva} +m{shva,i}

p{sh,i} ⊗ p{va} 7→ p{sh,i,va}.

The coradical filtration of Π∗ can be readily described using the coproduct
formula: P(k)(Π∗) is the species spanned by

{mX | X has k blocks}.

The case k = 1 yields the primitive element species. It is spanned by the one-
block partitions; so it is one-dimensional in each component. In other words, the
primitive element species is E+.

We now turn our attention to the antipode formula for Π∗. We begin with a
preliminary lemma.

Lemma 12.43. Let X and Y be set partitions with X ≤ Y . Then
∑

H:H·X=Y

(−1)deg(H) = (−1)deg(Y ) (X : Y )!,

where deg(Y ) is the number of blocks in Y and (X : Y )! is given by (10.5).

Proof. Fix a face F whose support is X . Then we claim
∑

H:
H·X=Y

(−1)deg(H) =
∑

G:
supp(G)=Y

∑

H:
HF=G

(−1)deg(H) =
∑

G:
supp(G)=Y

F≤G

(−1)deg(G).

The first equality is clear. The second equality follows from Lemma 11.37. The
result now follows from (10.6). �

Theorem 12.44. The antipode s : Π∗ → Π∗ is given by

Π∗[I]→ Π∗[I]

sI(mY ) = (−1)deg(Y )
∑

X:X≤Y

(X : Y )!mX ,

sI(pY ) = (−1)deg(Y ) pY .

This is an instance of a much more general antipode formula given in Theo-
rem 11.41: set q = E+. A direct proof is given below.
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Proof. For deriving the antipode formula on the p basis, we begin by noting
that for a singleton set Y , the element pY is primitive and hence sI(pY ) = −pY .
The fact that s is an antimorphism of monoids then gives the general formula.

For deriving the antipode formula on the m basis, we employ Takeuchi’s for-
mula (8.27). As a first step, we compute µS,T∆S,T using the geometric definitions.
Since the break and join maps are inverses, we have,

µS,T
(
∆S,T (mY )

)
=
∑

X

mX ,

where the sum is over all X which for K = S|T satisfy K · X = Y . The same
formula holds for all the iterated composites, namely for

µS1,...,Sk∆S1,...,Sk ,

the sum is over all X which for H = S1| · · · |Sk satisfy H · X = Y . Therefore by
Takeuchi’s formula, we obtain:

sI(mY ) =
∑

X

( ∑

H:H·X=Y

(−1)deg(H)

)
mX .

The result now follows from Lemma 12.43. �

For example,

s
(
p{sh,i,va}

)
= −p{sh,i,va}

s
(
m{sh,i,va}

)
= −m{sh,i,va} − 2m{shi,va} − 2m{sh,iva} − 2m{shva,i} − 6m{shiva}.

12.6.2. The h basis. We now describe the product, coproduct and antipode on
the h basis of Π by dualizing the formulas in the m basis.

Proposition 12.45. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

Π[I]→ Π[S]⊗Π[T ]

hY 7→ hY1 ⊗ hY2

where Y1 and Y2 are defined by bK(K · Y ) = (Y1, Y2).
The product is given by

Π[S]⊗Π[T ]→ Π[I]

hY1 ⊗ hY2 7→ hjK(Y1,Y2).

The vertex K = S|T ∈ Σ[I].

Proposition 12.46. Fix a decomposition I = S ⊔ T . The coproduct is given by

Π[I]→ Π[S]⊗Π[T ]

hY 7→ hY |S ⊗ hY |T ,

with the restriction Y |S as in Section 10.1.6.
The product is given by

Π[S]⊗Π[T ]→ Π[I]

hY1 ⊗ hY2 7→ hY1⊔Y2 .
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For example,

h{lak,s} ⊗ h{h,mi} 7→ h{lak,s,h,mi}.

h{um,a} 7→ 1⊗ h{um,a} + h{u} ⊗ h{m,a} + h{m} ⊗ h{u,a} + h{u,a} ⊗ h{m}

+ h{m,a} ⊗ h{u} + h{a} ⊗ h{um} + h{um} ⊗ h{a} + h{um,a} ⊗ 1.

Theorem 12.47. The antipode s : Π→ Π is given by

Π[I]→ Π[I]

sI(hX) =
∑

Y :X≤Y

(−1)deg(Y ) (X : Y )!hY ,

where deg(Y ) is the number of blocks in Y .

For example,

s
(
h{sh,i,va}

)
= −h{sh,i,va} + 2 h{s,h,i,va} + 2 h{sh,i,v,a} − 4 h{s,h,i,v,a}.

The above result is an instance of a much more general antipode formula given in
Theorem 11.40: set q = E∗

+.

12.6.3. Self-duality. Observe by dualizing that the formulas on the q basis of
Π are the same as the formulas on the p basis of Π∗. This shows that the Hopf
monoids Π and Π∗ are isomorphic by means of the map

qX 7→ pX .

Thus, Π is a self-dual Hopf monoid. There is another isomorphism between Π and
Π∗ which we consider next. Recall the numbers X ! and X !b associated to a set
partition X from Section 10.1.7.

Proposition 12.48. The Hopf monoid Π is commutative, cocommutative, and
self-dual. Explicitly, the map ψ : Π→ Π∗ defined by

hY 7→
∑

X

(X ∨ Y )!mX

is an isomorphism of Hopf monoids, where X ∨ Y is the smallest refinement of X
and Y . In addition, ψ maps

qX 7→ X !bpX .
Proof. Define ψ using the expression on the q and p bases. Formula (10.3) and

the fact that the product and coproduct on the q and p bases are given by identical
formulas imply that ψ is an isomorphism of Hopf monoids. The expression for ψ
on the h and m bases follows from (12.5), (12.6) and (10.4). �

The isomorphism ψ is part of a large diagram (12.14) which we discuss in
Section 12.8.

12.7. The Hopf monoids of directed flats

In this section, we study the Hopf monoids
−→
Π and

−→
Π∗ which are both based on

linear set partitions (or directed flats) and dual to each other. We use h for the basis
of the former andm for the dual basis of the latter, in agreement with Notation 12.1.

The Hopf monoid
−→
Π is commutative but not cocommutative. Dually,

−→
Π∗ is not

commutative but cocommutative. It follows that these Hopf monoids cannot be
isomorphic.
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The discussion below makes use of the break and join maps for directed flats
defined in (10.67), the left module structure of directed flats over faces (10.52),
and the description of the cone Ψ(L) associated to a directed flat L given in Sec-
tion 10.9.3.

12.7.1. The m basis. We describe the product, coproduct and antipode of
−→
Π∗

on the m basis.

Definition 12.49. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

−→
Π∗[I]→

−→
Π∗[S]⊗

−→
Π∗[T ]

mL 7→

{
mL1 ⊗mL2 if K = S|T satisfies K · L = L,

0 otherwise,

where L1 and L2 are defined by bK(L) = (L1, L2).
The product is given by

−→
Π∗[S]⊗

−→
Π∗[T ]→

−→
Π∗[I]

mL1 ⊗mL2 7→
∑

L:K·L=jK(L1,L2),K⊆Ψ(L)

mL.

The vertex K = S|T ∈ Σ[I] is fixed in the above sum. The condition K ⊆ Ψ(L)
means that K belongs to the cone Ψ(L) associated to L as in Section 10.9.3.

The product and coproduct can be described combinatorially using the notions
of restriction and quasi-shuffle of linear set partitions (Section 10.1.6). They are as
follows.

Proposition 12.50. Fix a decomposition I = S ⊔ T . The coproduct is given by
−→
Π∗[I]→

−→
Π∗[S]⊗

−→
Π∗[T ]

mL 7→

{
mL|S ⊗mL|T if S is the union of some blocks of L,

0 otherwise,

where L|S is the restriction of L to S.
The product is given by

−→
Π∗[S]⊗

−→
Π∗[T ]→

−→
Π∗[I]

mL1 ⊗mL2 7→
∑

L:L a quasi-shuffle of L1 and L2

mL.

For example,

m{s|h|i,v|a} 7→ 1⊗m{s|h|i,v|a} +m{s|h|i} ⊗m{v|a}

+m{v|a} ⊗m{s|h|i} +m{s|h|i,v|a} ⊗ 1.

m{v|i|s,h} ⊗m{n|u} 7→ m{v|i|s,h,n|u} +m{v|i|s,h|n|u} +m{v|i|s|n|u,h}.

The coradical filtration of
−→
Π∗ can be readily described using the coproduct

formula: P(k)(
−→
Π∗) is the species spanned by

{mL | L has k blocks}.
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The case k = 1 yields the primitive element species. It is spanned by the one-block
linear partitions. These are same as linear orders; so the primitive element species
is L+.

Theorem 12.51. The antipode s :
−→
Π∗ →

−→
Π∗ is given by

−→
Π∗[I]→

−→
Π∗[I]

sI(mM ) = (−1)deg(M)
∑

L:L≤M

mL,

where deg(M) is the number of blocks of the partition underlying M , and ≤ is the
partial order on linear set partitions (10.55).

For example,

s
(
m{s|h,i,v|a}

)
= −m{s|h,i,v|a}−m{s|h|i,v|a}−m{i|s|h,v|a}−m{s|h,i|v|a}−m{s|h,v|a|i}

−m{s|h|v|a,i} −m{v|a|s|h,i} −m{s|h|i|v|a} −m{i|s|h|v|a}

−m{s|h|v|a|i} −m{i|v|a|s|h} −m{v|a|s|h|i} −m{v|a|i|s|h}.

The above result is an instance of a much more general antipode formula given
in Theorem 11.41: set q = L+. More directly, it follows from Takeuchi’s for-
mula (8.27) and Lemma 12.52 below. The details are similar to the proof of Theo-
rem 12.44.

Lemma 12.52. Let L and M be linear set partitions with L ≤M . Then
∑

H:H·L=M,H⊆Ψ(L)

(−1)deg(H) = (−1)deg(M).

Proof. Fix a directed face (F,C) with support L. Now we claim
∑

H:
H·L=M
H⊆Ψ(L)

(−1)deg(H) =
∑

(G,D):
supp(G,D)=M

∑

H:
H·(F,C)=(G,D)

FH≤C

(−1)deg(H)

=
∑

(G,D):
supp(G,D)=M
G·(F,C)=(G,D)

FG≤C

∑

H:
HF=G

(−1)deg(H)

=
∑

(G,D):
supp(G,D)=M
G·(F,C)=(G,D)

FG≤C, F≤G

(−1)deg(G).

The first equality follows from the definitions. The second equality follows from
Proposition 10.17 (and the discussion preceding it). The third equality follows from
Lemma 11.37.

To finish the proof, we note that the conditions in the last summation uniquely
determine (G,D): D = FC and G is the unique face between F and FC such that
the support of (G,D) is M . �

Remark 12.53. In contrast to Theorem 12.51, the antipode formula for Π∗ (The-
orem 12.44) involves the nontrivial coefficients (X : Y )!. Analogous to the (X : Y )!,
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one may define coefficients (L : M)! for L ≤M as follows. Fix a directed face (F,C)
with support L. Let (L : M)! be the cardinality of the set

{(G,D) | (F,C) ≤ (G,D), supp(G,D) = M}.

This is analogous to expression (10.6) for the coefficients (X : Y )!. The partial
order on directed faces forces D = C and then G is uniquely determined. Thus,
(L : M)! = 1 always, and so we do not see any coefficients other than 1 in the
antipode formula of Theorem 12.51.

12.7.2. The h basis. We now describe the product, coproduct and antipode on

the h basis of
−→
Π by dualizing the formulas in the m basis.

Proposition 12.54. Fix a decomposition I = S ⊔ T into nonempty subsets. The
coproduct is given by

−→
Π[I]→

−→
Π[S]⊗

−→
Π[T ]

hL 7→

{
hL1 ⊗ hL2 if K = S|T satisfies K ⊆ Ψ(L),

0 otherwise,

where L1 and L2 are defined by bK(K · L) = (L1, L2).
The product is given by

−→
Π[S]⊗

−→
Π[T ]→

−→
Π[I]

hL1 ⊗ hL2 7→ hjK(L1,L2).

The vertex K = S|T ∈ Σ[I].

Proposition 12.55. Fix a decomposition I = S ⊔ T . The coproduct is given by
−→
Π[I]→

−→
Π[S]⊗

−→
Π[T ]

hL 7→

{
hL|S ⊗ hL|T if S < T in L,

0 otherwise,

where S < T in L means that in each block li of L, elements of li ∩ S precede the
elements of li ∩ T according to the linear order on li.

The product is given by
−→
Π[S]⊗

−→
Π[T ]→

−→
Π[S ⊔ T ]

hL1 ⊗ hL2 7→ hL1⊔L2.

For example,

h{u|m,a} 7→ 1⊗ h{u|m,a} + h{a} ⊗ h{u|m} + h{u|m} ⊗ h{a}

+ h{u} ⊗ h{m,a} + h{m,a} ⊗ h{u} + h{u|m,a} ⊗ 1.

h{l|a|k,s} ⊗ h{h,m|i} 7→ h{l|a|k,s,h,m|i}.

Theorem 12.56. The antipode s :
−→
Π →

−→
Π is given by

−→
Π[I]→

−→
Π[I]

sI(hL) =
∑

M :L≤M

(−1)deg(M) hM ,

where deg(M) is the number of blocks of the partition underlying M .
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For example,

s
(
h{s|h,i,v|a}

)
= −h{s|h,i,v|a} + h{s,h,i,v|a} + h{s|h,i,v,a} − h{s,h,i,v,a}.

The above result is an instance of a much more general antipode formula given in
Theorem 11.40: set q = L∗

+.

12.8. Relating the Hopf monoids

In this section, we relate the various Hopf monoids that have been studied in
the preceding sections. The main result is as follows.

Theorem 12.57. The following is a commutative diagram of Hopf monoids.

(12.14)

L
T (ς∗)

//

π

��

Σ
T (π∗

+)
//

πE∗
+

��

Υ∗

��
33

33
33

33
33

33
33

33
33

33
33

33
33

33
33

33
33

33
−→
Σ

~β∗

//

πL∗
+

IL

s
∼=

  A
AA

AA
AA

AA
AA

AA
AA

��

IL∗

~β

��

E
S(ς∗)

//

∼=

��
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
Π

S(π∗
+)
//

ψ

∼=

��
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

−→
Π

Υ

LLL
LLL

LL

LLLLLLLLLLLLLLL

&&LLLLLLLLLLLL−→
Π∗

π∗
L+

//

S∨(π+)

��

−→
Σ∗

T ∨(π+)

��

Π∗
π∗
E+

//

S∨(ς)

��

Σ∗

T ∨(ς)

��

E∗
π∗

// L∗

Moreover, the diagram is self-dual, with duality acting by reflection across the di-
agonal.

A small part of this diagram is given by diagram (8.34). We now make some
comments on the proof. Let us first only worry about the underlying species. In
this situation, the above result is a special case of [12, Theorem 5.6.1] which was
stated for any finite Coxeter group. Letting the Coxeter group be the symmetric
group recovers the above result. Motivation for (12.14) from purely geometric
considerations (see Chapter 10) is given in [12, Chapter 5].

Let us now consider the Hopf monoid structure. We need to check that each
object is a Hopf monoid and each map is a morphism of Hopf monoids. This can
be verified by means of very similar arguments to those given in [12, Chapter 6]
for proving [12, Theorem 6.1.3]. Alternatively, as shown in Table 12.1, each object
is the value of some functor such as T , S, etc. These functors take values in the
category of Hopf monoids, so it follows that each object is a Hopf monoid. Further,
each map can be obtained through the freeness or cofreeness properties of these Hopf
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monoids (except for s, which has been considered in Proposition 12.12). It follows
then that each map is a morphism of Hopf monoids. The maps are described in
explicit terms in Section 12.8.2 below. One may also proceed directly and employ
these descriptions to prove that they are morphisms of Hopf monoids (one may
appeal to duality to reduce the number of verifications).

The maps in diagram (12.14) are described in Section 12.8.2 in terms of the
linear bases introduced in Section 12.1. The way in which they arise as universal
morphisms is briefly indicated in Section 12.8.3.

We touch upon a q-analogue of diagram (12.14) in Section 12.8.4; see (12.20).

12.8.1. Universal objects. In Chapter 11, we constructed the functors T , S,
T ∨ and S∨, which were the species analogues of the tensor and symmetric algebra
functors. In particular, we showed that the Hopf monoids L and E, and their duals,
can be obtained by evaluating these functors on the positive species X. As a result,
these Hopf monoids satisfy certain universal properties. For example, L is the free
monoid on one generator, and so on. We now show that most of the Hopf monoids
in (12.14) can be obtained in the above manner.

Proposition 12.58. There are isomorphisms of Hopf monoids

Σ∗ ∼= T ∨(E+),
−→
Σ∗ ∼= T ∨(L+), Π∗ ∼= S∨(E+) and

−→
Π∗ ∼= S∨(L+).

The first isomorphism identifies the basis element MG of Σ∗ with the distin-
guished basis element of the 1-dimensional space E+(G) (see Notation 11.1). The
second isomorphism identifies

M(G,D) ∈
−→
Σ∗ ←→ D1 ⊗ · · · ⊗Dk ∈ L(G),

where bG(D) = (D1, . . . , Dk) is as in (10.58). The other isomorphisms are defined

similarly, in terms of the m bases of Π∗ and
−→
Π∗.

Proof. We recall that the product on q gives rise to the quasi-shuffle product
on T ∨(q) (Section 11.4.3). The coproduct on T ∨(q) is given by deconcatenation
and for that one only requires q to be a positive species (Definitions 11.17). It is
straightforward to see that for q = E+, this agrees with the combinatorial descrip-
tion of Σ∗ given by Proposition 12.20. The remaining checks are similar. �

It is well known that the Hopf algebra of quasi-symmetric functions satisfies
a certain universal property [10, Theorem 4.1]. The same is true of symmetric
functions. Proposition 12.58 provides a species analogue of these facts. It also
reveals a parallel between the Hopf monoids Π∗ and Σ∗. This was also clear from

their combinatorial and geometric definitions. A similar remark applies to
−→
Π∗ and

−→
Σ∗. Dually:

Proposition 12.59. There are isomorphisms of Hopf monoids

Σ ∼= T (E∗
+),

−→
Σ ∼= T (L∗

+), Π ∼= S(E∗
+) and

−→
Π ∼= S(L∗

+).

The isomorphisms are defined as in Proposition 12.58, using the H and h bases.
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12.8.2. The morphisms. We now describe the various maps in (12.14).
The map s : IL → IL∗ is the switch map sq defined in (12.9) with q = 1. It

sends

K(D,C) 7→ F(C,D).

The morphism ψ : Π→ Π∗ sends

hY 7→
∑

X

(X ∨ Y )!mX .

It is shown in Propositions 12.12 and 12.48 that s and ψ are self-dual morphisms
of Hopf monoids. Duality is as indicated under Notation 12.1.

The vertical maps are instances of the abelianization (Section 11.6.2). The map
π : L→ E is the morphism of (8.31). The map

(12.15) πE∗
+

: Σ→ Π sends HF 7→ hsupp(F ),

and the map

(12.16) πL∗
+

:
−→
Σ →

−→
Π sends H(F,C) 7→ hsupp(F,C),

where supp denotes the support map (Section 10.1.5). In other words, πE+ sends
a set composition to the set partition obtained by forgetting the order among the
blocks, and πL+ sends a linear set composition to the linear set partition obtained
by forgetting the order among the blocks (keeping the order within each block).

The duals of the preceding maps are as follows. The map π∗ : E∗ → L∗ is the
morphism of (8.33). The map

π∗
E+

: Π∗ → Σ∗ sends mY 7→
∑

G: supp(G)=Y

MG,

and the map

π∗
L+

:
−→
Π∗ →

−→
Σ∗ sends mM 7→

∑

(G,D): supp(G,D)=M

M(G,D).

We turn to the morphisms obtained by evaluation of the functors T and S
on the maps π+ and ς. The map π+ : L+ → E+ is the positive part of (8.31),
while ς : E+ → X is the canonical isomorphism on singletons and zero otherwise.
It follows that

T (ς∗) : L→ Σ sends l 7→ Hl

and

S(ς∗) : E→ Π sends ∗I 7→ hI ,

where we identify I with the partition of I into singletons. The next maps involve
the base maps of Section 10.1.5. First,

T (π∗
+) : Σ→

−→
Σ sends HF 7→

∑

C:F≤C

H(F,C).

The sum is over all chambers C containing F , or equivalently, over all linear orders
that refine the set composition F . Since base(F,C) = F , this may also be seen as
the sum over all directed faces with base F . Similarly,

S(π∗
+) : Π→

−→
Π sends hX 7→

∑

L: base(L)=X

hL.
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The sum is over all directed flats with base X , or equivalently, over all linear
partitions L obtained by ordering elements within each block of X .

The dual maps are as follows. We have that

T ∨(ς) : Σ∗ → L∗ sends MF 7→

{
F ∗ if F is a linear order,

0 otherwise,

while

S∨(ς) : Π∗ → E∗ sends mX 7→

{
∗I if X is the partition of I into singletons,

0 otherwise.

The maps T ∨(π+) and S∨(π+) are the linearizations of the base maps. Explicitly,

T ∨(π+) :
−→
Σ∗ → Σ∗ sends M(F,C) 7→MF

and

S∨(π+) :
−→
Π∗ → Π∗ sends mL 7→ mbase(L).

We turn to the morphism ~β. Recall the descent map from Section 10.7.2. It
maps a pair of chambers (C,D) to a face Des(C,D) of D. Thus, (Des(C,D), D) is

a directed face. This allows us to define the map ~β as follows:

~β : IL∗ →
−→
Σ∗ sends F(C,D) 7→ F(Des(C,D),D).

It follows from (12.4) and (10.42) that

~β(F(C,D)) =
∑

G:Des(C,D)≤G≤D

M(G,D) =
∑

G:GC=D

M(G,D).

It may also be shown that

~β(M(C,D)) =

{
M(G,D) if C = GD,

0 otherwise,

where G = Des(C,D). The proof is similar to that of [12, Lemma 5.6.2] .
Dually,

~β∗ :
−→
Σ → IL sends K(F,C) 7→

∑

D: Des(D,C)=F

K(D,C)

and we have

~β∗(H(F,C)) =
∑

D: Des(D,C)≤F

K(D,C) =
∑

D:FD=C

K(D,C)

and also

~β∗(H(F,C)) = H(FC,C).

Finally, we come to the morphism Υ. It is defined as follows:

(12.17) Υ:
−→
Π → Σ∗ sends hL 7→

∑

F :F⊆Ψ(L)

MF ,
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where the sum is over all faces F contained in the cone Ψ(L) associated to the
directed flat L as in Section 10.9.3. Explicitly, given a linear set partition {l1, . . . , lr}
of I with lj a linear order on Sj,

(12.18) Υ(h{l1,...,lr}) =
∑

F

MF ,

where the sum is over those compositions F = F 1| · · · |F k of I such that, for each
i and j, (F 1 ∪ · · · ∪F i)∩Sj is an initial segment of lj. Note that the above map is
induced from the pairing between directed flats and faces

−→
Π[I]×Σ[I]→ k

given by

〈hL, HF 〉 =

{
1 if F ⊆ Ψ(L),

0 otherwise.

Dually,

Υ∗ : Σ→
−→
Π∗ sends HF 7→

∑

L:F⊆Ψ(L)

mL.

This completes the description of the morphisms in diagram (12.14). One other
map is worth-mentioning. We let β denote the composite

IL∗
~β
−→
−→
Σ∗ T ∨(π+)
−−−−−→ Σ∗.

Explicitly, β is given by

(12.19) β(F(C,D)) =
∑

G: Des(C,D)≤G≤D

MG =
∑

G:GC=D

MG.

The dual map β∗ : Σ→ IL is then given by

β∗(HF ) =
∑

(C,D): Des(D,C)≤F≤C

K(D,C) =
∑

(C,D):FD=C

K(D,C).

The map β∗ is the same as the map considered in (10.44).

12.8.3. Universality of the morphisms. We saw in Propositions 12.58 and
12.59 that most of the Hopf monoids in (12.14) arise via universal constructions.
With this viewpoint, all the morphisms in (12.14) then arise from the universality
of these Hopf monoids. We now explain this briefly.

Convention 12.60. Later in this section, as well as throughout Chapter 13, we
encounter several morphisms of species of the form

p→ E,

where E is the exponential species (Example 8.3) and p is one of several species.
For ease of notation, we will describe these morphisms in terms of functionals

fI : p[I]→ k,

one for each finite set I. The convention followed is that the I-component of the
morphism is then

p[I]→ E[I], x 7→ fI(x) · ∗I ,

where ∗I is the distinguished basis element of E[I].
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Table 12.2. Universal maps.

cofree
Hopf

monoid
morphism of monoids ζ

morphism
of Hopf

monoids ζ̂

−→
Σ∗ IL∗

+ → L+ F(C,D) 7→

{
D if C = D

0 otherwise
~β

−→
Σ∗ −→

Π∗
+ → L+ m{l1,...,lk} 7→

{
l1 if k = 1

0 otherwise
π∗
L+

Σ∗ IL∗
+ → E+ F(C,D) 7→

{
1 if C = D

0 otherwise
β

Σ∗ −→
Π+ → E+ h{l1,...,lk} 7→ 1 Υ

Σ∗ −→
Σ∗

+ → E+ M(F,D) 7→

{
1 if F is empty

0 otherwise
T ∨(π+)

Σ∗ Π∗
+ → E+ m{X1,...,Xk} 7→

{
1 if k = 1

0 otherwise
π∗
E+

Consider Σ∗, the cofree Hopf monoid on the nonunital monoid E+ (Proposi-
tion 12.58). The counit of the corresponding adjunction

ξ(E+) : Σ∗
+ → E+

is given by

MF 1|···|F l 7→

{
1 if l = 1,

0 otherwise.

In geometric language, MF maps to 1 if F is the empty face of Σ[I], and to 0
otherwise. It is easy to see directly that ξ(E+) is a morphism of nonunital monoids
but not of noncounital comonoids, as expected. The cofreeness of Σ∗ explains
the abundance of morphisms of Hopf monoids to Σ∗. For any Hopf monoid q,
a morphism of nonunital monoids ζ : q+ → E+ determines a morphism of Hopf

monoids ζ̂ : q→ Σ∗ (Theorem 11.23).

Similar statements apply to
−→
Σ∗ with E+ replaced by L+. According to Propo-

sition 12.58, it is the cofree Hopf monoid on the nonunital monoid L+. This again

explains the abundance of morphisms of Hopf monoids to
−→
Σ∗. The counit of the

corresponding adjunction

ξ(L+) :
−→
Σ∗

+ → L+,

is given by

M(F,D) 7→

{
D if F is the empty face,

0 otherwise.

Table 12.2 shows the morphisms of nonunital monoids either to L+ or to E+

which determine the various morphisms of Hopf monoids to
−→
Σ∗ and Σ∗ which occur

in diagram (12.14). We provide a couple of illustrations.
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Example 12.61. The union of two linear set compositions is another linear set
composition. Therefore, the map of species

ζ :
−→
Π → E

given by

ζ(hL) := 1

is a morphism of monoids. Here we are following Convention 12.60. The universal
property of Theorem 11.23 then yields a morphism of Hopf monoids

ζ̂ :
−→
Π → T ∨(E+) = Σ∗.

We now use (11.18) to calculate this map. Let {l1, . . . , lr} be a linear set partition
of I, with lj a linear order on Sj, and F = F 1| · · · |F k a composition of I. It follows
from Proposition 12.55 that the component of the iterated coproduct

∆F 1,...,Fk(h{l1,...,lr}) ∈
−→
Π[F 1]⊗ · · · ⊗

−→
Π[F k]

is 0 unless (F 1 ∪ · · · ∪ F i) ∩ Sj is an initial segment of lj for each i and j. In this

case, ∆F 1,...,Fk simply restricts h{l1,...,lr} to each block of F . It follows that ζ̂ = Υ,
the map in (12.18).

Example 12.62. Consider the Hadamard product (8.7) of the species L with its
dual and the canonical map

IL∗ = L× L∗ → E

given by evaluation. It is easy to see that this is a morphism of monoids, but not
of comonoids. The universal property of Theorem 11.23 then yields a morphism of
Hopf monoids

ζ̂ : IL∗ → T ∨(E+) = Σ∗.

We now use (11.18) to calculate this map. Let (C,D) be a pair of linear orders
(chambers) on I and F = F 1| · · · |F k a composition of I. It follows from Defini-
tion 12.7 that the component of the iterated coproduct

∆F 1,...,Fk(F(C,D)) ∈ IL∗[F 1]⊗ · · · ⊗ IL∗[F k]

is 0 unless F is a face of D and bF (FC) = bF (D), where bF refers to the break
map (10.58). Since the break map is an isomorphism, the second condition can be

rewritten simply as FC = D. It follows that ζ̂ = β, the map in (12.19).

So far, we have discussed morphisms to Σ∗ and
−→
Σ∗. Morphisms to Π∗ and

−→
Π∗

can be understood similarly. More precisely, Proposition 12.58 says that Π∗ and
−→
Π∗ are the cocommutative cofree Hopf monoids on E+ and L+ respectively. The
counits of the corresponding adjunctions, namely

ξ(E+) : Π∗
+ → E+ and ξ(L+) :

−→
Π∗

+ → L+,

coincide with the maps defined in Table 12.2. One then uses Theorem 11.27 to

construct the morphisms to Π∗ and
−→
Π∗.

The remaining morphisms in (12.14) can be obtained either by dualizing the
morphisms that we have discussed so far, or by directly using Proposition 12.59
and proceeding as we did in the cofree case.

Several additional examples of a combinatorial nature which illustrate these
universal properties are given in Chapter 13.
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12.8.4. A q-analogue. Recall from the preceding sections that the Hopf monoids

L, IL,
−→
Σ , and Σ, and their duals can be deformed using a parameter q. So far in

this section, we have only discussed the q = 1 (or undeformed) case. We now briefly
touch upon the q-analogue of the preceding discussion.

To start with, we have the following generalization of (a part of) Proposi-
tions 12.58 and 12.59.

Proposition 12.63. There are isomorphisms of q-Hopf monoids

Σ∗
q = T ∨

q (E+),
−→
Σ∗
q = T ∨

q (L+), Σq = Tq(E
∗
+), and

−→
Σq = Tq(L

∗
+).

The functors Tq and T ∨
q are defined in Section 11.7. Roughly speaking, these

are deformations of T and T ∨ via the Schubert cocycle on faces. This is precisely
how the Hopf monoids Σ, and so on were deformed. This explains why the above
result holds.

We now turn to the relationships between these q-Hopf monoids.

Theorem 12.64. The following is a self-dual diagram of q-Hopf monoids.

(12.20)

Lq // Σq // −→Σq
// ILq

sq

��

L∗
q Σ∗

q
oo

−→
Σ∗
q

oo IL∗
q

oo

This may be viewed as the q-analogue of Theorem 12.57. The duality functor
acts by reflection in the horizontal line drawn in the center. The horizontal maps
are the same as in diagram (12.14). The vertical map sq is the switch map (12.9).
This map is an isomorphism (Proposition 12.12), so ILq is self-dual. Further, in
Propositions 12.6, 12.26 and 12.38, we showed that for generic values of q, Lq, Σq

and
−→
Σq are self-dual. It is straightforward to check that the maps used to establish

the self-duality of these objects are precisely the appropriate composites in (12.20).

These self-duality results explain why there are no q-analogues of E, Π and
−→
Π.

Thus Theorem 12.64 is the correct q-analogue of Theorem 12.57.

Question 12.65. Consider the map Σ → Σ∗ obtained from diagram (12.14).
Unlike the generic case, this map is far from being an isomorphism. In fact, we
know that the image of this map yields a self-dual Hopf monoid which is isomorphic
to Π or Π∗.

Now consider the composite map
−→
Σ →

−→
Σ∗. As the preceding map, it is a self-

dual morphism of Hopf monoids. Hence the image of this map is a self-dual Hopf
monoid. The question is to describe this Hopf monoid in explicit terms. Note that

this Hopf monoid differs from
−→
Π or

−→
Π∗, since these are not self-dual (Section 12.7).

Question 12.66. The previous question shows that the degeneracies in (12.20) are
not fully understood even for q = 1. We now ask the same question but for q = −1.

The image of the map L−1 → L∗
−1 is understood; it is the self-dual (−1)-

Hopf monoid of the signed exponential species (Section 9.3). The corresponding

commutative diagram is (9.21). We ask for similar results for Σ−1 and
−→
Σ−1.
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12.8.5. Some concluding remarks. In this chapter, we studied various Hopf
monoids. This study was done separately for each Hopf monoid without making
use of the inter-relationships between them, which are provided by diagrams (12.14)
and (12.20). While this approach has its advantages, it is clearly inefficient. We
provide an example to illustrate this point.

We know that antipodes commute with morphisms of Hopf monoids. Hence,

the antipode formula for
−→
Σ , along with the morphisms relating it with Σ,

−→
Π

and Π, can be used to quickly derive antipode formulas for the latter. However, in
the present exposition, we computed antipode formulas for each of them separately
using Takeuchi’s formula.

Question 12.67. The right-hand sides in the antipode formulas, for example The-
orems 12.17 and 12.18, make sense for any central hyperplane arrangement, but
the Hopf monoids exist only for the Coxeter complex of type A. What meaning do
these formulas have in general?





CHAPTER 13

Hopf Monoids from Combinatorics

Hopf monoids in species abound. In this chapter, we discuss a number of
examples of Hopf monoids that arise naturally in combinatorics. In one form or
another, many of these ideas go back to the paper by Joni and Rota [179]; we believe
that they find a most natural and useful formulation in the context of species.

Each of these Hopf monoids is based on a particular combinatorial structure
(specified by a species), such as posets, graphs, or matroids. For each of these there
is a natural way to decompose a given combinatorial structure on a set I = S ⊔ T
into combinatorial structures on subsets S and T . The coproducts of these Hopf
monoids arise in this manner. A companion procedure for merging structures gives
rise to the product.

Often, there are natural procedures for transforming a combinatorial structure
on a set into a different combinatorial structure on the same set, which are com-
patible with the operations alluded to above. We discuss several examples of this
kind; they give rise to morphisms of Hopf monoids. In particular, the universal
properties of Chapter 11 allow us to construct from minimal principles a number
of such morphisms. The target of these morphisms are usually the Hopf monoids
L∗ of linear orders and Σ∗ of set compositions.

Applying the Fock functors to these Hopf monoids yields many well-known Hopf
algebras, including the Hopf algebras of symmetric and quasi-symmetric functions.
In the same vein we obtain morphisms of Hopf algebras that associate a (quasi)
symmetric function to a given combinatorial structure on a set. Since they arise
from morphisms of species, isomorphic structures have the same associated function.
In other words, these functions are invariants of the combinatorial structures. These
ideas are the subject of Chapter 17.

A Hopf monoid is a finer structure than that of the corresponding Hopf algebras:
the latter arise from the former by means of the Fock functors, but in general one
cannot recover the Hopf monoid from the Hopf algebra(s). On the other hand,
the necessary ingredients for the construction of a Hopf monoid are often present,
in some form, in the construction of the Hopf algebras. For this reason, many
examples we present in this chapter owe a lot to earlier work on Hopf algebras by
many authors. For specific references to the Hopf algebra literature, see Chapter 17.

Table 13.1 lists the main Hopf monoids discussed in this chapter. In addition,
in Section 13.7.3 we discuss a monoid based on certain simplicial complexes.

We work over a field k of characteristic 0.

13.1. Posets

A partial order on a set I is a reflexive, antisymmetric and transitive relation
on I. It is also called a poset. The elements of I are the vertices of the poset. Apart
from the fact that the vertex set I is always assumed to be finite, in this section

443
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Table 13.1. Hopf monoids from combinatorics.

Hopf monoid Linear Basis Section

P posets 13.1.1

O preposets 13.1.6

G simple graphs 13.2.1

F rooted forests 13.3.1
−→
F planar rooted forests 13.3.2

R relations 13.4.1

Q equivalence relations 13.4.3

sgP set-graded posets 13.6.4

swP set-weighted posets 13.6.8

C closure operators 13.8.1

M matroids 13.8.2

cG convex geometries 13.8.3

T topologies 13.8.6

we work with arbitrary posets. We also briefly consider preposets (reflexive and
transitive relations).

13.1.1. The Hopf monoid of posets. Given a finite set I, let P[I] be the vector
space with basis the set of all partial orders on I. For instance, P[{a, b}] is 3-
dimensional, spanned by the posets {a < b}, {b < a}, and {a, b} (no relations).
It is customary to represent posets by their Hasse diagrams. As an example, the
poset

s
44

4 h

		
	

i

v

u

n
∈ P[{v, i, s, h, n, u}].

We agree that P[∅] = k, spanned by the empty poset. This defines the species P
of posets.

We proceed to turn P into a Hopf monoid, following Gessel [144] and Mal-
venuto [255]. In the formulas below, we regard a partial order p on I as a subset
of I × I, that is, as a relation on the set I.

Fix a decomposition I = S ⊔ T . The corresponding component µS,T of the
product is

(13.1)
P[S]⊗P[T ]→ P[I]

p1 ⊗ p2 7→ p1 ⊔ p2.

This is the (disjoint) union of the sets p1 ⊆ S×S and p2 ⊆ T ×T , so that in p1⊔p2

there are no relations between the elements of S and T .
The restriction of p to S is

p|S := p ∩ (S × S).
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We say that S is a lower set of p if p ∩ (T × S) = ∅, that is, if no element of T is
less than an element of S. In this case, we also say that T is an upper set of p.

For the coproduct, we set the component ∆S,T to be

(13.2)

P[I]→ P[S]⊗P[T ]

p 7→

{
p|S ⊗ p|T if S is a lower set of p,

0 otherwise.

For example,

k

a

l

⊗

m
77

7 i

��
�

h

s

7→

k m
77

7 i

��
�

a h

l s

t
33

3 a







i

s

7→ 1⊗

t
33

3 a







i

s

+
s
• ⊗

t
22

2 a

��
�

i
+

i

s
⊗

t
•

a
•

+

t

i

s

⊗
a
• +

a

i

s

⊗
t
• +

t
33

3 a







i

s

⊗ 1.

The Hopf monoid axioms are straightforward, but we pause to verify the com-
patibility between the product and the coproduct in detail, since this well-illustrates
how the essential combinatorial facts are faithfully and simply expressed in the lan-
guage of species. According to (8.18), we have to verify the commutativity of the
following diagram.

P[A]⊗P[B]⊗P[C]⊗P[D]
idA⊗βB,C⊗idD

// P[A]⊗P[C]⊗P[B]⊗P[D]

µA,C⊗µB,D

��

P[S]⊗P[T ] µS,T
//

∆A,B⊗∆C,D

OO

P[I]
∆S′,T ′

// P[S′]⊗P[T ′],

where S ⊔ T = I = S′ ⊔ T ′ are two decompositions of a finite set I and A = S ∩S′,
B = S ∩ T ′, C = T ∩ S′, D = T ∩ T ′ as in Figure 8.1. Let p1 and p2 be partial
orders on S and T , respectively. One immediately sees that commutativity boils
down to the following two facts:

A is a lower set of p1 and C is a lower set of p2 ⇐⇒ S′ is a lower set of p1 ⊔ p2;

(p1 ⊔ p2)|S′ = p1|A ⊔ p2|C and (p1 ⊔ p2)|T ′ = p1|B ⊔ p2|D.

The Hopf monoid P is commutative but not cocommutative.

Let us briefly discuss the dual Hopf monoid P∗. Let {p∗} denote the basis of
P∗[I] dual to the basis {p} of P[I], with p running over all partial orders on I.
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The product is

P∗[S]⊗P∗[T ]→ P∗[I]

p∗1 ⊗ p
∗
2 7→

∑

x⊆S×T

(p1 ∪ x ∪ p2)
∗.

Equivalently, the above sum is over those posets p for which p|S = p1, p|T = p2, and
no element of T is less than an element of S. In other words, the Hasse diagram of
p is the union of the Hasse diagrams of p1 and p2 together with some edges going
from S to T .

The coproduct is

P∗[I]→ P∗[S]⊗P∗[T ]

p∗ 7→

{
(p|S)∗ ⊗ (p|T )∗ if p ∩

(
(S × T ) ∪ (T × S)

)
= ∅,

0 otherwise.

Thus, the component of the coproduct is 0 precisely if there is a relation between
elements of S and T .

13.1.2. Lower decompositions. Let Σ∗ be the Hopf monoid of set compositions
discussed in Section 12.4. We construct a morphism of Hopf monoids P → Σ∗ as
an illustration of the universal property of Σ∗. More elaborate examples of such
universal morphisms are discussed throughout this chapter.

The product of two posets is another poset. Therefore, the map of species

η : P→ E

given by

η(p) := 1

is a morphism of monoids. Here we are following Convention 12.60. The universal
property of Theorem 11.23 then yields a morphism of Hopf monoids

η̂ : P→ T ∨(E+) = Σ∗.

The identification of the cofree Hopf monoid on E+ with the Hopf monoid Σ∗ comes
from Proposition 12.58.

We now use (11.18) to calculate this map. Let p be a poset on I and F =
F 1| · · · |F k a composition of I. It follows from (13.2) that the iterated coproduct

∆F 1,...,Fk(p) ∈ P[F 1]⊗ · · · ⊗P[F k]

is 0 unless

∅ ⊂ F 1 ⊂ F 1 ∪ F 2 ⊂ · · · ⊂ F 1 ∪ F 2 ∪ · · · ∪ F k

is a chain of lower sets in the poset p. In this case, ∆F 1,...,Fk simply restricts p to
each block of F . It follows that:

(13.3) η̂(p) =
∑

F

MF ,

where the sum is over those compositions F = F 1| · · · |F k of I such that each
F 1 ∪ · · · ∪ F i is a lower set of p.
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13.1.3. Linear extensions of posets. The theory of linear extensions of posets
and poset partitions was developed by Stanley [336], [341, Section 4.5]. We discuss
how these combinatorial notions emerge naturally from minimal principles.

Everything will follow from the consideration of a very simple map

ω : P+ → X

from the (positive part of the) species of posets to the species X, characteristic of
singletons (8.3). We let ω be the map which identifies the basis elements of P[I]
and X[I] when I is a singleton (and which is zero otherwise). Up to a constant,
this is the unique morphism of species from P+ to X. Clearly, ω is a morphism of
positive monoids (the product on X is zero).

Recall the Hopf monoid L∗ of linear orders from Example 8.24. We know from
Example 11.24 that L∗ = T ∨(X) is the cofree Hopf monoid on X. The universal
property of Theorem 11.23 yields a morphism of Hopf monoids

ω̂ : P→ L∗.

We now use (11.18) to calculate this map. Let p be a poset on I and F = F 1| · · · |F k

a composition of I. We saw in the previous example that the iterated coproduct
∆F 1,...,Fk(p) is nonzero only if the blocks of F give rise to a chain of lower sets
in the poset p. In addition, the only compositions that contribute to (11.18) are
those for which each block is a singleton, since otherwise ω is 0. Compositions
satisfying both of these conditions are the same thing as linear orders on I which
are compatible with the partial order p; in other words, they are linear extensions
of p. Thus

(13.4) ω̂(p) =
∑

l∈L(p)

l∗

where L(p) denotes the set of linear extensions of p.

13.1.4. Poset partitions. By further elementary manipulations, we will next
arrive at the notion of poset partition.

Consider the evaluation map

IL∗ = L× L∗ → E.

According to Example 12.62, applying the universal property of Σ∗ = T ∨(E+) to
this morphism of monoids yields the morphism of Hopf monoids β : IL∗ → Σ∗

defined in (12.19). On the other hand, composing the evaluation map with id× ω̂
we obtain another morphism of monoids

L×P
id×bω

//

ζ
##G

GGGGGGG IL∗

}}{{
{{

{{
{{

E.

Explicitly, using Convention 12.60,

ζ(l, p) =

{
1 if l ∈ L(p),

0 otherwise.
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Applying the universal property of Theorem 11.23 to the morphism of monoids ζ
we obtain a commutative diagram of Hopf monoids

L×P
id×bω

//

ζ̂ ''OOOOOOOOOOO IL∗

β
xxqqqqqqqqqqq

T ∨(E+) = Σ∗.

Let p be a partial order on I and l a linear order on I. Using (11.18) one readily
finds that

(13.5) ζ̂(l, p) =
∑

F

MF

the sum being over those compositions F = F 1| · · · |F k of I satisfying two condi-
tions:

• each F 1 ∪ · · · ∪ F i is a lower set of p, i = 1, . . . , k;
• the restriction of l to each F i is a linear extension of the restriction of p.

These conditions may be equivalently formulated as follows:

• if a ∈ F i, b ∈ F j , and a ≤ b in p, then i ≤ j;
• if in addition to the above we have a > b in l, then i < j.

Such compositions F correspond precisely to the notion of poset partitions (of p
with respect to l) in the literature. This notion can be captured nicely using Tits
projection maps (10.13) as follows.

Proposition 13.1. A set composition F is a partition of the poset p with respect
to l if and only if F · l is a linear extension of p.

13.1.5. Posets among other Hopf monoids. The Hopf monoid
−→
Π = S(L∗

+) of
linear set partitions is studied in Section 12.7.2.

Consider the map of species

L∗
+

ν
−→ P+

which views a linear order as a partial order. A lower set of a linear order is an
initial segment. Therefore, the above map is a morphism of positive comonoids (the
coproducts are described in Example 8.24 and (13.2)). Since P is commutative, the
map extends uniquely to a morphism of Hopf monoids

−→
Π = S(L∗

+)
ν̂
−→ P

(Theorem 11.14). It is explicitly given as in the example below.

{v|i|s, 1|2, h|n|u} 7→

s

i

v

2

1

u

n

h

This map is injective. It identifies linear set partitions with those posets that are
unions of linear orders.
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There is a commutative diagram of monoids

−→
Π

ν̂ //

��
??

??
??

? P

η
����

��
��

��

E

with the morphism
−→
Π → E as in Example 12.61 and η as in Section 13.1.2. By

universality, it gives rise to the following commutative diagram of Hopf monoids.

(13.6)

−→
Π

ν̂ //

Υ
  

AA
AA

AA
AA

P

η̂
~~~~

~~
~~

~~

Σ∗

The morphism Υ intervenes in diagram (12.14); explicitly, it is given by (12.18).

Recall the Hopf monoid
−→
Σ = T (L∗

+) of linear set compositions (Section 12.5).
Proceeding along the same lines as above, one constructs a morphism of Hopf
monoids

−→
Σ = T (L∗

+)
~ν
−→ L×P

given as in the example below.

H
v|i|s|1|2|h|n|u 7→ v|i|s|1|2|h|n|u ⊗




s

i

v

2

1

u

n

h




The morphisms constructed in this section and the preceding ones fit in the
commutative diagram below.

(13.7)

−→
Σ = T (L∗

+)
~ν //

πL∗
+

��

L×P
id×bω

//

π×id

��

L× L∗

π×id

��−→
Π = S(L∗

+)
ν̂

// P
bω

// L∗

The map πL∗
+

is as in (12.16). The top horizontal composite is also the composite

of the map ~β∗ and the switch map s appearing in diagram (12.14). The map π is
defined in (8.31).

13.1.6. Preposets. A preposet is a relation which is transitive and reflexive. Pre-
posets are also called preorders. The two main examples of preposets are equivalence
relations and posets. The former are symmetric while the latter are antisymmetric.
In fact, every preposet may be broken into its symmetric and antisymmetric parts
as follows. Given a preposet r on I, define an equivalence relation on I by

(13.8) i ∼ j ⇐⇒ (i, j) ∈ r and (j, i) ∈ r.

The relation r then induces a partial order on the set of equivalence classes I/∼.
In other words, a preposet is the same as an equivalence relation on the underlying
set along with a partial order on the set of equivalence classes.
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Let r be a preposet on I = S ⊔ T . We say that S is a lower set of r if
r ∩ (T × S) = ∅. This is the same definition as for posets (Section 13.1.1).

Let O be the species of preposets. The operations (13.1) and (13.2) can be
defined for preposets. They turn O into a Hopf monoid and P is a Hopf submonoid.

The map

(13.9) O→ P, r 7→

{
r if r is a poset,

0 otherwise,

is a morphism of Hopf monoids, split by the inclusion:

P
� � //

O.oooo

Note that, as species,

O = P ◦E + .

13.2. Simple graphs

All our graphs have finitely many vertices and edges and are simple, that is,
contain no loops and no multiple edges. In particular, a graph with vertex set I is
precisely a symmetric irreflexive relation on I.

13.2.1. The Hopf monoid of simple graphs. Let G[I] be the vector space with
basis the set of simple graphs with vertex set I. Restricting attention to simple
graphs ensures that each space G[I] is finite-dimensional, but is not an essential
requirement otherwise. We agree that G[∅] = k, spanned by the empty graph. This
defines the species G of simple graphs.

The restriction of a graph g with vertex set I to a subset S ⊆ I has the same
meaning as for posets (Section 13.1.1):

g|S := g ∩ (S × S).

We turn G into a Hopf monoid, following Schmitt [322, Example 3.3.(3)]. Fix a
decomposition I = S ⊔ T . The corresponding component µS,T of the product is

(13.10)
G[S]⊗G[T ]→ G[I]

g1 ⊗ g2 7→ g1 ⊔ g2,

where g1 ⊔ g2 denotes disjoint union (no edges between g1 and g2). The coprod-
uct is an instance of Schmitt’s comonoid construction (Section 8.7.8). We set the
component ∆S,T to be

(13.11)
G[I]→ G[S]⊗G[T ]

g 7→ g|S ⊗ g|T .

The Hopf monoid G is both commutative and cocommutative.
For the dual Hopf monoid G∗, the product is

G∗[S]⊗G∗[T ]→ G∗[I]

(g1)
∗ ⊗ (g2)

∗ 7→
∑

g

g∗.
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The sum is over all those graphs g with vertex set I for which g|S = g1 and g|T = g2.
In other words, an edge of g is either an edge of g1, or an edge of g2, or it connects
an element of S to an element of T . The coproduct is

G∗[I]→ G∗[S]⊗G∗[T ]

g∗ 7→

{
(g|S)∗ ⊗ (g|T )∗ if g ∩

(
(S × T ) ∪ (T × S)

)
= ∅,

0 otherwise.

Thus, the component of the coproduct is 0 unless there are no edges between
elements of S and T .

13.2.2. Graph coloring. A graph is discrete if it has no edges. We start from
the map

ζ : G→ E.

defined by

(13.12) ζ(g) :=

{
1 if g is discrete,

0 otherwise.

As always, Convention 12.60 is enforced.
The universal property of Theorem 11.27 yields a morphism of Hopf monoids

ζ̂ : G→ S∨(E+) = Π∗.

The theorem applies since G is cocommutative. The identification of the cofree
cocommutative Hopf monoid on E+ with the Hopf monoid Π∗ comes from Propo-
sition 12.58.

In order to describe this map in explicit terms, let us recall the notion of stable
partitions from [339, p. 170]. A partition X = {X1, . . . , Xk} of the vertex set of
g is said to be stable if the restriction g|Xi is discrete for all i. Such partitions
correspond to proper colorings of the graph in the evident manner.

An easy application of formula (11.18) gives

(13.13) ζ̂(g) =
∑

X

mX ,

where the sum is over all stable partitions of the vertex set.
More generally, for a parameter q ∈ k, one may consider the morphism of

monoids

ζq : G→ E

given by

(13.14) ζq(g) := qe(g)

where e(g) denotes the number of edges in g. This reduces to the previous version
when q = 0. Application of formula (11.18) gives a deformation of (13.13).

13.2.3. From graphs to posets. There is a canonical morphism from the Hopf
monoid of graphs (Section 13.2.1) to that of posets (Section 13.1.1).

Recall that we can view both posets and graphs with vertex set I as relations
on I. Given such a poset p, let H(p) denote its Hasse diagram and let C(p) denote
its comparability graph: there is an edge in C(p) joining two elements of I if one is
less than the other according to p. We view both H(p) and C(p) as (undirected)
graphs with vertex set I.
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Following ideas of Stanley [338], we define

ρ : G→ P

by

ρ(g) :=
∑

H(p)⊆g⊆C(p)

p.

This can be viewed as a sum over the set of acyclic orientations of g. Each acyclic
orientation of g gives rise to a partial order p on the set of vertices of g by declaring
that one vertex is less than another if there is a directed path from the former to
the latter. Then H(p) ⊆ g ⊆ C(p) and any such p arises in this manner from a
unique acyclic orientation of g.

It is not difficult to see that ρ is a morphism of Hopf monoids. Moreover, it fits
in the following commutative diagram of Hopf monoids.

G

ζ1

��

ρ
// P

bω

��

E∗
π∗

// L∗

The vertical maps are those in (13.4) and (13.14); the latter with q = 1. The map
π : L→ E is defined in (8.31). Its dual π∗ sends the basis element of E∗[I] to

∑

l∈L[I]

l∗.

The commutativity of this diagram is best seen by making use of the universal
property of L∗ (cofreeness). Since all the maps are morphisms of comonoids (in fact,
of Hopf monoids), it suffices to check that the diagram commutes after composing
with

L∗ → X.

This means we are reduced to the case of a graph with a single vertex, in which
case the statement is trivial.

The combinatorial fact encoded in the commutativity of this diagram is not
entirely trivial. It states that given a simple graph g with vertex set I and a linear
order l on I, there exists a unique acyclic orientation of g such that if there is an
oriented edge a → b, then a < b in l. (To construct it, orient each edge from the
smallest vertex to the biggest.)

13.3. Rooted trees and forests

We briefly discuss two Hopf monoids based on rooted forests and on planar
rooted forests which give rise to the Connes–Kreimer Hopf algebras. We also explain
how they relate to other Hopf monoids discussed so far.

13.3.1. The Hopf monoid of rooted forests. A rooted tree is an acyclic, con-
nected graph with a distinguished vertex called the root. A rooted forest is a graph
whose connected components are rooted trees.

If the vertex set of a rooted tree (forest) is I, we say it is a rooted tree (forest)
on I. We draw rooted trees and forests with the root at the bottom. The ancestors
of a vertex a in a rooted forest are the vertices along the path from a down to the
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root of the tree to which a belongs (including a and the root). The children of a
vertex a are the vertices which have a as its immediate ancestor.

If |I| = n, the number of rooted trees on I is nn−1 [343, Proposition 5.3.2].
Here are all 9 rooted trees on {a, b, c}.

'&%$ !"#b

//
//

//
/

'&%$ !"#c

��
��
��
�

'&%$ !"#a

'&%$ !"#a

//
//

//
/ '&%$ !"#c

��
��
��
�

'&%$ !"#b

'&%$ !"#a

//
//

//
/ '&%$ !"#b

��
��
��
�

'&%$ !"#c

'&%$ !"#a

'&%$ !"#b

'&%$ !"#c

'&%$ !"#b

'&%$ !"#a

'&%$ !"#c

'&%$ !"#a

'&%$ !"#c

'&%$ !"#b

'&%$ !"#b

'&%$ !"#c

'&%$ !"#a

'&%$ !"#c

'&%$ !"#a

'&%$ !"#b

'&%$ !"#c

'&%$ !"#b

'&%$ !"#a

Let a[I] be the vector space with basis the set of rooted trees on I, and F[I]
the vector space with basis the set of rooted forests on I. This defines species a
and F. The species a is positive, so we may consider S(a), the free commutative
monoid on a (Section 11.3.1). The basis elements of S(a)[I] can be identified with
rooted forests on I and thus S(a) can be identified with F. The product is disjoint
union.

Given a rooted forest f , we say that a subset S of its vertex set is f -admissible
if whenever a ∈ S, every ancestor of a is also in S.

We define a comonoid structure on F as follows. Fix a decomposition I = S⊔T .
The corresponding component of the coproduct is

(13.15) F[I]→ F[S]⊗ F[T ], f 7→

{
f |S ⊗ f |T if S is f -admissible,

0 otherwise.

The restrictions are taken as for graphs (Section 13.2.1). For instance, if

(13.16) t =

/.-,()*+h /.-,()*+m

??
??

??
??

? '&%$ !"#i

��
��

��
��

'&%$ !"#s

??
??

??
??

? '&%$ !"#a /.-,()*+k

��
��

��
��

�

'&%$ !"#l

and S = {l, a, k},

then S is t-admissible and

∆S,T (t) =

'&%$ !"#a

00
00

00
0 /.-,()*+k

��
��
��

'&%$ !"#l

⊗

/.-,()*+h

'&%$ !"#s /.-,()*+m '&%$ !"#i

.

Together with the standard (free commutative) monoid structure on F = S(a), this
turns the species of rooted forests into a Hopf monoid.

Note that a is not a subcomonoid; the coproduct sends a to a · S(a). In
particular, this Hopf monoid structure of S(a) does not arise from the construction
of Section 11.3.2.

13.3.2. The Hopf monoid of planar rooted forests. A rooted tree is planar
if for each vertex, the set of its children is given a linear order. If |I| = n, there are
n!Cn−1 planar rooted trees on I, where

Cn :=
1

n+ 1

(
2n

n

)
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is the n-th Catalan number [343, Example 6.2.8, Exercise 6.19.e].
A planar rooted forest is an ordered sequence of planar rooted trees. In our

diagrams, the children of each vertex in a planar rooted tree and the trees in a
planar rooted forest are drawn from left to right in the given order.

Let ~a[I] be the vector space with basis the set of planar rooted trees on I, and
−→
F [I] the vector space with basis the set of plnar rooted forests on I. This defines

species ~a and
−→
F . The species ~a is positive, so we may consider T (~a), the free

monoid on ~a (Section 11.2.1). The basis elements of T (~a)[I] can be identified with

planar rooted forests on I and thus T (~a) can be identified with
−→
F . The product is

left-to-right concatenation of planar forests.
The restrictions of a rooted forest to an admissible subset of vertices and to its

complement inherit a left-to-right order, and are planar rooted forests themselves.
The coproduct (13.15) of a can therefore be lifted to ~a, by means of the same

definition. This turns
−→
F = T (~a) into a Hopf monoid.

The species ~a is not a subcomonoid of T (~a); the Hopf monoid structure of the
latter does not arise from the construction of Section 11.2.5.

13.3.3. From rooted forests to posets and linear orders. By forgetting all
linear orders involved in a planar rooted tree or forest (those on the sets of children
of a vertex in a planar rooted tree, and that among the trees in a planar rooted
forest) one obtains the underlying rooted tree or forest. For instance, the rooted
tree

'&%$ !"#b

11
11

11
'&%$ !"#c






'&%$ !"#a

=

'&%$ !"#c

11
11

11
1 '&%$ !"#b





'&%$ !"#a
underlies both planar rooted trees

'&%$ !"#b

11
11

11
'&%$ !"#c






'&%$ !"#a

and

'&%$ !"#c

11
11

11
1 '&%$ !"#b





'&%$ !"#a

.

This defines maps of species

υ : ~a։ a and υ :
−→
F = T (~a)։ S(a) = F,

the latter being a morphism of Hopf monoids.

A rooted forest on I defines a partial order on I in which a ≤ b if a is an
ancestor of b. This gives rise to a map of species

φ : F →֒ P

from the species of rooted forests to that of posets. The forest can be recovered as
the Hasse diagram of the poset, so φ is injective.

An admissible subset of vertices of a rooted forest f is precisely a lower set
of the poset φ(f). It follows that φ is a morphism of comonoids. It is also a
morphism of monoids, the product being disjoint union on both sides. Therefore, φ
is a morphism of Hopf monoids. In this manner, the Hopf monoid of rooted forests
identifies with the submonoid of P generated by a.

The set of vertices of a planar rooted forest carries a partial order and a linear
order as follows. Recall that the trees in such a forest are linearly ordered, as is
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each set of siblings (children of a given vertex). We say that a vertex a is to the
left of a vertex b if a belongs to a tree that precedes the tree to which b belongs,
or if they belong to the same tree and there are siblings a′ and b′ such that a′ is
an ancestor of a, b′ is an ancestor of b, and a′ precedes b′. The relation “to the left
of” defines a partial order on the set of vertices. There is also a linear order for
which i ≤ j if either i is an ancestor of j or i is to the left of j. This is the familiar
depth-first order.

Below we show a tree t, the left of partial order (drawn from left to right), and
the depth-first order.

/.-,()*+k /.-,()*+m

??
??

??
??

? '&%$ !"#i

��
��

��
��

'&%$ !"#a

??
??

??
??

? '&%$ !"#s /.-,()*+h

��
��

��
��

�

'&%$ !"#l

k

��
55

55
55

5 m // i

a // s

CC�������
// h

l

l|a|k|s|h|m|i.

Consider the map of species

δ :
−→
F → L

which sends a planar rooted forest f to the depth-first order δ(f) on its vertex set.
The map δ is a morphism of monoids but not of comonoids. However, combining
it with the composite

−→
F

υ
−→ F

φ
−→ P

we obtain a morphism of Hopf monoids

(13.17) ~φ :
−→
F → L×P, f 7→ δ(f)⊗ φ

(
υ(f)

)
.

There are other canonical linear orders associated to a planar rooted tree, but

the depth-first order is the only one for which the above construction of ~φ results
in a morphism of Hopf monoids.

There is a commutative diagram

−→
F

~φ
//

υ

��

L×P

π×id

��

F
φ

// P

where π : L→ E is defined in (8.31).

The morphism ~φ is injective. Indeed, the poset corresponding to a forest is the
disjoint union of the posets corresponding to the trees in the forest, and the linear
order is the concatenation of the depth-first orders of the trees, from left to right.
We thus recover the underlying rooted forest from the poset and planarity from the
linear order.

In this manner, the Hopf monoid of planar rooted forests identifies with the
submonoid of L×P generated by ~a.
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13.3.4. Forests among other Hopf monoids. The Hopf monoids of rooted
forests are related to various other Hopf monoids discussed in this chapter and in
Chapter 12. There is a commutative diagram of Hopf monoids as follows.

(13.18)

−→
Σ

~λ //

supp

��

−→
F

~φ
//

υ

��

L×P
id×bω

//

π×id

��

L× L∗

π×id

��−→
Π λ

// F
φ

// P
bω

// L∗

The square in the center is discussed in Section 13.3.3. The map ω̂ : P→ L∗ is as
in (13.4); it sends a poset to the sum of its linear extensions.

We explain the left square in (13.18). Let ~λ : L∗
+ → ~a be the map with compo-

nents

L∗
+[I]→ ~a[I], (l1|l2| · · · |ln)∗ 7→

/.-,()*+ln

�
�
�

/.-,()*+l2

/.-,()*+l1

A subset S of I is initial for the linear order l if and only if it is admissible for

the tree ~λ(l∗). Therefore, ~λ : L∗
+ →

−→
F is a morphism of comonoids. We let λ :=

υ~λ : L∗
+ → a→ F. We extend λ to

−→
Π = S(L∗

+) and ~λ to
−→
Σ = T (L∗

+) as morphisms

of monoids. By universality, these extensions exist and are unique. Since λ and ~λ
are morphisms of comonoids, their extensions are morphisms of Hopf monoids. We

continue to denote them by λ and ~λ.
The composites

−→
Σ

~φ~λ
−−→ L×P and

−→
Π

φλ
−−→ P

are the maps ν̂ and ~ν discussed in Section 13.1.5. Thus, diagram (13.18) re-
fines (13.7).

13.3.5. A q-Hopf monoid of planar rooted forests. Let f be a planar rooted
forest on I and S ⊆ I an f -admissible subset of vertices. Write I = S ⊔ T . Define

schS,T (f) := |{(a, b) ∈ S × T | b is to the left of a in f}|.

For example, if t and S are as in (13.16), then

schS,T (t) = |{(a, s), (a, h), (k, s), (k, h)}| = 4.

Fix a scalar q ∈ k. The following defines a comonoid structure on
−→
F .

−→
F [I]→

−→
F [S]⊗

−→
F [T ], f 7→

{
qschS,T (f) f |S ⊗ f |T if S is f -admissible,

0 otherwise.

Together with the standard (free) monoid structure on
−→
F = T (~a) this results in a

q-Hopf monoid that we denote by
−→
F q.
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All maps in the top row of diagram (13.18) are compatible with the q-de-
formations. Recall the q-Hopf monoid Lq from Definition 9.13 and the Schubert

cocycle (9.12). The map δ :
−→
F → L of Section 13.3.3 satisfies

schS,T (f) = schS,T
(
δ(f)

)
= dist

(
δ(f), (S|T )δ(f)

)

whenever S is an f -admissible subset of vertices. It follows that

~φ :
−→
F q → Lq ×P

is a morphism of q-Hopf monoids, where ~φ is as in (13.17). The q-Hopf monoid
−→
Σq

is discussed in Section 12.5.3. In order to prove that ~λ is a morphism of q-Hopf

monoids, it suffices to check that ~λ : L∗
+ →

−→
F q is a morphism of comonoids. This

follows from the argument given in Section 13.3.4, plus the fact that if l is a linear
order on I and S is an initial segment, then sch~λ(l∗)(S) = 0.

In summary, there are morphisms of q-Hopf monoids

−→
Σq = Tq(L∗

+)
~λ // −→F q

~φ
// Lq ×P

id×bω
// Lq × L∗

13.3.6. Antipode formulas. We provide antipode formulas for
−→
F q and F. They

extend known results for the corresponding Hopf algebras, details are given in
Section 17.5.4. We begin with some preliminary definitions.

Let f be a planar rooted forest on I. Its opposite f is the planar rooted forest
obtained from f by reversing all orders (the order on the planar rooted trees as well
as the order on the children of a vertex). For example,

f =

'&%$ !"#a

33
33

33
3 '&%$ !"#c

��
��
��
�

'&%$ !"#e

'&%$ !"#b /.-,()*+d

f =

'&%$ !"#e '&%$ !"#c

33
33

33
3 '&%$ !"#a

��
��
��
�

/.-,()*+d '&%$ !"#b

Definition 13.2. Let f be a planar rooted forest on I, and let F be a composition
of I. We say that F is a depth-first composition of f if the following holds:

• The first part, say S, of F is an admissible subset of the first planar rooted
tree of f , and
• F |I\S is a depth-first composition of f |I\S.

Note that the depth-first linear order δ(f) of f is a depth-first composition of
f and it is the only linear order with this property. This is the motivation behind
our terminology.

If t1, t2, . . . are the planar rooted trees of f in that order, then a depth-
first composition of f is a depth-first composition of t1, followed by a depth-first
composition of t2, and so on.

Definition 13.3. A subset of edges of a planar rooted forest is called a cut. A
cut c of a planar rooted forest f determines a planar rooted forest W (f, c) and a
depth-first composition δ(f, c) of f as follows.

Remove the edges of f specified by c, and consider the resulting connected
components (these are planar trees). Let t be the connected component containing
the root of the leftmost planar tree of f , and let S be its vertex set. Define

W (f, c) := t ·W (f |T , c|T ) and δ(f, c) := S · δ(f |T , c|T )
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where T is the complement of S in the vertex set of f , and c|T is the restriction of
c to the edges of f |T .

For example, if

(f, c) =

/.-,()*+h

99
99

99
99

/.-,()*+d '&%$ !"#c

|
99

99

99
9

'&%$ !"#g

��
��

��
��

'&%$ !"#a

|
88

88

88
88

'&%$ !"#e /.-,()*+f

|�
��

��
��

'&%$ !"#b

,

then S = {b, e},

t =

'&%$ !"#e

'&%$ !"#b

and (f |T , c|T ) =

/.-,()*+h

55
55

55
5

/.-,()*+d














'&%$ !"#c

|
44

4

44
4

'&%$ !"#g

		
		

		
	

'&%$ !"#a /.-,()*+f

.

Proceeding with the recursion we find

W (f, c) =

'&%$ !"#e /.-,()*+h

55
55

55
5

/.-,()*+d














'&%$ !"#g

'&%$ !"#b '&%$ !"#a /.-,()*+f '&%$ !"#c

and δ(f, c) = be|ahd|fg|c.

It is straightforward to check that for fixed f , c 7→ δ(f, c) is a bijective corre-
spondence between cuts of f and depth-first compositions of f .

Note also that if c consists of all edges of f , then δ(f, c) = δ(f).

Theorem 13.4. The I-component of the antipode of
−→
F q is

sI(f) =
∑

c

(−1)deg cqdist(δ(f),δ(W (f,c)))W (f, c),

where the sum is over all cuts c of f (and not of f), and deg c is the number of
edges in c plus one.

Proof. Applying Takeuchi’s formula (8.27), we obtain:

sI(f) =
∑

g

( ∑

H∈D(f,g)

(−1)deg(H)

)
qdist(δ(f),δ(g)) g,

where

D(f, g) = {H | µH∆H(f) = g},

and µH and ∆H are the iterated product and coproduct (11.33). For H ∈ D(f, g),
we have

dist
(
δ(f), Hδ(f)

)
= dist

(
δ(f), δ(g)

)
,

and this explains why the q-term can be pulled out of the parenthesis.
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For example,

f =

'&%$ !"#t
<<

<<
< '&%$ !"#a

��
��

�

'&%$ !"#i

'&%$ !"#s

g =

'&%$ !"#i

'&%$ !"#s '&%$ !"#t '&%$ !"#a
D(f, g) = {si|ta, si|t|a}.

One may check that, in general, the set D(f, g) is a Boolean poset. It follows
that the sum in parenthesis is zero unless D(f, g) is a singleton, in which case the

singleton element is a depth-first composition of f (and not of f). For example,

f =

'&%$ !"#t
<<

<<
< '&%$ !"#a

��
��

�

'&%$ !"#i

'&%$ !"#s

g =

'&%$ !"#i

'&%$ !"#s '&%$ !"#a '&%$ !"#t
D(f, g) = {si|a|t}.

This yields

sI(f) =
∑

G

(−1)deg(G)qdist
(
δ(f),Gδ(f)

)
µG∆G(f),

where the sum is over all depth-first compositions G of f . The result follows by
using the correspondence between depth-first compositions and cuts. �

We illustrate the antipode formula on an example.

s




'&%$ !"#t
<<

<<
< '&%$ !"#a

��
��

�

'&%$ !"#i

'&%$ !"#s




= −

'&%$ !"#t
<<

<<
< '&%$ !"#a

��
��

�

'&%$ !"#i

'&%$ !"#s

+

'&%$ !"#t
;;

;;
; '&%$ !"#a

��
��

�

'&%$ !"#s '&%$ !"#i
+

'&%$ !"#t

'&%$ !"#i

'&%$ !"#s '&%$ !"#a

+q

'&%$ !"#a

'&%$ !"#i

'&%$ !"#s '&%$ !"#t

−

'&%$ !"#t

'&%$ !"#s '&%$ !"#i '&%$ !"#a
− q

'&%$ !"#a

'&%$ !"#s '&%$ !"#i '&%$ !"#t
− q

'&%$ !"#i

'&%$ !"#s '&%$ !"#a '&%$ !"#t
+ q '&%$ !"#s '&%$ !"#i '&%$ !"#a '&%$ !"#t .

We now restrict some of the above terminology to rooted forests. A subset of
edges of a rooted forest is called a cut. Let f be a rooted forest. Removing from f
the edges specified by a cut c yields a rooted forest which we denote by W (f, c).

Theorem 13.5. The I-component of the antipode of F is

sI(f) =
∑

c

(−1)deg cW (f, c),

where the sum is over all cuts c of f and deg c is the number of edges in c plus one.

Proof. This follows from Theorem 13.4 by setting q = 1 and using the quo-

tient map υ :
−→
F ։ F. �
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Table 13.2. Hopf monoids from relations.

Hopf monoid Linear basis Type of relation

R relations arbitrary

O preposets transitive and reflexive

P posets transitive, antisymmetric and reflexive

Q equivalence relations transitive, symmetric and reflexive

G simple graphs symmetric and irreflexive

13.4. Relations

We introduce a Hopf monoid of relations whose coproduct depends on a param-
eter q ∈ k. When q = 0, this Hopf monoid contains the Hopf monoid of (pre)posets
of Section 13.1.1 and 13.1.6; when q = 1, it contains the Hopf monoid of graphs
of Section 13.2.1. We also discuss a connection between the Hopf submonoid of
equivalence relations and the Hopf monoids of set partitions of Section 12.6. These
are summarized in Table 13.2.

13.4.1. The Hopf monoid of relations. Let R[I] denote the vector space with
basis the set of all relations on the finite set I (subsets r of I × I). This defines the
species R of relations. We proceed to turn it into a Hopf monoid. The structure
will depend on a fixed parameter q ∈ k.

Given a decomposition I = S ⊔ T and a relation r on I, let

(13.19) eS,T (r) := |r ∩ (T × S)| = |{(t, s) ∈ r s ∈ S, t ∈ T }|.

As in Sections 13.1.1 and 13.8.1, the restriction of a relation r on the set I to
a subset S is

r|S := r ∩ (S × S).

The coproduct is given by

(13.20) R[I]→ R[S]⊗R[T ], r 7→ qeS,T (r) r|S ⊗ r|T .

The product is given by

(13.21) R[S]⊗R[T ]→ R[I], r1 ⊗ r2 7→ r1 ⊔ r2.

In r1 ⊔ r2 on I there are no relations between the elements of S and T . In other
words, the set r1 ⊔ r2 ⊆ I × I is the (disjoint) union of the sets r1 ⊆ S × S and
r2 ⊆ T × T .

Let us discuss the Hopf monoid axioms.
In the case q = 1, the axioms boil down to simple properties of restriction and

disjoint unions.
To obtain the general case, we note that for every decomposition I = R⊔S ⊔T

we have

eR⊔S,T (r) + eR,S(r|R⊔S) = eR,S⊔T (r) + eS,T (r|S⊔T ).

Indeed, both sides count the number of elements in the set

r ∩
(
(T ×R) ⊔ (T × S) ⊔ (S ×R)

)
.

This says that the family of maps eS,T is a 2-cocycle (Section 9.6.1).
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In addition, given two decompositions S ⊔ T = I = S′ ⊔ T ′, A = S ∩ S′,
B = S ∩ T ′, C = T ∩ S′, D = T ∩ T ′ (as in Figure 8.1), and relations r1 on S and
r2 on T , we have

eS′,T ′(r1 ⊔ r2) = eA,B(r1) + eC,D(r2).

This follows from the equality of sets

(r1 ⊔ r2) ∩ (T ′ × S′) =
(
r1 ∩ (B ×A)

)
⊔
(
r2 ∩ (D × C)

)
,

which holds since in r1⊔r2 there are no relations between elements of S and T . This
says that the 2-cocycle eS,T is multiplicative of twist 0 (Section 9.6.3). Therefore
(Proposition 9.21), the above definitions turn R into a Hopf monoid.

We use Rq to denote the species of relations endowed with the above Hopf
monoid structure. It is a deformation of the Hopf monoid R1, in the sense of
Section 9.6.4.

We remark that the 2-cocycle eS,T is not a 2-coboundary (Section 9.6.1). In-
deed, any 2-coboundary on R1 is symmetric on S and T , but eS,T 6= eT,S . Thus,
the Hopf monoid Rq is a nontrivial deformation of R1.

13.4.2. Posets and graphs as relations. Posets and simple graphs with vertex
set I (Sections 13.1 and 13.2) are special kinds of relations on I. Moreover, both
posets and simple graphs are closed under disjoint unions and restrictions. Thus,
the species of posets and of simple graphs are Hopf submonoids of Rq. We denote
them by Pq and Gq, respectively.

Let p be a poset and g a simple graph, both with vertex set I. According
to (13.19), for any decomposition I = S ⊔ T we have

eS,T (p) = |{(t, s) ∈ T × S : t ≤ s in p}|

and

eS,T (g) = |{(t, s) ∈ T × S : there is an edge between t and s in g}|.

The Hopf monoid of simple graphs of Section 13.2.1 is G1. The product of the
Hopf monoid G0 is still given by (13.10); its coproduct is given by

G0[I]→ G0[S]⊗G0[T ],

g 7→





∑
I=S⊔T

g|S ⊗ g|T if there are no edges between S and T ,

0 otherwise.

On the other hand, the Hopf monoid of posets of Section 13.1.1 is P0. This follows
by comparing (13.2) and (13.20), and noting that

eS,T (p) = 0 ⇐⇒ S is a lower set of p.

The deformation of the Hopf monoid of simple graphs is only interesting if
q = 0. This is because

e(g) = e(g|S) + e(g|T ) + eS,T (g),

where e(G) is the number of edges of G. This says that eS,T is a 2-coboundary, and
then Gq

∼= G for q 6= 0 by Proposition 9.22.

Recall that a preposet is a reflexive and transitive relation. The discussion
for posets above extends to preposets. The species of preposets is closed under
disjoint unions and restrictions. This gives rise to a Hopf submonoid Oq of Rq
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which contains the Hopf monoid of posets Pq. The Hopf monoid of preposets of
Section 13.1.6 is O0.

13.4.3. Equivalence relations. Equivalence relations are closed under disjoint
unions and restrictions. Thus, the species of equivalence relations is a Hopf sub-
monoid of Rq. We denote it by Qq. It is in fact a Hopf submonoid of Oq, the Hopf
monoid of preposets of Section 13.4.2.

Given a relation r on I, let

eI(r) := |{(i, j) ∈ r | i 6= j}|.

In other words, eI(r) is the cardinality of the set r ⊆ I × I minus the diagonal of
I × I. Note that for any symmetric relation r, eI(r) is an even integer. Moreover,
in this case we have

e(r) = e(r|S) + e(r|T ) + 2 · eS,T (r).

This says that on symmetric relations the 2-cocycle eS,T is the coboundary of the
1-cochain 1

2eI .
It follows from Proposition 9.22 that for any q 6= 0, the map

Q1 → Qq, r 7→ q−
1
2 e(r) r

is an isomorphism of Hopf monoids.

13.4.4. Set partitions as relations. Partitions of a set I and equivalence rela-
tions on I are equivalent notions. Given a partition X of I, let rX be the corre-
sponding equivalence relation: (a, b) ∈ rX if and only if a and b belong to the same
block of X .

The Hopf monoids of set partitions Π and Π∗ were defined in Section 12.6.
The Hopf monoid Qq interpolates between the two in the following sense.

First of all, we have Π ∼= Q1 via hX 7→ rX .
Consider the case q = 0. Let I = S ⊔ T be a decomposition and X a partition

of I. Then

eS,T (rX) = 0 ⇐⇒ S (and T ) is a union of blocks of X .

It follows from the formulas in Proposition 12.42 that the map

Π∗ → Q0, pX 7→ rX

is an isomorphism of Hopf monoids.
We know from Proposition 12.48 that Π and Π∗ are isomorphic. Combining

the above isomorphisms we see that Qq
∼= Π for all q.

13.4.5. Boolean algebras and set partitions. A Boolean algebra on a finite
set I is a collection of subsets of I which contains ∅ and is closed under unions,
intersections and complements.

Let I = S⊔T be a disjoint decomposition. Given Boolean algebras b1 on S and
b2 on T , define b1 ⊔ b2 to be the Boolean algebra on I consisting of those subsets
which can be written as a union of a subset in b1 and a subset in b2. Similarly,
given a Boolean algebra b on I and a subset S ∈ b, define b|S to be the Boolean
algebra on S consisting of those subsets of S which lie in b.

Let B[I] denote the vector space with basis the set of all Boolean algebras on I.
This defines a species B. It is a Hopf monoid with product

B[S]⊗B[T ]→ B[I], b1 ⊗ b2 7→ b1 ⊔ b2



13.5. COMBINATORICS AND GEOMETRY 463

and coproduct

B[I]→ B[S]⊗B[T ], b 7→

{
b|S ⊗ b|T if S ∈ b,

0 otherwise.

The Hopf monoid B is commutative, cocommutative, and self-dual.
To any Boolean algebra b on I, one can associate a partitionX(b) of I consisting

of the minimum nonempty subsets which belong to b. This sets up a bijection
between Boolean algebras and set partitions. Using Proposition 12.42, one can see
that the map b 7→ pX(b) defines an isomorphism B→ Π∗ of Hopf monoids.

13.5. Combinatorics and geometry

The goal of this section is to formalize the correspondence between combinato-
rial and geometric objects. A summary of examples is given in Table 13.3. We have
seen some of these correspondences in Chapter 10, particularly in Section 10.9.1.
In this section, we note that preposets and posets also fit into the above formalism,
with the corresponding geometric objects being cones and top-dimensional cones.

13.5.1. Relations and the braid arrangement. Let I be a finite set. Recall
that the braid arrangement in RI is defined by the hyperplanes {xi = xj} as i 6= j
vary over I (Section 10.2.1).

We define correspondences between relations on the set I and subsets of RI .
Given a relation r on I, let

(13.22) Ψ(r) :=
⋂

(i,j)∈r

{xi ≤ xj}.

Given a subset R ⊆ RI , let

(13.23) Φ(R) :=
{
(i, j) ∈ I × I | R ⊆ {xi ≤ xj}

}
.

Proposition 13.6. Both maps Ψ and Φ are inclusion-reversing. Moreover, for
any relation r on I and subset R of RI , we have

r ⊆ Φ(R) ⇐⇒ Ψ(r) ⊇ R.

Table 13.3. Combinatorics and geometry.

Combinatorics Geometry

posets top-dimensional cones

preposets cones

linear orders chambers

equivalence relations, or set partitions flats

linear set partitions directed flats

set compositions faces

linear set compositions directed faces
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The proof is straightforward. The result says that Ψ and Φ define a Galois
connection in the sense of [317]. The following result describes the associated
closure operators ΨΦ and ΦΨ. Closure operators are discussed in Section 13.8.

Proposition 13.7. Let r be a relation on I and R a subset of RI .
(i) The set Ψ(r) is a cone of the braid arrangement.
(ii) ΨΦ(R) is the smallest cone of the braid arrangement that contains R.
(iii) The relation Φ(R) is reflexive and transitive (a preposet).
(iv) ΦΨ(r) is the reflexive and transitive closure of r.

Proof. For any i ∈ I, the set {xi ≤ xi} = RI can be omitted from (13.22)
without altering the resulting intersection. Thus, Ψ(r) is an intersection of half-
spaces, that is, a cone of the braid arrangement (Section 10.2.4). This proves (i).

Assertion (iv) follows from Farkas’ lemma [382, Proposition 1.9]. The remaining
assertions are straightforward. �

It follows from the proposition that the closed sets of the Galois connection
identify with preposets on the one hand, and with cones of the braid arrangement
on the other.

Corollary 13.8. The maps Ψ and Φ restrict to inverse correspondences between
the following classes of relations on I and of subsets of RI associated to the braid
arrangement.

(i) Preposets and cones.
(ii) Posets and top-dimensional cones.
(iii) Equivalence relations and flats.
(iv) Linear orders and chambers.

Proof. A Galois connection always restricts to inverse correspondences on
closed sets. The first assertion thus follows from Proposition 13.7.

The subset corresponding to a linear order l is the chamber

Ψ(l) = {xl1 ≤ · · · ≤ xln}.

As mentioned in Section 10.2.2, every chamber is of this form. This proves (iv).
To prove (ii), note that all chambers corresponding to linear extensions of a

poset p are contained in Ψ(p). In particular, Ψ(p) has nonempty interior and is thus
a top-dimensional cone. Conversely, if both (i, j) and (j, i) belong to a preposet p,
then Ψ(p) is contained in the hyperplane

{xi ≤ xj} ∩ {xj ≤ xi} = {xi = xj},

and therefore is not top-dimensional.
Similarly, if r is a symmetric relation, then

Ψ(r) =
⋂

i∼rj

{xi = xj},

where i ∼r j is as in (13.8). Thus, Ψ(r) is a flat, and as explained in Section 10.2.3,
every flat is of this form. This proves (iii). �

Remark 13.9. In Corollary 13.8, assertions (ii) and (iii) together are equivalent
to assertion (i): A preposet is equivalent to an equivalence relation together with
a partial order on the equivalence classes. Similarly, a cone is equivalent to a flat
together with a top-dimensional cone in that flat.
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Example 13.10. Let I = {v, i, s, h, n, u}. We show a poset on I and the corre-
sponding top-dimensional cone.

s
<<

<< h

���
�

i

v

u

n
←→ {(xi)i∈I ∈ RI | xv ≤ xi, xi ≤ xs, xi ≤ xh, xn ≤ xu}.

We remark that the correspondences Ψ and Φ (and hence the bijections of
Corollary 13.8) are (iso)morphisms of species.

Remark 13.11. Corollary 13.8, along with additional related results, appear in a
recent paper of Reiner, Postnikov and Williams [299, Section 3]; see in particular
their Proposition 3.5. The correspondence between posets and top-dimensional
cones in the braid arrangement goes back to work of Reiner [308, 309]. He also
explores this correspondence for other Coxeter types.

13.5.2. Geometric description of morphisms involving posets. In Sec-
tion 13.1.5 we discussed various morphisms of Hopf monoids involving the Hopf
monoid of posets P, such as

−→
Π

ν̂ // P
bω // L∗

We now describe these maps in geometric terms.
The map ω̂ sends a poset p to the sum of all chambers which belong to Ψ(p),

the top-dimensional cone associated to p as in (13.22).

Now consider the map ν̂ from the Hopf monoid of directed flats
−→
Π. In Sec-

tion 10.9.3 we associated a top-dimensional cone Ψ(L) to a given directed flat L.
It is not hard to see that this is precisely the cone Ψ(p), where p := ν̂(L). In other
words, Ψ(L) = Ψ

(
ν̂(L)

)
.

We turn to the morphisms Υ:
−→
Π → Σ∗ and η̂ : P→ Σ∗ in diagram (13.6).

The map Υ is given by

hL 7→
∑

F :F⊆Ψ(L)

MF .

as in (12.17). The letters h and M refer to the h and the M bases; they are written
for book-keeping purposes. Thus, the map Υ sends a directed flat L to the sum of
all faces contained in the cone Ψ(L). A combinatorial description is given in (12.18).

The map η̂ : P→ Σ∗ is given by

p 7→
∑

F :F⊆Ψ(p)

F.

In other words, η̂ sends a poset p to the sum of all faces contained in the top-
dimensional cone Ψ(p). This corresponds to the combinatorial description of η̂
given in (13.3).

13.6. Set-graded posets

All posets considered in this section are finite and have a bottom element 0̂ and
a top element 1̂. We use capital letters such as P to distinguish these posets from
the posets p of Section 13.1.
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We use the following standard terminology. A chain in a poset P is a totally
ordered subset of P . The length of a chain {x0 < x1 < · · · < xn} is n. A chain is
maximal if it is not properly contained in any other chain. Such a chain must have
x0 = 0̂ and xn = 1̂. A chain is saturated if it is maximal in a poset of the form

[x, y] := {z ∈ P | x ≤ z ≤ y}.

Such a chain must have x0 = x and xn = y. We let H(P ) denote the set of edges in
the Hasse diagram of a poset P , that is, the covering relation on the set of vertices
defined by P .

13.6.1. Graded posets. Recall that a poset P is graded if all maximal chains
have the same length. The rank of x ∈ P is the length of a saturated chain from
0̂ to x. The rank of P is the rank of 1̂. A morphism of graded posets is an order-
preserving map between posets of the same rank which preserves the grading.

Given a natural number n, we let Cn denote the chain

Cn := {0 < 1 < · · · < n}

consisting of the first n+ 1 natural numbers. This is a graded poset of rank n.
Let P be a graded poset of rank n. We may define a map ϕ : P → Cn by

ϕ(x) := rank(x).

The map ϕ is a morphism of graded posets, that is, it is order and rank-preserving.
In particular, it preserves covering relations. Conversely, given a poset P , if there
is a map ϕ : P → Cn that preserves covering relations, then P is graded. To
summarize:

Proposition 13.12. There is an equivalence between graded posets of rank n and
pairs (P, ϕ) where ϕ : P → Cn is a map that preserves covering relations.

13.6.2. Set-graded posets.

Definition 13.13. Let I be a finite set. An I-graded poset is a pair (P, λ) where

P is a poset (with 0̂ and 1̂) and λ : H(P ) → I is a function such that for each
maximal chain

C = {0̂ = x0 < x1 < · · · < xn = 1̂},

λ restricts to a bijection

{(xi−1, xi) ∈ H(P ) | i = 1, . . . , n}
∼=
−→ I.

In other words, the edges of the Hasse diagram are labeled by elements of I in such
a way that along each maximal chain every element of I appears exactly once.

We say that λ is an I-labeling of the edges of P . When I and λ are understood
or not specified, we may simply say that the poset P is set-graded.

Two I-graded posets (P, λ) and (P ′, λ′) are isomorphic if there is an isomor-
phism of posets f : P → P ′ such that

H(P )
H(f)

//

λ
!!D

DD
DD

DD
D

H(P ′)

λ′

||zz
zz

zz
zz

z

I
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commutes. For example, let I = {a, b}. Then the first few isomorphism classes of
I-graded posets are

◦
a

◦
b

◦

,

◦
b

◦
a

◦

,

◦
a
~~

~ a@@
@

◦

b
@@

@ ◦

b~~
~

◦

,

◦
b
~~

~ b@@
@

◦

a
@@

@ ◦

a~~
~

◦

,

◦
a
~~

~ b@@
@

◦

b
@@

@ ◦

a~~
~

◦

,

◦
a

~~
~~ a

@@
@@

a

◦

b
@@

@@
◦
b

◦

b~~
~~

◦

, . . .

(there are infinitely many).

Remark 13.14. If (P, λ) is I-graded and |I| = n, then all maximal chains in P
have length n, so P is graded of rank n. Conversely, any graded poset of rank n
admits several I-labelings. For instance, we may choose a linear order l1| · · · |ln on
I and label all edges of H(P ) between ranks i− 1 and i with li.

We discuss some basic facts about the structure of set-graded posets.
Let (P, λ) be an I-graded poset. Given any saturated chain C in P , let S(C) ⊆ I

denote the set of labels along C.
Take x ≤ y ∈ P and let C1 and C2 be two saturated chains from x to y. We

claim that S(C1) = S(C2). To see this, choose any saturated chains B from 0̂ to x

and D from y to 1̂. Then B ∪C1 ∪D and B ∪C2 ∪D are maximal chains (from 0̂

to 1̂) in P . Then, we have disjoint decompositions

S(B) ⊔ S(C1) ⊔ S(D) = I = S(B) ⊔ S(C2) ⊔ S(D).

It follows that S(C1) = S(C2).
Therefore, we may use S(x, y) to denote the set of labels of any saturated chain

from x to y, and the poset [x, y] is S(x, y)-labeled under the restriction of λ to
H([x, y]).

The preceding discussion also shows that for any x ∈ P we have a disjoint
decomposition

I = S(0̂, x) ⊔ S(x, 1̂).

More generally, suppose we are given a chain

C := {0̂ = x0 < x1 < · · · < xk = 1̂}

in P (not necessarily maximal). Iterating the preceding observation we see that
I = S(x0, x1) ⊔ · · · ⊔ S(xk−1, xk). Let

(13.24) λ(C) := S(x0, x1)| · · · |S(xk−1, xk)

be the resulting composition of I. Note that if the chain C is maximal, then λ(C)
is a linear order on I.

13.6.3. Set-graded posets and Boolean posets. Recall the Boolean poset 2I

consisting of subsets of I ordered by inclusion. It is I-graded: the edge (x, y) is
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labeled by the unique element in y \ x. For example, for I = {a, b, c}:

abc

ab

c
{{{{{{{{
ac

b

bc

a

BBBBBBBB

a

b c

{{{{{{{{{
b

a

CCCCCCCC
c

||||||||
c

a

BBBBBBBBB
b

∅.

a

BBBBBBBB
b

c

||||||||

Let (P, λ) be an I-graded poset. According to the discussion in Section 13.6.2, P

is graded of rank n, and the set S(0̂, x) of labels of any saturated chain from 0̂ to
x is well-defined. Therefore, we may define a map ϕ : P → 2I by

(13.25) ϕ(x) := S(0̂, x).

As before, ϕ is a morphism of graded posets. We refer to ϕ as the set-grading of
P .

Conversely, given a graded poset of rank n and a morphism of graded posets
ϕ : P → 2I , we can define an I-labeling λ : H(P )→ I by

λ(x, y) := the unique element in ϕ(y) \ ϕ(x)

for any covering relation (x, y). These constructions are inverse of each other. Thus:

Proposition 13.15. There is an equivalence between I-graded posets and pairs
(P, ϕ) where ϕ : P → 2I is a morphism of graded posets.

A comparison with Proposition 13.12 clarifies the relation between graded and
set-graded posets. Let |I| = n. The canonical morphism of graded posets 2I → Cn
is responsible for the fact that any set-graded poset is graded. The construction of
Remark 13.14 is explained as follows. The choice of a linear order on I is equivalent
to the choice of a section of graded posets Cn → 2I . This allows us to turn any
graded poset into a set-graded poset.

The preceding remarks suggest that one may view Boolean posets as a species
analogue of chains, and set-graded posets as a species analogue of graded posets.

Example 13.16. Let kI be the vector space with basis I over a field k and L(I)
the poset of vector subspaces of kI, ordered by inclusion. It is a graded poset in
which the rank of a subspace is its dimension. Choose a linear order l := l1| · · · |ln

on I. The Schubert symbol is the map

ϕl : L(I)→ 2I

defined as follows [275, §6]. Given V ∈ L(I), let s := dimV and set

ϕl(V ) := {li1 , . . . , lis} where ij := min{i ∈ [n] | dim(V ∩ k{l1, . . . , li}) = j}.

The Schubert symbol is a morphism of graded posets. In this manner, (L(I), ϕl) is
an I-graded poset.

We mention in passing that the Grassmannian of s-planes is the set

Grs(I) := {V ∈ L(I) | dimV = s}.
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If S ⊆ I has cardinality s, the fiber

{V ∈ Grs(I) | ϕl(V ) = S}

is called a Schubert cell.

13.6.4. The Hopf monoid of set-graded posets. Let sgP[I] be the (infinite-
dimensional) vector space with basis the set of isomorphism classes of I-graded
posets. We proceed to turn the species sgP into a Hopf monoid.

Before defining the product, note that the covering relations in the Cartesian
product P ×Q of two posets are of the form

(x, y) < (x′, y) where x < x′ is a covering relation in P ,

or of the form

(x, y) < (x, y′) where y < y′ is a covering relation in Q.

Now, given I = S ⊔ T , the corresponding component of the product is

sgP[S]⊗ sgP[T ]→ sgP[I],

(P, λ) ⊗ (Q,µ) 7→ (P ×Q, ρ),

where ρ : H(P ×Q)→ I is

ρ
(
(x, y), (x′, y′)

)
=

{
λ(x, x′) if y = y′,

µ(y, y′) if x = x′.

For any maximal chain C in P ×Q, there are maximal chains X in P and Y in Q
such that ρ(C) is a shuffle of λ(X) and µ(Y ). In particular, S(C) = S(X)∪S(Y ) =
S ∪ T = I. Thus, the product is well-defined.

To define the coproduct we make use of the observations in Section 13.6.2 and
we set

(13.26)

sgP[I]→ sgP[S]⊗ sgP[T ],

(P, λ) 7→
∑

x∈ϕ−1(S)

([0̂, x], λ|H([0̂,x]))⊗ ([x, 1̂], λ|H([x,1̂])),

where ϕ : P → 2I is the set-grading of P (13.25). Note that if ϕ(x) = S, then

S(0̂, x) = S and S(x, 1̂) = T , so the restrictions of λ turn [0̂, x] into an S-graded

poset and [x, 1̂] into a T -graded poset. The fiber of ϕ over S may be empty, in
which case the corresponding component of the coproduct is 0.

The species sgP is a Hopf monoid. It is commutative but not cocommutative.

13.6.5. Flags. We proceed as in Section 13.1.2. The morphism of monoids

η : sgP→ E

defined by

η(P, λ) := 1,

gives rise via the universal property of Theorem 11.23 to a morphism of Hopf
monoids

η̂ : sgP→ T ∨(E+) = Σ∗.

Formula (11.18) yields the following explicit description for η̂:

(13.27) η̂(P, λ) =
∑

F

fF (P, λ)MF ,
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where the coefficient fF (P, λ) counts the number of chains C in P such that λ(C) =
F , and λ(C) is as in (13.24). Thus, η̂ is simply an enumerator of chains.

13.6.6. Chains and descents. We start from the unique morphism of species

ω : sgP+ → X

which sends the basis element
◦
a

◦
of sgP[{a}] to the distinguished basis element of

X[{a}]. In the course of this and the following sections, we will see how elementary
applications of universal properties take us from this simple starting point to several
natural combinatorial notions pertaining to set-graded posets.

First, as in Section 13.1.3, we may use the universal property of L∗ (cofreeness)
to derive a canonical morphism of Hopf monoids

ω̂ : sgP→ L∗,

which has the following explicit form:

(13.28) ω̂(P, λ) =
∑

C

λ(C)∗.

The sum is over all maximal chains C of P , and λ(C) stands for the linear order
on I corresponding to C under λ, as in (13.24).

Continuing as in Section 13.1.4, combining ω̂ with evaluation we obtain a com-
mutative diagram of monoids

L× sgP
id×bω

//

ζ
$$I

IIIIIIII IL∗

}}||
||

||
||

E.

Explicitly,

(13.29) ζ
(
l, (P, λ)

)
= number of maximal chains C in P such that λ(C) = l.

Here we are following Convention 12.60.
The universal property of Theorem 11.23 then yields a commutative diagram

of Hopf monoids

(13.30)

L× sgP
id×bω

//

ζ̂ ''OOOOOOOOOOOO IL∗

β
xxqqqqqqqqqqq

T ∨(E+) = Σ∗.

Formula (11.18) yields the following explicit description for ζ̂:

(13.31) ζ̂
(
l, (P, λ)

)
=
∑

F

fF
(
l, (P, λ)

)
MF

where the coefficient fF
(
l, (P, λ)

)
counts the number of maximal chains C in P

satisfying two conditions:

λ(C) refines F and the restrictions of l and of λ(C) to each block of F coincide.

These conditions can be succinctly expressed as:

F · l = λ(C), or equivalently, Des
(
l, λ(C)

)
≤ F ≤ λ(C).
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Here F · l is the projection of the chamber l onto the face F (10.13), and the
equivalence follows from (10.42).

The morphism of Hopf monoids ζ̂ is thus an enumerator of descents.

13.6.7. EL posets. The comparison between two canonical maps L × sgP → E
will lead us to the consideration of this interesting class of posets.

Recall the morphism η : sgP→ E of Section 13.6.5. Let us use the same symbol
to denote the map

(13.32) η : L× sgP→ E,
(
l, (P, λ)

)
7→ 1.

Since the product of two basis elements of L× sgP is another basis element, η is a
morphism of monoids.

On the other hand, we also have the morphism of monoids

ζ : L× sgP→ E

of Section 13.6.6.
Consider now the species ker(ζ − η). Since both ζ and η are morphisms of

monoids, the species ker(ζ − η) is a submonoid of L× sgP.
We pause to discuss some general facts. If k is a subspecies of a comonoid

p, there exists a unique largest subcomonoid of p contained in k. This is called
the subcomonoid cogenerated by k. In addition, if p is a bimonoid and k is a
submonoid, then the subcomonoid cogenerated by k is a subbimonoid of p. The
analogous facts for vector spaces are familiar (see for instance [8, Section 6]) and
the proofs for species are similar.

We proceed. Define elP as the subcomonoid of L × sgP cogenerated by the
species ker(ζ − η). According to the above, it is a subbimonoid of L × sgP, and
since the latter is connected, so is the former. Thus, elP is a Hopf submonoid of
L× sgP. This definition of elP, natural from the algebraic point of view, does not
immediately reveal its combinatorial significance. We will soon see that it contains
an important class of posets.

Definition 13.17. Let I be a finite set, l a linear order on I, and (P, λ) an I-graded
poset. We say that

(
l, (P, λ)

)
is EL if in every interval of P there exists exactly one

maximal chain C such that λ(C) = l|C .

Suppose
(
l, (P, λ)

)
is EL, I = [n] and l is the canonical linear order on [n].

Then the labels along each maximal chain of P must form a permutation of [n],
and the identity permutation must occur exactly once. In the literature, such
posets are called Sn EL-labeled. They constitute a very interesting class of posets.
Results of Stanley [337] and Liu [231] state that any finite supersolvable lattice
admits an Sn EL-labeling. Conversely, McNamara has shown that if a finite lattice
admits a symmetric EL-labeling, then it is supersolvable [266]. More recently,
McNamara and Thomas have given a similar characterization for arbitrary Sn EL-
labeled posets [267].

It follows immediately from (13.29) and (13.32) that if
(
l, (P, λ)

)
is EL, then

(
l, (P, λ)

)
∈ ker(ζ − η).

On the other hand, since the defining condition of EL posets refers to all intervals
of the underlying poset, it is clear that the subspecies of sgP spanned by the EL
posets is a subcomonoid. Therefore, it must be contained in the subcomonoid
cogenerated by ker(ζ − η). Thus, every EL poset

(
l, (P, λ)

)
belongs to elP.
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We close the section with a simple consequence of our considerations.
By construction, the maps ζ and η agree on elP. Therefore, the same holds

for the morphisms

elP→ Σ∗

they give rise to via the universal property of Σ∗. Comparing (13.27) and (13.31)
we deduce that

fF (P, λ) = fF
(
l, (P, λ)

)

for any EL poset
(
l, (P, λ)

)
and every composition F . In other words, for such

posets, the enumerator of flags and the enumerators of descents agree. A closely re-
lated result (which follows) appears in [341, Theorem 3.13.2] and [50, Theorem 2.7].

13.6.8. Set-weighted posets. There is a larger Hopf monoid than that of set-
graded posets. Namely, we use posets P as follows:

• P has 0̂ and 1̂,
• each edge is labeled by a nonempty subset of I,
• the labels along any maximal chain form a composition of I.

We refer to these as set-weighted posets. Set-graded posets are the special case in
which all labels are singletons. It follows that given x and y in P , the union of
the subsets along a saturated chain from x to y is independent of the chosen chain.
Call this set S(x, y).

There is an equivalence between I-weighted posets and morphisms of posets
ϕ : P → 2I that preserve bottom and top elements and are such that if x < y, then
ϕ(x) is a proper subset of ϕ(y). To pass from the former situation to the latter,

take ϕ(x) = S(0̂, x).
Note that set-weighted posets need not be graded in the usual sense. As an

example, take any subposet of 2I which contains ∅ and I.
Let swP[I] be the (infinite-dimensional) vector space with basis the set of

isomorphism classes of I-weighted posets. The Hopf monoid structure on swP
is defined in the same way as for sgP, and swP contains the latter as a Hopf
submonoid.

Given a maximal chain C in a set-weighted poset P , we may consider λ(C) as
in (13.24), which is now a set composition. Recall that two compositions have the
same support (Section 10.1.5) if they are reorderings of each other. Consider the

subspecies s̃wP of swP linearly spanned by those set-weighted posets (P, λ) such
that for any maximal chains C and D of P ,

suppλ(C) = suppλ(D).

It is a Hopf submonoid of swP and it contains sgP. In addition, the map

(13.33) s̃wP→ sgP, P 7→

{
P if P is set-graded,

0 otherwise,

is a morphism of Hopf monoids, split by the inclusion:

sgP
� � //

s̃wP.oooo

Note that, as species,

s̃wP = sgP ◦E+.
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Table 13.4. Analogies: from numbers to sets.

natural number n finite set I

chain Cn Boolean poset 2I

graded poset set-graded poset

simplex ∆[n−1] Coxeter complex Σ[I]

balanced simplicial complex set-balanced simplicial complex

13.7. Set-balanced simplicial complexes

The notion of set-balanced simplicial complex is the species analogue of the
more familiar notion of balanced simplicial complexes. The parallel is similar (and
related) to that between graded and set-graded posets (Section 13.6). These and
similar analogies are summarized in Table 13.4. After discussing these notions,
we introduce an interesting monoid based on the species of set-balanced simplicial
complexes. We close the section by relating the monoids of set-graded posets and
of set-balanced simplicial complexes via the order complex construction.

13.7.1. Balanced simplicial complexes. We will use the terminology on sim-
plicial complexes introduced in Section 10.3.1.

Recall that a balanced simplicial complex is a pair (k, ϕ) where k is a simplicial
complex and ϕ : V → [n] is a function that restricts to a bijection

C
∼=
−→ [n]

for each maximal face C of k. This implies that k is pure of dimension n− 1.
Given a balanced simplicial complex (k, ϕ) of dimension n− 1, the map

k→ ∆[n], F 7→ ϕ(F ),

is a nondegenerate simplicial map. Conversely, given a pure simplicial complex
k of dimension n − 1, any nondegenerate map k → ∆[n] turns k into a balanced
simplicial complex.

Proposition 13.18. A balanced simplicial complex of dimension n−1 is equivalent
to a pure simplicial complex k of dimension n − 1 equipped with a nondegenerate
simplicial map k → ∆[n].

13.7.2. Set-balanced simplicial complexes. This motivates the following def-
inition, in which we replace the simplex ∆[n] by the Coxeter complex Σ[I] (Sec-
tion 10.3).

Definition 13.19. Let I be a finite set. An I-balanced simplicial complex is a pair
(k, ϕ) where k is a pure simplicial complex of dimension |I| − 2 and

ϕ : k → Σ[I]

is a nondegenerate simplicial map. When I and ϕ are understood or not specified,
we may simply say that the complex k is set-balanced.



474 13. HOPF MONOIDS FROM COMBINATORICS

Two I-balanced simplicial complexes (k, ϕ) and (k′, ϕ′) are isomorphic if there
is a simplicial isomorphism f : k → k′ such that

k
f

//

ϕ
  A

AA
AA

AA
A k′

ϕ′
}}||

||
||

||

Σ[I]

commutes.

Remark 13.20. Let n := |I|. Recall that the Coxeter complex Σ[I] is pure and of
dimension n− 2. Further, it is balanced via the type map (10.12).

A fortiori, any I-balanced complex is also balanced when endowed with the
nondegenerate simplicial map

k
ϕ
−→ Σ[I]→ ∆[n−1].

Conversely, any balanced simplicial complex (k, ϕ) of dimension n − 2 can be
turned into an I-balanced complex in many ways. For instance, choose a linear
order l1| · · · |ln on I and let Cl be the corresponding chamber in Σ[I]. The simplices
∆[n−1] and ∆Cl are isomorphic by means of the map

∆[n−1] → ∆Cl , i 7→ l1 · · · li | li+1 · · · ln.

Therefore, k is I-balanced by means of the nondegenerate simplicial map

k
ϕ
−→ ∆[n−1]

∼=
−→ ∆Cl →֒ Σ[I].

Example 13.21. Let P be a poset with bottom 0̂ and top 1̂ such that 0̂ < 1̂. The
reduced order complex of P is

∆(P ) := {C ⊆ P \ {0̂, 1̂} | C is a chain in P}.

This is a simplicial complex with vertex set P \ {0̂, 1̂}.
Suppose that P is graded of rank n. Equivalently, by Proposition 13.12, there

is a morphism of graded posets P → Cn where Cn = {0 < 1 < · · · < n}. There is
then a nondegenerate simplicial map

∆(P )→ ∆(Cn) = ∆[n−1]

which turns ∆(P ) into a balanced complex (of dimension n− 2). On vertices, the
function

P \ {0̂, 1̂} → [n− 1]

sends an element of P to its rank.
Now suppose that P is I-graded. Equivalently, by Proposition 13.15, there is a

morphism of graded posets P → 2I . There is then a nondegenerate simplicial map

∆(P )→ ∆(2I) = Σ[I]

which turns ∆(P ) into an I-balanced complex.
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Consider the following example.

◦

◦

d ~~~~~
◦

c
@@@@@

◦
c

@@@@@ d

~~~~~

◦

b ~~~~~
◦

a
@@@@@

◦
a

@@@@@ b

~~~~~

7−→

abd|c
b|ad|c

a|bd|c

ab|d|c
EE

EE
E

EE
EE

E

b|acd

b|ac|d

b|a|cd
yy

yy
y

yy
yy

y

a|b|d|c ab|cd

b|a|d|c

a|b|c|d

b|a|c|d

a|bcd
a|bc|d

a|b|cd
yyyyy

yyyyy

abc|d

ab|c|dEEEEE

EEEEE

The order complex of the set-graded poset on the left is a set-balanced simplicial
complex consisting of four triangles attached at a common vertex, with the labelings
on the faces as shown. Note that it is an embedding into the Coxeter complex shown
in Figure 10.4.

Now consider the poset L(I) of subspaces in kI (Example 13.16). The simplicial
complex ∆

(
L(I)

)
is a building of type A [3, Sections 4.3 and 9.2]. Once we choose

a linear order on I, the poset L(I) is graded by means of the Schubert symbol.
Therefore, ∆

(
L(I)

)
is set-balanced. The map

∆
(
L(I)

)
→ Σ[I]

is a retraction of the building onto an apartment [3, Section 4.4].

Remark 13.22. We may generalize the above setup by using simplicial complexes
k with a nondegenerate map ϕ : k → Σ[I], without conditions on the dimension of
k. Such complexes need not be balanced or even pure. The order complex map
takes set-weighted posets (Section 13.6.8) to this class of simplicial complexes.

13.7.3. The monoid of set-balanced simplicial complexes. Let K[I] be the
(infinite-dimensional) vector space with basis the set of isomorphism classes of I-
balanced simplicial complexes. This defines a species K which is connected, since
there is only one ∅-balanced simplicial complex. We proceed to turn the species K
into a monoid.

In order to define the product, fix a decomposition I = S⊔T into nonempty sub-
sets and two (isomorphism classes of) set-balanced simplicial complexes (k1, ϕ1) ∈
K[S] and (k2, ϕ2) ∈ K[T ]. Then G := S|T is a vertex of the Coxeter complex Σ[I]
and we may consider the join map (10.57)

jG : Σ[S]× Σ[T ]
∼=
−→ StarΣ[I](G).

Together with the projection product (10.16), this allows us to define a new complex
k as follows.

k := {(K1,K2, F ) | K1 ∈ k1, K2 ∈ k2, F ∈ Σ[I], GF = jG
(
ϕ1(K1), ϕ2(K2)

)
}.

As in Proposition 12.20, the latter condition simply states that F is a quasi-shuffle
of the faces ϕ1(K1) and ϕ2(K2) (Section 10.1.6). Thus, the faces of k are triples
consisting of a face from each ki and a quasi-shuffle of their images under the maps
ϕi.
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We endow k with the partial order of the Cartesian product k1 × k2 ×Σ[I]. In
other words, given (J1, J2, E) and (K1,K2, F ) ∈ k, we define

(J1, J2, E) ≤ (K1,K2, F ) if J1 ≤ K1, J2 ≤ K2, and E ≤ F .

We show that k is a simplicial complex by checking conditions (10.11a)–(10.11c).
The triple consisting of the empty faces of k1, k2 and Σ[I] is the minimum element of
k. Next, suppose two faces (J1, J2, E) and (K1,K2, F ) have an upper bound. Then,
for each i, Ji and Ki are faces of a simplex of ki, and since ϕi is an isomorphism
when restricted to a simplex, we have ϕi(Ji ∨Ki) = ϕi(Ji) ∨ ϕi(Ki). Therefore,

jG
(
ϕ1(J1 ∨K1), ϕ2(J2 ∨K2)

)
= jG

(
ϕ1(J1) ∨ ϕ1(K1), ϕ2(J2) ∨ ϕ2(K2)

)

= jG
(
ϕ1(J1), ϕ2(J2)

)
∨ jG

(
ϕ1(K1), ϕ2(K2)

)

= GE ∨GF = G(E ∨ F ).

(We used that jG is an isomorphism of complexes and property (vii) of projection
maps in Proposition 10.1.) Thus,

(J1 ∨K1, J2 ∨K2, E ∨ F )

is a face of k, and it is clearly the least upper bound of the given faces. Finally,
we check that the poset of subfaces of a face (K1,K2, F ) is Boolean. We claim
that a subface (J1, J2, E) is uniquely determined by E: indeed, since the map jG is
bijective, the faces ϕi(Ji) are uniquely determined by E, and then since the maps
ϕi are bijective when restricted to ∆Ki , the faces Ji are uniquely determined. Thus,
the poset of subfaces of (K1,K2, F ) in k is isomorphic to the poset of subfaces of
F in Σ[I], so it is Boolean.

We turn k into an I-balanced simplicial complex by defining ϕ : k → Σ[I] by

ϕ(K1,K2, F ) := F.

The following pull-back diagram summarizes the definition of (k, ϕ).

k

ϕ

��
�
�
�
�
�
�
�
�

//______ k1 × k2

(ϕ1,ϕ2)

��

Σ[S]× Σ[T ]

∼= jG

��

Σ[I] pG
// StarΣ[I](S|T )

The projection map pG is as in (10.23).

We define the product of K by

K[S]⊗K[T ]→ K[I], (k1, ϕ1)⊗ (k2, ϕ2) 7→ (k, ϕ).

With this product, the species K is a commutative monoid.

As an example, take k1 := Σ[S] and k2 := Σ[T ], viewed as set-balanced com-
plexes by means of the identity maps. Since the map jG is bijective, a triple
(K1,K2, F ) ∈ k is in this case uniquely determined by F . Therefore, k ∼= Σ[I] as
set-balanced complexes, and the product of the monoid K is such that

(Σ[S], id)⊗ (Σ[T ], id) 7→ (Σ[I], id).
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As explained in Example 13.21, the (reduced) order complex of an I-graded
poset is an I-balanced simplicial complex. This defines a morphism of species

∆ : sgP→ K.

It is easy to see, comparing the definition here with the one in Section 13.6.4, that
∆ is a morphism of monoids.

Question 13.23. Is it possible to define a coproduct on K that turns it into a
Hopf monoid in such a manner that ∆ is a morphism of Hopf monoids?

A positive answer may be obtained by restricting the class of set-balanced
simplicial complexes. For instance, we may impose the following restriction: For
each face F of k, there is a commutative diagram of simplicial complexes

Stark(F )

ϕ

��

∼=

bF // k1 × k2 × · · · × kr

(ϕ1,ϕ2,...,ϕr)

��

StarΣ[I]

(
ϕ(F )

) ∼=

bϕ(F )

// Σ[S1]× Σ[S2]× · · · × Σ[Sr]

where ϕ(F ) = S1|S2| · · · |Sr. The existence of the ki’s, ϕi’s and the map bF is a
part of the requirement.

In this situation, a suitable coproduct can be defined. Note also that the order
complex of a set-graded poset satisfies this requirement.

13.8. Closures, matroids, convex geometries, and topologies

Matroids were introduced by Whitney [374] as an abstraction of the notion of
linear independence. Convex geometries were introduced by Edelman [110] and
Jamison [177], independently.

Good references for matroids are the books by Crapo and Rota [87], Oxley [287]
and Welsh [373], and for convex geometries and related notions, the surveys of
Björner and Ziegler [53] and Edelman and Jamison [111].

Matroids, convex geometries, and topologies are special kinds of closure oper-
ators. Only a few basic concepts pertaining to these notions are needed for our
purposes, which allow us to provide a self-contained discussion.

13.8.1. Closure operators. Let 2I denote the set of subsets of a finite set I.

Definition 13.24. A closure operator on I is a map

c : 2I → 2I

such that for every A,B ∈ 2I , we have:

• A ⊆ c(A);
• if A ⊆ c(B), then c(A) ⊆ c(B).

It follows from these axioms that

• c
(
c(A)

)
= c(A);

• if A ⊆ B, then c(A) ⊆ c(B).
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The set I is the ground set of c. An element a ∈ I is a loop if

a ∈ c(∅).

It is a coloop if

a /∈ c(I \ {a}).

Loops and coloops play a role in subsequent sections.

Let I = S ⊔ T be a disjoint decomposition. Given closure operators c1 and c2
with ground sets S and T , their direct sum

c1 ⊕ c2 : 2I → 2I

is the operator defined by

(c1 ⊕ c2)(C) := c1(S ∩ C) ∪ c2(T ∩ C).

The direct sum c1 ⊕ c2 is a closure operator with ground set I.
Given a closure operator c with ground set I and subsets A ⊆ B ⊆ I, the

minor

cA:B : 2B\A → 2B\A

is the operator given by

cA:B(C) := c(C ∪A) ∩B \A.

The minor cA:B is a closure operator with ground set B \A. The minors c∅:B and
cA:I are called the restriction of c to B and the contraction of A from c, respectively.

Let C[I] denote the vector space with basis the set of all closure operators with
ground set I. This defines a species C. It is a Hopf monoid with product

(13.34) C[S]⊗C[T ]→ C[I], c1 ⊗ c2 7→ c1 ⊕ c2

and coproduct

(13.35) C[I]→ C[S]⊗C[T ], c 7→ c∅:S ⊗ cS:I .

The Hopf monoid C is commutative but not cocommutative.
The above construction originates in the work of Joni and Rota [179, Sec-

tion XVII].

13.8.2. Matroids.

Definition 13.25. A matroid with ground set I is a closure operator m : 2I → 2I

that satisfies the Mac Lane–Steinitz exchange axiom:

• if a ∈ m(A ∪ {b}) and a /∈ m(A), then b ∈ m(A ∪ {a}),

for every A ∈ 2I and a, b ∈ I.

Let M[I] denote the vector subspace of C[I] spanned by all matroids with
ground set I. The class of matroids is closed under direct sums and minors; there-
fore, the species M is a Hopf submonoid of C.

Recall the notion of loops and coloops associated to a closure operator. In the
context of matroids, coloops are sometimes called isthmuses.

A matroid m with ground set I is split if there exists a subset L ⊆ I such that

m(A) = A ∪ L



13.8. CLOSURES, MATROIDS, CONVEX GEOMETRIES, AND TOPOLOGIES 479

for every A ⊆ I. In this case L is unique: L = m(∅); moreover, L is the set of loops
and I \ L the set of isthmuses. Conversely, if every element of the ground set is
either a loop or an isthmus, then m is split.

Define ζ : M→ E by

(13.36) ζ(m) :=

{
1 if m is split,

0 otherwise.

Then ζ is a morphism of monoids. By universality (Theorem 11.23), it gives rise
to a morphism of Hopf monoids

ζ̂ : M→ Σ∗.

13.8.3. Convex geometries.

Definition 13.26. A convex geometry with ground set I is a closure operator
g : 2I → 2I that satisfies the antiexchange axiom:

• if a ∈ g(A ∪ {b}), a 6= b and a, b /∈ g(A), then b /∈ g(A ∪ {a}),

for every A ∈ 2I and a, b ∈ I.

Let cG[I] denote the vector subspace of C[I] spanned by all convex geometries
with ground set I. The class of convex geometries is closed under direct sums and
minors; therefore, the species cG is a Hopf submonoid of C.

Convex geometries are discussed in [53, Section 8.7.A]. See [53, Figure 8.9]
for an illustration of the antiexchange axiom. Convex geometries are in duality
with antimatroids, a special class of greedoids. Both notions are carefully reviewed
in [53]; we do not employ them here.

Warning. An antimatroid, and more generally a greedoid, has an associated rank
closure [53, Section 8.4.B], but in general this is not a closure operator and should
not be confused with the convex geometry dual to an antimatroid.

13.8.4. A deformation. We discuss a deformation of the Hopf monoid of closure
operators that arose in conversation with Bill Schmitt. It gives rise to deformations
of the Hopf monoids of matroids and of convex geometries. We are interested in
the case when the deformation parameter is set to 0, for reasons that will be clear
shortly.

We make use of the theory of cocycle deformations developed in Section 9.6.

Given a decomposition I = S ⊔ T , let

ℓS,T (c) := |
(
c(S) \ c(∅)

)
∩ T |.

The statistic ℓS,T (c) counts the number of loops created in contracting S from c.
More precisely, ℓS,T (c) is the number of loops of cS:I minus the number of loops of
c that belong to T .

Let ℓI(c) denote the number of loops of a closure operator c with ground set I.
We have

ℓ(c) + ℓS,T (c) = ℓ(c∅:S) + ℓ(cS:I).

The family of maps ℓI is a 1-cochain on C with values on N, in the sense of
Section 9.6.1. The previous identity shows that the family ℓS,T is the corresponding
2-coboundary. Moreover, the 1-cochain ℓI is multiplicative, and hence the 2-cochain
ℓS,T is multiplicative of twist 0 (Section 9.6.3). Therefore by Proposition 9.21, we
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may deform the coproduct of the Hopf monoid of closure operators as follows. We
fix q ∈ k and define a coproduct by

(13.37) C[I]→ C[S]⊗C[T ], c 7→ qℓS,T (c) c∅:S ⊗ cS:I .

The coproduct (13.37) is compatible with the product (13.34), and with this struc-
ture the species of closure operators is a Hopf monoid.

We denote this Hopf monoid by Cq. The species of matroids is a Hopf sub-
monoid of Cq that we denote by Mq. Setting q = 1 recovers the Hopf monoids of
Sections 13.8.1 and 13.8.2.

Since the deformation is with respect to a 2-coboundary, the only other inter-
esting case is q = 0. Indeed, by Proposition 9.22, the map

C→ Cq, c 7→ qℓ(c) c

is a morphism of Hopf monoids for any q ∈ k. It follows that

Cq
∼= C

for any q 6= 0. The case q = 0 is of interest and is discussed next.

13.8.5. Loopless closure operators. Let c be a closure operator with ground
set I. A subset F ⊆ I is closed if c(F ) = F , or equivalently if F = c(A) for some
A ⊆ I.

The closure operator c is loopless if the empty set is closed: c(∅) = ∅. Let C
denote the species spanned by loopless closure operators. The direct sum of two
loopless closures is again loopless, so C is a submonoid of C.

Suppose A ⊆ B ⊆ I. The set

cA:B(∅) = c(A) ∩ (B \A)

may be nonempty even if c is loopless. For this reason, the class of loopless clo-
sures is not closed under minors, and C is not a subcomonoid of C under the
coproduct (13.35). Note that

cA:B is loopless ⇐⇒ A is closed.

Suppose c is loopless. Given a decomposition I = S ⊔ T , we have that

ℓS,T (c) = 0 ⇐⇒ S is closed.

Hence, if we set q = 0 in the coproduct formula (13.37), we obtain

(13.38) c 7→

{
c∅:S ⊗ cS:I if S is closed,

0 otherwise.

In this formula, both minors c∅:S and cS:I are loopless closures. Therefore, the
species C is a Hopf submonoid of the Hopf monoid C0, with coproduct given
by (13.38).

The species M of loopless matroids and cG of loopless convex geometries are
Hopf submonoids of C. The closed sets of a matroid are called flats. The closed
sets of a convex geometry are called convex sets ; they are the complements of the
feasible sets of the dual antimatroid [53, Proposition 8.7.3]. Flats and convex sets
intervene in the coproducts of M and cG, according to (13.38).

Björner and Ziegler define the contraction of a subset T from an antimatroid
only when T is feasible [53, Section 8.4.D]. Restriction and contraction for convex
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geometries and antimatroids are related as follows. Let c be a convex geometry and
c⊥ the dual antimatroid. Given a decomposition I = S ⊔ T ,

(c∅:S)⊥ = (c⊥)T :I and (cS:I)
⊥ = (c⊥)∅:T ,

the former when T is feasible, or equivalently when S is closed.
For a convex geometry c, the set of loops and the set of coloops are comple-

mentary. This follows from [53, Proposition 8.2.8.i]. Thus, c is loopless if and only
if every element is a coloop. In this case, the antimatroid c⊥ is said to be full [53,
p. 292].

It follows from this discussion that the coproduct (13.38) can be reformulated
in terms of restriction and contraction for full antimatroids.

13.8.6. Topologies.

Definition 13.27. A closure operator t : 2I → 2I is topological if

• t(∅) = ∅;
• t(A ∪B) = t(A) ∪ t(B).

These axioms, together with those in Definition 13.24 are known as Kura-
towski’s axioms. As is well-known [178, Section I.1] or [193, Theorem 1.8], topolog-
ical closures with ground set I and topologies on I are equivalent notions: given a
topological closure t, the subsets of the form t(A) are the closed sets of a topology
on the set I; conversely, any topology on I arises in this manner from a unique
topological closure operator.

Let T[I] denote the subspace of C[I] spanned by all topological closures with
ground set I. This defines the species T of topologies. The direct sum of two
topological closures is another topological closure (corresponding to the disjoint
union of the topological spaces); hence, the species T is a submonoid of C under the
product (13.34). For the same reason as for loopless closures T is not a subcomonoid
of C, but it is a Hopf submonoid of the Hopf monoid C0 (and in fact of C).

A topological closure t is Kolmogorov if it satisfies the T0-separation axiom:

• if a ∈ t({b}) and b ∈ t({a}), then a = b.

The species kT of Kolmogorov topologies is a Hopf submonoid of T.
A Kolmogorov closure is always a loopless convex geometry. We thus obtain

the commutative diagram of Hopf monoids below.

T
� � // C

kT
?�

OO

� � // cG
?�

OO

13.9. The Birkhoff transform

In this section, we discuss the Birkhoff transform which relates the Hopf monoid
of posets to the Hopf monoid of set-graded posets, and the Hopf monoid of preposets
to that of set-weighted posets. We also explain how the Hopf monoids of loopless
convex geometries, loopless closure operators and topological closures fit into this
framework.
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13.9.1. From (pre)posets to (set weighted) set-graded posets. Let p be a
poset with vertex set I, as in Section 13.1. The Birkhoff transform of p is the poset
J(p) whose elements are the lower sets of p, ordered by inclusion. The poset has a
bottom element ∅ and a top element I.

Note that if S is a lower set of p and a is any minimal element of I \ S, then
S ∪ {a} is another lower set in p. Letting

λ(S, S ∪ {a}) := a

defines an I-labeling on J(p), thus turning it into an I-graded poset. Thus, we may
view the Birkhoff transform as a map

J : P→ sgP.

The labeling on J(p) will be omitted from the notation. A classical result of Birkhoff
states that a finite poset is of the form J(p) for some poset p if and only it is a
distributive lattice [341, Theorem 3.4.1].

Let S be a lower set of a poset p. The lower sets contained in S are the lower
sets of p|S. A lower set in a disjoint union p1 ⊔ p2 is of the form S1 ⊔S2 where each
Si is a lower set in pi. It follows that J is a morphism of Hopf monoids.

The following diagram commutes trivially:

P
J //

ω
  

@@
@@

@@
@@

sgP

ω
}}zz

zz
zz

zz

X.

Since the maps ω̂ and ζ̂ were canonically constructed from the maps ω (in Sec-
tions 13.1.3 and 13.6.6), it follows that the these diagrams commute as well:

P
J //

bω
  

AA
AA

AA
AA

sgP

bω
}}zz

zz
zz

zz

L∗

L×P
id×J

//

ζ̂ ##G
GG

GG
GG

GG
L× sgP

ζ̂zzuuuuuuuuu

Σ∗.

The commutativity of the first diagram expresses the (obvious) fact that maximal
chains in J(p) are in one-to-one correspondence with linear extensions of p via
C 7→ λ(C). From the second diagram we recover the elementary fact that the
enumerator of poset partitions and the enumerator of descents are related by the
Birkhoff transform. More precisely, from (13.5) and (13.31) we deduce that

fF
(
l, J(p)

)
=

{
1 if F · l is a linear extension of p,

0 otherwise.

Similarly, the commutativity of

P
J //

η
��

??
??

??
??

sgP

η
}}{{

{{
{{

{{

E

implies that of

P
J //

η̂
  B

BB
BB

BB
B sgP

η̂
||yy

yy
yy

yy

Σ∗.
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Using (13.27) and (13.3), we deduce that for any composition F = F 1| · · · |F k of I,

fF
(
J(p)

)
=

{
1 if F 1 ∪ · · · ∪ F i is a lower set of p for every i,

0 otherwise.

Recall the Hopf monoid O of preposets from Section 13.1.6. As above, let J(r)
denote the set of lower sets of a preposet r on I, ordered by inclusion. We use the
inclusion of J(r) into 2I to turn J(r) into a set-weighted poset (Section 13.6.8).

Since the coproduct of O is given in terms of lower sets, the map

J : O→ swP

is a morphism of Hopf monoids. The commutative diagram

O
J // swP

P
J

//
?�

OO

sgP
?�

OO

expresses the fact that the Birkhoff transform of preposets extends that of posets.

Consider the projections O ։ P and s̃wP ։ sgP of (13.9) and (13.33).
Given a preposet r, let X be the set partition whose blocks are the classes for
the equivalence relation (13.8). The labels along a maximal chain of J(r) form
a set composition with support X , independently of the chain. It follows that

J(r) ∈ s̃wP. In addition, since J(r) is set-graded only if r is a poset, the projections
commute with the Birkohff transform:

O
J //

����

s̃wP

����

P
J

// sgP.

13.9.2. Preposets and topologies. Given a preposet r on I, define a map
tr : 2I → 2I by

tr(A) := {x ∈ I : there is a ∈ A such that (x, a) ∈ r}.

The map tr is a closure operator: the axioms in Definition 13.24 follow from re-
flexivity and transitivity of r. Moreover, tr is topological, since it clearly verifies
Kuratowski’s axioms (Definition 13.27). Conversely, given a topological closure t
on I, define a relation rt on I by

(a, b) ∈ r ⇐⇒ a ∈ t({b}).

Then rt is a preposet on I.
These assignments define inverse correspondences between preposets on I and

topologies on I. (The fact that t = trt relies on the finiteness of I.) Moreover, they
restrict to inverse correspondences between posets and Kolmogorov topologies.

Recall the Hopf monoids O and T of preposets and topologies. The closed sets
of the topology tr are the lower sets of r. Therefore, the map

O→ T, r 7→ tr
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is an isomorphism of Hopf monoids. It restricts to an isomorphism of Hopf monoids

P→ kT

and we obtain the commutative diagram below.

O
∼= // T

P ∼=
//

?�

OO

kT
?�

OO

13.9.3. Convex geometries and set-graded posets. Given a convex geometry
g with ground set I, let Pg ⊆ 2I denote the poset of convex sets of g (Section 13.8.5),
ordered by inclusion. The following result is a consequence of [53, Proposition 8.7.2].
We provide a proof for completeness.

Lemma 13.28. Let F and G be convex sets of a convex geometry g and suppose
that F covers G in Pg. Then there exists an element b ∈ I such that F = G ∪ {b}.

Proof. Let b be any element in F \ G. Since there is no closed set properly
contained between G and F , we must have g

(
G ∪ {b}

)
= F . Suppose there is an

element a ∈ F \
(
G∪{b}

)
. Then a ∈ g

(
G∪{b}

)
, a 6= b, and a, b 6= g(G) = G. By the

antiexchange axiom, b /∈ g
(
G ∪ {a}

)
= F , a contradiction. Thus, F = G ∪ {b}. �

Remark 13.29. The result of Lemma 13.28 holds for arbitrary greedoids. This
follows from the discussion in [53, p. 289].

The ground set I is the top element of Pg. If the convex geometry g is loopless,
then the empty set is the bottom element of Pg. It follows from Lemma 13.28 that
in this case Pg is I-graded by means of the inclusion Pg →֒ 2I (Proposition 13.15).
For the rest of this section, we deal only with loopless convex geometries.

We compare the products of the Hopf monoids cG of convex geometries and
sgP of set-graded posets. A convex set of the direct sum of two convex geometries
g1 and g2 consists of a pair of convex sets of each. Therefore,

Pg1⊕g2 = Pg1 × Pg2

as set-graded posets.
We compare the coproducts (13.38) and (13.26). Given a decomposition I =

S ⊔ T with S convex for g, the convex sets of g∅:S are the subsets of S which are
convex for g. Hence, the interval [∅, S] in Pg is the same S-graded poset as Pg∅:S

.
The convex sets F of gS:I are in bijection with the supersets G of S which are
convex for g under the maps

F 7→ S ∪ F, G 7→ G ∩ T.

Hence, the interval [S, I] in Pg is isomorphic to PgS:I as T -graded posets.
It follows from this discussion that the map

cG→ sgP, g 7→ Pg

is a morphism of Hopf monoids. A result of Edelman identifies the the image of
this map: a finite poset is of the form Pg for some convex geometry g if and only
if it is a meet-distributive lattice [53, Theorem 8.7.6], [110, Theorem 3.3].
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13.9.4. Loopless closures and set-weighted posets. We extend the preceding
discussion to loopless closure operators and set-weighted posets (Section 13.6.8).

Let I be a finite set. Given a closure operator c on I, let Pc ⊆ 2I denote the
poset of closed sets of c (Section 13.8.5), ordered by inclusion. (This extends the
definition of Pg for a convex geometry g.) The ground set I is always closed. If
c is loopless, then ∅ is closed as well. Hence, in this case Pc is a subposet of 2I

containing ∅ and I; in particular, Pc is an I-weighted poset. Moreover, the map

C→ swP

is a morphism of Hopf monoids, by the same argument as for convex geometries.
By construction, diagram

C // swP

cG //
?�

OO

sgP
?�

OO

commutes.
We turn to the image of the top map. For any closure operator c, the poset Pc is

a lattice (for which the meet is intersection of subsets) [49, Corollary in Section V.1].
Conversely, any finite lattice L is of the form Pc for some loopless closure c. To see
this, given L define I := L \ {0̂} and c by

c : 2I → 2I , S 7→ {x ∈ L \ {0̂} | x ≤ sup(S ∪ {0̂})},

where sup denotes the join of all elements in the (nonempty) set S ∪{0̂}. It is easy
to see that c is a loopless closure on I and that

L→ Pc, x 7→ {y ∈ L \ {0̂} | y ≤ x}

is an isomorphism of lattices.
In summary, a finite poset is of the form Pc for some loopless closure c if and

only if it is a lattice. This and more general results appear in [88, Remarks 7.4].
We thank Nathan Reading for help with these remarks.

Recall that the species M of loopless matroids is a Hopf submonoid of C. The
image of the map M→ swP consists of geometric lattices : a finite poset is of the
form Pm for some loopless matroid m if and only if it is a geometric lattice [287,
Theorem 1.7.5]. The poset Pm is the lattice of flats of the matroid m.

13.9.5. The Birkhoff transform factored through closure operators. The
Birkhoff transform on posets factors through the Hopf monoid of loopless convex
geometries. Similarly, the Birkhoff transform on preposets factors through the Hopf
monoid of loopless closure operators. Indeed, the maps constructed in the preceding
sections fit in a commutative diagram as follows.

O
∼= // T

� � // C // swP

P ∼=
//

?�

OO

kT
� � //

?�

OO

cG
?�

OO

// sgP
?�

OO

The composites along the bottom and along the top are the Birkhoff transform
(of posets and of preposets) of Section 13.9.1. As discussed in the preceding sections,
the image of the map from P to sgP consists of finite distributive lattices, that of
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the map from cG to sgP consists of finite meet-distributive lattices, and that of
the map from C to swP consists of arbitrary finite lattices. In addition, the image
of the map from M ⊆ C to swP consists of finite geometric lattices.



CHAPTER 14

Hopf Monoids in Colored Species

Let r denote a fixed positive integer. In this chapter, we consider r-colored
species, which are a higher dimensional generalization of species. We recover species
by letting r = 1. Roughly speaking, colored species correspond to multigraded
vector spaces in the same way as species correspond to graded vector spaces.

Recall that for any fixed scalar q, there is a lax braiding βq on the category of
species. Further, this lax braiding is a braiding if q 6= 0, and a symmetry if q = ±1.
The corresponding situation in higher dimensions is quite interesting. For any fixed
square matrix Q of size r, there is a lax braiding βQ on the category of r-colored
species. Further, this lax braiding is a braiding if all entries of Q are nonzero, and
a symmetry if Q is log-antisymmetric (2.32). By letting r = 1 and Q = [q], we
recover the one-dimensional results.

We begin this chapter by defining the braided monoidal category of colored
species in Section 14.1 as briefly noted above. In Section 14.2, we consider Q-Hopf
monoids, which are Hopf monoids in this category. These are the basic objects
of interest in this chapter. In Section 14.3, we introduce the colored exponential
species. Apart from being a basic example of a Q-Hopf monoid, it also plays an
important role in the general theory. Section 14.4 deals with colored versions of
the Hadamard and signature functors. In Section 14.5, we introduce and study
the colored linear order species. This is another important basic example. In
Section 14.6, we discuss questions related to universality (freeness and cofreeness)
of Q-Hopf monoids. In particular, we introduce colored versions of the free monoid
functor and the related functors considered in Chapter 11, and show that the colored
exponential and linear order species are universal objects. We conclude by looking
at colored analogues of examples arising from the geometry of the Coxeter complex,
which were discussed in Chapter 12.

14.1. Colored species

The basic theory of species of several variables is contained in Joyal’s original
work [181, Section 5]. These objects are called multisort species in [40, Section 2.4].
The equivalent notion of colored species was used by Méndez and Nava in [270] to
provide a combinatorial framework for plethysm. We use the terminology of [270].

14.1.1. Colored species. An r-colored set is a pair (I, f) where I is a finite set
and f : I → [r] is a function. A morphism of colored sets from (I, f) to (I ′, f ′) is a
bijection σ : I → I ′ such that

I

f ��
>>

>>
>>

σ // I ′

f ′����
��

��

[r]
commutes.

487
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One may view (I, f) as a set I, each of whose elements is colored by one of r

colors: i ∈ I is colored by f(i) ∈ [r]. Let Set(r) be the category of r-colored sets.

Note that Set(1) = Set×, the category of finite sets and bijections.

Definition 14.1. An r-colored species is a functor Set(r) → Vec. A morphism of
r-colored species is a natural transformation of functors.

Let Sp(r) denote the category of r-colored species. The image of a colored set
(I, f) under a colored species p is denoted p[I, f ]. We say that p[I, f ] is the space
of p-structures on the colored set (I, f), or the (I, f)-component of p. If I = [n],
this is shortened to p[n, f ].

Thus, a colored species consists of a family of vector spaces p[I, f ], one for each
colored set (I, f), together with linear maps

p[σ] : p[I, f ]→ p[I ′, f ′],

one for each morphism σ : (I, f)→ (I ′, f ′), such that

p[idI,f ] = idp[I,f ] and p[τσ] = p[τ ]p[σ]

whenever (I, f)
σ
−→ (I ′, f ′)

τ
−→ (I ′′, f ′′) are composable morphisms.

Similarly, a morphism of species α : p→ q consists of a family of linear maps

αI,f : p[I, f ]→ q[I, f ],

one for each colored set (I, f), such that for each morphism σ : (I, f)→ (I ′, f ′), the
diagram

(14.1)

p[I, f ]
αI,f

//

p[σ]

��

q[I, f ]

q[σ]

��

p[I ′, f ′]
αI′,f′

// q[I ′, f ′]

commutes.

Remark 14.2. Given d = (d1, . . . , dr) ∈ Nr, let nd = d1 + · · ·+dr and consider the
function fd : [nd]→ [r] that maps the first d1 elements to 1, the next d2 elements to
2, and so on. The automorphism group of the r-colored set [nd, fd] is the standard
parabolic subgroup

Sd := Sd1 × · · · × Sdr

of Snd
. Since any r-colored set is isomorphic to a [nd, fd] for exactly one d ∈ Nr, it

follows that any r-colored species q is completely determined by the sequence

(q[nd, fd])d∈Nr

of Sd-modules.

Notation 14.3. It is convenient to employ the notation

(I, f) = (S, g) ⊔ (T, h).

This means that I = S ⊔ T is a decomposition, and f restricted to S is g, and f
restricted to T is h. In this situation, we write f = g ⊔ h. Similarly, we write

(I, f) = (R, k) ⊔ (S, g) ⊔ (T, h)

for a decomposition into three parts, and so on.
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14.1.2. The Cauchy product on colored species. There is a monoidal struc-
ture on the category of colored species. Given r-colored species p and q, define a
new r-colored species p · q by

(14.2) (p · q)[I, f ] :=
⊕

(I,f)=(S,g)⊔(T,h)

p[S, g]⊗ q[T, h].

A morphism σ : (I, f)→ (I ′, f ′) of r-colored sets induces maps

p[σ|S,g]⊗ p[σ|T,h] : p[S, g]⊗ q[T, h]→ p[S′, g′]⊗ q[T ′, h′]

where

(I ′, f ′) = (S′, g′) ⊔ (T ′, h′)

is the corresponding decomposition: S′ = σ(S) and T ′ = σ(T ), and g′ = f ′|S′ and

h′ = f ′|T ′ . This turns p ·q into a functor Set(r) → Vec, that is, an r-colored species.
This operation generalizes (8.6). So following the terminology for r = 1, we

continue to refer to it as the Cauchy product. It turns Sp(r) into a monoidal
category. The unit object is the colored species 1(r) with

1(r)[I, f ] :=

{
k if I is empty,

0 otherwise.

14.1.3. Braidings for the Cauchy product. In much the same way as for multi-
graded vector spaces (2.60), one can define a lax braiding on r-colored species for
each matrix Q of size r. We employ the braid coefficients defined in Section 10.13.3
for this purpose. We also use some terminology on matrices from Section 2.2.5.

The components βS,g,T,h of the braiding βQ : p · q→ q · p are given by

(14.3)
p[S, g]⊗ q[T, h]→ q[T, h]⊗ p[S, g]

x⊗ y 7→ brdQS,T,f y ⊗ x,

where brdQS,T,f is the braid coefficient (10.104). Note that for r = 1 and Q = [q],

this specializes to (9.1).
The map βQ is a lax braiding. It is a braiding precisely if all entries of Q are

nonzero. In this case,

(14.4) (βQ)−1 = βQ−t .

It follows that βQ is a symmetry precisely if Q is log-antisymmetric (2.32).
Now let A be an integer square matrix of size r, and let q be an invertible

scalar. The components of the braiding βA,q : p · q→ q · p are given by

(14.5) x⊗ y 7→ qbrdAS,T,f y ⊗ x.

If Q and A are related by (2.33), then βQ = βA,q.

14.1.4. Examples of colored species. There are several ways of constructing
colored species from ordinary species. We mention two. Given an ordinary species
p, define r-colored species p(r) and p(r) by

p(r)[I, f ] := p[I] and p(r)[I, f ] :=

r⊗

i=1

p[f−1(i)].

Let 1r,r be the matrix all of whose entries are 1, and Ir,r be the identity matrix.
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Proposition 14.4. The functors

(−)(r) : (Sp, ·, βq)→ (Sp(r), ·, βq 1r,r)

and
(−)(r) : (Sp, ·, βq)→ (Sp(r), ·, β1r,r+(q−1)Ir,r )

are bistrong monoidal.

The proof is straightforward. There are more general functors Sp(s) → Sp(r)

whenever s divides r that we do not discuss.
Many useful examples of colored species arise from these constructions. For

instance, the colored species 1(r) above is obtained by applying the first functor to
the species 1. We discuss some similar examples next. The species X characteristic
of singletons (8.3) yields X(r) which takes value k on every colored set (I, f) in
which I is a singleton, and is zero otherwise. Similarly, the exponential species
yields the species E(r) which takes value k on every colored set; the linear order
species yields L(r) which on the colored set (I, f) has a basis consisting of linear
orders on I.

14.1.5. The duality functor. Just as for multigraded vector spaces and species,
one can define the dual of any colored species by taking the dual of each component.
This gives rise to the colored version of the duality functor on species.

The duality functor on the category of finite-dimensional colored species

(14.6) (−)∗ : ((Sp(r))op, ·, βop
Q )→ (Sp(r), ·, βQt)

is bistrong.
The duality functor commutes with the functors (−)(r) and (−)(r) of Proposi-

tion 14.4.

14.2. Q-Hopf monoids

In Section 14.1, we defined the monoidal category of r-colored species. Further,
for any square matrix Q of size r, we defined a lax braiding βQ on this category. In
this section, we begin by discussing monoids and comonoids in this category, and
then go over to bimonoids and Hopf monoids. Since the latter depend on Q, we
refer to them as Q-bimonoids and Q-Hopf monoids.

We employ the notations of Table 14.1 to denote the relevant categories. It is
understood that the tensor product is the Cauchy product and the braiding is βQ.
Similar notations will be used to denote various related categories.

Table 14.1. Categories of colored (co, bi, Hopf) monoids in species.

Category Description

Mon(Sp(r)) Colored monoids

Comon(Sp(r)) Colored comonoids

Monco(Sp(r)) Colored commutative monoids
coComon(Sp(r)) Colored cocommutative comonoids

Q-Bimon(Sp(r)) Colored bimonoids

Q-Hopf(Sp(r)) Colored Hopf monoids
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14.2.1. Colored monoids and comonoids. A colored monoid is a monoid in
(Sp(r), ·). We make this notion explicit. A colored monoid consists of a linear map

µS,g,T,h : p[S, g]⊗ p[T, h]→ p[I, f ]

for each decomposition (I, f) = (S, g) ⊔ (T, h), and a linear map

ι∅,∗ : k→ p[∅, ∗],

where ∗ denotes the unique map ∅ → [r]. The following diagrams must commute.

• For each morphism σ : (I, f) → (I ′, f ′) and each decomposition (I, f) =
(S, g) ⊔ (T, h),

(14.7)

p[S, g]⊗ p[T, h]
µS,g,T,h

//

p[σ|S,g]⊗p[σ|T,h]

��

p[I, f ]

p[σ]

��

p[S′, g′]⊗ p[T ′, h′] µS′,g′,T ′,h′
// p[I ′, f ′],

where (I ′, f ′) = (S′, g′) ⊔ (T ′, h′) is the corresponding decomposition.

• For each decomposition (I, f) = (R, k) ⊔ (S, g) ⊔ (T, h),

(14.8)

p[R, k]⊗ p[S, g]⊗ p[T, h]
idR,k⊗µS,g,T,h

//

µR,k,S,g⊗idT,h

��

p[R, k]⊗ p[(S, g) ⊔ (T, h)]

µR,k,(S,g)⊔(T,h)

��

p[(R, k) ⊔ (S, g)]⊗ p[T, h]
µ(R,k)⊔(S,g),T,h

// p[(R, k) ⊔ (S, g) ⊔ (T, h)].

• Finally, for each (I, f),

p[I, f ]

HHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHH
p[∅, ∗]⊗ p[I, f ]

µ∅,∗,I,f
oo

k⊗ p[I, f ]

ι∅,∗⊗idI,f

OO
p[I, f ]⊗ p[∅, ∗]

µI,f,∅,∗
// p[I, f ]

vvvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvvv

p[I, f ]⊗ k.

idI,f⊗ι∅.∗

OO

(14.9)

A colored monoid is commutative if diagram

(14.10)

p[S, g]⊗ p[T, h]

µS,g,T,h
''OOOOOOOOOOO

βS,g,T,h
// p[T, h]⊗ p[S, g]

µT,h,S,g
wwooooooooooo

p[I, f ]

commutes, for all decompositions (I, f) = (S, g) ⊔ (T, h). Note that this notion
depends on the braiding.

Let p and p′ be colored monoids. A morphism α between them consists of a
linear map

αI,f : p[I, f ]→ p′[I, f ]
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for each colored set (I, f), satisfying (14.1) and such that the following diagrams
commute.

p[S, g]⊗ p[T, h]
αS,g⊗αT,h

//

µS,g,T,h

��

p′[S, g]⊗ p′[T, h]

µ′
S,g,T,h

��

p[I, f ] αI,f
// p′[I, f ]

p[∅, ∗]
α∅,∗

// p′[∅, ∗]

k

ι∅,∗

^^======= ι′∅,∗

??�������

(14.11)

Colored (cocommutative) comonoids and morphisms between them are defined
dually. We use ∆S,g,T,h for the components of the coproduct and ǫ∅,∗ for the
component of the counit.

14.2.2. Q-Hopf monoids. Consider the lax braided monoidal category of colored

species (Sp(r), ·, βQ). (We write lax braided instead of braided to include the case
when one or more entries of the matrix Q are zero.) Bimonoids and Hopf monoids
in this category are known as Q-bimonoids and Q-Hopf monoids respectively.

A Q-bimonoid can be explicitly described as follows. First, for any pair of
decompositions

(S, g) ⊔ (T, h) = (I, f) = (S′, g′) ⊔ (T ′, h′)

of a colored set (I, f), diagram

(14.12)

p[A,a]⊗p[B,b]⊗p[C,c]⊗p[D,d]
idA,a⊗βB,b,C,c⊗idD,d

// p[A,a]⊗p[C,c]⊗p[B,b]⊗p[D,d]

µA,a,C,c⊗µB,b,D,d

��

p[S,g]⊗p[T,h]
µS,g,T,h

//

∆A,a,B,b⊗∆C,c,D,d

OO

p[I,f ]
∆S′,g′,T ′,h′

// p[S′,g′]⊗p[T ′,h′]

must commute, where A, B, C, and D are as in Lemma 8.7, and a, b, c and d are
the restrictions of f to these sets. In addition, diagrams

p[∅, ∗]⊗ p[∅, ∗]
ǫ∅,∗⊗ǫ∅,∗

//

µ∅,∗,∅,∗

��

k⊗ k

p[∅, ∗] ǫ∅,∗
// k

k
ι∅,∗

// p[∅, ∗]

∆∅,∗,∅,∗

��

k⊗ k
ι∅,∗⊗ι∅,∗

// p[∅, ∗]⊗ p[∅, ∗]

(14.13)

p[∅, ∗]
ǫ∅,∗

""D
DD

DD
DD

DD

k

ι∅,∗

<<zzzzzzzzz
k

(14.14)

must commute as well.

A Q-Hopf monoid is a Q-bimonoid equipped with an antipode. Explicitly, the
antipode s consists of a linear map

sI,f : h[I, f ]→ h[I, f ]
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for each colored set (I, f), commuting with bijections, and such that for each
nonempty set I the composites

(14.15)

h[I, f ]
⊕∆S,g,T,h

//
⊕

(S,g)⊔(T,h)=(I,f)

h[S, g]⊗ h[T, h]

⊕idS,g⊗sT,h

��

h[I, f ]
⊕

(S,g)⊔(T,h)=(I,f)

h[S, g]⊗ h[T, h]
⊕µS,g,T,h

oo

and

(14.16)

h[I, f ]
⊕∆S,g,T,h

//
⊕

(S,g)⊔(T,h)=(I,f)

h[S, g]⊗ h[T, h]

⊕ sS,g ⊗idT,h

��

h[I, f ]
⊕

(S,g)⊔(T,h)=(I,f)

h[S, g]⊗ h[T, h]
⊕µS,g,T,h

oo

are zero, and for which the following diagrams commute

(14.17)

h[∅, ∗]⊗ h[∅, ∗]
id∅,∗⊗s∅,∗

// h[∅, ∗]⊗ h[∅, ∗]

µ∅,∗,∅,∗

��

h[∅, ∗] ǫ∅,∗
//

∆∅,∗,∅,∗

OO

k ι∅,∗
// h[∅, ∗]

h[∅, ∗]⊗ h[∅, ∗]
s∅,∗ ⊗id∅,∗

// h[∅, ∗]⊗ h[∅, ∗]

µ∅,∗,∅,∗

��

h[∅, ∗] ǫ∅,∗
//

∆∅,∗,∅,∗

OO

k ι∅,∗
// h[∅, ∗].

Note that the (∅, ∗)-component of a Q-Hopf monoid is a Hopf algebra. Con-
versely, a Q-bimonoid for which the (∅, ∗)-component is a Hopf algebra is automat-
ically a Q-Hopf monoid. This generalizes Proposition 8.10.

A connected Q-bimonoid is a Q-bimonoid whose (∅, ∗)-component is k. It fol-
lows that a connected Q-bimonoid is always a Q-Hopf monoid. In this case, the
antipode is given similar to (8.27) by using nonempty decompositions of colored
sets.

14.2.3. Connected and positive colored species. Connected and positive
species were discussed in Sections 8.9 and 9.1.3. We now briefly discuss their
colored versions.
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A colored species q is connected if there is a specified isomorphism

q[∅, ∗]
∼=
−−→ k.

A morphism of connected colored species is a morphism of colored species whose
(∅, ∗)-component commutes with these specified isomorphisms. The Cauchy prod-
uct of connected colored species is again connected; this yields the monoidal cat-
egory of connected colored species. A connected colored monoid (comonoid, bi-
monoid) is a monoid (comonoid, bimonoid) in this category. A connected colored
bimonoid is the same as a connected Q-bimonoid as defined above.

A colored species q is positive if q[∅, ∗] = 0. Let Sp
(r)
+ be the category of positive

colored species. The Cauchy product turns it into a nonunital monoidal category.
We denote the category of nonunital monoids and noncounital comonoids by

Mon(Sp
(r)
+ ) and Comon(Sp

(r)
+ )

respectively. The modified Cauchy product (8.55) turns Sp
(r)
+ into a braided mon-

oidal category, which we denote by (Sp+,⊙, βQ). (Co)monoids in this category are
equivalent to non(co)unital (co)monoids considered above. We also refer to them as
positive colored (co)monoids. Further, we define a positive colored bimonoid (Hopf
monoid) to be a bimonoid (Hopf monoid) in (Sp+,⊙, βQ). We also refer to these
as positive Q-bimonoids (Q-Hopf monoids).

One can show as in Proposition 8.44 that a connected colored (co, bi, Hopf)
monoid is equivalent to a positive colored (co, bi, Hopf) monoid.

14.2.4. Duality for Q-Hopf monoids. The dual of a finite-dimensional Q-Hopf
monoid is a Qt-Hopf monoid. This is a consequence of the fact (14.6) that the
duality functor interchanges the braiding βQ with the braiding βQt .

Convention 14.5. In this and subsequent sections, we encounter colored versions
of the geometric q-Hopf monoids of Chapter 12. If H denotes any one of the Hopf
monoids in Table 12.1, then we use HQ to denote a corresponding Q-Hopf monoid
defined in this chapter. We convene that H∗

Q is the Q-Hopf monoid that corresponds
to H∗. In general, this is not the dual of the Q-Hopf monoid HQ. In fact, the dual
of HQ is a Qt-Hopf monoid. For the Hopf monoids considered in this chapter, it
turns out that

(14.18) (HQ)∗ ∼= H∗
Qt

as Qt-Hopf monoids. In particular, if Q is symmetric, then H∗
Q is the dual of HQ.

14.3. The colored exponential species

Let Q be a log-antisymmetric matrix (2.32); in particular, all entries of Q are
nonzero. In this section, we define the colored exponential species EQ and equip
it with a Q-Hopf monoid structure. This example simultaneously generalizes the
exponential species E and the signed exponential species E− (Example 8.15 and
Section 9.3).
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14.3.1. A symmetric-exterior algebra. Let (I, f) be a colored set. Let n := |I|.
Take the quotient of the tensor algebra on kI by the ideal generated by the relations:
For i, j ∈ I,

i⊗ j = qf(j)f(i) j ⊗ i.

Since Q is log-antisymmetric, this relation is equivalent to

j ⊗ i = qf(i)f(j) i⊗ j.

We use ∧ to denote the product in the quotient. Define DetQf (kI) to be the one-
dimensional subspace of this quotient which is spanned by the element

i1 ∧ · · · ∧ in,

where I = {i1, . . . , in}, with its elements written in some order. Changing the order
of the elements in the wedge product incurs a scalar.

Let us see how this works for r = 1. If Q = [1], then DetQf (kI) is the one-
dimensional subspace of the symmetric algebra on kI spanned by the monomial
of degree n in which each element of I appears exactly once. If Q = [−1], then

DetQf (kI) is the same as Det(kI) (as defined in Section 9.3). It is the highest nonzero
degree component of the exterior algebra on kI, and is necessarily one-dimensional.

We now illustrate the r = 2 case. Let I = {a,m, p, e, r} and let f : I → [2] be
given by f(a) = f(e) = 1 and f(m) = f(p) = f(r) = 2. We represent the 2-colored
set (I, f) by

(14.19) (I, f) = {a,m, p, e, r},

with blue denoting color 1 and red denoting color 2. Then

p ∧ r ∧ e ∧m ∧ a = q12 p ∧ e ∧ r ∧m ∧ a ∈ DetQf (kI).

The interchange of r and e gave the scalar q12.

14.3.2. The colored exponential species as a Q-Hopf monoid. The colored
exponential species is defined as follows. Let

EQ[I, f ] := DetQf (kI).

We now turn EQ into a Q-Hopf monoid. The product is concatenation and the
coproduct is deshuffling. Details follow.

The product is given by

EQ[S, g]⊗EQ[T, h]→ EQ[I, f ]

(l1 ∧ · · · ∧ ls)⊗ (m1 ∧ · · · ∧mt) 7→ l1 ∧ · · · ∧ ls ∧m1 ∧ · · · ∧mt,

where S = {l1, . . . , ls} and T = {m1, . . . ,mt}.
The coproduct is given by

EQ[I, f ]→ EQ[S, g]⊗EQ[T, f ]

l1 ∧ · · · ∧ li 7→ (−1)sch
Q
S,T,f (l) (li1 ∧ · · · ∧ lis)⊗ (lj1 ∧ · · · ∧ ljt)

where {i1 < · · · < is} = S, and {j1 < · · · < jt} = T , and l = l1| · · · |li, and

schQS,T,f(l) is the (multiplicative) weighted Schubert cocycle (10.102). We note that

the coproduct is well-defined (independent of which linear order on I is used).
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The following examples (with notation as set above) should clarify these defi-
nitions.

(p ∧ r ∧ e)⊗ (m ∧ a) 7→ p ∧ r ∧ e ∧m ∧ a.

r ∧ a ∧m 7→ 1⊗ (r ∧ a ∧m) + r ⊗ (a ∧m) + q12 a⊗ (r ∧m) + q21q22m⊗ (r ∧ a)

+ (r ∧ a)⊗m+ q21 (r ∧m)⊗ a+ q12q22 (a ∧m)⊗ r + (r ∧ a ∧m)⊗ 1.

This turns EQ into a Q-Hopf monoid. The antipode is given by

sI,f : EQ[I, f ]→ EQ[I, f ] x 7→ (−1)|I|x.

Observe that EQ is commutative and cocommutative (in the colored sense). Fur-
ther,

(EQ)∗ = EQt

as Qt-Hopf monoids. Note that this is in agreement with (14.18). Thus, if Q is
symmetric, then EQ is self-dual (over any field). In this case, since EQ is only
defined when Q is log-antisymmetric, the entries of Q are either 1 or −1.

14.3.3. Specializations. We now discuss some special cases. Let 1r,r be the
matrix all of whose entries are 1, and Ir,r be the identity matrix. Observe that

(14.20) E[1] = E and E[−1] = E−.

As a generalization of the first identity in (14.20), note that

E1r,r
∼= E(r)

∼= E(r),

where the Q-Hopf monoids on the right are obtained by applying the bistrong
functors of Proposition 14.4 to E. In this case, all entries of the matrix Q are 1;
so the braiding simply interchanges the factors. The explicit description of E1r,r is
simple and as follows:

E1r,r [I, f ] = k
on every colored set (I, f), and let ∗(I,f) denote the canonical basis element 1 ∈ k.
Given a decomposition (I, f) = (S, g) ⊔ (T, h), the corresponding components of
the product and coproduct of E1r,r are

∗(S,g) ⊗ ∗(T,h) 7→ ∗(I,f) and ∗(I,f) 7→ ∗(S,g) ⊗ ∗(T,h).

As a generalization of the second identity in (14.20), note that

E−1r,r
∼= (E−)(r) and E1r,r−2Ir,r

∼= (E−)(r).

The first matrix has all entries −1, while the second matrix has diagonal entries −1
and off-diagonal entries 1. For example, let I = {a, h, i, k, l,m, s} and let f : I → [3]
be given by f(l) = f(a) = f(k) = 1, f(s) = f(h) = 2 and f(m) = f(i) = 3. We
represent the 3-colored set (I, f) by

(I, f) = {a, h, i, k, l,m, s},

with blue denoting color 1, red denoting color 2, and green denoting color 3. Then
the second isomorphism on this colored set sends

l ∧ a ∧ k ∧ s ∧ h ∧m ∧ i 7→ (l ∧ a ∧ k)⊗ (s ∧ h)⊗ (m ∧ i).

14.4. The colored Hadamard and signature functors

The Hadamard and signature functors are studied in Section 9.4. In this section,
we introduce colored versions and discuss their monoidal properties.
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14.4.1. The Hadamard functor. Recall that for ordinary species, the Hada-
mard functor is bilax with respect to the Cauchy product. More precisely, there ex-
ist structure transformations ϕ and ψ such that (×, ϕ, ψ) is bilax (Propositions 8.58
and 9.5). This result can be extended to colored species.

Given r-colored species p and q, define a new r-colored species p× q by

(14.21) (p× q)[I, f ] := p[I, f ]⊗ q[I, f ].

This operation generalizes (8.7). So following the terminology for r = 1, we continue

to refer to it as the Hadamard product. It turns Sp(r) into a monoidal category.
The unit object is the colored species E(r) which is k on every colored set.

The structure transformations ϕ and ψ can be defined for colored species in a
similar way. This leads to the following straightforward generalization.

Proposition 14.6. The functor

(×, ϕ, ψ) : (Sp(r) × Sp(r), ·, βP × βQ)→ (Sp(r), ·, βP×Q)

is a normal braided bilax monoidal functor.

We remark that the analogous statement for multigraded vector spaces does
not hold just as in the r = 1 case (Remark 8.65).

Corollary 14.7. If h1 is a P -bimonoid and h2 is a Q-bimonoid, then h1×h2 is a
(P ×Q)-bimonoid. Further, if h1 and h2 are (co)commutative, then so is h1 ×h2.

The same statement holds for Hopf monoids.
As an example, if P and Q are log-antisymmetric matrices, then

(14.22) EP ×EQ

∼=
−−→ EP×Q

as (P ×Q)-bimonoids. In particular,

EQ ×EQt
∼= E1r,r

as 1r,r-bimonoids. We illustrate the isomorphism (14.22) with an example. On the
component of the 2-colored set (I, f) of (14.19), the map is given by

(p ∧ r ∧ e ∧m ∧ a)⊗ (p ∧ r ∧ e ∧m ∧ a) 7→ p ∧ r ∧ e ∧m ∧ a.

Note that the choice of the matrices makes this map well-defined.

14.4.2. Self-duality of the Hadamard functor. We now restrict attention to
finite-dimensional species. Note that we have not claimed that the Hadamard
functor is self-dual. This point requires more care.

Consider the following situation

Sp(r) × Sp(r)
∗

%%

∗

ee Sp(r) × Sp(r) where (p,q)∗ := (q∗,p∗).

This is an instance of (3.44). With this setup, the contragredient of the Cauchy
product is itself, and the contragredient of the braiding βP × βQ is βQt × βP t . It
follows that

(Sp(r) × Sp(r), ·, βQt × βQ)

is a self-dual braided monoidal category, and further the Hadamard functor

(×, ϕ, ψ) : (Sp(r) × Sp(r), ·, βQt × βQ)→ (Sp(r), ·, βQt×Q)

is self-dual.
This leads to the following consequences.
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Corollary 14.8. If h is a finite-dimensional Q-Hopf monoid, then h∗ × h is a
self-dual (Qt ×Q)-Hopf monoid.

Corollary 14.9. If h1 and h2 are finite-dimensional P - and Q-Hopf monoids
respectively, then

(h1 × h2)
∗ ∼= h∗

1 × h∗
2

as (P t ×Qt)-Hopf monoids.

14.4.3. The colored signature functor. Using the colored exponential species,
we now define a colored analogue of the signature functor (9.10).

Let Q be a log-antisymmetric matrix. Define the colored signature functor to
be the functor

(−)Q : Sp(r) → Sp(r)

that sends a r-colored species p to the r-colored species

(14.23) pQ := p×EQ.

Proposition 14.10. The colored signature functor gives rise to a bistrong monoidal
functor

(Sp, ·, βP )→ (Sp, ·, βP×Q).

Proof. The functor is bilax since EQ is a Q-bimonoid and the Hadamard
functor is bilax (Proposition 14.6). Further, each component of the product and
coproduct of EQ is bijective, so the structure morphisms of the colored signature
functor are invertible, and hence it is bistrong. �

Since E1r,r is the unit for the Hadamard product, it follows that the functor
(−)1r,r is the identity. Similarly, (−)[−1] is the signature functor. Further, it follows
from (14.22) that if P and Q are log-antisymmetric, then

(
(−)P

)
Q

= (−)P×Q.

In particular, if Q is log-antisymmetric and symmetric (that is, entries of Q are 1
or −1), then (−)Q is an involution.

On finite-dimensional colored species, the contragredient of the signature func-
tor (−)Q is (−)Qt .

Proposition 14.11. The following diagram commutes (up to isomorphism) as
bilax monoidal functors.

(Sp(r) × Sp(r), ·, βP × βR)
×

//

(id,(−)Q)

��

(Sp(r), ·, βP×R)

(−)Q

��

(Sp(r) × Sp(r), ·, βP × βR×Q)
×

// (Sp(r), ·, βP×R×Q)

This yields a colored generalization of Proposition 9.12. It can be proved in
the same way.
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14.5. The colored linear order species

One of the first examples of Hopf monoids discussed in this monograph is the
Hopf monoid L of linear orders (Example 8.16). Later in Section 9.5, we constructed
a one-parameter deformation Lq using the Schubert cocycle. In Section 12.2, we
explained the same construction from a geometric viewpoint using the break and
join maps bK and jK (10.57), and the gallery metric on chambers.

Now letQ be any matrix of size r. In this section we show that one can construct
a Q-deformation, with Q = [q] recovering Lq. We provide both a combinatorial
and geometric description for LQ, an explicit formula for its antipode, a sufficient
condition on Q for its self-duality, and the value taken on it by the signature functor.

14.5.1. The Q-Hopf monoids on linear orders. The colored linear order
species is defined as follows. Given a colored set (I, f), we set

LQ[I, f ] := L[I].

In other words, LQ[I, f ] is the vector space with basis the set of linear orders on I.
This makes no use of the colors. We proceed to turn LQ into a Q-Hopf monoid.
This structure will make use of the colors.

Fix a decomposition (I, f) = (S, g) ⊔ (T, h). The coproduct is given by

(LQ)[I, f ]→ (LQ)[S, g]⊗ (LQ)[T, h]

C 7→ distQf (C,KC)C1 ⊗ C2,

where K is the vertex S|T , distQf is the weighted distance (10.75), and C1 and C2

are defined by bK(KC) = (C1, C2).
The product is given by

(LQ)[S, g]⊗ (LQ)[T, h]→ (LQ)[I, f ]

C1 ⊗ C2 7→ jK(C1, C2),

where K is the vertex S|T of Σ[I].
In combinatorial terms, the product is concatenation and the coproduct is

deshuffling:

LQ[S, g]⊗ LQ[T, h]→ LQ[I, f ] LQ[I, f ]→ LQ[S, g]⊗ LQ[T, h]

l1 ⊗ l2 7→ l1 · l2 l 7→ schQS,T,f (l) l|S ⊗ l|T ,

where schQS,T,f (l) is the (multiplicative) weighted Schubert cocycle (10.102). The

connection between the two coproducts can be made using (10.103).
We illustrate the r = 2 case. Let (I, f) be the 2-colored set given in (14.19).

An element of LQ[I, f ] is a linear order on I, so as an example, we have

p|r|e|m|a ∈ LQ[I, f ].

We illustrate the product and coproduct using this notation.

p|r|e⊗m|a 7→ p|r|e|m|a.

r|a|m 7→ 1⊗ r|a|m+ r ⊗ a|m+ q12 a⊗ r|m+ q21q22m⊗ r|a

+ r|a⊗m+ q21 r|m⊗ a+ q12q22 a|m⊗ r + r|a|m⊗ 1.
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If all entries of Q are equal to q, that is, Q = q1r,r, then the Q-Hopf monoid
LQ can be viewed as the image of the q-Hopf monoid Lq under one of the bistrong
functors of Proposition 14.4, namely:

Lq1r,r = (Lq)(r).

We make a couple of remarks as to why LQ is a Q-Hopf monoid. The coas-
sociativity of the coproduct follows from the cocycle condition (10.112), or equiva-
lently, (10.113). The product-coproduct compatibility follows from the multiplica-
tive property of the cocycle (10.114), or equivalently, (10.115).

Proposition 14.12. The antipode of s : LQ → LQ is given by

LQ[I, f ]→ LQ[I, f ]

sI,f(C) = (−1)deg(C) distQf (C,C)C.

For example,

s(r|a|m) = −q12q21q22m|a|r.

The proof of the above result is similar to that of Proposition 12.3.

One may similarly define a colored version of the Hopf monoid L∗
q . We denote

it by L∗
Q, following Convention 14.5. It is a Q-Hopf monoid. Its structure maps are

as follows.
Fix a decomposition [I, f ] = [S, g] ⊔ [T, h]. The coproduct is given by

L∗
Q[I, f ]→ L∗

Q[S, g]⊗ L∗
Q[T, h]

D∗ 7→

{
D∗

1 ⊗D
∗
2 if K = S|T is a vertex of D,

0 otherwise,

where D1 and D2 are defined by bK(D) = (D1, D2).
The product is given by

L∗
Q[S, g]⊗ L∗

Q[T, h]→ L∗
Q[I, f ]

D∗
1 ⊗D

∗
2 7→

∑

D:KD=jK(D1,D2)

distQf (KD,D)D∗.

The vertex K = S|T ∈ Σ[I] is fixed in the above sum.

Proposition 14.13. The antipode of s : L∗
Q → L∗

Q is given by

L∗
Q[I, f ]→ L∗

Q[I, f ]

sI,f (D
∗) = (−1)deg(D) distQf (D,D)D

∗
.

A comparison with Propositions 12.2–12.5 shows that the descriptions of LQ
and L∗

Q are obtained from those of Lq and L∗
q by replacing

qdist(C,D) with distQf (C,D).

We point out that the order in which the chambers are written is crucial in the
multi-dimensional case, since the weighted distance function is not symmetric in
general. It is symmetric precisely when the matrix Q is symmetric (10.77).
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14.5.2. Relating LQ and L∗

Q. Recall from Proposition 12.6 that the Hopf mon-
oid Lq is self-dual if q is not a root of unity. We now discuss to what extent this
holds for the Q-Hopf monoid LQ.

First of all, we remark that L∗
Q is not the dual of LQ in general. In fact, it

follows from the above definitions that

L∗
Q = (LQt)

∗

as Q-Hopf monoids. In particular, if Q is symmetric, then LQ and L∗
Q are duals of

each other. These statements are in agreement with (14.18).
Self-duality of Lq is replaced by the following statement.

Proposition 14.14. The map LQ → L∗
Q given by

LQ[I, f ]→ L∗
Q[I, f ] C 7→

∑

D

distQf (C,D)D∗

is a morphism of Q-Hopf monoids. Further, if no monomial in the qij ’s equals 1,
then it is an isomorphism.

In particular, if Q is symmetric and no monomial in the qij ’s equals 1, then the
Hopf monoid LQ is self-dual.

Proof. It can be directly checked that the above map is a morphism of colored
monoids and comonoids. Both checks make use of (10.84). It then follows that the
above map is a morphism of Q-Hopf monoids. The next observation is that the
above map is induced from the bilinear form on chambers given in (10.134). It is
shown in Lemma 10.33 that if no monomial in the qij ’s equals 1, then this bilinear
form is nondegenerate. The result follows. �

If Q is log-antisymmetric, then the image of the above map is one-dimensional.
This follows from Proposition 10.22. More details regarding this situation are given
below.

14.5.3. The value of the signature. Let Q be a log-antisymmetric matrix.
Then there is an isomorphism of (P ×Q)-Hopf monoids

LP ×EQ → LP×Q.

We illustrate this map by an example. On the component of the 2-colored set (I, f)
of (14.19), the map is given by

(p|r|e|m|a)⊗ (p ∧ r ∧ e ∧m ∧ a) 7→ p|r|e|m|a.

The above result also holds with L∗
Q instead of LQ. To summarize, the values of

LP and L∗
P under the signature functor are:

(14.24) (LP )Q ∼= LP×Q and (L∗
P )Q ∼= L∗

P×Q

respectively.
Applying the first bistrong functor of Proposition 14.4 to the morphism L→ E

of (8.31) yields a morphism

L1r,r = L(r) → E(r) = E1r,r

of 1r,r-Hopf monoids. Now applying the signature functor to this morphism yields
a morphism

LQ → EQ
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of Q-Hopf monoids, which sends a linear order on I to the wedge of the elements of
I written using that linear order. For example, on the component of the 2-colored
set (I, f) of (14.19),

p|r|e|m|a 7→ p ∧ r ∧ e ∧m ∧ a.

More generally, applying the first bistrong functor of Proposition 14.4 followed by
the signature functor to diagram (8.34) yields the following commutative diagram
of Q-Hopf monoids.

(14.25)

LQ //

��

L∗
Q

EQ
id

// E∗
Q

OO

The top horizontal map is the same as in Proposition 14.14. It is worth pointing
out that the context in that proposition was completely general whereas here we
are only dealing with the log-antisymmetric case.

14.6. The colored free and cofree Hopf monoids

In this section, we discuss the colored generalizations of the functors Tq, S and
Λ and their contragredients which were discussed in Chapter 11. These, along with
their universal properties, are summarized in Table 14.2.

We first define these functors and state (without proof) their universal prop-
erties. We then discuss the colored norm transformation between TQ and T ∨

Q , give
sufficient conditions on Q under which it is an isomorphism, and show that if Q is
log-antisymmetric, then its image is precisely SQ, or equivalently, S∨Q. We also pro-
vide antipode formulas for Q-Hopf monoids which arise as values of these functors.
Examples include the colored exponential species (Section 14.3) and the colored
linear order species (Section 14.5). More examples are given in Section 14.7.

Notation 14.15. Let F = F 1| · · · |F k � I be a composition and f : I → [r] a
function. We write

q(F, f) := q[F 1, f |F 1 ]⊗ · · · ⊗ q[F k, f |Fk ].

Similarly, given a partition X ⊢ I and a function f : I → [r], we write

q(X, f) :=
⊗

S∈X

q[S, f |S ].

Table 14.2. Universal Q-objects.

Q-Hopf monoid Universal property Specializations

TQ(q) free Tq(q) for Q = [q]

T ∨
Q (q) cofree T ∨

q (q) for Q = [q]

SQ(q) free commutative S(q) for Q = [1], Λ(q) for Q = [−1]

S∨Q(q) cofree cocommutative S∨(q) for Q = [1], Λ∨(q) for Q = [−1]
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There are canonical identifications

q(F, f)⊗ q(G, g) ∼= q(F ·G, f ⊔ g),(14.26)

q(X, f)⊗ q(Y, g) ∼= q(X ⊔ Y, f ⊔ g).(14.27)

14.6.1. The functor TQ. We now proceed to define the functor

TQ : Comon(Sp
(r)
+ )→ Q-Hopf(Sp(r))

from the category of positive colored comonoids to the category of colored Q-Hopf
monoids. Let q be a positive colored comonoid. Define

TQ(q)[I, f ] :=
⊕

F�I

q(F, f).

The component µS,g,T,h of the product is the direct sum of the maps of the
form (14.26) over all F � S and G � T . The component ∆S,g,T,h of the coproduct
is the direct sum over all compositions F � I of the map

q(F, f)→ q(F |S , f |S)⊗ q(F |T , f |T )

which is defined like the map in (11.12) using the components of the coproduct of
q multiplied by the coefficient

schQS,T,f(F ),

the weighted multiplicative Schubert cocycle on faces (10.126).
The functor TQ satisfies a universal property: TQ(q) is the free Q-Hopf monoid

on the positive colored comonoid q. This provides a Q-analogue to Theorems 11.9
and 11.10.

14.6.2. The functor SQ. Let Q be a log-antisymmetric matrix (2.32). Recall
that this is precisely the condition under which the braiding βQ is a symmetry.

Let q be a positive colored species. Define

SQ(q)[I, f ] :=
⊕

k≥0

(q·k[I])Sk ,

where the action of the symmetric group Sk on q·k is induced by the symmetry βQ.
Equivalently,

SQ(q)[I, f ] =
⊕

X⊢I

( ⊕

F :supp(F )=X

q[F, f ]

)

Sk

,

where k is the number of blocks in X , and the action of Sk permutes the k ordered
tensor factors in q[F, f ] using the symmetry βQ. We now make this more explicit.

Let X be a partition of I with k blocks, and let f : I → [r]. Take the quotient
of the tensor algebra on kX by the ideal generated by the relations: for S, T ∈ X ,

S ⊗ T = brdQS,T,f T ⊗ S,

where brdQS,T,f is the multiplicative braid coefficient (10.104). We use ∧ to denote

the product in the quotient. Define DetQf (kX) to be the one-dimensional subspace
of this quotient which is spanned by the element

X1 ∧ · · · ∧Xk,
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where X = {X1, . . . , Xk}, with its elements written in some order. Changing
the order of the elements in the wedge product incurs a scalar. For example, for
X = {S, T, U},

S ∧ T ∧ U = brdQS,T,f |S⊔T
T ∧ S ∧ U

spans DetQf (kX). If X is the partition of I into singletons, then this space agrees

with DetQf (kI), as defined in Section 14.3.
The main observation is that

SQ(q)[I, f ] :=
⊕

X⊢I

q(X, f)⊗DetQf (kX).

So far, SQ(q) is only a colored species. We now show that if q is a positive colored
comonoid, then one can turn it into a commutative Q-Hopf monoid. In other words,
there is a functor

SQ : Comon(Sp
(r)
+ )→ Q-Hopfco(Sp(r)).

Accordingly, let q be a positive colored comonoid. The component µS,g,T,h of the
product in SQ(q) is given by tensoring the map (14.27) with the map

DetQg (kX)⊗DetQh (kY )→ DetQg⊔h
(
k(X ⊔ Y )

)

(X1 ∧ · · · ∧Xk)⊗ (Y 1 ∧ · · · ∧ Y l) 7→ X1 ∧ · · · ∧Xk ∧ Y 1 ∧ · · · ∧ Y l,

and then summing over all X ⊢ S and Y ⊢ T .
The component ∆S,g,T,h of the coproduct is given by tensoring the map

q(X, f)
∼=
−−→ q(X |S , f |S)⊗ q(X |T , f |T )

(defined as in (11.15) using the coproduct of q), with the map

DetQf (kX)→ DetQf |S (kX |S)⊗DetQf |T (kX |T )

defined by

X1 ∧ · · · ∧Xk 7→ (−1)sch
Q
S,T,f (X

1|···|Xk) (X1 ∩ S) ∧ · · · ∧ (Xk ∩ S)

⊗ (X1 ∩ T ) ∧ · · · ∧ (Xk ∩ T ),

and then summing over all X ⊢ I. Here schQS,T,f (X
1| · · · |Xk) is the weighted

multiplicative Schubert cocycle on faces (10.126).
The functor SQ satisfies a universal property: SQ(q) is the free commutative

Q-Hopf monoid on the positive colored comonoid q. This provides a Q-analogue
to Theorem 11.14.

In dimension one, there are only two log-antisymmetric matrices, namely [1]
and [−1]. In this situation, SQ specializes to S and Λ respectively.

14.6.3. The colored abelianization. There is a colored analogue of the abelian-
ization, namely, for any log-antisymmetric matrix Q, there is a transformation

πQ : TQ ⇒ SQ.

We refer to it as the colored abelianization. It is defined by summing the maps

(14.28)
q(F, f)

∼=
−−→ q(X, f)⊗DetQf (kX)

x 7−→ π(x) ⊗ (F 1 ∧ · · · ∧ F k),
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where F = F 1| · · · |F k, and X = supp(F ), and π identifies the unbracketed tensor
product with the unordered tensor product as in (11.23).

14.6.4. The functors T ∨

Q and S∨

Q. The functor

T ∨
Q : Mon(Sp

(r)
+ )→ Q-Hopf(Sp(r))

is defined by

T ∨
Q (q)[I, f ] :=

⊕

F�I

q(F, f),

where q is a positive colored monoid. The coproduct of T ∨
Q (q) is deconcatenation.

The product is given in terms of quasi-shuffles, with a coefficient involving the
Schubert cocycle on faces (as employed for the coproduct of the functor TQ). With
this structure, T ∨

Q (q) is a Q-Hopf monoid. We omit the details.

Note that TQ(q) and T ∨
Q (q) are identical as colored species but different as

Q-Hopf monoids.
The functor T ∨

Q satisfies a universal property: T ∨
Q (q) is the cofree Q-Hopf mon-

oid on the positive colored monoid q. This provides aQ-analogue to Theorems 11.22
and 11.23.

When Q is a log-antisymmetric matrix, the functor

S∨Q : Mon(Sp
(r)
+ )→ Q-coHopf(Sp(r))

and the natural transformation

π∨
Q : S∨Q ⇒ T

∨
Q .

can be defined similarly.
In dimension one, there are only two log-antisymmetric matrices, namely [1]

and [−1]. In this situation, S∨Q specializes to S∨ and Λ∨ respectively.

14.6.5. Contragredients up to transpose. Let us restrict the functors of the
preceding sections to finite-dimensional colored species and consider their contra-
gredients (Section 3.10). The functor T ∨

Q is not the contragredient of TQ. In fact,

T ∨
Q (q) is a Q-Hopf monoid, while the contragredient (TQ)∨(q) is a Qt-Hopf monoid.

In more detail, according to (3.45) and (14.6), the contragredient (TQ)∨ of TQ is
the following composite.

Mon(Sp
(r)
+ )

∗ // Comon(Sp
(r)
+ )

TQ
// Q-Hopf(Sp(r))

∗ // Qt-Hopf(Sp(r))

On the other hand, it follows from the definitions of TQ and T ∨
Q that

(TQ)∨ = T ∨
Qt .

Thus, T ∨
Q is the contragredient of TQ up to transposing the matrix Q. In particular,

if q is a positive comonoid, then

(14.29) TQ(q)∗ = TQt(q
∗)

as Qt-Hopf monoids. This is in agreement with (14.18).
Similarly, when Q is log-antisymmetric, S∨Qt is the contragredient of SQ, and the

transformation π∨
Qt : S

∨
Qt ⇒ T

∨
Qt is the contragredient of the colored abelianization

πQ : TQ ⇒ SQ.
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14.6.6. The norm transformation. We now define a colored version of the norm
transformation. For that purpose, we view

TQ, T
∨
Q : Sp

(r)
+ → Q-Hopf(Sp(r))

by viewing a positive colored species as a positive colored (co)monoid in the trivial
way. The Q-norm transformation

κQ : TQ ⇒ T
∨
Q

is defined as follows. Fix a composition F of I and a function f : I → [r]. For each
set composition G with the same support as F , consider the map

q(F, f)→ q(G, f)

which reorders the tensor factors and multiplies by the coefficient

distQf (F,G), or equivalently,
∏

(i,j)∈Inv(F,G)

∏

s∈F i, t∈F j

qf(t)f(s),

with notation as in (10.92). By summing over all such G, we obtain

q(F, f)→
⊕

G

q(G, f).

This is the Q-norm transformation. One can check that

κQ(q) : TQ(q)→ T ∨
Q (q)

is a natural morphism of Q-Hopf monoids. In addition:

Proposition 14.16. When the norm is restricted to finite-dimensional species, we
have

(κQ)∨ = κQt .

In particular, if the matrix Q is symmetric, then the Q-norm is self-dual.

Theorem 14.17. For the matrix Q, if no monomial in the qij ’s equals one, then
κQ is an isomorphism.

Proof. We generalize the proof of Theorem 11.35 as follows. Fix a partition
X of I, and a function f : I → [r]. It is enough to show that each of the restrictions

(14.30)
⊕

F :supp(F )=X

q(F, f)→
⊕

F :supp(F )=X

q(F, f)

of κQ is an isomorphism.
For this, let us first do the case when q is the positive colored exponential

species. Then q(F, f) = k and hence (14.30) can be viewed as a map

L[X ]→ L[X ]

where we recall that L[X ] is the span of linear orders on X . Further, this map
arises from the bilinear form discussed in Example 10.34, where we showed that if
no monomial in the qij ’s equals one, then κQ is an isomorphism.

The general case follows as in the proof of Theorem 11.35 by fixing a basis and
reducing to the above case. �
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For Q = 0r,r, the hypothesis of Theorem 14.17 is satisfied. Hence κ0r,r is an
isomorphism. In fact, in this case, the functors T0r,r and T ∨

0r,r are identical, and
κ0r,r is the identity transformation. In particular, T0r,r is a self-dual functor.

Now let Q be a log-antisymmetric matrix. Such a matrix clearly fails the
hypothesis of Theorem 14.17. The norm κQ, in this case, is far from being an
isomorphism. The situation can be summarized as follows.

(14.31)

TQ
κQ +3

πQ

��

T ∨
Q

SQ
id

+3 S∨Q

π∨
Q

KS

The vertical maps are the colored abelianization and its contragredient up to trans-
pose. In other words, SQ is the image of the Q-norm transformation. This diagram
simultaneously generalizes (11.26) and (11.31). Further, its contragredient yields
the same diagram with Q replaced by Qt. In particular, SQ is self-dual if the entries
of Q are either 1 or −1. This can also be seen as a consequence of the discussion
in Section 3.11.6.

14.6.7. Example. The simplest instance of the preceding theory occurs when
q = X(r) (Section 14.1.4). Now view it as a positive colored (co)monoid with the
zero (co)product. Then

TQ(X(r)) = LQ and T ∨
Q (X(r)) = L∗

Q.

This recovers the Q-Hopf monoids on colored linear order species (Section 14.5).
They are the free and cofree Q-Hopf monoids on X(r) respectively. Further, the
morphism LQ → L∗

Q induced by the colored norm coincides with the one defined in
Proposition 14.14. This result can thus be seen as a consequence of Theorem 14.17.

Now let Q be log-antisymmetric. Then

SQ(X(r)) = S∨Q(X(r)) = EQ.

This recovers the colored exponential species of Section 14.3. It is the free commu-
tative as well as the cofree cocommutative Q-Hopf monoid on X(r). More generally,
applying the functors in diagram (14.31) to X(r) yields the diagram (14.25) of Q-
Hopf monoids.

More examples are given in Proposition 14.32.

14.6.8. Antipode formulas. We now give antipode formulas for TQ(q) and
T ∨
Q (q). For this purpose, we first generalize the notation introduced in Sec-

tion 11.8.1.
For any face H = H1| · · · |Hk, let

µH,f := µH1,f |H1 ,...,Hk,f |Hk
and ∆H,f := ∆H1,f |H1 ,...,Hk,f |Hk

denote the components of the iterated product and coproduct. If H has only one
part, then µH,f and ∆H,f are the identity. We proceed.

Let F ≤ G and let the compositions Gi’s be as in (11.32). Let q be a positive
colored comonoid. Define

∆G/F,f : q(F, f)→ q(G, f) by ∆G/F,f := ∆G1,f |G1
⊗ · · · ⊗∆Gk,f |

Gk
.
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Similarly, for a positive colored monoid q, let

µF\G,f : q(G, f)→ q(F, f) by µF\G,f := µG1,f |G1
⊗ · · · ⊗ µGk,f |

Gk
.

For faces F and G having the same support, let

βG,F,f : q(F, f)→ q(G, f)

be the map which reorders the tensor factors.

Theorem 14.18. Let F be a composition of I, and f : I → [r]. Let q be a positive
colored comonoid. The antipode s : TQ(q) → TQ(q) on the (F, f)-component is
given by

q(F, f)→
⊕

G:G�I

q(G, f)

sI,f (x) = distQf (F, F )
∑

G:F≤G

(−1)deg(G) ∆G/F,fβF,F,f(x).

Here deg(G) is the number of blocks in G, F is the opposite of F , and distQf (F,G)

is as in (10.91).

The proof proceeds along the lines of the proof of Theorem 11.38, the main step
being the application of Lemma 11.37. Special cases of the above result include
Proposition 14.12, and Theorems 14.29 and 14.31 (which are discussed later).

By dualizing Theorem 14.18 or by proceeding directly, one obtains:

Theorem 14.19. Let G be a composition of I, and f : I → [r]. Let q be a positive
colored monoid. The antipode s : T ∨

Q (q)→ T ∨
Q (q) on the (G, f)-component is given

by

q(G, f)→
⊕

F :F�I

q(F, f)

sI,f(x) = (−1)deg(G)
∑

F :F≤G

distQf (F , F )βF,F ,fµF\G,f(x),

where the notation is as in Theorem 14.18.

Special cases of the above result include Proposition 14.13, and Theorems 14.28
and 14.30 (which are discussed later).

The colored abelianization and its contragredient can be used to derive antipode
formulas for SQ(q) and S∨Q(q). Let X ≤ Y be partitions of I, and let f : I → [r].
Fix F to be any set composition with support X . Let q be a positive colored

comonoid. Define ∆Q
Y/X,f by the commutativity of the following diagram.

q(F, f)

L

G:F≤G,supp(G)=Y

∆G/F,f

//

(πQ)q

��

⊕

G:F≤G,supp(G)=Y

q(G, f)

(πQ)q

��

q(X, f)⊗DetQf (kX)
∆Q
Y/X,f

//_____________ q(Y, f)⊗DetQf (kY )

The vertical maps are the colored abelianization.
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Similarly, for a positive colored monoid q, define µQX\Y,f by the commutativity

of the following diagram.

⊕

G:supp(G)=Y

q(G, f)

L

µF\G,f
//

⊕

F :supp(F )=X

q(F, f)

q(Y, f)⊗DetQf (kY )

(π∨
Q)q

OO

µQ
X\Y,f

//____________ q(X, f)⊗DetQf (kX)

(π∨
Q)q

OO

The vertical maps are the contragredient up to transpose of the colored abelian-
ization. The top horizontal map above is obtained by summing µF\G,f over all F
with support X , and G with support Y such that F ≤ G. Note that there exist G
for which there is no corresponding F ; these components map to zero.

Theorem 14.20. Let X be a partition of I, and f : I → [r]. Let q be a positive
colored comonoid. The antipode s : SQ(q) → SQ(q) on the (X, f)-component is
given by

q(X, f)→
⊕

Y :Y ⊢I

q(Y, f)

sI,f(x) =
∑

Y :X≤Y

(−1)deg(Y ) ∆Q
Y/X,f (x),

where deg(Y ) is the number of blocks in Y .

The result follows by applying the colored abelianization to the antipode for-
mula of Theorem 14.18. The antipode of the colored exponential species (Sec-
tion 14.3) illustrates this theorem. Dually,

Theorem 14.21. Let Y be a partition of I, and f : I → [r]. Let q be a positive
colored monoid. The antipode s : S∨Q(q)→ S∨Q(q) on the (Y, f)-component is given
by

q(Y, f)→
⊕

X:X⊢I

q(X, f)

sI,f (x) = (−1)deg(Y )
∑

X:X≤Y

µQX\Y,f(x).

14.7. Colored Hopf monoids from geometry

We now briefly revisit the q-Hopf monoids in Chapter 12, and show how they
can be generalized to provide examples of Q-Hopf monoids. These are summarized
in Table 14.3. The value of each of these Q-Hopf monoids on a colored set (I, f)
depends only on I (and not on f) and is the same as in the one-dimensional case.
For example, ΣQ[I, f ] is spanned by compositions of I, and so forth. The M , F , H
and K bases are then defined on each colored component exactly as in Section 12.1.

The Q-Hopf monoid LQ of linear orders was treated in Section 14.5. The goal
of this section is to explain the rest of them. Those based on linear orders, set
compositions, and linear set compositions can be obtained as values of the functors
TQ and T ∨

Q considered in Section 14.6, while those based on pairs of linear orders
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Table 14.3. Q-Hopf monoids.

Q-Hopf monoid Q-Hopf monoid

LQ TQ(X∗
(r)) L∗

Q T ∨
Q (X(r))

ΣQ TQ
(
(E∗

(r))+
)

H Σ∗
Q T ∨

Q

(
(E(r))+

)
M

−→
ΣQ TQ

(
(L∗

(r))+
)

H,K
−→
Σ∗
Q T ∨

Q

(
(L(r))+

)
M,F

ILQ L∗
1r,r × LQ H,K IL∗

Q L1r,r × L∗
Q M,F

can be obtained as values of the Hadamard functor of Section 14.4. The inter-
relationships between these Q-Hopf monoids is given in diagram (14.34).

The notation employed in Table 14.3 follows Convention 14.5. Recall that the
dual of a Q-Hopf monoid is a Qt-Hopf monoid. The objects shown are related as
follows.

(14.32) L∗
Q = (LQt)

∗, Σ∗
Q = (ΣQt)

∗,
−→
Σ∗
Q = (

−→
ΣQt)

∗, ILQ = (IL∗
Qt)

∗.

The first three of these isomorphisms of Q-Hopf monoids are special instances
of (14.29).

Remark 14.22. Recall that the functors SQ and S∨Q evaluated on X(r) yield the
colored exponential species EQ discussed in Section 14.3. One may also consider
the values of these functors on E(r) and L(r). These would lead to colored analogues

of the Hopf monoids Π of set partitions and
−→
Π of linear set partitions. We do not

discuss them here.

14.7.1. Q-Hopf monoids of pairs of chambers. Recall the species IL of pairs
of chambers (linear orders). Consider the colored species ILQ defined by

ILQ[I, f ] := IL[I],

and let K be its canonical basis. Let IL∗
Q be the dual colored species, and let F

be its canonical basis (dual to K). The H and M bases are then defined as in
Section 12.1.

Since the species are linearized, ILQ and IL∗
Q are isomorphic as colored species.

We now proceed to turn these into Q-Hopf monoids. The structure maps, as ex-
pected, depend on Q.

Definition 14.23. Fix a decomposition (I, f) = (S, g) ⊔ (T, h) into nonempty
subsets. The coproduct of IL∗

Q is given by

IL∗
Q[I, f ]→ IL∗

Q[S, g]⊗ IL∗
Q[T, h]

F(C,D) 7→

{
F(C1,D1) ⊗ F(C2,D2) if K = S|T is a vertex of D,

0 otherwise,

whereC1, C2,D1 andD2 are defined by bK(D) = (D1, D2) and bK(KC) = (C1, C2).
The product is given by

IL∗
Q[S, g]⊗ IL∗

Q[T, h]→ IL∗
Q[I, f ]

F(C1,D1) ⊗ F(C2,D2) 7→
∑

D:KD=jK(D1,D2)

distQf (KD,D)F(jK(C1,C2),D).
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The vertex K = S|T ∈ Σ[I] is fixed in the above sum.

A comparison with Definition 12.7 shows that the only change is in the coprod-

uct formula where qdist(KD,D) has been replaced by distQf (KD,D).
We illustrate the definition with an example for r = 2. Following the notations

of (14.19), consider the colored set (I, f) = {s, i, t, a}, with blue denoting color 1
and red denoting color 2. As an example,

(t|a|s|i, s|i|t|a) ∈ IL∗
Q[I, f ].

We now illustrate the product and coproduct.

F(t|a|s|i,s|i|t|a) 7→ 1⊗ F(t|a|s|i,s|i|t|a) + F(s,s) ⊗ F(t|a|i,i|t|a)

+ F(s|i,s|i) ⊗ F(t|a,t|a) + F(t|s|i,s|i|t) ⊗ F(a,a) + F(t|a|s|i,s|i|t|a) ⊗ 1.

F(s|i,s|i) ⊗ F(t|a,a|t) 7→ F(s|i|t|a,s|i|a|t) + q21 F(s|i|t|a,s|a|i|t) + q21q22 F(s|i|t|a,a|s|i|t)

+ q221 F(s|i|t|a,s|a|t|i) + q221q22 F(s|i|t|a,a|s|t|i) + q221q
2
22 F(s|i|t|a,a|t|s|i).

The antipode formula for IL∗
Q on the F basis is as in Theorem 12.17, with

qdist(C,D) replaced by distQf (C,D).

The formulas for the product, coproduct, and antipode of IL∗
Q on the M basis can

be obtained through the same replacement from Theorems 12.13 and 12.18.

Dualizing the structure maps in Definition 14.23 and replacing Q by Qt (14.32)
one obtains the following.

Proposition 14.24. Fix a decomposition (I, f) = (S, g) ⊔ (T, h) into nonempty
subsets. The product of ILQ is given by

ILQ[S, g]⊗ ILQ[T, h]→ ILQ[I, f ]

K(D1,C1) ⊗K(D2,C2) 7→
∑

D:KD=jK(D1,D2)

K(D,jK(C1,C2)).

The vertex K = S|T ∈ Σ[I] is fixed in the above sum.
The coproduct is given by

ILQ[I, f ]→ ILQ[S, g]⊗ ILQ[T, h]

K(D,C) 7→

{
distQf (C,KC)K(D1,C1) ⊗K(D2,C2) if K = S|T is a vertex of D,

0 otherwise,

where the chambers C1, C2, D1 and D2 are defined by bK(D) = (D1, D2) and
bK(KC) = (C1, C2).

The formulas for the structure maps of ILQ on the H basis are as in Theo-
rem 12.15 with

qdist(C,D) replaced by distQf (C,D).

We have the following Q-analogue of (12.8):

ILQ := L∗
1r,r × LQ and IL∗

Q := L1r,r × L∗
Q.

Proposition 14.25. Let P be a square matrix none of whose entries are zero, and
Q be any other matrix of the same size. There is an isomorphism

LP × L∗
Q → L× L∗

P×Q
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of (P ×Q)-Hopf monoids whose (I, f)-component is given by

(C,D∗) 7→ distPf (C,D) (C,D∗).

Proof. The product and coproduct are preserved because of (10.84). �

Corollary 14.26. Let P,Q, P ′ and Q′ be square matrices of the same size none of
whose entries are zero, and such that P ×Q = P ′ ×Q′. Then

LP × L∗
Q
∼= LP ′ × L∗

Q′

as (P ×Q)-Hopf monoids.

Let sQ : ILQ → IL∗
Q be the map defined by

(14.33) K(D,C) 7→ distQf (C,D) F(C,D).

We refer to sQ as the switch map. Proposition 14.25 and Corollary 14.26 imply:

Proposition 14.27. Let Q be a matrix none of whose entries are zero. Then
the switch map sQ is an isomorphism of Q-Hopf monoids. In particular, if Q is
symmetric with nonzero entries, then ILQ is self-dual.

Applying the signature functor to ILP yields ILP×Q, and to IL∗
P yields IL∗

P×Q.
This follows from the corresponding results for LP and L∗

P .

14.7.2. Q-Hopf monoids of faces. Recall the species Σ of faces (set composi-
tions). Consider the colored species ΣQ defined by

ΣQ[I, f ] := Σ[I],

and let H be its canonical basis. Let Σ∗
Q be the dual colored species, and let M be

its canonical basis (dual to H).
We turn Σ∗

Q into a Q-Hopf monoid as follows. Let (I, f) = (S, g) ⊔ (T, h) be a
decomposition. The coproduct is given by

Σ∗
Q[I, f ]→ Σ∗

Q[S, g]⊗Σ∗
Q[T, h]

MG 7→

{
MG1 ⊗MG2 if K = S|T is a vertex of G,

0 otherwise,

where bK(G) = (G1, G2).
The product is given by

Σ∗
Q[S, g]⊗Σ∗

Q[T, h]→ Σ∗
Q[I, f ]

MG1 ⊗MG2 7→
∑

G:KG=jK(G1,G2)

distQf (K,G)MG,

where the vertex K = S|T is fixed, and distQf (K,G) is as in (10.91).

We illustrate the product and coproduct for r = 2 with blue denoting color 1
and red denoting color 2.

Mvi|sh|nu 7→ 1⊗Mvi|sh|nu +Mvi ⊗Msh|nu +Mvi|sh ⊗Mnu +Mvi|sh|nu ⊗ 1.

Mla|ksh ⊗Mmi 7→Mla|ksh|mi + q11q
2
12q21q

2
22Mla|mi|ksh + q311q

2
12q

3
21q

2
22Mmi|la|ksh

+Mla|kshmi + q11q
2
12q21q

2
22Mlami|ksh.
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Theorem 14.28. The antipode s : Σ∗
Q → Σ∗

Q is given by

Σ∗
Q[I, f ]→ Σ∗

Q[I, f ]

sI,f (MG) = (−1)deg(G)
∑

F :F≤G

distQf (F , F )MF ,

where deg(G) is the number of blocks in G, and G denotes the opposite of G.

For example,

s
(
Mmi|ksh|la

)
= −Mlakshmi − q

3
11q

3
12q

2
21q

2
22Mlaksh|mi

− q411q
6
12Mla|kshmi − q

5
11q

7
12q

2
21q

2
22Mla|ksh|mi.

The above result generalizes Theorem 12.21; the proof is essentially the same.
It can also be seen as a special case of Theorem 14.19.

In view of (14.32), dualizing the above formulas and replacing Q by Qt one
obtains descriptions for the structure of the Q-Hopf monoid ΣQ. They are as
follows.

Fix a decomposition (I, f) = (S, g) ⊔ (T, h). The coproduct of ΣQ is given by

ΣQ[I, f ]→ ΣQ[S, g]⊗ΣQ[T, h]

HF 7→ distQf (F,K)HF1 ⊗HF2 ,

where K is the vertex S|T , and F1 and F2 are defined by bK(KF ) = (F1, F2).
The product is given by

ΣQ[S, g]⊗ΣQ[T, h]→ ΣQ[I, f ]

HF1 ⊗HF2 7→ HjK(F1,F2)

where the vertex K is defined to be S|T .

Theorem 14.29. The antipode s : ΣQ → ΣQ is given by

ΣQ[I, f ]→ ΣQ[I, f ]

sI,f (HF ) = distQf (F, F )
∑

G:F≤G

(−1)deg(G)HG.

14.7.3. Q-Hopf monoids of directed faces. Recall the species
−→
Σ of directed

faces (linear set compositions). Consider the colored species
−→
ΣQ defined by

−→
ΣQ[I, f ] :=

−→
Σ [I],

and let K be its canonical basis. Let
−→
Σ∗
Q be the dual colored species, and let F

be its canonical basis (dual to K). The H and M bases are then defined as in
Section 12.1.

We now describe the structure maps of
−→
Σ∗
Q on the M basis. Fix a decomposi-

tion (I, f) = (S, g) ⊔ (T, h). The coproduct is given by
−→
Σ∗
Q[I, f ]→

−→
Σ∗
Q[S, g]⊗

−→
Σ∗
Q[T, h]

M(G,D) 7→

{
M(G1,D1) ⊗M(G2,D2) if K = S|T is a vertex of G,

0 otherwise,

where G1, G2, D1 and D2 are defined by bK(G) = (G1, G2) and bK(D) = (D1, D2).
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The product is given by

−→
Σ∗
Q[S, g]⊗

−→
Σ∗
Q[T, h]→

−→
Σ∗
Q[I, f ]

M(G1,D1) ⊗M(G2,D2) 7→
∑

G:KG=jK(G1,G2)

distQf (K,G)M(G,GjK(D1,D2)),

where the vertex K = S|T is fixed, and distQf (K,G) is as in (10.91).

We illustrate the product and coproduct for r = 2 with blue denoting color 1
and red denoting color 2.

M(sh|iv|a,s|h|i|v|a) 7→ 1⊗M(sh|iv|a,s|h|i|v|a) +M(sh,s|h) ⊗M(iv|a,i|v|a)

+M(sh|iv,s|h|i|v) ⊗M(a,a) +M(sh|iv|a,s|h|i|v|a) ⊗ 1.

M(ha,h|a) ⊗M(r|i,r|i) 7→M(ha|r|i,h|a|r|i) +M(har|i,h|a|r|i) + q221M(r|ha|i,r|h|a|i)

+ q221M(r|hai,r|h|a|i) + q221q
2
11M(r|i|ha,r|i|h|a).

Theorem 14.30. The antipode s :
−→
Σ∗
Q →

−→
Σ∗
Q is given by

−→
Σ∗
Q[I, f ]→

−→
Σ∗
Q[I, f ]

sI,f(M(G,D)) = (−1)deg(G)
∑

F :F≤G

distQf (F , F )M(F,FD),

where the notation is as in Theorem 14.28.

For example,

s
(
M
m|i|k|s|h|l|a

)
= −Mm|i|k|s|h|l|a − q

3
11q

3
12q

2
21q

2
22Mk|s|h|l|a|m|i

− q411q
6
12Ml|a|m|i|k|s|h

− q511q
7
12q

2
21q

2
22Ml|a|k|s|h|m|i

.

The above result generalizes Theorem 12.34. It can also be seen as a special
case of Theorem 14.19.

In view of (14.32), dualizing the above formulas and replacing Q by Qt one

obtains descriptions for the structure of the Q-Hopf monoid
−→
ΣQ. They are as

follows.
Fix a decomposition (I, f) = (S, g) ⊔ (T, h). The coproduct is given by

−→
ΣQ[I, f ]→

−→
ΣQ[S, g]⊗

−→
ΣQ[T, h]

H(F,C) 7→

{
distQf (F,K)H(F1,C1) ⊗H(F2,C2) if K = S|T satisfies FK ≤ C,

0 otherwise,

where bK(KF ) = (F1, F2), bK(KC) = (C1, C2).
The product is given by

−→
ΣQ[S, g]⊗

−→
ΣQ[T, h]→

−→
ΣQ[I, f ]

H(F1,C1) ⊗H(F2,C2) 7→ H(jK(F1,F2),jK(C1,C2)),

where the vertex K is defined to be S|T .
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Theorem 14.31. The antipode s :
−→
ΣQ →

−→
ΣQ is given by

−→
ΣQ[I, f ]→

−→
ΣQ[I, f ]

sI,f (H(F,C)) = distQf (F, F )
∑

G:F≤G,FG≤C

(−1)deg(G)H(G,GC).

14.7.4. Relating the Q-Hopf monoids. We mentioned earlier that many of
the Q-Hopf monoids under consideration are values of the functors TQ and T ∨

Q , and
hence can be viewed as universal objects. We now state this formally.

Let X(r), E(r) and L(r) be the images of X, E and L under one of the bistrong
functors of Proposition 14.4. Their duals, which we denote X∗

(r), E∗
(r) and L∗

(r), are

the images of X∗, E∗ and L∗.

Proposition 14.32. There are isomorphisms of Q-Hopf monoids

LQ = TQ(X∗
(r)), ΣQ = TQ

(
(E∗

(r))+
)
,

−→
ΣQ = TQ

(
(L∗

(r))+
)

L∗
Q = T ∨

Q

(
X(r)

)
, Σ∗

Q = T ∨
Q

(
(E(r))+)

)
,

−→
Σ∗
Q = T ∨

Q

(
(L(r))+

)
.

We now explain the inter-relationships between the Q-Hopf monoids of Ta-
ble 14.3. The following result generalizes Theorem 12.64.

Theorem 14.33. The following is a diagram of Q-Hopf monoids.

(14.34)

LQ // ΣQ // −→ΣQ
// ILQ

sQ

��

L∗
Q Σ∗

Q
oo

−→
Σ∗
Q

oo IL∗
Q

oo

The map sQ is defined in (14.33). The remaining morphisms are essentially the
same as in (12.20). These can also be seen as instances of the universal property of
TQ and T ∨

Q . Applying the duality functor to (14.34) yields the same diagram but

with Q replaced by Qt. If Q is symmetric, then diagram (14.34) is self-dual.

Question 14.34. If Q is symmetric and no monomial on the entries of Q is 1, then
LQ is self-dual (Proposition 14.14). A similar result for ILQ is given in Proposi-

tion 14.27. Are there similar results for ΣQ and
−→
ΣQ? A positive answer to this

question in the one-dimensional case is given in Propositions 12.26 and 12.38.





Part III

Fock Functors





CHAPTER 15

From Species to Graded Vector Spaces

Stover described how to construct graded Hopf algebras from Hopf monoids in
species [346, Section 14]. These constructions were then discussed in more detail
by Patras, Reutenauer, and Schocker [291, 292, 293]. In this chapter we formulate
these constructions and study their properties in categorical terms.

In Section 15.1, we define four monoidal functors from species to graded vector

spaces, namely, K, K∨, K and K
∨
. We prove that the first two are bilax and the

remaining two are bistrong. We refer to all of them collectively by the term Fock
functors. For further distinction, we refer to K and K∨ as full Fock functors, and

K and K
∨

as bosonic Fock functors. As suggested by the terminology, there are

also bistrong functors K−1 and K
∨
−1 called fermionic Fock functors. These will be

introduced and studied in Chapter 16. The Fock functors with their notations are
summarized in Table 15.1. The motivation for our terminology comes from classical
Fock spaces. These are treated in Chapter 19; see in particular Tables 19.1 and 19.2.

The monoidal properties of the Fock functors imply that the image of a Hopf
monoid in species under any Fock functor is a graded Hopf algebra. This is how
the categorical framework relates to Stover’s constructions. This is explained in
Section 15.2.

The categorical approach allows us to reduce the study of the relation between
various properties of Hopf monoids and properties of the corresponding Hopf al-
gebras, such as commutativity, duality, antipode, and primitive elements, to the
study of general properties of the Fock functors. This is pursued in later sections
of this chapter.

15.1. The Fock bilax monoidal functors

Recall that (Sp, ·) and (gVec, ·) denote respectively the categories of species and
graded vector spaces under the Cauchy product. In this section, we first construct
two bilax monoidal functors K and K from (Sp, ·) to (gVec, ·) and a natural trans-
formation between them which is compatible with the bilax monoidal structure.
We also relate them in a different manner via the linear order species.

Table 15.1. The Fock functors.

Fock functor Name

K, K∨ Full Fock functor

K, K
∨

Bosonic Fock functor

K−1, K
∨
−1 Fermionic Fock functor

519
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We also discuss two other bilax monoidal functors, namely K∨ and K
∨
, which,

as suggested by the notation, are related to K and K through duality.

15.1.1. The bilax monoidal functors K and K.

Definition 15.1. Let

K,K : Sp→ gVec

be the functors defined by

K(q) :=
⊕

n≥0

q[n] and K(q) :=
⊕

n≥0

q[n]Sn ,

where q[n]Sn is the vector space of Sn-coinvariants of q[n].

The quotient maps K(q) ։ K(q) define a natural transformation K ⇒ K,
because a morphism of species p → q yields maps of Sn-modules p[n] → q[n],
which therefore factor through coinvariants.

We proceed to turn K into a bilax monoidal functor with respect to the Cauchy
product on graded vector spaces (2.2) and species (8.6), that is,

K : (Sp, ·, β)→ (gVec, ·, β).

Define maps

K(p) · K(q)
ϕp,q

//
K(p · q)

ψp,q

oo

as follows. On the degree n components of these graded vector spaces, we define
maps

⊕

s+t=n

p[s]⊗ q[t]
ϕp,q

// ⊕

S⊔T=[n]

p[S]⊗ q[T ]
ψp,q

oo

as the direct sum of the following maps:

ϕp,q : p[s]⊗ q[t]
p[id]⊗q[cano]

// p[s]⊗ q[s+ 1, s+ t]

ψp,q : p[S]⊗ q[T ]
p[cano]⊗q[cano]

// p[|S|]⊗ q[|T |],

with notations as defined in Notation 2.5. Note that the composite ψp,qϕp,q is the
identity, but in general these maps are not invertible on the degree n component.

It is also clear that K(1) = k; hence K takes the unit object in (Sp, ·) to the
unit object in (gVec, ·). We define ϕ0 and ψ0 to be the identity maps

k
ϕ0 //

K(1).
ψ0

oo

We show in Theorem 15.3 below that (K, ϕ, ψ) is a bilax monoidal functor.
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For the bilax structure of K, we define the maps ϕ and ψ by the commutativity
of the diagram below.

(15.1)

K(p) · K(q)

����

ϕp,q
//
K(p · q)

����

ψp,q

oo

K(p) · K(q)

ϕp,q
//________
K(p · q)

ψp,q

oo_ _ _ _ _ _ _ _

Proposition 15.2. The maps ϕ and ψ are well-defined and inverses of each other.

Proof. For the map ψ, we need to consider the diagram

⊕

S⊔T=[n]

p[S]⊗ q[T ]

����

p[cano]⊗q[cano]
//
⊕

s+t=n

p[s]⊗ q[t]

����( ⊕

S⊔T=[n]

p[S]⊗ q[T ]

)

Sn

//________
⊕

s+t=n

p[s]Ss ⊗ q[t]St

and show that the bottom horizontal map is well defined.
Let σ ∈ Sn be any permutation. For S ⊔ T = [n], say σ sends S to U and T to

V . This defines bijections σ′
1 : S → U and σ′

2 : T → V . By standardizing the sets
S, T , U and V , we obtain two permutations σ1 ∈ Ss and σ2 ∈ St, defined by the
commutative diagrams

S
cano //

σ′
1

��

[s]

σ1

��

U cano
// [s]

T
cano //

σ′
1

��

[t]

σ2

��

V cano
// [t]

where s = |S| = |U | and t = |T | = |V |:
By functoriality, we then obtain a commutative diagram

p[S]⊗ q[T ]

p[σ′
1]⊗q[σ′

2]

��

p[cano]⊗q[cano]
// p[s]⊗ q[t]

p[σ1]⊗q[σ2]

��

p[U ]⊗ q[V ]
p[cano]⊗q[cano]

// p[s]⊗ q[t].

This guarantees that p[cano]⊗ q[cano] factors through coinvariants.
The argument for the map ϕ is similar. From ψp,qϕp,q = id we deduce

ψp,qϕp,q = id. The map ϕp,qψp,q is given by permutation actions, so it induces

the identity map on coinvariants. Thus, ϕ and ψ are inverses. �
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Theorem 15.3. The full Fock functor (K, ψ, ϕ) is bilax monoidal, the bosonic
Fock functor (K, ψ, ϕ) is bistrong monoidal, and the transformation K ⇒ K is a
morphism of bilax monoidal functors.

Proof. We start by showing that (K, ϕ) is lax and (K, ψ) is colax by checking
that ϕ and ψ satisfy the conditions described in Definitions 3.1 and 3.2.

Naturality. Let f : p → p′ and g : q → q′ be morphisms of species. For the natu-
rality of ψ, the diagram

p[S]⊗ q[T ]
p[cano]⊗q[cano]

//

fS⊗gT

��

p[|S|]⊗ q[|T |]

f[|S|]⊗g[|T |]

��

p′[S]⊗ q′[T ]
p[cano]⊗q[cano]

// p′[|S|]⊗ q′[|T |]

must commute. This follows from the naturality of f and g. The argument for the
naturality of ϕ is similar.

Associativity. If we follow the two directions in diagram (3.5) and its dual, the
maps ϕ and ψ yield the following two unambiguous maps respectively

p[s]⊗ q[t]⊗ r[u]
p[id]⊗q[cano]⊗r[cano]

// p[s]⊗ q[s+ 1, s+ t]⊗ r[s+ t+ 1, s+ t+ u]

p[S]⊗ q[T ]⊗ r[U ]
p[cano]⊗q[cano]⊗r[cano]

// p[|S|]⊗ q[|T |]⊗ r[|U |];

hence they are associative.

Unitality. It is trivial to check that the unitality diagrams in (3.6) and their duals
commute. All the maps in these diagrams are isomorphisms.

This shows that (K, ϕ) is lax and (K, ψ) is colax. We now check the braiding
and unitality axioms in Definition 3.3.

Braiding. If we follow the two directions in diagram (3.11), the maps ϕ and ψ yield
an unambiguous map

K(p · q) · K(r · s)→ K(p · r) · K(q · s)

defined as follows.
Let A, B, C and D be sets such that A⊔B = [m] and C⊔D = [n], and |A| = a,

|B| = b, |C| = c and |D| = d. The cano maps induce an isomorphism

(p[A] ⊗ q[B])⊗ (r[C]⊗ s[D])→ (p[a]⊗ r[a+ 1, a+ c])⊗ (q[b]⊗ s[b+ 1, b+ d]).

Varying A, B, C and D, and then m and n, and then taking direct sum gives the
above map.

Unitality. It is trivial to check that the unitality diagrams in (3.12) and (3.13)
commute. All the maps in these diagrams are isomorphisms.

This completes the proof that (K, ϕ, ψ) is bilax. The remaining claims follow
immediately. The surjectivity of the vertical maps in diagram (15.1) and (K, ϕ, ψ)
being bilax implies that (K, ϕ, ψ) is bilax. Since ϕ and ψ are inverse isomorphisms,

we moreover have that (K, ϕ, ψ) is bistrong. The fact that K ⇒ K is a morphism
of bilax functors follows by construction. �
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Remark 15.4. In Section 15.2 we employ the above result to construct graded
Hopf algebras from Hopf monoids in (Sp, ·). The functor K is not bistrong. Since it
is normal (it satisfies ϕ0ψ0 = id), it cannot be Hopf lax either, by Proposition 3.60.
Nevertheless, the image of a Hopf monoid under K is always a graded Hopf algebra
(Theorem 15.12).

15.1.2. The bilax monoidal functors K∨ and K
∨

. There are two other func-
tors from species to graded vector spaces, namely the contragredients of K and K
(Section 3.10.4). We begin by describing them explicitly.

Definition 15.5. Let
K∨,K

∨
: Sp→ gVec

be the functors defined by

K∨(q) :=
⊕

n≥0

q[n] and K
∨
(q) :=

⊕

n≥0

q[n]Sn ,

where q[n]Sn is the vector space of Sn-invariants of q[n].

The inclusion maps K
∨
(q) →֒ K∨(q) define a natural transformation of functors

K
∨
⇒ K∨.
We proceed to turn K∨ and K

∨
into bilax monoidal functors (Sp, ·, β) →

(gVec, ·, β). For the bilax structure of K∨, we define maps

(15.2)
⊕

s+t=n

p[s]⊗ q[t]

ψ∨
p,q

// ⊕

S⊔T=[n]

p[S]⊗ q[T ]
ϕ∨

p,q

oo

as follows. The lax structure map ψ∨
p,q is the direct sum of the following maps, one

for each s, t and each summand in the target with |S| = s and |T | = t:

p[s]⊗ q[t]
p[cano]⊗q[cano]

// p[S]⊗ q[T ]

The colax structure map ϕ∨
p,q is the direct sum of the following maps:

p[s]⊗ q[s+ 1, s+ t]
p[id]⊗q[cano]

// p[s]⊗ q[t]

On the components for which S 6= [s] (and T 6= [s+ 1, s+ t]), the map ϕ∨
p,q is zero.

Note that the composite ϕ∨
p,qψ

∨
p,q is the identity but in general these maps are not

invertible.
The structure maps of K∨ restrict to invariants, as indicated below.

(15.3)

K∨(p) · K∨(q)

ψ∨
p,q

//
K∨(p · q)

ϕ∨
p,q

oo

K
∨
(p) · K

∨
(q)

?�

OO

ψ
∨
p,q

//________
K

∨
(p · q)

?�

OO

ϕ∨
p,q

oo_ _ _ _ _ _ _ _

Theorem 15.6. The full Fock functor (K∨, ψ∨, ϕ∨) is bilax monoidal, the bosonic

Fock functor (K
∨
, ψ

∨
, ϕ∨) is bistrong monoidal, and the transformation K

∨
⇒ K∨

is a morphism of bilax monoidal functors.
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The proof is similar to that of Theorem 15.3. As for K, the functor K∨ is not
Hopf lax.

Remark 15.7. A species q being a functor Set× → Vec and the category Vec being
complete and cocomplete, one may consider the limit and colimit of the functor q
(Section A.3.5). We have

colimq =
⊕

n≥0

q[n]Sn and limq =
∏

n≥0

q[n]Sn .

The former is the graded vector space K(q) while the latter is a completion of the

graded vector space K
∨
(q). This “explains” why the functors K(q) and K

∨
(q) are

better behaved than their counterparts K and K∨ (as we will see).

15.1.3. Relating the Fock functors. We now show that in the finite-dimensional

case, K∨ and K
∨

are indeed the (bilax) contragredients of K and K. This construc-
tion is discussed in Proposition 3.102. Note that ψ∨ stands for the lax structure
and ϕ∨ stands for the colax structure of K∨, as per the general notation in the
contragredient construction.

Proposition 15.8. On finite-dimensional species, the bilax functors (K∨, ψ∨, ϕ∨)

and (K
∨
, ψ

∨
, ϕ∨) are respectively isomorphic to the contragredients of (K, ϕ, ψ) and

(K, ϕ, ψ).

Proof. The contragredient of the functors K and K are the composites

Sp
(−)∗

// Sp
K // gVec

(−)∗
// gVec

Sp
(−)∗

// Sp
K // gVec

(−)∗
// gVec

where the arrows labeled (−)∗ denote the duality functors on species and graded
vector spaces. First note that there are canonical isomorphisms

(15.4) K∨(q) ∼= K(q∗)∗ and K
∨
(q) ∼= K(q∗)∗

given by the canonical identification q[n] ∼= (q[n]∗)∗. Under this identification, one
easily checks that

ψ∨
p,q = (ψp∗,q∗)∗, ϕ∨

p,q = (ϕp∗,q∗)∗, ψ
∨
p,q = (ψp∗,q∗)∗, and ϕ∨

p,q = (ϕp∗,q∗)∗.

The right-hand sides are precisely the bilax structures of the contragredients (Propo-
sition 3.102). The result follows. �

Note that the functors K∨ and K coincide; however, their bilax structures are
defined differently. We will see later that, in fact, they cannot be isomorphic as bilax
functors (Example 15.17). In general, in the finite-dimensional case, properties of

the functors K∨ and K
∨

can be derived from the corresponding properties of K
and K by means of Proposition 15.8 (and viceversa). For example, Theorems 15.3
and 15.6 imply each other.

Now let L be the Hopf monoid of linear orders (Example 8.16). The functor K
can be expressed in terms of the functor K and the Hopf monoid L. To see this,
consider the composite of functors

(15.5) Sp
L×(−)

// Sp
K // gVec.
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Since L is a bimonoid, the functor L × (−) can be viewed as a bilax monoidal
functor, as in Proposition 8.66. Now, since both the above functors are bilax, so is
the composite, by Theorem 3.22.

Proposition 15.9. There is an isomorphism of bilax monoidal functors

(15.6) K ∼= K
(
L× (−)

)
.

Proof. Given a species p, define a map of graded vector spaces

K(p)→ K(L× p)

with components

p[n]→ (L[n]⊗ p[n])Sn , x 7→ C(n) ⊗ x,

where C(n) = 1| · · · |n is the canonical linear order on [n] and the overline denotes
the projection to coinvariants.

Since L[n] is the regular representation of Sn, by Lemma 2.18, this defines a
natural isomorphism of functors. We need to show that it is a morphism of bilax
monoidal functors. We check below that the colax structures are preserved; the
verification for the lax structures is similar.

According to Theorem 3.22, the colax structure of K
(
L× (−)

)
is given by the

composite

K(L×
(
p · q)

) K(∆×id)
// K
(
(L · L)× (p · q)

)

��

K
(
(L× p) · (L× q)

) ψ
// K(L× p) · K(L× q).

The map ∆ is the coproduct of L as in Example 8.16 and the vertical map is K
applied to the colax structure of the Hadamard functor as in (8.73).

Take x ∈ p[S] and y ∈ q[T ] with S ⊔ T = [n]. Applying the above sequence of
maps to the element C(n) ⊗ x⊗ y, we obtain

C(n) ⊗ x⊗ y 7→
∑

S1⊔T1=[n]

C(n)|S1 ⊗ C(n)|T1 ⊗ x⊗ y

7→ C(n)|S ⊗ x⊗ C(n)|T ⊗ y

7→ C(s) ⊗ cano(x)⊗ C(t) ⊗ cano(y).

This matches the colax structure ψ of K. �

Proposition 15.10. There is an isomorphism of bilax monoidal functors

(15.7) K∨ ∼= K
∨(

L∗ × (−)
)
.

This may be proved directly, as in Proposition 15.9. In the finite-dimensional
case, it also follows by applying the contragredient construction to (15.6):

K∨ ∼= K
∨
(
(
L× (−)

)∨
) ∼= K

∨(
L∗ × (−)

)
.

The last isomorphism follows as in (8.82).
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Remark 15.11. There is an additional relation between the Fock functors: over
a field of characteristic 0, the bilax monoidal functors K and K

∨
are isomorphic.

We show this in Proposition 15.21. However, over a field of positive characteristic
they differ. The bilax monoidal functors K and K∨ differ regardless of the field
characteristic. These claims are justified in Section 15.3. There is nevertheless
a natural transformation κ : K ⇒ K∨. This is studied in Section 15.4, where we

explain how one may view the functors K and K
∨

as the coimage and the image
of this transformation (when the field characteristic is 0); see Section 15.4.3. From

this point of view, the functors K and K
∨

are determined by K and K∨. On the
other hand, (15.6) and (15.7) say that the latter are determined by the former also.

15.2. From Hopf monoids to Hopf algebras: Stover’s constructions

In this section, we provide a categorical framework for Stover’s constructions.
We then explain how the different constructions relate to one another. Some ele-
mentary but illustrative examples will be given in the next section.

15.2.1. Evaluating the Fock functors on Hopf monoids. We apply general
results on bilax functors to the bilax functors in Section 15.1 to construct graded
Hopf algebras starting with Hopf monoids in species.

Theorem 15.12. If h is a Hopf monoid in species, then K(h),K(h),K∨(h), and

K
∨
(h) are graded Hopf algebras. This defines four functors from the category of

Hopf monoids in species to the category of graded Hopf algebras.

Proof. According to Theorems 15.3 and 15.6, the Fock functors are bilax
monoidal. Hence, Proposition 3.31 implies that their values on h are graded bial-
gebras, and that the assignments are functorial. We need to check that they are

Hopf algebras. The statement for K and K
∨

follows from Proposition 3.50, since
they are bistrong monoidal functors. The functors K and K∨ are not bistrong, not
even Hopf lax; so a separate argument is needed. We give it below for K; the same
argument applies to K∨.

Since K(h) is a graded bialgebra, it is enough to show that K(h)0 is a Hopf
algebra (Section 2.3.2). Note that K(h)0 is a subbialgebra of K(h). Further, by
definition, the product and coproduct on K(h)0 are the ∅-component of the product
and coproduct of h. In other words, K(h)0=h[∅] as bialgebras. But recall that for
any Hopf monoid h, h[∅] is a Hopf algebra (Proposition 8.10), so we are done. �

Let µ, ι, ∆, and ǫ be the structure maps of a Hopf monoid h in species.
According to Proposition 3.31, the graded Hopf algebra K(h) of Theorem 15.12 has
structure maps

K(h) · K(h)
ϕh,h

// K(h · h)
K(µ)

// K(h)

k
ϕ0 // K(1)

K(ι)
// K(h)

K(h)
K(∆)

// K(h · h)
ψh,h

// K(h) · K(h)

K(h)
K(ǫ)

// K(1)
ψ0 // k.
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More explicitly, the component of degree n of the coproduct ofK(h) is the composite

h[n]

P

∆S,T
//
⊕

S⊔T=[n]

h[S]⊗ h[T ]

P

h[cano]⊗h[cano]
//
⊕

s+t=n

h[s]⊗ h[t]

and similarly for the other structure maps. Recall the notions of shifting and stan-
dardization from Notation 2.5. The above expression shows that the coproduct of
K(h) always involves the notion of standardization. Similarly, the product of K(h)
always involve the notions of shifting. Thus we obtain a conceptual explanation for
the occurrence of these combinatorial procedures in the definition of several Hopf
algebras of prominence in combinatorics, including all the Hopf algebras in [12,
Theorem 6.1.3].

This construction of the graded bialgebra K(h) appears for the first time in
work of Stover [346, Proposition 14.6.i], without reference to monoidal functors.
Similarly, the other bialgebras in [346, Proposition 14.6.ii-iv] are the images of h

under the bilax monoidal functors K∨, K, and K
∨
, with the structure afforded by

Proposition 3.31.
Stover’s constructions have been taken up by Patras and Reutenauer [291] and

Patras and Schocker [292, 293]. In these references, K(h) and K∨(h) are called
the cosymmetrized and symmetrized bialgebras associated to h, respectively [292,
Definition 8 and Proposition 15]. Stover mentions that these constructions admit
two versions, one with signs and the other without [346, Section 14.7]. Patras et al
consider the unsigned version (as we do presently). The signed case will be dealt
in Chapter 16.

If s is the antipode of h, then K(s) and K
∨
(s) are the antipodes of K(h) and

K
∨
(h), according to Proposition 3.50. On the other hand, since the functors K and

K∨ are not bistrong (not even Hopf lax; see Remark 15.4), the antipodes of K(h)
and K∨(h) are not directly related to that of h. Determining the antipodes of these
Hopf algebras in explicit terms is often a challenging problem. We do not address
this problem in this monograph.

15.2.2. Relating the values of the Fock functors. We now discuss various
relations between the Hopf algebras constructed in Theorem 15.12.

Recall that L denotes the Hopf monoid of linear orders. For any species h,
there are canonical identifications

(15.8) h[n] ∼= (L[n]⊗ h[n])Sn
∼= (L∗[n]⊗ h[n])Sn .

Recall that the Hadamard product of Hopf monoids is another Hopf monoid (Corol-
lary 8.59).

Theorem 15.13. Let h be a Hopf monoid in species. There are natural isomor-
phisms of graded Hopf algebras

(15.9) K(h) ∼= K(L× h) and K∨(h) ∼= K
∨
(L∗ × h)

given by the identifications (15.8). The maps

(15.10) K(h)։ K(h) and K
∨
(h) →֒ K∨(h)

are natural morphisms of graded Hopf algebras. Further, if h is finite-dimensional,
there are natural isomorphisms of graded Hopf algebras

(15.11) K∨(h) ∼= K(h∗)∗ and K
∨
(h) ∼= K(h∗)∗
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given by the canonical identification h[n] ∼= (h[n]∗)∗.

Proof. According to Theorems 15.3 and 15.6 and Proposition 15.8, the maps

K ⇒ K, K
∨
⇒ K∨, K∨ ⇒ K

(
(−)∗

)∗
and K

∨
⇒ K

(
(−)∗

)∗

are morphisms of bilax monoidal functors. Therefore, Proposition 3.32 implies that
(15.11) and (15.10) are isomorphisms of graded bialgebras (hence also of Hopf alge-
bras). Similarly, applying Proposition 3.32 to the isomorphisms (15.6) and (15.7)
yields that (15.9) are isomorphisms of graded Hopf algebras. �

Recall from Remark 15.11 that over a field of characteristic 0, the bilax mon-

oidal functors K and K
∨

are isomorphic. It follows from (15.11) that in this case

K(h∗) ∼= K(h)∗

as graded Hopf algebras. We come back to this point in more detail in Section 15.4.4.
In view of (15.11), the study of the general properties of the Hopf algebras

K∨(h) and K
∨
(h) can be reduced to that of the Hopf algebras K(h) and K(h) (and

viceversa).

15.3. Values of Fock functors on particular Hopf monoids

We illustrate Theorems 15.12 and 15.13 on the examples of Section 8.5. The
findings in these examples will prove claims made in Remark 15.11. More elaborate
examples are given in Chapter 17.

Example 15.14. Let k[x] and k{x} be the polynomial and divided power Hopf al-
gebras in the variable x (Example 2.3). Let E be the Hopf monoid of Example 8.15.
We claim that

K(E) ∼= K(E) ∼= k[x] and K∨(E) ∼= K
∨
(E) ∼= k{x}.

Since E is one-dimensional in each degree, it is clear that K(E) ∼= K(E) and

K∨(E) ∼= K
∨
(E) as Hopf algebras. We alter notation for purposes of this ex-

ample and denote the element ∗[n] ∈ E[n] by xn. The claim involving k[x] follows
from the computation below.

K(E) · K(E)
ϕ

// K(E ·E)
K(µ)

// K(E)

xs ⊗ xt � // x|[s]| ⊗ x|[s+1,s+t]| � // xs+t

K(E)
K(∆)

// K(E ·E)
ψ

// K(E) · K(E)

xn � //
∑

S⊔T=[n]

x|S| ⊗ x|T | � //
∑

s+t=n

(
n

s

)
xs ⊗ xt

The claim involving k{x} follows from a similar computation to the above using the
structure maps ψ∨ and ϕ∨. Alternatively, one can deduce it from the first claim
by applying duality as below.

K∨(E) ∼= K(E∗)∗ ∼= K(E)∗ ∼= k[x]∗ ∼= k{x}

For the first equality, we used (15.11) and for the second equality, we used the
self-duality of E (Example 8.22).
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Over a field of positive characteristic, the graded Hopf algebras

K(E) ∼= k[x] and K
∨
(E) ∼= k{x}

are not isomorphic; therefore, the bilax monoidal functors K and K
∨

are not iso-
morphic. For more in this direction, see Section 15.4.3.

Example 15.15. Let E·2 be the Hopf monoid of subsets of Example 8.17. Calcu-
lations similar to those in Example 15.14 show that

K(E·2) ∼= k〈x, y〉 and K(E·2) ∼= k[x, y].

These are polynomial algebras in two variables. The square brackets indicate that
the variables commute and the angle brackets that they do not. The coproduct
is determined by declaring that x and y are primitive. The first isomorphism is
defined by using the following fact. A monomial of degree n in the noncommutative
variables x and y corresponds to a decomposition (S, T ) of [n]: the positions of x
and y define the subsets S and T respectively.

The canonical map K(E·2)→ K(E·2) sends a polynomial in two noncommuting
variables to the same polynomial (with the understanding that the variables now
commute). It is a morphism of Hopf algebras.

Example 15.16. We now generalize the previous examples. Let EV be the Hopf
monoid of Example 8.18. Then

K(EV ) = T (V ), K(EV ) = S(V ), K∨(EV ) = T ∨(V ), and K
∨
(EV ) = S∨(V ),

where the right-hand sides include the tensor algebra, the shuffle algebra and the
symmetric algebra of V (Section 2.6.1). These are to be viewed as graded Hopf
algebras with V belonging to the degree 1 component.

Example 15.17. Let L and L∗ be the Hopf monoids of linear orders of Exam-
ples 8.16 and 8.24. Calculations similar to those in Example 15.14 show that

K(L) ∼= K
∨
(L) ∼= k[x] and K(L∗) ∼= K

∨
(L∗) ∼= k{x}

as graded Hopf algebras.
We now turn our attention to the functors K and K∨. The Hopf monoid L

and the associated Hopf algebra K(L) are studied by Patras and Reutenauer [291,
Section 6]. The Hopf algebra K(L) is cocommutative but not commutative and is
as follows. The degree n component of K(L) has the set of linear orders on [n] for a
linear basis. To describe the product and coproduct explicitly, we setup a notation.

Let I → J be a bijection between finite sets, and let l be a linear order on I.
Then L[I → J ](l) denotes the linear order on J obtained by transporting l from I
to J by means of the given bijection. In the situations we consider, I and J will
be subsets of the integers and I → J will be the unique order-preserving bijection
between them. Further, if J = [n], then it is convenient to write

std(l) := L[I → [n]](l) ∈ L[n].

We refer to it as the standardization of l. Similarly if I = [n], then it is convenient
to write

sftJ(l) := L[[n]→ J ](l) ∈ L[J ].

We refer to it as the shifting of l to J .
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We can now describe the product and coproduct of K(L). The coproduct is,
for l ∈ L[n],

∆(l) =
∑

[n]=S⊔T

std(l|S)⊗ std(l|T ),

where, given S ⊆ I, l|S denotes the restriction of l to S. For example,

∆(1|3|2) = ( )⊗ 1|3|2 + 2(1⊗ 1|2) + 1⊗ 2|1 + 2(1|2⊗ 1) + 2|1⊗ 1 + 1|3|2⊗ ( ),

where ( ) stands for the empty list. It is the unique linear order on the empty set.
The product of l1 ∈ L[s] and l2 ∈ L[t] is the linear order

l1 ∗ l2 = l1 ·
(
sft[s+1,s+t](l2)

)
∈ L[s+ t]

where · denotes concatenation of linear orders. In other words, l1 ∗ l2 is obtained
by adding s to each entry of l2 and then placing it to the right of l1. For example,

1|3|2 ∗ 2|1 = 1|3|2|5|4.

Using (15.11), we obtain
K∨(L∗) ∼= K(L)∗.

We now describe the product and coproduct of the dual explicitly. For a linear
order l on [n], let l∗ ∈ L∗[n] denote the dual basis element. Let l1 and l2 be linear
orders on [s] and [t] respectively. Then the product is given by

l∗1 ∗ l
∗
2 =

∑

[n]=S⊔T

∑

l

l∗,

where the first sum is over all decompositions with |S| = s and |T | = t, and the
second sum is over all shuffles l of the linear orders sftS(l1) and sftT (l2) on S and
T respectively. The coproduct is given by

∆(l∗) =
∑

std(l1| · · · |ls)∗ ⊗ std(ls+1| · · · |ln)∗,

where l = l1| · · · |ln ∈ L[n] and the sum is over those s for which l1, . . . , ls are all
less than ls+1, . . . , ln. In other words, the sum is over all positions s at which l
has a global ascent. Global ascents of l correspond to global descents of the reverse
linear order l̄. The latter are defined in Section 10.7.1. It follows directly that the
space of primitive elements is spanned by those linear orders which have no global
ascents. For example,

1∗ ∗ 2|1∗ = (1|3|2∗ + 3|1|2∗ + 3|2|1∗) + (2|3|1∗ + 3|2|1∗ + 3|1|2∗)

+ (3|2|1∗ + 2|3|1∗ + 2|1|3∗)

= 1|3|2∗ + 2 (2|3|1∗) + 2|1|3∗ + 2 (3|1|2∗) + 3 (3|2|1∗).

∆(1|3|2|5|4∗) = ( )∗ ⊗ 1|3|2|5|4∗ + 1|3|2∗ ⊗ 2|1∗ + 1|3|2|5|4∗ ⊗ ( )∗.

On the other hand, we have

K(L∗) ∼= SΛ and K∨(L) ∼= SΛ∗ ∼= SΛ,

where SΛ is the graded Hopf algebra of permutations of Malvenuto and Reutenauer
[255, 256]. This Hopf algebra is self-dual, free and cofree, and neither commuta-
tive nor cocommutative. The fact that K(L∗) ∼= SΛ was first pointed out by Pa-
tras and Reutenauer [291, Proposition 16]; the second fact then follows by (15.11)
and self-duality. The self-duality appears in [255, Section 5.2] and [256, Theo-
rem 3.3]. The freeness was established by Poirier and Reutenauer [297]. For related
ideas, see the works of Reutenauer [311], Patras and Reutenauer [290], Loday and
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Ronco [242, 243], Duchamp, Hivert and Thibon [106, 107], Foissy [131] and Aguiar
and Sottile [13, 14, 15].

We now proceed to describe SΛ. Write Fl for the basis element of K(L∗)
corresponding to l∗ ∈ L∗[n]. The coproduct is

∆(Fl) =

n∑

s=0

Fstd(l1|···|ls) ⊗ Fstd(ls+1|···|ln),

where l = l1| · · · |ln ∈ L[n], and the product is

Fl1 ∗ Fl2 =
∑

l

Fl,

where l1 ∈ L[s], l2 ∈ L[t], and the sum is over all linear orders l ∈ L[s+ t] obtained
by adding s to the entries of l2 and then shuffling them with the entries of l1. For
example,

∆(F1|3|4|2) = F( ) ⊗ F1|3|4|2 + F1 ⊗ F2|3|1 + F1|2 ⊗ F2|1 + F1|2|3 ⊗ F1 + F1|3|4|2 ⊗ F( )

and

F2|1 ∗ F1|2 = F2|1|3|4 + F2|3|1|4 + F2|3|4|1 + F3|2|1|4 + F3|2|4|1 + F3|4|2|1.

The primitive elements of SΛ are harder to compute. The dimension of this space
in degree n is given by the number of permutations on n letters with no global
descents [14, 107, 297]. Thus, the dimension of the space of primitive elements of
K(L∗) and K∨(L∗) is the same.

In view of (15.9), we have

K(L× L∗) ∼= K(L∗) ∼= SΛ.

Thus, SΛ can be viewed as the image of the Hopf monoid L×L∗ under the functor
K. This point of view is useful in light of the nice properties of K. For instance,
the self-duality of L × L∗ implies that of SΛ. These ideas are explained in more
detail in Section 17.2.

The Hopf monoid L, as well as the associated Hopf algebra K(L), are co-
commutative. We show in Section 15.5 that, in general, the functor K preserves
cocommutativity. On the other hand, the Hopf monoid L∗ is commutative but the
Hopf algebra K(L∗) is not. Hence K does not preserve commutativity. Exactly the
reverse is true of K∨.

In addition, note that K(L) and K(L∗) cannot be dual Hopf algebras, since the
first is cocommutative whereas the second in not commutative. A similar statement
applies to K∨. Hence K and K∨ do not preserve duality. This is further studied in
Section 15.4.

The Hopf algebras K(L) and K∨(L) are not isomorphic, since the former is
cocommutative, while the latter is not. Therefore, the bilax monoidal functors K
and K∨ are not isomorphic.

Recall the morphism of Hopf monoids π∗ : E∗ → L∗ of (8.33). Its image under
K is the morphism of graded Hopf algebras

k[x]→ SΛ given by xn 7→
∑

l∈L[n]

Fl.
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The canonical map K(L∗) → K(L∗) turns out to be the dual morphism of graded
Hopf algebras

SΛ→ k{x}.

15.4. The norm transformation between full Fock functors

In this section, we study a morphism between the full Fock functors K and
K∨. It is called the norm transformation and denoted κ. We explain how the

bosonic Fock functors K and K
∨

can be interpreted as the coimage and image of
this morphism. Finally, we apply this circle of ideas to answer the questions on
whether the Fock functors preserve duality.

15.4.1. Relating the structure transformations of the full Fock functors.
Let Sh(s, t) denote the set of (s, t)-shuffle permutations (2.21).

Lemma 15.18. The structure maps ϕ and ψ∨, and ψ and ϕ∨, are related by the
formulas

ψ∨(x⊗ y) =
∑

ζ∈Sh (s,t)

ζ
(
ϕ(x ⊗ y)

)
for x ∈ p[s], y ∈ q[t],(15.12)

ψ(a⊗ b) =
∑

ζ∈Sh (|S|,|T |)

ϕ∨
(
ζ−1(a⊗ b)

)
for a ∈ p[S], b ∈ q[T ].(15.13)

In particular,

ψ∨(x⊗ y) = ϕ(x⊗ y) if s = 0 or t = 0,

ψ(a⊗ b) = ϕ∨(a⊗ b) if S = ∅ or T = ∅.

Proof. We explain (15.13). Let s = |S| and t = |T |. Among all (s, t)-shuffle
permutations there is one such that ζ([s]) = S and ζ([s + 1, s + t]) = T . For this
shuffle ζ we have

ϕ∨
(
ζ−1(a⊗ b)

)
= ψ(a⊗ b);

for all other shuffles ζ we have ϕ∨
(
ζ−1(a⊗ b)

)
= 0. �

15.4.2. The norm transformation between full Fock functors. We now de-
fine the norm transformation from K to K∨ and show that it is a morphism of
bilax monoidal functors. We then discuss the induced transformation between the
functors K and K

∨
.

Definition 15.19. For any species p, let κp : K(p)→ K∨(p) be the map of graded
vector spaces given by

(15.14) p[n]→ p[n] κp(z) :=
∑

σ∈Sn

σ · z,

for any z ∈ p[n]. This defines a natural transformation κ : K ⇒ K∨ which we call
the norm.

Thus, the degree n component of κp is the norm map Np[n] of Section 2.5. The
naturality of κ follows from that of N .

Proposition 15.20. The norm is a morphism of bilax monoidal functors

κ : K ⇒ K∨.
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Proof. We first verify that norm is a morphism of colax functors. The dia-
grams in (3.15) are in this case

K(p · q)

κp·q

��

ψp,q
// K(p) · K(q)

κp·κq

��

K∨(p · q)
ϕ∨

p,q

// K∨(p) · K∨(q)

and

K(1)

κ1

��

ψ0

''OOOOOOOO

k.

K∨(1)
ϕ∨

0

77ooooooo

The diagram on the right commutes trivially. For the diagram on the left, fix a
decomposition [n] = S ⊔ T and take a⊗ b ∈ p[S]⊗ q[T ]. Let s = |S| and t = |T |.
Using (15.13) and the naturality of ϕ∨ we find

(κp · κq)ψp,q(a⊗ b) =
∑

σ∈Ss
τ∈St

∑

ζ∈Sh(s,t)

ϕ∨
p,q

(
(σ × τ) · ζ−1 · (a⊗ b)

)
.

Taking inverses in (2.22) and replacing σ, τ and ρ by their inverses, we deduce

(κp · κq)ψp,q(a⊗ b) =
∑

ρ∈Sn

ϕ∨
p,q

(
ρ · (a⊗ b)

)

= ϕ∨
p,qκp·q(a⊗ b).

Thus, the diagram on the left commutes and κ is a morphism of colax functors.
The proof can be summarized in the following commutative diagram

p[S]⊗ q[T ]
p[cano]⊗q[cano]

//

p[ρ|S ]⊗q[ρ|T ]

��

p[s]⊗ q[t]

p[σ]⊗q[τ ]

��

p[ρ(S)]⊗ q[ρ(T )]
p[cano]⊗q[cano]

// p[s]⊗ q[t]

where ρ = (σ × τ) · ζ−1 and ζ is the unique (s, t)-shuffle permutation which sends
[s] to S and [s+ 1, s+ t] to T .

Similarly, using (15.12), one can show that κ is a morphism of lax functors.
On finite-dimensional species, this can be deduced from the above result plus self-
duality of κ (15.17), using Proposition 3.102. �

The image of the norm map κp : K(p)→ K∨(p) consists of invariant elements,

so it is contained in K
∨
(p). Since the inclusion K

∨
→֒ K∨ is a morphism of bilax

monoidal functors, so is the resulting transformation

K ⇒ K
∨
.

This transformation factors through coinvariants, giving rise to another morphism
of bilax monoidal functors

κ : K ⇒ K
∨
.
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These fit in a commutative diagram as follows.

(15.15)

K
κ +3

��

K∨

K κ
+3 K

∨

KS

If the field characteristic is 0, then one can say more. Applying Lemma 2.20
we obtain:

Proposition 15.21. The morphism of bistrong monoidal functors

κ : K ⇒ K
∨

is an isomorphism if the field characteristic is 0. In addition, regardless of the field
characteristic, if the species p consists of flat kSn-modules p[n], then

κp : K(p)→ K
∨
(p)

is bijective.

Applying Proposition 3.32 we obtain that for any Hopf monoid h, the diagram
of graded Hopf algebras

(15.16)

K(h)
κh //

����

K∨(h)

K(h)
κh

// K
∨
(h)

?�

OO

commutes. In addition:

Corollary 15.22. If the species h consists of flat kSn-modules h[n], then

κh : K(h)→ K
∨
(h)

is an isomorphism of graded Hopf algebras. This holds if the field characteristic is
0, for any h.

Example 15.23. For the Hopf monoid E of Examples 8.15 and 15.14, we have
that κE : K(E)→ K∨(E) is the map (2.11). It is an isomorphism of Hopf algebras
in characteristic 0. More generally, for the Hopf monoid EV of Examples 8.18
and 15.16, diagram (15.16) specializes to (2.66).

Suppose now that the species p is finite-dimensional. It follows from Proposi-
tion 15.8 that κ is related to its contragredient (3.47) as follows.

(15.17)

K∨(p)∗
(κp)∗

// K(p)∗

K(p∗) κp∗
// K∨(p∗)

This means that the norm transformation is self-dual (Definition 3.108). The same
property holds for κ. More generally, Lemma 2.22 yields:

Proposition 15.24. On finite-dimensional species, diagram (15.15) is self-dual.
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15.4.3. The image of the norm. Let ℑ denote the (co)image of the norm trans-
formation κ : K ⇒ K∨, in the sense of Section 3.11. It is a bilax monoidal functor

ℑ : (Sp, ·, β)→ (gVec, ·, β).

Proposition 15.21 implies that, in characteristic 0, K, K
∨
, and ℑ are isomorphic

bistrong monoidal functors. Thus, in this situation the bilax monoidal functors K
∨

and K are naturally associated to the morphism κ (they are the image and coimage
of κ, see Remark 3.117).

In general, K, K
∨
, and ℑ are three distinct bistrong monoidal functors related

by morphisms of bistrong functors

K ⇒ ℑ ⇒ K
∨
.

The fact that ℑ is bistrong follows from the fact that the first natural transformation
is onto, or from the fact that the second one is into. The connection between all
five functors is as in the following diagram.

K
κ +3

��

K∨

K +3 ℑ +3
K

∨

KS

On finite-dimensional species, this diagram is self-dual. In particular, ℑ is a self-
dual functor (regardless of the characteristic). This can be seen as a consequence
of Proposition 3.119.

The distinction between K and K
∨

is illustrated in Example 15.23. It follows
that, if the characteristic of k is p, then

ℑ(E) = k[x]/(xp).

Since a self-dual functor preserves self-dual objects (Proposition 3.107), it follows
that ℑ(E) is a self-dual Hopf algebra. This was noted in Example 2.3.

15.4.4. The Fock functors and duality. Consider the question of whether the
functors K and K preserve duality of Hopf monoids. We know from Example 15.17
that for K the answer is negative. On the other hand, the functors K and K are

related through duality to the functors K∨ and K
∨
, as given in Proposition 15.8.

This may be rewritten as follows: if p is a finite-dimensional species, then

K(p∗) ∼= K∨(p)∗ and K(p∗) ∼= K
∨
(p)∗.

Therefore, the above question is closely related to whether K and K∨, and K and

K
∨
, are isomorphic as bilax monoidal functors. This is a point we addressed in

Section 15.4.2. When expressed in terms of duality, the answers take the following
form.

Suppose h is a finite-dimensional Hopf monoid. By applying (15.16) to h∗

together with the isomorphisms in (15.11), we obtain the commutative diagrams of
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graded Hopf algebras below.

K(h∗)
κh∗

//

����

K(h)∗

K(h∗)
κh∗

// K(h)∗
?�

OO
K∨(h)∗

κh∗
//

����

K∨(h∗)

K
∨
(h)∗

κh∗

// K
∨
(h∗)

?�

OO

(The two diagrams are the same.) By applying Corollary 15.22 to h∗ we obtain:

Corollary 15.25. Let h be a finite-dimensional Hopf monoid. If h∗ consists of
flat kSn-modules h[n]∗, then κh∗ is an isomorphism of graded Hopf algebras. If in
addition h is a self-dual Hopf monoid, then K(h) is a self-dual graded Hopf algebra.

Recall that over a field characteristic is 0 any Sn-module is flat.

15.5. The Fock functors and commutativity

In this section, we discuss whether the Fock functors preserve commutative
monoids or cocommutative comonoids.

15.5.1. Are the Fock functors braided? In light of the discussion in Sec-
tion 3.4.4, one essentially has to study whether K and K are braided viewed both
as lax and colax functors.

Proposition 15.26. The functor (K, ψ) is braided colax, but the functor (K, ϕ) is
not braided lax. On the other hand, the functor (K, ϕ, ψ) is braided bilax.

Proof. For the assertions aboutK, we have to show that the left-hand diagram
below commutes while the right-hand diagram does not.

K(p · q)

YesK(β)

��

ψp,q
// K(p) · K(q)

Noβ

��

ϕp,q
// K(p · q)

K(β)

��

K(q · p)
ψq,p

// K(q) · K(p)
ϕq,p

// K(q · p)

We look at the degree n part of the above diagram. The relevant portion is
shown below.

p[S]⊗ q[T ]

Yesβ

��

p[cano]⊗q[cano]
// p[s]⊗ q[t]

Noβ

��

p[id]⊗q[cano]
// p[s]⊗ q[s+ 1, s+ t]

β

��

q[T ]⊗ p[S]
q[cano]⊗p[cano]

// q[t]⊗ p[s]
q[id]⊗p[cano]

//
⊕

S⊔T=[n]

q[T ]⊗ p[S]

The first diagram clearly commutes. The second diagram does not commute be-
cause following the two directions land us in

q[t]⊗ p[t+ 1, t+ s] and q[s+ 1, s+ t]⊗ p[s],

which are distinct components (unless s or t is zero).
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This problem disappears for ϕ because there is an element of Ss+t which induces
an isomorphism between the two components above, so commutativity is attained
at the level of coinvariants. In other words, K is braided bilax. Alternatively, this
can be deduced by noting that K is bistrong and applying Proposition 3.46. A third
proof is given in Proposition 15.31. �

Propositions 3.35, 3.36 and 3.37 yield:

Corollary 15.27. For any comonoid (Hopf monoid) h,

K(hcop) = K(h)cop

as comonoids (Hopf monoids). In particular, K takes cocommutative comonoids to
cocommutative coalgebras. The functor K preserves both commutativity and cocom-
mutativity.

This has immediate implications for the contragredientsK∨ andK
∨
. By Propo-

sitions 3.102 and 15.8:

Proposition 15.28. The functor (K∨, ψ∨) is braided lax, but the functor (K∨, ϕ∨)

is not braided colax. On the other hand, the functor (K
∨
, ψ

∨
, ϕ∨) is braided bilax.

Hence K∨ takes commutative monoids to commutative algebras and K
∨

pre-
serves both commutativity and cocommutativity. Proposition 4.13 gives that K∨

takes Lie monoids to graded Lie algebras. Similarly, K takes Lie comonoids to

graded Lie coalgebras, and K and K
∨

preserve both Lie monoids and Lie comon-
oids.

15.5.2. The half-twist transformation from K to itself. Let bϕ and bψ de-
note the conjugates of ϕ and ψ as in Definition 3.14. Since the braidings are
symmetries in the present case, the side on which the exponent b is written does
not matter.

We saw that the colax monoidal functor (K, ψ) is braided, so bψ = ψ. On the
other hand, the functor K is not braided lax. So it may not take commutative mon-
oids to commutative algebras. An example of this kind was given in Example 15.17.
The fact that K does not preserve commutativity can be stated formally by saying
that the identity natural transformation

(K, bϕ)⇒ (K, ϕ)

is not a morphism of lax monoidal functors (3.17). For the same reason, given a
monoid p, the identity map

K(pop)→ K(p)op

need not be a morphism of graded algebras. This opens the possibility of there
being two distinct algebras K(pop) and K(p)op associated to p. However, this is
not the case: it turns out that there is a nontrivial isomorphism of algebras

K(pop) ∼= K(p)op.

We explain this remarkable fact next.

Definition 15.29. For each n, let ωn be the longest permutation in Sn. It sends i
to n+ 1− i for each i. Let θ : K ⇒ K be the natural transformation defined by the
maps

p[ωn] : p[n]→ p[n]
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for each species p and each nonnegative integer n. For n = 0, 1, this map is the
identity.

The definition of morphism of species (8.1) guarantees that θ is indeed a natural
transformation. We call it the half-twist transformation.

Proposition 15.30. The half-twist transformation is an isomorphism of bilax mon-
oidal functors

θ : (K, bϕ, bψ)⇒ (K, ϕ, ψ).

Proof. We first check that θ is a morphism of colax monoidal functors. The
second diagram in (3.15) commutes trivially while the first diagram takes the fol-
lowing form.

K(p · q)

θp·q

��

K(β−1)
// K(q · p)

ψq,p
// K(q) · K(p)

β
// K(p) · K(q)

θp·θq

��

K(p · q)
ψp,q

// K(p) · K(q).

The commutativity of this diagram boils down to the following diagram, where
S ⊔ T = [n] is a decomposition and S′ = ωn(S), T ′ = ωn(T ).

p[S]⊗ q[T ]

(p·q)[ωn]

��

β−1

// q[T ]⊗ p[S]
q[cano]⊗p[cano]

// q[t]⊗ p[s]
β

// p[s]⊗ q[t]

p[ωs]⊗q[ωt]

��

p[S′]⊗ q[T ′]
p[cano]⊗q[cano]

// p[s]⊗ q[t]

The composite along the top is p[cano] ⊗ q[cano] (as encountered in the proof of
Proposition 15.26). The commutativity of this diagram follows by functoriality
from that of

S × T

ωn|S×ωn|T

��

cano× cano
// [s]× [t]

ωs×ωt

��

S′ × T ′
cano× cano

// [s]× [t].

Similarly, to check that θ is a morphism of lax monoidal functors, one needs to
check the commutativity of the following diagram.

K(p) · K(q)

θp·θq

��

β−1

// K(q) · K(p)
ϕq,p

// K(q · p)
K(β)

// K(p · q)

θp·q

��

K(p) · K(q) ϕp,q

// K(p · q).
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This follows from that of

[s]× [t]

ωs×ωt

��

cano× cano
// [t+ 1, t+ s]× [t]

ωn|[t+1,t+s]×ωn|[t]

��

[s]× [t]
cano× cano

// [s]× [s+ 1, s+ t]. �

Proposition 15.31. The following is a commutative diagram of morphisms of bilax
functors.

(K, bϕ, bψ)
θ +3

��

(K, ϕ, ψ)

��
(K, bϕ, bψ)

id
+3 (K, ϕ, ψ)

In particular, (K, ϕ, ψ) is braided bilax.

Proof. We first note that the above is a commutative diagram of natural
transformations. In other words, θ factors through the projection K ⇒ K and gives
rise to the identity natural transformation on K. It then follows from Proposi-
tion 15.30 that the identity is a morphism of bilax functors and further that the
diagram commutes as morphisms of bilax functors. �

Corollary 15.32. For any Hopf monoid h, the map

K(hop)→ K(h)op

whose degree n component is h[ωn] (Definition 15.29) is a natural isomorphism of
Hopf algebras.

Proof. Propositions 15.30, 3.32, and 3.34 imply that

θh : op,copK(hop,cop)→ K(h)

is an isomorphism of Hopf algebras. By applying (−)op,cop (which is the inverse to
op,cop(−)), we obtain that

K(hop,cop)→ K(h)op,cop

is an isomorphism of Hopf algebras. The result now follows by replacing h by hcop,
and using Corollary 15.27 and the fact that both braidings are symmetries. �

Example 15.33. Consider the Hopf monoid L∗ of Example 8.24. As explained
in Example 15.17, we have K(L∗) = SΛ. Since L∗ is commutative, we obtain an
isomorphism of Hopf algebras

SΛ→ SΛop given by Fl1|···|ln 7→ Fn+1−l1|···|n+1−ln .

For example, F2|1|4|3 7→ F3|4|1|2.

Example 15.34. Consider the Hopf monoid Σ∗ discussed in Section 12.4. Apply-
ing the functor K yields a Hopf algebra indexed by set compositions. This is the
Hopf algebra PΠ considered in [12, Section 6.2.4]. More information regarding this
is given in Section 17.3.



540 15. FROM SPECIES TO GRADED VECTOR SPACES

The Hopf monoid Σ∗ is commutative while the Hopf algebra K(Σ∗) is not.
Hence, we obtain an isomorphism of Hopf algebras

K(Σ∗)→ K(Σ∗)op given by MF 7→Mωn(F ),

where F and ωn(F ) are both compositions of [n], the latter obtained from the
former by replacing i by n+ 1− i. For example, M13|5|24|6 7→M46|2|35|1.

15.6. The Fock functors and primitive elements

Let gHopf and gLie be the categories of graded Hopf algebras and graded Lie
algebras respectively. Recall the classical functor

P : gHopf → gLie,

which sends a Hopf algebra to its Lie algebra of primitive elements. The analogue
of this functor for species, namely

P : Hopf(Sp)→ Lie(Sp),

was defined in (11.39). The functors K∨ and K
∨

are better behaved with respect
to P than the functors K and K. One reason is that the functor K∨ being braided
lax preserves Lie monoids while the functor K does not. We consider the diagram

Hopf(Sp)
P //

��

Lie(Sp)

��

gHopf
P

// gLie

with the vertical functors being either K∨ or K
∨
.

15.6.1. The main result. For any Hopf monoid h, K∨(h) can be viewed as a
graded Lie algebra in two different ways. The first way is to view it as the image
under K∨ of the Lie monoid h. The second way is to view the Hopf algebra K∨(h)
as a graded Lie algebra. One checks that the two Lie structures coincide, the key

being that K∨ is braided lax. Since K
∨

and K are also braided lax, the same

statement can be made for K
∨
(h) and K(h).

Proposition 15.35. For any connected Hopf monoid h, we have the following
diagram of graded Lie algebras.

K∨
(
P(h)

)
⊆ P

(
K∨(h)

)
⊆ K∨(h)

K
∨(
P(h)

)?�

OO

= P
(
K

∨
(h)
)?�

OO

⊆ K
∨
(h)

?�

OO

Proof. The inclusions in the second square are obvious. We check below
the inclusion and equality in the first square (as graded vector spaces). Since all
spaces involved are Lie subalgebras of K∨(h), the claim regarding the “Lie” part is
automatic.
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There are three coproducts one needs to keep track of; these are shown in the
commutative diagram below.

h[n]
∆ //

⊕

S⊔T=[n]

h[S]⊗ h[T ]
ϕ∨

//
⊕

s+t=n

h[s]⊗ h[t]

h[n]Sn //

?�

OO

( ⊕

S⊔T=[n]

h[S]⊗ h[T ]

)Sn

ϕ∨

∼= //

?�

OO

⊕

s+t=n

h[s]Ss ⊗ h[t]St
?�

OO

The coproduct on h is the map ∆ above, the coproduct on K∨(h) is the composite

ϕ∨ ◦∆ of the top horizontal arrows, and the coproduct on K
∨
(h) is the composite

of the bottom horizontal arrows. It follows that

(15.18) ∆+ = ϕ∨ ◦ K∨(∆+) and ∆+ = ϕ∨ ◦ K
∨
(∆+),

where the ∆+ in the right-hand sides refers to the positive part of the coproduct of
h while the ∆+ in the left-hand sides refers to the positive part of the coproducts

of K∨(h) and K
∨
(h) respectively.

Recall that for a connected Hopf monoid h and ∆+ : h+ → h+ · h+, we have
P(h) = ker∆+. The same result also holds for a connected graded Hopf algebra.

The functoriality of K∨ and K
∨

and (15.18) now implies that

K∨
(
P(h)

)
⊆ P

(
K∨(h)

)
and K

∨(
P(h)

)
⊆ P

(
K

∨
(h)
)
.

To complete the proof, we have to show that the second inclusion is an equality.

Since the definition of the functor K
∨

is in terms of invariants, we know that it is
left exact. We now claim the following chain of equalities from which the result
follows.

K
∨(
P(h)

)
= K

∨(
ker(∆+)

)
= ker

(
K

∨
(∆+)

)
= ker

(
ϕ∨ ◦ K

∨
(∆+)

)
= P

(
K

∨
(h)
)

The second equality holds because K
∨

is left exact, and the third equality because
ϕ∨ is an isomorphism. �

Note that the functor K∨ is also left exact. However, the argument given for

K
∨

fails for K∨ because the map ϕ∨ is not an isomorphism.

Proposition 15.36. For any connected Hopf monoid h, we have the following
diagram of graded vector spaces.

K
(
P(h)

)

����

⊆ P
(
K(h)

)

����

⊆ K(h)

����

K
(
P(h)

)
⊆ P

(
K(h)

)
⊆ K(h)

The bottom horizontal row is an inclusion of graded Lie algebras. Moreover, if k is
a field of characteristic zero, then

(15.19) K
(
P(h)

)
= P

(
K(h)

)
.
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This result is similar to Proposition 15.35 and can be proved along the same
lines. We note some differences. Since the functor K is not braided lax, the top
horizontal row is only an inclusion of graded vector spaces. Since the definition of K
is in terms of coinvariants, this functor is right exact. Over a field of characteristic
0, it is also left exact, and (15.19) follows as in the proof of Proposition 15.35.

15.6.2. Examples. We illustrate the above results on some of our familiar ex-
amples. In particular, we will see that the results are optimal in the sense that
all inclusions are strict in general. We write kx for the one-dimensional subspace
spanned by the variable x inside the space of polynomials in x. For convenience,
we also use it to denote a graded vector space which is k in degree one and zero in
all other components.

Example 15.37. Consider the Hopf monoid E. According to Examples 11.44

and 15.14, the functor K
∨

yields:

K
∨(
P(E)

)
= kx = P(k{x}) = P

(
K

∨
(E)
)
.

Note that P(k{x}) is always one-dimensional irrespective of the field characteristic.
On the other hand, for the functor K, we get an inclusion

K
(
P(E)

)
= kx ⊆ P(k[x]) = P

(
K(E)

)
.

In characteristic 0, we have kx = P(k[x]), but in characteristic p the inclusion
is strict: the primitive elements of k[x] are spanned by the monomials xp

e

where
e ≥ 0.

More generally, for any Lie algebra g, the space of primitive elements of the
universal enveloping algebra U(g) is the restricted Lie subalgebra of U(g) generated
by g. (To get the previous result, let g := kx.) This result is stated in the paper
by Kharchenko [200, p. 69]. It also follows from [63, Exercises II.1.12 and II.3.4].
For the definition of restricted Lie algebras, see [175, Section V.7].

Example 15.38. Consider the Hopf monoid L. According to Examples 11.44
and 15.17,

K∨
(
P(L)

)
= K∨(Lie) ⊆ P(SΛ) = P

(
K∨(L)

)
,

and the dimension of the degree n component of P(SΛ) is the number of permu-
tations in Sn with no global descents. Now one can conclude that the left-hand
side is a proper Lie subalgebra of the right-hand side. This can be seen from a
dimension count: the number of permutations on n letters with no global descents
is in general greater than (n− 1)!, which is the dimension of Lie[n].

On the other hand, the functor K
∨

yields an equality of Lie algebras:

K
∨(
P(L)

)
=
⊕

n

(Lie[n])Sn = P(k[x]) = P
(
K

∨
(L)
)
.

The first equality says that the space
⊕

n

(Lie[n])Sn

carries the structure of a Lie algebra. We denote its bracket by ∗. It can be made

explicit using the lax structure of K
∨

and the bracket of the Lie monoid Lie. The
second equality says that this Lie algebra is abelian and further its component in
degree pe for e ≥ 0 is k, while all other components are zero (here p is the field
characteristic). This is a special case of a result of Fresse [136, Theorem 1.2.5]
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and [137, Proposition 1.2.16] which implies that K
∨
(Lie) is the free restricted Lie

algebra on one generator. Fresse’s result implies more generally that K
∨
V (Lie) is

the free restricted Lie algebra on V (the functor K
∨
V is defined in Chapter 19).

For example, in characteristic 2, the invariants in degrees 1, 2 and 4 are spanned
by

[1], [1 2] and
[
[1 2][3 4]

]
+
[
[1 3][2 4]

]
+
[
[1 4][2 3]

]
.

We explicitly compute the ∗ product in two cases and check that it is zero.

[1] ∗ [1 2] =
[
1[2 3]

]
+
[
2[1 3]

]
+
[
3[1 2]

]
= 0.

Note that for the product we shift up the indices of the second term and then sum
over all shuffles. The middle term is the Jacobi identity and hence zero (this is why
there are no degree 3 invariants).

[1 2]∗[1 2] =
[
[1 2][3 4]

]
+
[
[1 3][2 4]

]
+
[
[1 4][2 3]

]
+
[
[2 3][1 4]

]
+
[
[2 4][1 3]

]
+
[
[3 4][1 2]

]
.

The right-hand side is twice the degree 4 invariant and hence zero in characteristic 2.
For the functor K, we get an inclusion (strict in general):

K
(
P(L)

)
=
⊕

n

(Lie[n])Sn ⊆ P(k[x]) = P
(
K(L)

)
.

The left-hand side is the free Lie algebra on one generator and is always one-
dimensional, except in characteristic 2.

Now consider the Hopf monoid L∗. We have

K
(
P(L∗)

)
= kx ⊆ P(SΛ) = P

(
K(L∗)

)
,

K∨
(
P(L∗)

)
= kx ⊆ P

(
K∨(L∗)

)
.

Both inclusions are strict. The graded dimension of the spaces on the right in both
statements is the same. The dimension of the component of degree n is the number
of permutations in Sn with no global descents. For completeness, we also record
the following.

K
(
P(L∗)

)
= kx ⊆ P(k{x}) = P

(
K(L∗)

)
,

K
∨(
P(L∗)

)
= kx = P(k{x}) = P

(
K

∨
(L∗)

)
.

More examples are given in Sections 17.2.5 and 17.3.3.

Remark 15.39. The vector space
⊕

n≥1 Lie[n] carries a structure of Lie algebra

(Lie subalgebra of P(SΛ)) and also (a different structure) of twisted Lie algebra, as
mentioned in Section 11.9.1. Both structures are discussed in [11, Section 5.3]. The
connection between the two becomes now clear: the twisted Lie algebra structure is
an equivalent formulation of the Lie monoid structure of the species Lie, while the
Lie algebra structure is the result of applying the functor K∨ to this Lie monoid.

15.7. The full Fock functors and dendriform algebras

In this section we look at further monoidal properties of the Fock functors.
The main result is that K∨ is a Zinbiel-lax monoidal functor. We discuss some
consequences involving dendriform algebra structures.
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15.7.1. The operadic monoidal properties of K∨. Let us restrict the full Fock
functor K∨ to the category of positive species (Section 8.9.2). Its image then lies
in the category of positively graded vector spaces (Section 2.3.4):

K∨ : (Sp+, ·)→ (gVec+, ·).

We proceed to turn this functor into a Zinbiel lax monoidal functor, as in Defini-
tion 4.9. Note that the monoidal categories are nonunital, as in the situation of
Notation 4.6. We first need to define a natural transformation

γ : K∨(p) · K∨(q)→ K∨(p · q).

For this, we need maps

(15.20) p[s]⊗ q[t]→
⊕

S⊔T=[n]

p[S]⊗ q[T ]

where s and t are nonzero and S and T are nonempty. We define this to be the
direct sum of the following maps, one for each summand in the target with |S| = s
and |T | = t and 1 ∈ S:

p[s]⊗ q[t]
p[cano]⊗q[cano]

// p[S]⊗ q[T ].

Proposition 15.40. The functor (K∨, γ) is Zinbiel-lax monoidal.

Proof. Both sides of (4.5) yield a map of the form

p[s]⊗ q[t]⊗ r[u]→
⊕

S⊔T⊔U=[n]

p[S]⊗ q[T ]⊗ r[U ].

It follows from (15.20) that the left-hand side of (4.5) is the sum of the maps

p[s]⊗ q[t]⊗ r[u]
p[cano]⊗q[cano]⊗r[cano]
−−−−−−−−−−−−−−−−→ p[S]⊗ q[T ]⊗ r[U ],

one for each summand in the target with |S| = s, |T | = t, |U | = u and 1 ∈ S. The
right-hand side of (4.5) consists of the sum of the same maps, split according to
whether s+ 1 ∈ T or s+ 1 ∈ U . �

Recall from (15.2) that the lax structure ψ∨ of K∨ is given by a formula similar
to that of γ, in which the sum is over all summands in the target with |S| = s
and |T | = t. Observe that γb, the conjugate of γ by the braiding as given in
Definition 3.14, has the same description as γ except that the condition 1 ∈ S is
replaced by 1 6∈ S. Therefore,

(15.21) ψ∨ = γ + γb.

Recall from Proposition 4.12 that associated to a Zinbiel-lax monoidal structure
on a functor there is a braided lax monoidal structure on the same functor. It
follows from the preceding observation that the braided lax monoidal structure on
K∨ associated to γ is ψ∨. We thus recover (the nonunital version of) the result
that (K∨, ψ∨) is braided lax monoidal (Proposition 15.28).
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15.7.2. The functor K∨ and dendriform algebras. We combine the gen-
eral results on transformation of monoids under monoidal functors (Sections 4.1.3
and 4.4.4) and the fact that K∨ is Zinbiel-lax in order to derive two constructions
of graded dendriform and graded Zinbiel algebras.

Proposition 15.41. Let p be a nonunital associative monoid in (Sp+, ·). Then
K∨(p) is a graded dendriform algebra. If p is commutative, then K∨(p) is in fact
a graded Zinbiel algebra.

Proof. Both statements follow from Proposition 4.15. �

We mention that dual results hold for the full Fock functor K. If p is a non-
counital comonoid in (Sp+, ·), then K(p) is a graded dendriform coalgebra, and if
p is cocommutative, then K(p) is in fact a graded Zinbiel coalgebra.

We illustrate Proposition 15.41 with two well-known examples.

Example 15.42. The positive decorated exponential species (EV )+ is a nonunital
commutative monoid in Sp+ (Example 8.18). It follows from Proposition 15.41 that

T ∨(V )+ = K∨
(
(EV )+

)

is a (graded) Zinbiel algebra. As a nonunital associative algebra, it is the positive
degree part of the shuffle algebra on V (Section 2.6.1). The fact that T ∨(V )+ is a
Zinbiel algebra is well-known; in fact, it is the free Zinbiel algebra on V , see [238,
Section 7.1] and [325, p. 19].

Example 15.43. The positive linear order species L+ (Example 8.16) is a nonuni-
tal monoid in Sp+. It follows from Proposition 15.41 that

SΛ∗
+ = K∨(L+)

is a graded dendriform algebra. Here SΛ∗ is the dual of the Malvenuto–Reutenauer
Hopf algebra, as explained in Example 15.17. The dendriform structure was intro-
duced by Loday and Ronco in [243, Definition 4.4].





CHAPTER 16

Deformations of Fock Functors

Hopf monoids in the category of species are richer than the graded Hopf algebras
that correspond to them under the functors K and K∨. In this chapter we show
that one can construct q-deformations of those Hopf algebras starting from the
same Hopf monoids. In fact, it is the bilax monoidal functors themselves that
can be deformed. We call the deformed functors Kq and K∨

q and refer to them as
the q-Fock functors. Further, we show that these functors can also be applied to
p-deformations of Hopf monoids in which case one obtains pq-deformations of the
corresponding Hopf algebras.

We begin by explaining these ideas in Section 16.1. In Section 16.2, we study
the norm transformation between Kq and K∨

q . This is a deformation of the norm
transformation between K and K∨. The q-norm, for generic values of q, behaves
quite differently from the norm for q = 1. We show that if q is not a root of unity
and the field characteristic is zero, then the q-norm is an isomorphism.

Recall that for q = 1, in addition to the full Fock functors, we had also con-
sidered bosonic Fock functors. We had constructed them by taking invariants and
coinvariants. Something similar can be done for q = −1. This leads to the fermionic
Fock functors, which are studied in Section 16.3.

The theory for parameter values ±1 is in many ways special. In representa-
tion theory this corresponds to the fact that the symmetric group has two one-
dimensional representations, namely the trivial and sign representations. In cate-
gory theory this corresponds to the fact that among a family of braidings βq on
graded vector spaces and species, only q = ±1 are symmetries.

In general, the image of the norm transformation yields a functor which we
denote by ℑq. We refer to it as the anyonic Fock functor. In characteristic 0,
for q = 1, it recovers the bosonic Fock functors and for q = −1, it recovers the
fermionic Fock functors. For q = 0, the norm transformation is the identity, and
so K0 = K∨

0 = ℑ0. We refer to this as the free Fock functor. The different functors
are summarized in Table 16.1. The entries complement those in Table 15.1.

The behavior of the deformed full Fock functor with respect to commutativity
is studied in Section 16.4. The functor Kq is not braided colax in general. We show

Table 16.1. The deformed Fock functors.

Fock functor Name

Kq, K∨
q Deformed full Fock functor

ℑq Anyonic Fock functor

K0 = K∨
0 = ℑ0 Free Fock functor

547
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that conjugating the colax structure with the braidings yields the functor Kq−1 .
We also construct a q-analogue of the half-twist transformation. We conclude this
chapter with Section 16.5 which contains some illustrative examples.

The constructions in this chapter will make use of the Schubert statistic and
related notions from Section 2.2.

16.1. Deformations of the full Fock functors

Throughout this section, p and q are fixed scalars, possibly zero. Our goal is
to construct bilax deformations Kq and K∨

q of the full Fock functors of Chapter 15.

16.1.1. The functor Kq. Recall the bilax monoidal functor (K, ϕ, ψ) of Sec-
tion 15.1.1. We now proceed to construct a bilax monoidal functor

(K, ϕ, ψq) : (Sp, ·, βp)→ (gVec, ·, βpq),

which is a deformation of the previous construction. The functor K and the natural
transformation ϕ are the same; namely

K(q) :=
⊕

n≥0

q[n]

and

ϕp,q : K(p) · K(q)→ K(p · q)

has components

⊕

s+t=n

p[s]⊗ q[t]
L

p[id]⊗q[cano]
−−−−−−−−−−→

⊕

s+t=n

p[s]⊗ q[s+ 1, s+ t] ⊆
⊕

S⊔T=[n]

p[S]⊗ q[T ].

On the other hand, the natural transformation

(ψq)p,q : K(p · q)→ K(p) · K(q)

has components ⊕

S⊔T=[n]

p[S]⊗ q[T ]→
⊕

s+t=n

p[s]⊗ q[t]

which map

x⊗ y 7→ qschn(S) p[cano](x) ⊗ q[cano](y),

where schn(S) is the Schubert statistic (2.13) and the canonical maps in question
are

cano: S → [|S|] and cano: T → [|T |],

as in Notation 2.5. Thus, up to a power of q, the map ψq is the same as the map
ψ.

As for K, we let ϕ0 and (ψq)0 be the identity maps

k
ϕ0
−→ K(1)

(ψq)0
−−−→ k.

Theorem 16.1. The functor

(K, ϕ, ψq) : (Sp, ·, βp)→ (gVec, ·, βpq)

is bilax monoidal.
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Proof. In view of Theorem 15.3, the only diagrams in Definitions 3.1, 3.2
and 3.3 that require verification are those involving ψq. Moreover, Theorem 15.3
guarantees that these diagrams commute up to a power of p and q; we only need
to check that the two powers resulting from each diagram agree for both p and q.

Note that the braiding and hence the parameter p is relevant only to dia-
gram (3.11) and we observe directly that the powers of p agree. We now deal with
powers of q. Diagram (3.13) involves no powers of q. For the coassociativity and
counitality diagrams required for (K, ψq) to be colax (Definition 3.2) this is the case
by the properties of the Schubert statistic given in (2.17) and (2.14), respectively.
Similarly, properties (2.18) and (2.14) respectively guarantee that the powers of q
agree for diagrams (3.11) and (3.12) relating ϕ and ψq. �

We use Kq as an abbreviation for (K, ϕ, ψq). Since ψ1 = ψ, we have K1 = K.
In this sense, Kq is a deformation of the bilax monoidal functor K.

16.1.2. The functor K∨

q . A deformation of the bilax monoidal functor K∨ of
Section 15.1.2 can be constructed too. Define a natural transformation

(ψ∨
q )p,q : K∨(p) · K∨(q)→ K∨(p · q)

with components

p[s]⊗ q[t]→
⊕

S⊔T=[n]

p[S]⊗ q[T ]

which map

x⊗ y 7→
∑

S⊔T=[n]
|S|=s,|T |=t

qschn(S) p[cano](x)⊗ q[cano](y),

where the canonical maps in question are, for each term in the sum,

cano: [s]→ S and cano: [t]→ T.

Thus, up to a power of q, the map ψ∨
q is the same as the map ψ∨ of (15.2). The

natural transformation

ϕ∨
p,q : K∨(p · q)→ K∨(p) · K∨(q)

is the same as that in (15.2), and we let (ψ∨
q )0 and ϕ∨

0 be the identity maps

k
(ψ∨
q )0

−−−−→ K∨(1)
ϕ∨

0−−→ k.

It is straightforward to show that:

Theorem 16.2. The functor

(K∨, ψ∨
q , ϕ

∨) : (Sp, ·, βp)→ (gVec, ·, βpq)

is bilax monoidal.

We abbreviate (K∨, ψ∨
q , ϕ

∨) to K∨
q . As suggested by the notation, in the finite-

dimensional setting, the functors Kq and K∨
q are related by the contragredient

construction of Section 3.10: either one is obtained from the other by conjugating
with the duality functors on species and on graded vector spaces.

Proposition 16.3. On finite-dimensional species, the bilax functor (K∨, ψ∨
q , ϕ

∨)
is isomorphic to the contragredient of (K, ϕ, ψq).
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Proof. This follows from Proposition 15.8 by noting in addition that the colax
structure of K and the lax structure of K∨ are deformed in exactly the same way
by using the Schubert statistic. �

In view of the above result, Theorems 16.1 and 16.2 are equivalent to each other
in the finite-dimensional setting. We will see many statements of this type.

16.1.3. The free Fock functor K0. Consider the functor (K, ϕ, ϕ∨); that is, we
mix the lax structure of K with the colax structure of K∨. At first glance, this may
seem a little strange; however we show below that this is very natural.

Proposition 16.4. We have

(K, ϕ, ψ0) = (K∨, ψ∨
0 , ϕ

∨).

In other words, ϕ = ψ∨
0 and ψ0 = ϕ∨.

This is a straightforward check. This says that

(16.1) K0 = K∨
0 = (K, ϕ, ϕ∨).

It follows from either of Theorems 16.1 or 16.2 that the above is a bilax monoidal
functor from (Sp, ·, βp) to (gVec, ·, β0). Further, it is self-dual (Definition 3.105).
We refer to it as the free Fock functor.

It is also possible to view this functor as a deformation of the bosonic and
fermionic Fock functors. This point of view, which motivates our terminology, is
explained in Section 16.3.5.

16.1.4. Relating the deformed full Fock functors by the signature func-
tor. Recall the signature functor (−)− on species from Section 9.4.2. It is natural
to ask what happens if one precomposes the deformed full Fock functor by the
signature functor. The answer is given by the following result.

Proposition 16.5. The following diagram commutes (up to isomorphism) as bilax
monoidal functors.

(16.2)

(Sp, ·, βp)
(−)−

//

K−q $$H
HH

HH
HH

HH
(Sp, ·, β−p)

Kqzzuuuuuuuuu

(gVec, ·, β−pq)

The same result holds with K replaced by K∨.

Proof. We note that using the canonical linear order on [n], there is an iso-
morphism of vector spaces

(16.3) p[n]⊗E−[n]
∼=−−→ p[n] x⊗ (1 ∧ · · · ∧ n) 7→ x

and hence

Kq(p
−) ∼= K−q(p).

This says that there is a natural isomorphism of functors

Kq
(
(−)−

)
∼= K−q(−).

The parameter q has played no part so far. We claim next that the above is in fact
an isomorphism of bilax monoidal functors. The lax part is straightforward (the
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parameter q still plays no role). The check for the colax part boils down to the
identity

qschn(S)(−1)schn(S) = (−q)schn(S).

This proves the first assertion.
Applying the contragredient construction to (16.2) and using Proposition 9.11

yields the same diagram, but with K∨ instead of K. �

16.1.5. Constructing the deformed full Fock functors from the bosonic

Fock functors. It is interesting to note that K and K
∨

can, in fact, be used to
construct the deformed functors Kq and K∨

q . The q-Hopf monoid Lq and its dual
L∗
q defined in Section 9.5 play a crucial role in this construction as explained below.

This generalizes Propositions 15.9 and 15.10 which give the undeformed case.

Proposition 16.6. There are isomorphisms of bilax functors

Kq(−) ∼= K(Lq × (−)) and K∨
q (−) ∼= K

∨
(L∗

q × (−))

from (Sp, ·, βp) to (gVec, ·, βpq).

Proof. If we set p = 1 and q = 1, then the first claim specializes to Propo-
sition 15.9. For the general case, we define the above isomorphism exactly as in
the proof of this proposition; hence it is independent of both p and q. Note also
that for both functors in question, the lax structure is independent of both p and
q while the colax structure depends on q. In the latter case, the power of q arising
from the first functor is schn(S) and from the second functor is schS,T (C(n)), where
C(n) is the canonical linear order on [n] and schS,T is the Schubert cocycle which
appears in Definition 9.13. The two powers are equal by (9.13).

The second claim can be proved in a similar manner. In the finite-dimensional
setting, it follows from the first via the contragredient construction. �

Proposition 16.5 can be derived from Proposition 16.6 as follows.

Kq
(
(−)−

)
∼= K(Lq × (−)−) ∼= K

(
(Lq)

− × (−)
)
∼= K(L−q × (−)) ∼= K−q(−)

The first and last isomorphisms use the above result, the second isomorphism uses
Proposition 9.12, and the third isomorphism uses (9.20).

16.1.6. Evaluating the deformed full Fock functors. We know that bilax
functors preserve bimonoids. We record the implications of this statement along
with examples for the deformed bilax functors considered above.

Theorem 16.7. If h is a p-Hopf monoid, then Kq(h) and K∨
q (h) are pq-Hopf

algebras.

Proof. Proposition 3.31 and Theorems 16.1 and 16.2 say that Kq(h) and
K∨
q (h) will take p-bimonoids to pq-bialgebras. For the Hopf part, the same argument

as in the proof of Theorem 15.12 can be used. �

Letting both p and q to be 1 recovers Theorem 15.12. As explained in Sec-
tion 15.2, Stover was the first to point out that signed or unsigned Hopf algebras
could be constructed from Hopf monoids h in species. These are the Hopf algebras
Kq(h) and K∨

q (h) when p = 1 and q = ±1. More generally, one may set p = 1 and
let q be arbitrary. In this situation, one obtains q-Hopf algebras starting with usual
Hopf monoids. This shows that every Hopf algebra arising from a Hopf monoid in
species admits a q-deformation. We encounter instances of this in Section 16.5.
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We now turn our attention to the degenerate case. Letting either p or q to be
0 yields the following interesting corollaries.

Corollary 16.8. The free Fock functor K0 sends p-Hopf monoids to 0-Hopf alge-
bras.

Corollary 16.9. If h is a 0-Hopf monoid, then Kq(h) and K∨
q (h) are 0-Hopf

algebras.

Note that both the results allow us to construct 0-Hopf algebras. The first
result for p = 1 is a special case of a result of Livernet [233, Theorem 4.1.2].

Theorem 16.10. Let h be a finite-dimensional p-Hopf monoid. There is a natural
isomorphism of pq-Hopf algebras

K∨
q (h) ∼= Kq(h

∗)∗

given by the canonical identification h[n] ∼= (h[n]∗)∗.

The above result follows from Propositions 16.3 and 3.32.

16.1.7. Freeness and cofreeness results of Livernet. Livernet explained how
certain freeness and cofreeness results can be established for Hopf algebras which
arise from Hopf monoids. We explain below how these ideas fit in our framework.

Proposition 16.11. If h is a connected 0-bimonoid, then both Kq(h) and K∨
q (h)

are free and cofree. If h is a connected p-bimonoid, then Kq(h) is free and K∨
q (h)

is cofree.

Proof. For the first part, we note that both Kq(h) and K∨
q (h) are connected

0-bialgebras. Hence the claim follows from Theorem 2.13.
For the second part, we know that K0(h) is a connected 0-bialgebra and hence

by Theorem 2.13, it is free. Now note that the product of Kq(h) is independent of
q. Hence it follows that Kq(h) is also free. The cofreeness of K∨

q (h) is established
in a similar manner. �

The second part of this result for p = q = 1 is due to Livernet [233, Theo-
rem 4.2.2].

16.2. The deformed norm transformation

Recall that for q = 1, we had used the full Fock functors to construct the
bosonic Fock functors by taking invariants and coinvariants. A major difference
between that context and the present context is that invariants and coinvariants
no longer lead to bilax monoidal functors. The right point of view is to deform the
norm transformation (Section 15.4) and to look for its image (or coimage).

In this section, we construct this deformation. Further, we show that for generic
values of q, it is an isomorphism. The image of the deformed norm transformation
will be further explored in Section 16.3.

16.2.1. Relating the structure constants of the deformed full Fock func-
tors. Let Sh(s, t) denote the set of (s, t)-shuffle permutations (2.21), and let inv(ζ)
denote the number of inversions of the permutation ζ (2.20).
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Lemma 16.12. The structure maps ϕ and ψ∨
q , and ψq and ϕ∨, are related by the

formulas

ψ∨
q (x⊗ y) =

∑

ζ∈Sh (s,t)

qinv(ζ) ζ(ϕ(x ⊗ y)) for x ∈ p[s], y ∈ q[t],(16.4)

ψq(a⊗ b) =
∑

ζ∈Sh (|S|,|T |)

qinv(ζ) ϕ∨(ζ−1(a⊗ b)) for a ∈ p[S], b ∈ q[T ].(16.5)

The result follows from the proof of Lemma 15.18 complemented with (2.26).

16.2.2. The q-norm transformation from Kq to K∨

q .

Definition 16.13. For any species p, let (κq)p : Kq(p) → K∨
q (p) be the map of

graded vector spaces given by

(16.6) p[n]→ p[n] (κq)p(z) =
∑

σ∈Sn

qinv(σ) σ · z,

for any z ∈ p[n]. This defines a natural transformation κq : Kq ⇒ K∨
q which we call

the q-norm.

Proposition 16.14. For finite-dimensional species, the q-norm is self-dual. In
other words,

(κq)
∨ = κq.

Proof. One starts out by writing the norm map on the dual species p∗. Thus

(κq)p∗ :
⊕

p∗[n]→
⊕

p∗[n] α 7→
∑

σ∈Sn

qinv(σ) σ · α

for α ∈ p∗[n]. Dualizing this map and identifying (p∗)∗ with p, we obtain:

(κq)
∨
p :
⊕

p[n]→
⊕

p[n] z 7→
∑

σ∈Sn

qinv(σ) σ−1 · z

for any z ∈ p[n]. The result now follows from (2.25). �

Proposition 16.15. The q-norm is a morphism of bilax monoidal functors

κq : Kq ⇒ K
∨
q .

Proof. We use the same notation and we argue as in the proof of Proposi-
tion 15.20. Using (16.5) we find
(
(κq)p · (κq)q

)
(ψq)p,q(a⊗ b)

=
∑

σ∈Ss
τ∈St

∑

ζ∈Sh(s,t)

qinv(ζ)+inv(σ)+inv(τ) ϕ∨
p,q

(
(σ × τ) · ζ−1 · (a⊗ b)

)
.

Using (2.24) and (2.25) we deduce
(
(κq)p · (κq)q

)
(ψq)p,q(a⊗ b) =

∑

ρ∈Sn

qinv(ρ) ϕ∨
p,q(ρ · (a⊗ b)) = ϕ∨

p,q(κq)p·q(a⊗ b).

Thus
(κq · κq)ψq = ϕ∨κq,

which proves that κq is a morphism of colax functors.
The fact that it is a morphism of lax functors can be similarly verified. In the

finite-dimensional setting, it follows from Proposition 16.14. �
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Proposition 16.16. The morphism of bilax monoidal functors obtained by pre-
composing κq with the signature functor is isomorphic to κ−q.

Proof. Consider the morphism of bilax monoidal functors obtained by pre-
composing κq with the signature functor. Evaluated on the degree n component of
a species p, one obtains a map

p[n]⊗E−[n]→ p[n]⊗E−[n]

given by

z ⊗ (1 ∧ 2 ∧ · · · ∧ n) 7→
∑

σ∈Sn

qinv(σ) σ · (z ⊗ (1 ∧ 2 ∧ · · · ∧ n))

=
∑

σ∈Sn

(−q)inv(σ) (σ · z)⊗ (1 ∧ 2 ∧ · · · ∧ n).

After making the identification (16.3), one sees that the above is the same as κ−q
evaluated on the degree n component of p. �

16.2.3. The generic case for the norm map. Up to this point, the relation
between the q-deformed functors is analogous to that for the case q = 1 discussed
in Section 15.4. A closer look at the transformation κq reveals that the generic case
is substantially different. Let us first study the behavior of κq on the species L.

Example 16.17. The map

κL : K(L)→ K∨(L)

has components

L[n]→ L[n], l 7→
∑

σ∈Sn

σ · l =
∑

l′∈L[n]

l′.

The image of this map is one-dimensional, so κL is far from being an isomorphism.
On the other hand, the map

(κq)L : Kq(L)→ K∨
q (L)

has components

L[n]→ L[n], l 7→
∑

σ∈Sn

qinv(σ) σ · l.

In view of (10.27), the matrix of this map in the canonical basis of linear orders
agrees with the matrix of the bilinear form on chambers (10.132). Its determinant
is given by Zagier’s formula (10.133). The only factors of this determinant are roots
of unity. It follows that (κq)L is an isomorphism if q is not a root of unity.

The behavior of κq on the species L has far-reaching implications.

Theorem 16.18. Assume that q is not a root of unity and the field characteristic
is 0. Then the q-norm transformation

κq : Kq ⇒ K
∨
q

is an isomorphism of bilax monoidal functors.
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Proof. In view of Proposition 16.15, we only need to show that for any species
p, the components p[n]→ p[n] of (κq)p are bijective. Now, p[n] is an Sn-module,
and since the base field is of charactersitic 0, p[n] decomposes into a direct sum of
irreducible Sn-modules. By naturality, the map (κq)p preserves this decomposition,
so in order to conclude its invertibility we have to show that its restriction to each
irreducible component is invertible. But every irreducible Sn-module occurs as a
direct summand of L[n], being this the regular representation. Again by naturality,
the restrictions of (κq)p and (κq)L to a common irreducible submodule coincide.
In turn, the map (κq)L preserves the decomposition of L[n] into irreducibles, so
the invertibility of each restriction follows from the invertibility of (κq)L on L[n]
discussed in Example 16.17. �

For q = 0, the functors K0 and K∨
0 are identical as noted in (16.1). In this case,

observe that the norm map κ0 is the identity.

16.2.4. The deformed full Fock functor and duality. The above discussion
shows that Zagier’s formula is at the basis of a much more general result which we
give below.

Theorem 16.19. Let h be a p-Hopf monoid. There is a natural morphism of
pq-Hopf algebras

(κq)h : Kq(h)→ K∨
q (h)

which is an isomorphism if q is not a root of unity and the field characteristic is 0.

Proof. The first claim follows from Proposition 3.32 and Proposition 16.15.
The second claim follows from Theorem 16.18. �

Thus, in the generic case, the functor Kq is self-dual. Hence, it preserves
self-dual Hopf monoids (Proposition 3.107). We state this below and repeat the
argument for its proof.

Corollary 16.20. If h is a finite-dimensional self-dual p-Hopf monoid, q is not
a root of unity, and the field characteristic is 0, then Kq(h) is a self-dual graded
pq-Hopf algebra.

Proof. By combining the isomorphisms of Theorems 16.2 and 16.19 with the
self-duality of h, we obtain

Kq(h)∗ ∼= K∨
q (h∗) ∼= K∨

q (h) ∼= Kq(h). �

16.3. The fermionic and anyonic Fock bilax monoidal functors

So far in this chapter, we have discussed deformations of the full Fock functors.
In this section, we introduce and study the fermionic partners of the bosonic Fock

functors K and K
∨
. We explain how they can be viewed as the image of the

decorated norm at q = −1. We conclude by considering anyonic Fock functors
which are images of the decorated norm for any scalar q. Roughly speaking, these
interpolate between bosonic and fermionic Fock functors.
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16.3.1. The fermionic Fock functors K−1 and K
∨

−1
. We first note that the

functors

K,K
∨

: (Sp, ·, βq)→ (gVec, ·, βq)

continue to be bilax with the same structure maps as before (15.3). The braiding
and hence the parameter q only enters in diagram (3.11). One readily sees that the
presence of q is innocuous and the diagram continues to commute. We now define
the fermionic partner of these functors.

Definition 16.21. Let

K−1,K
∨
−1 : (Sp, ·, βq)→ (gVec, ·, β−q)

be the functors defined by

K−1(q) :=
⊕

n≥0

(q[n]⊗E−[n])Sn and K
∨
−1(q) :=

⊕

n≥0

(q[n]⊗E−[n])Sn ,

where E− is the signed exponential species (Section 9.3).

Recall that E−[n] is the sign representation of Sn. Comparing and contrasting
with the situation for bosonic Fock functors, in each degree n component, one now
takes Sn invariants and coinvariants of q[n] with respect to the usual action twisted
by the sign representation of Sn.

In terms of the signature functor (9.10),

(16.7) K−1(−) = K
(
(−)−

)
and K

∨
−1(−) = K

∨(
(−)−

)
.

Since the signature functor and the bosonic Fock functors are bistrong, it follows
that their composites are also bistrong. This turns the fermionic Fock functors into
bistrong functors. In particular they are braided bilax and preserve commutativity
and cocommutativity.

The above definition enables us to quickly assert that many properties of the
bosonic Fock functors go over to the fermionic case. We record the important ones
below.

16.3.2. Relation to the decorated norm at q = −1. The self-duality of
the signature functor (Proposition 9.11) along with Proposition 15.8 implies that,

on finite-dimensional species, K−1 and K
∨
−1 are contragredients of each other (as

already suggested by the notation).
Precomposing (15.15) with the signature functor and using Proposition 16.16,

we obtain the commutative diagram below.

(16.8)

K−1
κ−1 +3

��

K∨
−1

K−1 κ−1

+3 K
∨
−1

KS

Further, it follows from Proposition 15.21 that, over a field of characteristic 0,

κ−1 : K−1 ⇒ K
∨
−1

is an isomorphism, and from Proposition 15.24 that, on finite-dimensional species,
(16.8) is self-dual. It now follows that, in characteristic 0, the isomorphic functors
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K−1 and K
∨
−1 are self-dual, and are the coimage and image of the norm transfor-

mation κ−1, in the sense of Section 3.11.

16.3.3. Relation to the Hopf monoid of linear orders. We showed in Propo-
sition 16.6 that the deformationsKq andK∨

q can be expressed in terms of the bosonic
Fock functors and the q-Hopf monoids Lq and L∗

q . The same can be done with the
fermionic Fock functors as follows.

Proposition 16.22. We have isomorphisms of bilax functors

Kq(−) ∼= K−1(L−q × (−)) and K∨
q (−) ∼= K

∨
−1(L

∗
−q × (−))

from (Sp, ·, βp) to (Sp, ·, βpq).

Proof. The first claim follows from the following sequence of isomorphisms.

K−1(L−q×(−)) ∼= K
((

L−q × (−)
)−) ∼= K

(
(L−q)

−×(−)
)
∼= K(Lq×(−)) ∼= Kq(−).

The first isomorphism follows from definition, the second follows from Proposi-
tion 9.12, the third follows from (9.20), and the last follows from Proposition 16.6.

The second claim follows along similar lines. �

16.3.4. Evaluating the fermionic Fock functors. As a consequence of (16.8)
and the discussion after it, we obtain that for any q-Hopf monoid h, there is a
commutative diagram of (−q)-Hopf algebras

(16.9)

K−1(h)
(κ−1)h

//

����

K∨
−1(h)

K−1(h)
(κ−1)h

// K
∨
−1(h).

?�

OO

Corollary 16.23. If the field characteristic is 0, then

(κ−1)h : K−1(h)→ K
∨
−1(h)

is an isomorphism of (−q)-Hopf algebras.

Since on finite-dimensional species the columns in (16.9) are contragredient
of each other, the preceding result can be reformulated as follows. For any finite-
dimensional q-Hopf monoid h, the following are commutative diagrams of (−q)-Hopf
algebras.

K−1(h
∗)

(κ−1)h∗
//

����

K−1(h)∗

K−1(h
∗)

(κ−1)h∗

// K−1(h)∗
?�

OO
K∨

−1(h)∗
(κ−1)h∗

//

����

K∨
−1(h

∗)

K
∨
−1(h)∗

(κ−1)h∗

// K
∨
−1(h

∗)

?�

OO

(The two diagrams are the same.) Applying Corollary 16.23 to h∗ we obtain the
following result.
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Corollary 16.24. Let h be a finite-dimensional q-Hopf monoid. If the field charac-
teristic is 0, then (κ−1)h∗ is an isomorphism of (−q)-Hopf algebras. If in addition
h is self-dual, then the (−q)-Hopf algebra K−1(h) is self-dual.

16.3.5. The anyonic Fock functor. It is natural to ask whether one can deform

the functors K and K
∨

using a parameter q, with q = −1 yielding the fermionic
case discussed above.

We proceed along the lines of Section 15.4.3. By Proposition 16.15, the de-
formed norm transformation κq : Kq ⇒ K∨

q is a morphism of bilax monoidal func-
tors. Let ℑq denote its (co)image. According to the constructions of Section 3.11,

ℑq : (Sp, ·, βp)→ (gVec, ·, βpq)

is another bilax monoidal functor fitting in the commutative diagram below.

Kq
κq +3

�#
@@

@@
@@

@

@@
@@

@@
@

K∨
q

ℑq

:B}}}}}}}

}}}}}}}

We call ℑq the anyonic Fock functor. It follows from Propositions 3.119 and 16.14
that on finite-dimensional species, it is self-dual (regardless of the characteristic).
More generally, the above diagram is self-dual.

Theorem 16.18 says that if k is of characteristic 0 and q is not a root of unity,
then we do not obtain anything new:

Kq ∼= ℑq ∼= K
∨
q .

On the other hand, in characteristic zero we have

K ∼= ℑ1
∼= K

∨
and K−1

∼= ℑ−1
∼= K

∨
−1.

For q = 0, the functors K0 and K∨
0 are identical (16.1) and the above is the identity

transformation. Thus, ℑ0 is the free Fock functor of Section 16.1.3.
Some information about particular values of the functor ℑq when q is a root of

unity is given in Section 16.5, but apart from this we do not pursue the study of
this functor in this monograph. This appears to be an interesting and challenging
topic.

16.4. The deformed full Fock functor and commutativity

We now concentrate on the functor Kq and study its behavior with respect to
commutativity, as is done in Section 15.5 for the functor K. In this section, we
assume that p, q and r are nonzero scalars.

16.4.1. Conjugating the functor Kq by the braiding. The colax monoidal
functor (K, ψ) is braided (Proposition 15.26), so we have bψ = ψ. The situation
is slightly more delicate for the q-deformation. It proves convenient to state the
result in terms of the various monoidal functors obtained from Kq by conjugation
with the deformed braidings on species and graded vector spaces.

Definition 16.25. Following Definition 3.14, we define transformations:

ϕb(p,r) : K(p) · K(q)
βr
−→ K(q) · K(p)

ϕq,p
−−−→ K(q · p)

K(β−1
p )

−−−−−→ K(p · q),
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b(p,r)ϕ : K(p) · K(q)
β−1
r−−→ K(q) · K(p)

ϕq,p
−−−→ K(q · p)

K(βp)
−−−−→ K(p · q),

ψb(p,r)q : K(p · q)
K(βp)
−−−−→ K(q · p)

(ψq)q,p
−−−−−→ K(q) · K(p)

β−1
r−−→ K(p) · K(q),

b(p,r)ψq : K(p · q)
K(β−1

p )
−−−−−→ K(q · p)

(ψq)q,p
−−−−−→ K(q) · K(p)

βr
−→ K(p) · K(q).

The notation emphasizes the dependence on p, q and r and allows us to keep
these constructions apart from the maps ψb = bψ and ϕb = bϕ of Section 15.5.

Since β−1
q = βq−1 , we have

(ψq)
b(p,r) = b(p−1,r−1)(ψq) and ϕb(p,r) = b(p−1,r−1)ϕ.

Proposition 16.26. There is an equality

(K, ϕ, (ψq)
b(p,pq)) = (K, ϕ, ψq−1 )

of bilax monoidal functors

(Sp, ·, βp−1)→ (gVec, ·, βp−1q−1 ).

The former is a conjugate of Kq, as in Proposition 3.16, and the latter is the
functor Kq−1 .

Proof. We need to show that

(ψq)
b(p,pq) = ψq−1 .

As in the proof of Proposition 15.26, this entails that the diagram

p[S]⊗ q[T ]
qschn(S) p[cano]⊗q[cano]

// p[s]⊗ q[t]

β−1
pq

��

q[T ]⊗ p[S]
q− schn(T ) q[cano]⊗p[cano]

//

βp

OO

q[t]⊗ p[s]

commutes, where S⊔T = [n] and s = |S|, t = |T |. We know from Proposition 15.26
that it commutes up to a power of p and q. One can readily see that the powers of
p in question are both zero. The powers of q in question are

schn(S)− st and − schn(T ),

so the diagram commutes by (2.15). �

16.4.2. The deformed half-twist transformation. As in Definition 15.29, let
ωn be the longest permutation in Sn. Define a natural transformation θq : K ⇒ K
with components

p[n]→ p[n], x 7→ q(
n
2) p[ωn](x).

We call it the deformed half-twist transformation.

Proposition 16.27. The transformation θq is an isomorphism of bilax monoidal
functors

(K, b(p,pq)ϕ, b(p,pq)ψq)⇒ (K, ϕ, ψq).
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Proof. For the colax part, the diagram whose commutativity one needs to
check is

p[S]⊗ q[T ]

q(
n
2) (p·q)[ωn]

��

β−1
p

// q[T ]⊗ p[S]
qschn(T )q[cano]⊗p[cano]

// q[t]⊗ p[s]
βpq

// p[s]⊗ q[t]

q(
s
2)+(t2) p[ωs]⊗q[ωt]

��

p[S′]⊗ q[T ′]
qschn(S′) p[cano]⊗q[cano]

// p[s]⊗ q[t],

where S ⊔ T = [n] and s = |S|, t = |T |. We know from Proposition 15.30 that it
commutes up to a power of p and q. It is clear that the powers of p in question are
both zero. The powers of q in question are

schn(T ) + ts+

(
s

2

)
+

(
t

2

)
and

(
n

2

)
+ schn(S

′),

so the diagram commutes by (2.16).
The proof of the lax part is similar; in fact, it is simpler since the Schubert

statistic does not enter the calculation. �

16.4.3. Commutativity of the Hopf monoids obtained by evaluating Kq.
We now state the consequences for Hopf monoids of the properties of the functor
Kq regarding commutativity. They will be expressed in terms of the op and cop
constructions of Section 1.2.9. Recall that p and q are assumed to be nonzero
scalars.

In contrast to Corollary 15.27, we have:

Corollary 16.28. For any comonoid (Hopf monoid) h in (Sp, ·, βp),

Kq−1(hcop) = Kq(h)cop

as comonoids (Hopf monoids) in (gVec, ·, β(pq)−1).

Proof. We explain the Hopf monoid case; it contains the proof of the co-
monoid case. Since h is a p-Hopf monoid, hcop is a p−1-Hopf monoid. Applying
Proposition 16.26 to hcop yields

Kq−1(hcop) = (K, ϕ, (ψq)
b(p,pq))(hcop)

as (pq)−1-Hopf algebras. Since the functor on the right is the conjugate of Kq, the
result follows by using the first part of Proposition 3.34. �

Corollary 16.29. For any p-Hopf monoid h, the map

Kq(h
op,cop)→ Kq(h)op,cop

whose degree n component is q(
n
2)h[ωn] is a natural isomorphism of pq-Hopf alge-

bras.

Proof. Follow the proof of Corollary 15.32, and use Proposition 16.27 instead
of Proposition 15.30. �
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16.5. Deformations of Hopf algebras arising from species

In this section, we apply the results of the preceding sections to the simplest
Hopf monoids of Section 8.5. Throughout the present discussion, the value of the
parameter p is set equal to 1. Thus, Kq is viewed as a bilax functor

(Sp, ·, β)→ (Sp, ·, βq),

and similarly for the other functors. Theorem 16.7 shows that Kq sends a Hopf
monoid in species to a q-Hopf algebra. These are deformations of the Hopf algebras
that arise from the undeformed functor K. Thus, in this section, we will construct
deformations of the Hopf algebras encountered in Section 15.3.

Example 16.30. We begin with the Hopf monoid E of Example 8.15. Its values
under the undeformed Fock functors were calculated in Example 15.14. We now
generalize that discussion. As before, Kq(E) can be identified with the polynomial
algebra in the variable x. The coproduct

K(E)
K(∆)
−−−→ K(E ·E)

ψq
−−→ K(E) · K(E)

can be calculated as follows.

xn 7→
∑

S⊔T=[n]

x|S| ⊗ x|T | 7→
∑

S⊆[n],|S|=s

qschn(S) xs ⊗ xn−s =
n∑

s=0

(
n

s

)

q

xs ⊗ xn−s.

The last identity makes use of (2.27). Thus,

Kq(E) = kq[x],

the Eulerian q-Hopf algebra defined in Example 2.9. Similarly, or by duality, one
finds that K∨

q (E) = kq{x}, the q-version of the divided power Hopf algebra.
Recall the fermionic Fock functors of Section 16.3. If the field characteristic is

not 2, then it follows directly from Definition 16.21 that K−1(E) and K
∨
−1(E) are

canonically isomorphic and equal to

k−1[x]/(x
2),

with the generator x being primitive. This is the exterior algebra on one generator.
This two-dimensional algebra is also called the algebra of dual numbers.

The norm transformation κq yields the morphism of q-Hopf algebras (2.52). It
follows that this map is an isomorphism if the field characteristic is zero and q is
not a root of unity.

Recall the functor ℑq of Section 16.3.5. We continue with the assumption that
the field characteristic is zero. If q, with q 6= 1, is a root of unity of order N , then
the kernel of this map is the ideal generated by xN . This follows from (2.29). Thus,

(16.10) ℑq(E) = kq[x]/(xN ).

In particular, for q = −1, one obtains the exterior algebra on one generator men-
tioned above.

We now turn to the commutativity issue. Let q be nonzero. The Hopf monoid
E is both commutative and cocommutative. So it stays the same under the op
and cop constructions. Corollary 16.28 applied to E says that the cop construction
applied to the Eulerian q-Hopf algebra yields the Eulerian q−1-Hopf algebra. This
fact was noted in (2.53) where it was checked directly. Corollary 16.29 yields the
isomorphism (θq)E of q-Hopf algebras given in (2.54).
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Example 16.31. We now unify Examples 15.16 and 16.30. Let V be a vector
space and EV be the Hopf monoid of Example 8.18. Then

Kq(EV ) = Tq(V ), K−1(EV ) = Λ(V ), K∨
q (EV ) = T ∨

q (V ) and K
∨
(EV ) = Λ∨(V ).

The objects in the right-hand sides include the deformed tensor Hopf algebra, the
deformed shuffle Hopf algebra and the exterior Hopf algebra on a vector space.
These were discussed in Section 2.6.2. The additional results presented there all
follow from the various considerations in this chapter as we now explain.

Theorem 16.19 says that if q is not a root of unity and the field characteristic
is 0, then κq yields an isomorphism of q-Hopf algebras

Tq(V ) ∼= T ∨
q (V ).

This is mentioned in (2.67). If q = 0, then the functors K0 and K∨
0 are identical

and the norm map κ0 is the identity. It follows that T0(V ) = T ∨
0 (V ). If q = −1,

then diagram (16.9) specializes to diagram (2.68).
If q is a root of unity, then the image ℑq(EV ) is a certain proper quotient of

Tq(V ). It is an example of a Nichols algebra. (We say more about quantum shuffle
algebras and Nichols algebras in Sections 19.9 and 20.5.)

The self-duality results in Section 2.6.3 all follow from corresponding self-
duality results for the functors Kq, K and K−1, and the self-duality of the Hopf
monoid EV . We point out that the latter requires a choice of an isomorphism
between V and V ∗.

Let q be nonzero. Since EV is both commutative and cocommutative, it stays
the same under the op and cop constructions. Corollary 16.28 applied to EV yields

Tq(V )cop = Tq−1 (V )

as q−1-Hopf algebras. Further, Corollary 16.29 yields the isomorphism

(θq)EV : Tq(V )→ Tq(V )op,cop, v1 ⊗ · · · ⊗ vn 7→ q(
n
2) vn ⊗ · · · ⊗ v1

of q-Hopf algebras.

Example 16.32. We now turn to linear orders. Consider the Hopf monoid L∗ of
Example 8.24. In Example 15.17 we saw that

K(L∗) ∼= SΛ,

the graded Hopf algebra of permutations. Now applying Kq to L∗ yields a q-version,
which we denote by SΛq. This object has been defined and studied by Foissy [130].
The product is the same as before, while the coproduct is

Fl 7→
n∑

s=0

qschn({l1,...,ls}) Fstd(l1|···|ls) ⊗ Fstd(ls+1|···|ln),

where l = l1| · · · |ln ∈ L[n] and schn(S) is the Schubert statistic.
This object can be arrived at in a number of different ways. From Proposi-

tion 16.6, we obtain

(16.11) Kq(L
∗) ∼= K(Lq × L∗) ∼= K

∨
(Lq × L∗) ∼= K∨(Lq).

The first and last isomorphisms follow from Proposition 16.6, while the middle
isomorphism follows from Corollary 15.22 and the fact that L×L∗ consists of free
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(and hence flat) Sn-modules. By duality or by proceeding directly as above, we
obtain

(16.12) K∨
q (L) ∼= K

∨
(L× L∗

q)
∼= K(L× L∗

q)
∼= K(L∗

q).

These objects are dual to those in (16.11). Further, if q 6= 0, then it follows from
Corollary 12.11 that the objects in (16.11) are isomorphic to those in (16.12). In
other words, SΛq is self-dual if q 6= 0.

Similarly, again by applying Proposition 16.6, we obtain

Kq(L) ∼= K(Lq × L) ∼= K(Lq)

and
K∨
q (L∗) ∼= K

∨
(L∗ × L∗

q)
∼= K∨(L∗

q).

The former is a deformation of the Hopf algebraK(L) which was explicitly described
in Example 15.17. The product is the same as before, while the coproduct is

∆(l) =
∑

[n]=S⊔T

qschn(S) std(l|S)⊗ std(l|T ),

where l ∈ L[n] and schn(S) is the Schubert statistic. The Hopf monoid L is
cocommutative but the q-Hopf algebra Kq(L) is not. The correct statement to
make about the latter is

Kq(L)cop = Kq−1(L).

This is a consequence of Corollary 16.28.

Applying the functors K and K
∨

to the Hopf monoids Lq and L∗
q either yields

the Eulerian q-Hopf algebra or its dual (Example 2.9) as follows.

K(Lq) ∼= K
∨
(Lq) ∼= kq[x] and K(L∗

q)
∼= K

∨
(L∗

q)
∼= kq{x}.

By applying (16.7) to the above, we obtain:

K−1(Lq) ∼= K
∨
−1(Lq)

∼= k−q[x] and K−1(L
∗
q)
∼= K

∨
−1(L

∗
q)
∼= k−q{x}.

The determination of ℑq(L) or ℑq(L∗), when q is a root of unity different from
±1, appears to be a difficult problem. Some information can be gleaned from the
results of Hanlon and Stanley [159, Theorem 3.3] and of Denham [96, Theorem 3.1]
on the kernel of (κq)L.





CHAPTER 17

From Hopf Monoids to Hopf Algebras: Examples

In Chapters 12 and 13, we constructed many Hopf monoids using geometric
and combinatorial ideas. Applying the Fock functors to these Hopf monoids yields
Hopf algebras, many of which have appeared in the literature. An illustration of
this on the Hopf monoids E and L was given in Section 15.3. The goal of this
chapter is to explain these connections for other, more elaborate Hopf monoids.

Hopf algebras from geometry. The Hopf monoids of Chapter 12 fit into the
commutative diagram (12.14). Applying the Fock functors K and K to this dia-
gram, one obtains the commutative diagram of Hopf algebras considered in [12,
Theorem 6.1.4]. In particular:

Proposition 17.1. We have

K(Σ∗) = PΠ, K(
−→
Σ∗) = QΠ, K(IL∗) = SΠ, K(IL) = RΠ, K(

−→
Σ) = NΠ,

K(Σ) = MΠ, K(Π) = ΠL, K(
−→
Π) = ΠZ, K(Π∗) = ΠL∗ , K(

−→
Π∗) = ΠZ∗

K(Σ∗) = K(
−→
Σ∗) = QΛ, K(IL∗) = SΛ, K(IL) = RΛ, K(Σ) = K(

−→
Σ) = NΛ

K(Π) = K(
−→
Π) = ΛL, K(Π∗) = K(

−→
Π∗) = ΛL∗ .

The Hopf algebras on the right-hand side have all appeared under various names
in the literature. We have used the notation of [12], where all these objects are
studied. In particular, QΛ and NΛ are the Hopf algebras of quasi-symmetric and
noncommutative symmetric functions, respectively. Also, ΛL

∼= ΛL∗ is the Hopf
algebra of symmetric functions.

One of our goals is to elaborate on this proposition and study its implications.
For the claims involving the functor K, we use the canonical identification between
the degree n parts of the Hopf monoid and the corresponding Hopf algebra. For
the claim involving the functor K, we need to describe how to identify a coinvariant
class of the degree n part of the Hopf monoid with a degree n element of the
corresponding Hopf algebra. This is explained in subsequent sections as we go over
each Hopf monoid individually. More details can be found in [12, Theorem 6.1.4,
Propositions 7.1.1 and 8.1.1].

For a recent survey on topics related to (some of) the above Hopf algebras, see
Hazewinkel [163, 164]. For applications to the representation theory of the sym-
metric group, see Blessenohl and Schocker [54]. For a survey on noncommutative
symmetric functions and their applications, see Thibon [359].

Hopf algebras from combinatorics. The Hopf monoids of Chapter 13 give rise
to another long list of Hopf algebras. Several of these Hopf algebras have received
much attention in the recent literature; references are provided as each example is
discussed in Section 17.5. We mention in particular work of Gessel and Malvenuto

565
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in connection to the Hopf algebras of posets (Section 17.5.1); of Ehrenborg in
connection to the Hopf algebras of set-graded posets (Section 17.5.2); of Sagan,
Schmitt, and Stanley in connection to the Hopf algebras of graphs (Section 17.5.3);
of Connes–Kreimer and Grossman–Larson in connection to the Hopf algebras of
forests (Section 17.5.4); of Crapo and Schmitt in connection to the Hopf algebras
of matroids (Section 17.5.5).

We also discuss the combinatorial invariants that result from some of the mor-
phisms of Hopf monoids of Chapter 13. They include Gessel’s enumerator of poset
partitions [144], the enumerator of descents of Bergeron and Sottile [42], Ehren-
borg’s flag function [112], the chromatic function of graphs of Ray and Wright [302]
and of Stanley [339], a variant of this for labeled graphs due to Gebhard and
Sagan [140], and a generating function for matroids constructed by Billera, Jia,
and Reiner [48].

17.1. Shifting and standardization

Shifting and standardization are defined in Notation 2.5. Let h be a Hopf mon-
oid in species. Recall from Section 15.2 that the coproduct of K(h) is constructed
from the coproduct of h and the standardization maps. Similarly, the product of
K(h) is constructed from the product of h and the shift map. This shows that
the description of any Hopf algebra of the form K(h) involves the combinatorial
procedures of shifting and standardization.

In this section, we look at the geometric aspect of these procedures. Recall the
break and join maps, namely, bK and jK of Section 10.11. Composing these with the
standardization and shift maps, yields maps which we denote by b′K and j′K . These
were defined in [12, Sections 6.3.3 and 6.6.3] and we recall them below. Unlike the
break and join maps, their (co)domains only involve the Coxeter complexes Σ[n]
for varying n.

Recall that the Hopf monoids of Chapter 12 were defined geometrically using
the break and join maps. The main point of this section is: If h is any of these
Hopf monoids, then the corresponding Hopf algebra K(h) can be described in the
same way by replacing the break and join maps by b′K and j′K . We illustrate this
on the Hopf monoid of linear orders.

17.1.1. A variation on the break and join maps. Let K = S|T be a vertex
of Σ[n] of type (s, t), thus, s and t are the cardinalities of S and T respectively.
Define the map b′S|T as the composite

Σ[S]× Σ[T ]

∼=

Σ[cano]×Σ[cano]

''OOOOOOOOOOO

Star(S|T )

bS|T

∼=

77ppppppppppp

b′S|T

// Σ[s]× Σ[t].

The first isomorphism is the break map (10.57). The second isomorphism is induced
by the order-preserving standardization maps S → [s] and T → [t]. For example,
for K = 138|24567,

b′S|T : Star(138|24567)
∼=
−−→ Σ[3]× Σ[5] 3|18|57|4|26 7→ (2|13, 35|2|14).

In other words, we first break the given set composition into two set compositions
and then standardize each one of them. Note that this map relates the canonical
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linear orders C(n), C(s) and C(t) by

b′K(KC(n)) = (C(s), C(t)).

Now let (s, t) be a composition of n, and let K be the vertex of C(n) of type
(s, t), that is, K = S|T where S = [s] and T = [s+1, s+ t]. Consider the composite
map

Σ[S]× Σ[T ]
jS|T

∼=
''OOOOOOOOOOO

Σ[s]× Σ[t]

∼=

Σ[cano]×Σ[cano]
77ooooooooooo

j′S|T

// Star(S|T ).

The second isomorphism is the join map (10.57). The first isomorphism is induced
by the identity map [s] → S and the order-preserving shift map [t] → T . For
example, for the composition (3, 4), we have K = 123|4567 and

j′K : Σ[3]× Σ[4]
∼=
−−→ Star(123|4567) (2|13, 24|3|1) 7→ 2|13|57|6|4.

In other words, we first shift up the indices in the second set composition and then
concatenate it to the first set composition. Note that this map relates the canonical
linear orders by

jK(C(s), C(t)) = C(n).

17.1.2. The Hopf algebra of linear orders. Recall from Definition 12.2 that
the product and coproduct for the Hopf monoid on linear orders are as follows.

L[S]⊗ L[T ]→ L[I] L[I]→ L[S]⊗ L[T ]

C1 ⊗ C2 7→ jS|T (C1, C2) C 7→ C1 ⊗ C2,

where bS|T (C) = (C1, C2).
It follows that the product and coproduct for the graded Hopf algebra K(L)

can be described as follows.

K(L)[s] ⊗K(L)[t]→ K(L)[n] K(L)[n] → K(L)[s] ⊗K(L)[t]

C1 ⊗ C2 7→ j′S|T (C1, C2) C 7→
∑

S⊔T=[n]
|S|=s,|T |=t

C1 ⊗ C2,

where for each summand b′S|T (C) = (C1, C2). This is a geometric reformulation of

the description of K(L) given in Example 15.17.
Note the similarity between the description of the Hopf monoid and the corre-

sponding Hopf algebra: the former uses the break and join maps whereas the latter
uses the variants discussed above. It should be clear that this feature is displayed
by all the Hopf monoids of Chapter 12.

We mention that for describing the Hopf algebras which correspond to the Hopf
monoids of set partitions, one would need variants of the break and join maps for
set partitions. These are defined in [12, Sections 6.5.10 and 6.8.9].
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17.2. The Hopf algebra of permutations

In Section 12.3, we introduced and studied in detail two Hopf monoids indexed
by pairs of linear orders. They were denoted IL and IL∗ and were duals of each
other. There is a H and K basis on IL, and a corresponding dual M and F basis
on IL∗. We described the product, coproduct and antipode explicitly on all these
bases. Further, we showed that IL is self-dual, an explicit isomorphism s : IL→ IL∗

being given by the switch map

K(D,C) 7→ F(C,D).

We also constructed a one-parameter deformation of these Hopf monoids, denoted
by ILq and IL∗

q .

17.2.1. The associated Hopf algebras. Now let us apply the Fock functors to
these Hopf monoids. As mentioned in Proposition 17.1, we have

K(IL∗) = SΠ, K(IL∗) = SΛ, K(IL) = RΠ, K(IL) = RΛ.

The object SΛ is the Hopf algebra of permutations of Malvenuto and Reutenauer
[255, 256] that we encountered in Example 15.17 (where an explicit definition and
more references are given). The object SΠ is the Hopf algebra of pairs of permuta-
tions introduced in [12, Chapter 7]. Similar to the Hopf monoids, the Hopf algebras
RΠ and RΛ can be given a H and K basis, while SΠ and SΛ can be given a M and
F basis.

The identification K(IL∗) = SΛ is done as follows: the class of a pair of linear
orders F(C,D) ∈ IL∗[I] identifies with the basis element Fd(C,D), where d(C,D) is
the Weyl-valued distance between C and D given in (10.28). The identification
K(IL) = RΛ is similar: the class K(C,D) ∈ IL[I] identifies with Kd(C,D).

17.2.2. Self-duality. The switch map yields and isomorphism K(s) : RΛ ∼= SΛ of
graded Hopf algebras. Using the above identifications we see that K(s) sends Kσ

to Fσ−1 .
Since K preserves duality, it also follows that RΛ and SΛ are duals of each

other, and hence self-dual.

The switch map yields an isomorphism K(s) : RΠ ∼= SΠ of graded Hopf algebras
which sends K(D,C) to F(C,D). This does not imply that RΠ (or SΠ) is self-dual

(since unlike K, the functor K does not preserve duality). In fact, RΠ is not self-
dual: a calculation of primitive elements (on degree 3) suffices to distinguish the
Hopf algebra RΠ from its dual.

17.2.3. Formulas on different bases. The coproduct and product of the Hopf
algebra SΠ on the F basis can be described in terms of the

Star(K)
b′K−−→ Σ[s]× Σ[t] and Σ[s]× Σ[t]

j′K−−→ Star(K)

of Section 17.1.1.
The positive part of the coproduct on SΠ is given by

∆+(F(C,D)) =
∑

K: rankK=1K≤D

F(C1,D1) ⊗ F(C2,D2),

where b′K(D) = (D1, D2) and b′K(KC) = (C1, C2).
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The product on SΠ is given by

F(C1,D1) ∗ F(C2,D2) =
∑

D:KD=j′K(D1,D2)

F(j′K(C1,C2),D).

Here K ∈ Σ[n] is the unique vertex of C(n) of type (s, t), where C1 ∈ Σ[s] and
C2 ∈ Σ[t].

Observe that these are very similar to the formulas for IL∗ in Definition 12.7.
As discussed in Section 17.1.2 for the Hopf algebra of linear orders, to obtain the
formulas for the Hopf algebra SΠ one simply replaces each instance of the break
and join maps bK and jK in the formulas for the Hopf monoid IL∗, by their variants
b′K and j′K .

The formula on the M basis of SΠ given in [12, Theorems 7.3.1 and 7.3.4] can
be derived in the same manner from the formula for IL∗ in Theorem 12.13. The
term involving q comes along for a ride. The story for the K and H basis of IL
is similar. The corresponding formulas for RΠ are given in [12, Definitions 6.5.6
and 6.8.6, Theorems 7.5.1 and 7.5.3].

We repeat that the H basis of RΠ is not dual to the M basis of SΠ. So the
formulas on these bases, at the level of Hopf algebras, do not follow from each other;
they have to be derived separately as done in [12]. On the other hand, if one works
with species, then one can begin with the M basis formula of IL∗, dualize to get
the H basis formula of IL, from which the corresponding formulas for both SΠ and
RΠ follow.

Applying the functor K yields formulas on the M basis of SΛ. These were ob-
tained in [14, Theorems 3.1 and 4.1]; for more information, see [12, Theorems 7.3.3
and 7.3.6]. The dual formulas on the H basis of RΛ are written down in [12,
Theorems 7.5.2 and 7.5.5].

17.2.4. Antipode. Since the functor K is bistrong, it preserves antipodes. Thus
Theorems 12.17 and 12.18 yield antipode formulas for SΛ on the F and M basis
respectively. These were obtained in [14, Theorems 5.4 and 5.5]. We explain this
in more detail below.

Let v be a permutation on n letters and T be a subset of [n − 1]. Choose
chambers C and D such that d(C,D) = v. Define

vT := d(HC,D),

where H is the face of D of type T . Since the Weyl distance and projections
commute with the group action, it follows that vT only depends on v and T and
not on the particular choice of C and D.

Applying K to formula (12.13), with q = 1, yields

s(Fv) =
∑

w

( ∑

T :Des(w−1vT )⊆T

(−1)|T |+1

)
Fw.

The notations relate in the following manner:

d(C,D) = v, d(C′, D′) = w, d(C′, D) = vT , and type(H) = T.

The condition HC = C′ is accounted for in the definition of vT , while

HD′ = D ⇐⇒ Des(D′, D) ≤ H =⇒ Des(w−1vT ) ⊆ T.
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The equivalence follows from (10.42). For the implication, we apply the type map,
and use the first diagram in (10.40), and

d(D′, D) = d(D′, C′) d(C′, D) = w−1vT .

Now we go back to the formula. Splitting the sum over T into two parts depending
on the parity of |T | yields [14, Theorem 5.4].

The formula provided by Theorem 12.17 unlike formula (12.13) takes all can-
cellations into account. This can be expressed as follows. For fixed permutations v
and w, consider the map:

f : {T | Des(w−1vT ) ⊆ T } → Sn, T 7→ w−1vT .

Then
s(Fv) =

∑

w

∑
(−1)|T |+1Fw,

where the inside sum is over those subsets T for which the inverse image f−1(w−1vT )
is the singleton set {T }.

Applying K to the formula provided by Theorem 12.18 for q = 1 yields:

s(Mv) = (−1)gdes(v)+1
∑

w

κ(v, w)Mw ,

where T = gDes(v) is the set of global descents of v, and κ(v, w) is the number of
T -shuffle permutations satisfying the following conditions.

(i) vT ζ
−1 ≤ w,

(ii) if v ≤ v′ and v′T ζ
−1 ≤ w, then v = v′, and

(iii) if Des(ζ) ⊆ R ⊆ T and vRζ
−1 ≤ w, then R = T .

Here ≤ denotes the weak left Bruhat order on permutations (Section 10.7.4). The
notations relate in the following manner:

d(C,D) = v, d(C′, D′) = w, d(HC,D) = vT , d(D
′, D) = ζ, and type(H) = T.

The gallery condition C′−D−D′ yields (i), the condition HC′ = C yields (ii), the
condition HD′ = D says that ζ is a T -shuffle permutation, and the uniqueness of
H yields (iii). More details on how to effect these translations can be found in [12,
Section 5.3.6].

17.2.5. Primitive elements. The primitive elements of IL∗ are determined in
Section 12.3.5: the elements M(C,D) such that D ∧ C = ∅ form a basis for this
species.

Let C and D be linear orders and d(C,D) = w. The study of global descents
in Section 10.7 shows that

D ∧C = ∅ ⇐⇒ w has no global descents.

This implies that the elements Mw where the permutation w has no global descents
form a basis of the space of primitive elements of SΛ. A description for the coradical
filtration of SΛ can be similarly deduced from the results in Section 12.3.5. This
recovers the results in [14, Section 6]. Related results (for primitive elements)
appeared earlier in the work of Poirier and Reutenauer [297] and Duchamp, Hivert
and Thibon [107, Proposition 3.6].

The situation for SΠ is much more complicated. From Proposition 15.36, we
know that the primitive elements of IL∗ continue to be primitive for SΠ; also see the
remark after [12, Theorem 7.3.2]. However, SΠ has many more primitive elements,
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the dimensions of the components n = 1, 2 and 3 are 1, 3, and 29, whereas those
for IL∗ are 1, 2 and 18. This provides an example of a Hopf monoid h for which
the inclusion K

(
P(h)

)
⊂ P

(
K(h)

)
is strict.

The primitive elements, and more generally the coradical filtration, of SΠ has
been determined in [12, Theorem 7.4.3]. We recall that the strategy was to use a
third basis, called the S basis, on IL∗[n]. Just as the F and M basis are related
using the partial order ≤, the F and S basis are related using a different partial
order which was denoted �. We remark that this partial order makes use of the
canonical linear order on the set [n]; hence it cannot be defined on IL∗[I]. Therefore,
it played no role in the study of IL∗.

17.2.6. Interchanging the coordinates on the M and H basis. It is inter-
esting to apply the Fock functors to the map t1 : IL∗ → (IL∗)cop defined in (12.10).
We recall that K is braided colax but not braided lax, while K is both braided lax
and colax. From Corollary 12.16 and Proposition 3.36, we obtain:

Corollary 17.2 ([12, Corollaries 7.3.1 and 7.3.2]). The map SΠ → SΠcop that
sends M(C,D) to M(D,C) and the map SΛ → SΛcop that sends Mw to Mw−1 are
isomorphisms of Hopf algebras.

Since K is braided colax but not braided lax, Corollary 12.16 and Proposi-
tion 3.35 allow us to deduce the following result only.

Corollary 17.3 ([12, Corollaries 7.5.1 and 7.5.2]). The map RΠop → RΠ that
sends H(C,D) to H(D,C) is an isomorphism of coalgebras. The map RΛop → RΛ
that sends Hw to Hw−1 is an isomorphism of Hopf algebras.

We see that at the level of Hopf algebras, interchanging coordinates on the H
basis is not so nice as that on the M basis. The properties of the Fock functors are
responsible for this fact.

17.2.7. The deformation of Foissy. Now consider the q-Hopf monoids ILq and

IL∗
q . Note that applying K yields q-Hopf algebras which deform RΛ and SΛ re-

spectively. Let us denote these by RΛq and SΛq. The former is the deformation
considered by Foissy [130]; here, the coproduct is deformed while the product is as
in the undeformed case. For the latter, the situation is reversed.

For a permutation w, let inv(w) be the number of inversions of w as in (2.20).
Using Proposition 12.12 and the relation between inversions and the gallery met-
ric (10.27), one sees that the map

RΛq → SΛq, Kw 7→ qinv(w)Fw−1

is an isomorphism if q 6= 0.
There is a different way of obtaining these q-Hopf algebras. It is explained in

Example 16.32.

17.3. Quasi-symmetric and noncommutative symmetric functions

In Sections 12.4 and 12.5, we introduced and studied in detail Hopf monoids
indexed by faces and directed faces. The ones indexed by faces were denoted Σ and
Σ∗. The canonical bases were denoted H and M respectively. The Hopf monoids

indexed by directed faces were denoted
−→
Σ and

−→
Σ∗. The former was equipped with

the H and K bases and the latter with the dual M and F bases. We gave explicit
descriptions for the products, coproducts and antipodes.
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17.3.1. The associated Hopf algebras. Now let us apply the Fock functors to
these Hopf monoids. As mentioned in Proposition 17.1, we have

K(Σ∗) = PΠ, K(
−→
Σ∗) = QΠ, K(Σ) = MΠ, K(

−→
Σ) = NΠ

K(Σ∗) = K(
−→
Σ∗) = QΛ, K(Σ) = K(

−→
Σ) = NΛ.

The object QΛ is the Hopf algebra of quasi-symmetric functions. It was introduced
by Gessel [144] as a subalgebra of the algebra of formal power series in count-
ably many variables (although with hindsight one can recognize this in work of
Cartier [76]). It is discussed by Stanley [343, Section 7.19], Reutenauer [311, Sec-
tion 9.4] and Bertet, Krob, Morvan, Novelli, Phan and Thibon [44]. The Hopf alge-
bra structure of QΛ was introduced by Malvenuto [255, Section 4.1]. The descrip-
tion of the product in some form or another can be found in works of Cartier [76,
Formula (7)], Hoffman [169], Hazewinkel [161] and Ehrenborg [112, Lemma 3.3].

The object NΛ is the Hopf algebra of noncommutative symmetric functions
introduced by Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [142]. It can
be viewed as a subalgebra of the algebra of formal power series in countably many
noncommutative variables. More information can be found in [211, 108, 212, 213,
106, 107, 359].

The Hopf algebras PΠ, QΠ, MΠ and NΠ are considered in [12, Section 6.2
and Chapter 8]. The objects NΠ and QΠ have been studied under various names
in [41, 43, 79, 166, 285, 289, 291, 292, 293].

Let M and F denote the bases of monomial and fundamental quasi-symmetric
functions [144]. The latter are denoted L in [343]. The identification K(Σ∗) = QΛ
is as follows:

MF ∈ K(Σ∗) ←→ Mtype(F ) ∈ QΛ.

Here MF denotes the class of MF ∈ Σ∗[n] under the action of the symmetric group
Sn, and type(F ) is the composition of n underlying F .

Let H and K denote the bases of complete and ribbon noncommutative sym-
metric functions. They are denoted S and R in [359].

The identification K(Σ) = NΛ involves a coefficient:

HG ∈ K(Σ) ←→ G!Htype(G) ∈ NΛ,

where G! is as in (10.7).

The identifications K(
−→
Σ∗) = QΛ and K(

−→
Σ) = NΛ are

M (F,C) ∈ K(
−→
Σ∗) ←→ Mtype(F ) ∈ QΛ

F (F,C) ∈ K(
−→
Σ∗) ←→ Ftype(F ) ∈ QΛ

H(G,D) ∈ K(
−→
Σ) ←→ Htype(G) ∈ NΛ

K(G,D) ∈ K(
−→
Σ) ←→ Ktype(G) ∈ NΛ.

17.3.2. Formulas on different bases. The Hopf monoid Σ∗ gives rise to PΠ
and QΛ. The results in Section 12.4.1 yield the formulas on the M basis of PΠ
given in [12, Section 8.3], and the familiar formulas on the M basis of QΛ (which
we recall below).

The Hopf monoid
−→
Σ∗ gives rise to QΠ and QΛ. The formulas on the F and

M bases of
−→
Σ∗ given in Sections 12.5.1 and 12.5.2 immediately imply those for

the Hopf algebra QΠ given in [12, Section 8.2]. They also give rise to the familiar
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formulas on the M and F bases of QΛ. The latter are well-known and appear in
most of the references cited above. We recall them next.

The product and coproduct on the M basis of QΛ are as follows.

∆(M(α1,α2,...,αk)) =

k∑

i=0

M(α1,...,αi) ⊗M(αi+1,...,αk),

Mα ∗Mβ =
∑

γ

Mγ .

The second sum is over all quasi-shuffles γ of α and β. (Quasi-shuffle of compositions
is defined similarly to quasi-shuffle of set compositions, and is a special case of the
construction of Section 2.6.6.)

Since the functor K is bistrong, it preserves antipodes. Thus, either one of
Theorems 12.21 or 12.34 yields the following antipode formula for QΛ on the M
basis:

s(Mα) = (−1)deg(α)
∑

β:β≤α

Mβ,

where deg(α) is the number of parts of α and α is the composition α written
in reverse order. This formula was obtained independently by Malvenuto [255,
Corollaire 4.20] and Ehrenborg [112, Proposition 3.4].

We turn to the F basis of QΛ. It is convenient to index the basis by binary
words. A composition of n is equivalent to a subset of [n − 1] and the latter to a
word of length n− 1 in the alphabet {+,−}. As an illustration,

(2, 1, 2, 3) ←→ {2, 3, 5} ←→ −+ +−+−−.

The coproduct of QΛ is given by

∆(Fξ1ξ2...ξn−1) =

n∑

i=0

Fξ1...ξi−1 ⊗ Fξi+1...ξn−1 ,

where each ξi is either + or −.
To describe the product, we need a notation. Let S be a shuffle of the linear

orders 1|2| · · · |g1 and 1′|2′| · · · |g′2.
This can be shown by a diagram as below, where we have taken g1 = 6 and

g2 = 7 for illustration.

S =

1 // 2

��~~
~~

~~
~~

3

��
@@

@@
@@

@@
4 // 5

��

6

1′ // 2′ // 3′

OO

4′

OO

5′ // 6′ // 7′

__@@@@@@@@

Now suppose ξ = ξ1ξ2 . . . ξg1−1 and η = η1η2 . . . ηg2−1 are two sign sequences of
lengths g1 − 1 and g2 − 1 respectively. Then, using the shuffle S, one can define a
sign sequence S(ξ, η) of length g1 + g2 − 1 as illustrated below.

S(ξ, η) =

ξ1 //
ξ2

−

����
��

��
��

�
ξ3

−
��

??
??

??
??

?
ξ4 //

ξ5

−

��

η1
//

η2
//

+

OO

η3

+

OO

η4 η5
//

η6
//

+

__?????????
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Namely, first draw the diagram for the shuffle S. Then put a − sign on the arrows
going down and a + sign on the arrows going up. The horizontal arrows get labeled
ξi or ηi. In the example above, S(ξ, η) = ξ1 − η1η2 +−+ ξ4 − η5η6+.

Let ξ and η be sign sequences of length g1 − 1 and g2 − 1 respectively. The
product on the F basis is given by

Fξ ∗ Fη =
∑

S

FS(ξ,η),

where the sum if over all shuffles S of 1| · · · |g1 and 1′| · · · |g′2. This description of the
product of QΛ appears in [12, Theorem 8.4.2]. It is a reformulation of well-known
formulas such as [343, Exercise 7.93].

Let ξ be a sign sequence of length n− 1. The antipode on the F basis is given
by

s(Fξ) = (−1)n Fξc ,

where ξ
c

is the sign sequence obtained from ξ by first replacing + by −, and − by
+, and then writing the word backwards. For example,

−+ +−+−− first changes to +−−+−+ + and then to + +−+−−+ .

In the subset notation,

s(FT ) = (−1)n FT c ,

where T
c
is obtained from T by first taking complement in [n−1] and then replacing

each entry by n minus that entry. This formula is due to Malvenuto [255, Corollaire
4.20].

The antipode formula given by Theorem 12.31 is cancellation-free. However, the
formula obtained by applying K to it is not cancellation-free. The above formula
has been written after taking these further cancellations into account. This will
become clear from the q-case discussed below.

17.3.3. The coradical filtrations. Similar to the situation for IL∗, the M ba-
sis of Σ∗ and Σ∗ can be used to determine their primitive elements. It follows
from (15.19) applied to any of these two Hopf monoids that the space of primitive
elements of QΛ is spanned by compositions with one part.

The situation for QΠ and PΠ is much more complicated. Similar to the story
for SΠ, these have many more primitive elements than the corresponding Hopf
monoids. The primitive elements, and more generally the coradical filtration, of
QΠ has been determined in [12, Theorem 8.2.2]. There is a similar result for PΠ,
which is not explicitly stated, but which follows from [12, Theorem 8.3.1]. The
strategy again is to use the canonical linear order on the set [n] to define a S basis
on the set of faces and the set of directed faces.

17.3.4. Deformations. Now consider the q-Hopf monoids
−→
Σq and

−→
Σ∗
q . Note that

applying K yields q-Hopf algebras which deform NΛ and QΛ respectively. Let us
denote these by NΛq and QΛq. We make the latter explicit. The coproduct is as
before, while the product is modified by

Mα ∗Mβ =
∑

γ

qc(α,β;γ)Mγ
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where the sum is over all quasi-shuffles of α and β, and c(α, β, γ) is the cost of
unwinding the quasi-shuffle. We explain this by an example. Suppose

α = (α1, α2, α3, α4), β = (β1, β2, β3), and γ = (α1, α2 + β1, β2, α3 + β3, α4).

Then

c(α, β; γ) = β1α3 + β1α4 + β2α3 + β2α4 + β3α4.

The antipode of QΛq is

s(Mα) = (−1)deg(α)
∑

β:β≤α

qd(β)Mβ ,

where for β = (β1, . . . , βk),

d(β) :=
∑

1≤i<j≤k

βiβj .

This may be viewed as the cost of going from β to its reverse composition.

In the F basis, the coproduct is the same as before and the product is modified
by multiplying each term by a power of q. The exponent is the cost of unwinding
the shuffle S(ξ, η). The antipode formula is as below. Let T be a subset of [n− 1].
Then

(17.1) s(FT ) = (−1)n
∑

V :T
c
⊆V


 ∑

U : T
c
⊆U⊆V

(−1)|U|qd(U)


 (−1)|V |FV ,

where T
c

and d(U) are as defined above. If q = 1, then the inner sum is zero

unless V = T
c
, thus recovering the earlier formula. In general, in the inner sum,

the unique smallest power of q occurs when U = T
c

and the unique largest power
of q occurs when U = V . Thus if q is not an algebraic integer, then formula (17.1)
is cancellation-free.

We showed in Proposition 12.38 that for q not an algebraic integer, the q-Hopf

monoids
−→
Σq and

−→
Σ∗
q are isomorphic. Applying the functor K, it follows that under

the same hypothesis, there is an isomorphism

NΛq
∼=
−−→ QΛq

induced by the nondegenerate bilinear form (10.138). Since the product of NΛq is
the same as that of NΛ (this being the case for the corresponding Hopf monoids),
one obtains an algebra isomorphism from noncommutative symmetric functions to
the q-version of quasi-symmetric functions. This result appears in [358, Section 3].

17.4. Symmetric functions

In Sections 12.6 and 12.7, we introduced and studied in detail Hopf monoids
indexed by flats and directed flats. The ones indexed by flats were denoted Π and
Π∗. The former was equipped with the h and q bases and the latter with the dual
m and p bases. We showed that the Hopf monoids Π and Π∗ are isomorphic and

hence self-dual. The Hopf monoids indexed by directed flats were denoted
−→
Π and

−→
Π∗. The canonical bases were denoted by h and m respectively. We gave explicit
descriptions for the products, coproducts and antipodes on all these bases.
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17.4.1. The associated Hopf algebras. Now let us apply the Fock functors to
these Hopf monoids. As mentioned in Proposition 17.1, we have

K(Π) = ΠL, K(
−→
Π) = ΠZ, K(Π∗) = ΠL∗ , K(

−→
Π∗) = ΠZ∗ ,

K(Π) = K(
−→
Π) = ΛL, K(Π∗) = K(

−→
Π∗) = ΛL∗ .

Since Π and Π∗ are isomorphic, it follows that ΛL
∼= ΛL∗ and ΠL

∼= ΠL∗ . Let us
write Λ for the former and Π for the latter from now on.

The object Λ is the Hopf algebra of symmetric functions. It is most often
viewed as a subalgebra of the algebra of formal power series in countably many
variables [138, 252, 319, 341]. The Hopf algebra viewpoint can be found in the
works of Geissinger [141] and Zelevinsky [381]. The object Π is the Hopf algebra
of symmetric functions in noncommuting variables studied in [140, 315, 377], Even
though the Hopf monoid Π is commutative, the Hopf algebra Π is not. This example
shows that K does not preserve commutativity.

The Hopf algebras ΠZ and ΠZ∗ are described in [12, Sections 6.5.10 and 6.8.9].
The former is neither commutative nor cocommutative, while the latter is not
commutative but cocommutative. Thus these Hopf algebras are neither isomorphic
nor duals of each other. This example shows that K does not preserve duality.

We make use of the type and base maps of Section 10.1.5 in the following
discussion. Let h,m and p denote the bases of complete, monomial and power sum
symmetric functions respectively, as in [252, Section I.2] or [319, Section 4.3].

Suppose X is a set partition into k blocks, with ri blocks of size i, i = 1, . . . , k.
Let λ be the type of X , that is, the part i occurs ri times in the partition λ. The
identifications K(Π∗) = K(Π) = Λ are as follows:

mX ∈ K(Π∗) ←→ r1! . . . rk!mλ ∈ Λ;

pX ∈ K(Π∗) ←→ pλ ∈ Λ;

hX ∈ K(Π) ←→ λ!hλ ∈ Λ.

Here mX denotes the class of mX under the action of the symmetric group and λ!
is defined in (10.8).

The Hopf algebra Π arises similarly via the functor K and therefore maps
canonically onto Λ. The above identifications are compatible with the description
of this quotient map in [315, Theorem 2.1].

Suppose now that L is a linear set partition into k blocks, X is its base, and
λ is the type of X . As above, let X have ri blocks of size i, i = 1, . . . , k. The

identifications K(
−→
Π∗) = K(

−→
Π) = Λ are as follows:

mL ∈ K(
−→
Π∗) ←→ r1! . . . rk!mλ ∈ Λ;

hL ∈ K(
−→
Π) ←→ hλ ∈ Λ.

The self-duality of the Hopf monoids Π and Π∗ implies the self-duality of the
Hopf algebra of symmetric functions, since K preserves duality (Section 15.4.4).

17.4.2. Formulas on different bases. The product and coproduct formulas on
the monomial, complete, and power sum bases of symmetric functions are well-
known [12, Section 3.2.1]. These follow from the formulas on the corresponding
bases of either Π or Π∗. The same can be said for the antipode formulas.
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17.5. Combinatorial Hopf algebras

We now consider some of the Hopf algebras arising from the Hopf monoids of
Chapter 13, as well as some others that arise from the universal constructions of
Chapter 11.

17.5.1. Posets. We begin with Hopf monoids of posets from Section 13.1. They
were denoted P and P∗ and were dual to each other. Applying the Fock functors
yields various graded Hopf algebras, some of which have been considered in the
literature. The Hopf algebra K(P) is implicit in the works of Gessel [144] and
Malvenuto [255]. It has a basis consisting of posets on the sets [n], n ≥ 0. These
are often called vertex-labeled posets in the combinatorics literature (the vertices
are labeled by [n]). The Hopf algebra K(P) has a basis consisting of isomorphism
classes of finite posets (which may be called unlabeled posets). It has been explicitly
described in [323, Section 16] and [10, Example 2.3].

Recall that K(L∗) = SΛ is the Hopf algebra of permutations (Example 15.17).
Now consider the morphism

ω̂ : P→ L∗

which arises from cofreeness of L∗ (Section 13.1.3). Applying the functor K yields
a morphism of Hopf algebras

K(ω̂) : K(P)→ K(L∗) = SΛ.

This is familiar in the literature. Note that unless one works with species as above,
this morphism cannot be constructed by universal properties, since in the passage
from Hopf monoids to Hopf algebras via the functor K the universality of L∗ is lost.

Recall that K(Σ∗) = QΛ is the familiar Hopf algebra of quasi-symmetric func-
tions (Section 17.3). Now consider the morphism

ζ̂ : L×P→ Σ∗

which arises from cofreeness of the latter (Section 13.1.4). Applying the functor K
yields a morphism of Hopf algebras

K(P) = K(L ×P)
K(ζ̂)
−−−→ K(Σ∗) = QΛ.

This is Gessel’s enumerator of poset partitions. The first equality follows from
relation (15.6) between the functors K and K.

17.5.2. Set graded posets. One of the main Hopf algebras in combinatorics, and
perhaps the first one to have arisen in the literature, is the graded Hopf algebra of
graded posets of Joni and Rota [179, Section IV], which was further investigated
by Ehrenborg [112] and Schmitt [323]. There is also a related Hopf algebra of edge-
labeled graded posets defined by Bergeron and Sottile [42]. In Section 13.6.4, we
constructed the Hopf monoid sgP based on the species of set-graded posets, in a
manner which paralleled the definition of the Hopf algebra of (edge-labeled) graded
posets.

The Hopf algebra K(sgP) has a basis consisting of edge-labeled posets for
which the labels of any maximal chain form a permutation of [n], n ≥ 0. It is
closely related to the Hopf algebra of edge-labeled graded posets of Bergeron and
Sottile (their labelings are arbitrary). A basis for the Hopf algebra K(sgP) appears
to be difficult to describe.
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Now consider the morphism

η̂ : sgP→ Σ∗

which arises from cofreeness of the latter (Section 13.6.5). Applying the functor K
yields a morphism of Hopf algebras

K(η̂) : K(sgP)→ K(Σ∗) = QΛ.

This is Ehrenborg’s flag quasi-symmetric function [112]. Indeed, starting from an
arbitrary graded poset P and choosing an arbitrary [n]-labeling λ, we have that

K(η̂)(P, λ) =
∑

α

fα(P )Mα,

where the coefficient fα(P ) counts the number of chains C in P such that the
underlying composition of λ(C) is α. This is precisely Ehrenborg’s function.

Now consider the morphism

ζ̂ : L× sgP→ Σ∗

which arises from cofreeness of the latter (Section 13.6.6). Applying the functor K
yields a morphism of Hopf algebras

K(ζ̂) : K(sgP) = K(L × sgP)→ K(Σ∗) = QΛ.

This is closely related to the enumerator of descents defined by Bergeron and
Sottile [42].

17.5.3. Graphs. We now consider Hopf monoids of graphs from Section 13.2.
They were denoted G and G∗ and were dual to each other. Applying the Fock
functors yields various Hopf algebras of graphs. The Hopf algebra K(G) has a basis
consisting of simple graphs with vertex set [n], n ≥ 0. The Hopf algebra K(G) has
a basis consisting of isomorphism classes of simple graphs. To distinguish between
the two classes, one sometimes refers to the former as labeled graphs and to the
latter as unlabeled.

The Hopf algebras K(G) and K(G) were constructed by different means by
Schmitt: they respectively agree with the Hopf algebras of Sections 13 and 12
in [323].

In Section 13.2.2, we constructed the morphism

ζ̂ : G→ Π∗

from the cofreeness of the latter. Applying the Fock functors K and K to this
morphism yields morphisms of Hopf algebras

K(G)→ K(Π∗) and K(G)→ K(Π∗).

Recall from Section 17.4 that K(Π∗) is the algebra of symmetric functions in non-
commuting variables andK(Π∗) is the familiar Hopf algebra of symmetric functions.
Thus the first map associates a symmetric function in noncommuting variables to
a labeled graph, and the second associates a symmetric function to an unlabeled
graph. The latter is the chromatic symmetric function of Ray and Wright [302] and
Stanley [339, Proposition 2.4]. The former is a variant introduced by Gebhard and
Sagan [140].

Stanley constructs a more general version of the chromatic symmetric function
that depends on a parameter q ∈ k and reduces to the previous version when
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q = 0 [342]. It is easy to see that this generating function arises from a q-version

of ζ̂ starting with (13.14).

17.5.4. Forests. In Section 13.3, we discussed two Hopf monoids based on rooted

forests and on planar rooted forests. They were denoted F and
−→
F respectively.

We also discussed a q-deformation of the latter denoted
−→
F q. Applying the functor

K to the Hopf monoid of rooted forests yields the Connes–Kreimer Hopf algebra.
The set of unlabeled rooted forests is a linear basis of K

(
F
)
. Applying K to the

antipode formula of Theorem 13.5 yields Zimmermann’s forest formula in quantum
field theory [383].

This Hopf algebra appeared in early work of Grossman and Larson [155] and
Schmitt [323, Example 16.1]. Kreimer [210] and Connes and Kreimer [83] brought it
to the forefront by discussing connections with renormalization theory. It has been
further studied in several works including [170, 278]. The fact that Zimmermann’s
formula can be seen as an antipode formula is due to Kreimer [210]; see also [83,
p. 219], [126] and [149, Section 14.1].

Applying the functor K to the Hopf monoid
−→
F yields the Hopf algebra of planar

rooted forests sometimes known as the the noncommutative Connes–Kreimer Hopf

algebra. The set of unlabeled planar rooted forests is a linear basis of K
(−→
F
)
. This

Hopf algebra was introduced by Foissy [128, 129] and is further studied in several
works including [171, 288] and [365, Section 7].

Foissy also considers a decorated version of this Hopf algebra. This arises

from
−→
F via the decorated Fock functor KV which will be studied in Chapter 19.

Applying K to the antipode formula of Theorem 13.4 (with q = 1) yields the formula
of Foissy [128, Théorème 44] (in the undecorated setting).

Now consider the morphisms

−→
F

~φ
−→ L×P

id×ω̂
−−−→ L× L∗ = IL∗.

This is a portion of the diagram (13.18). The map ~φ was defined in (13.17). The
map ω̂ was defined in Section 13.1.3 and also considered in Section 17.5.1 while
discussing Hopf algebras on posets. It is straightforward to check that the above
composite is injective. Therefore, the noncommutative Connes–Kreimer Hopf alge-

bra K
(−→
F
)

can be viewed as a Hopf subalgebra of the Hopf algebra of permutations

SΛ = K(IL∗). This gives rise to an isomorphism between the noncommutative
Connes–Kreimer Hopf algebra and the Hopf algebra of unlabeled planar binary
trees of Loday and Ronco [242, 243]. Another such isomorphism is discussed in [15,
Section 8]. Applying the functor K to the leftmost square in (13.18) yields the
commutative diagram given in [15, Theorem 8.12], which relates Connes–Kreimer
to symmetric functions and noncommutative symmetric functions.

The q-Hopf algebra K
(−→
F q

)
is considered by Foissy in [130, Section 1.1].

17.5.5. Matroids. Consider the Hopf monoid M of matroids from Section 13.8.2.
The (commutative) Hopf algebra K(M) has a basis consisting of isomorphism
classes of finite matroids. It was introduced by Schmitt [323, Section 15] and
further studied by Crapo and Schmitt [84, 85, 86].

Recall that we constructed a morphism of Hopf monoids

ζ̂ : M→ Σ∗.
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Applying K yields a morphism of Hopf algebras

K(ζ̂) : K(M)→ K(Σ∗) = QΛ,

where QΛ is the Hopf algebra of quasi-symmetric functions. The above quasi-
symmetric generating function was introduced by Billera, Jia, and Reiner in [48].

17.5.6. Examples arising from universal constructions. There are addi-
tional examples of Hopf algebras in the combinatorial literature that can be un-
derstood as follows. The universal constructions of Chapter 11 produce a large
number of Hopf monoids, each with a certain universal property. Applying the
Fock functors one then obtains Hopf algebras.

The Hopf algebras of Sections 17.3 and 17.4 arise in this manner. We discuss
other examples next.

Hivert, Novelli, and Thibon define certain Hopf algebras of permutations and
endofunctions in [167]. They arise from the free commutative Hopf monoid con-
struction of Section 11.3, as follows.

Recall the Hopf monoid b of bijections from Example 11.16. We have b = S(c)
where c is the species of cycles. In other words, b is the free commutative Hopf
monoid on the trivial positive monoid c. Applying the functor K∨ yields precisely
the commutative Hopf algebra of permutations introduced by Hivert, Novelli, and
Thibon in [167, Section 3].

The commutative Hopf algebra of endofunctions of [167, Section 2] can be
obtained in a similar manner by replacing c for c ◦ a, where a is the species of
rooted trees (Section 13.3.1), using [40, §1.4, equation (1)] or [181, Exemple 12].

We turn to a Hopf algebra construction of Schmitt. Let Q be a species with
restrictions (Section 8.7.8) and q = kQ its linearization. Then q carries the cocom-
mutative comonoid structure described in Section 8.7.8. We may then consider the
free commutative monoid S(q+), with the Hopf monoid structure of Section 11.3.2.
The Hopf algebra K

(
S(q+)

)
is the object constructed by Schmitt in [322, Sec-

tion 3.3].
Schmitt also considers more general Hopf monoid structures on S(q+) that

do not necessarily come from a comonoid structure on q [322, Example 3.3.3 and
Section 4]. This allows him to obtain interesting examples such as the Faà-di-Bruno
Hopf algebra. We do not deal with them in this monograph.

Note that in any of the above cases, we may apply the other universal con-
structions of Chapter 11 (the functors T or T ∨), combine them with any of the
Fock functors and obtain in this manner many new Hopf algebras of a similar
combinatorial flavor.
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Adjoints of the Fock Functors

The Fock functors from species to graded vector spaces have been studied in
detail in earlier chapters. In this chapter, we describe the adjoints of the Fock
functors whenever they exist. Thus, important notions such as the free monoid in
species on a graded algebra are discussed here. This study also clarifies various
inter-relationships between these functors and the tensor and symmetric algebra
functors on graded vector spaces and the corresponding functors T and S on species
from Chapter 11. This further enriches our understanding of the interplay between
species and graded vector spaces. The results of Section 3.9 on adjunctions play an
important role in this discussion.

The adjoints are summarized in Tables 18.1 and 18.2. We use Mon(Sp) and
Comon(Sp) for the categories of monoids and of comonoids in species, and gAlg and
gCoalg for the categories of graded algebras and of graded coalgebras. The main
goal of this chapter is to explain the functors in the second and third columns. The

Table 18.1. Adjoints of K and K.

Functor Left adjoint Right adjoint

K : Sp→ gVec L : gVec→ Sp R : gVec→ Sp

K : Mon(Sp)→ gAlg L : gAlg→ Mon(Sp) ∄

K : Comon(Sp)→ gCoalg ∄ Q : gCoalg→ Comon(Sp)

K : Sp→ gVec (0) R : gVec→ Sp

K : Mon(Sp)→ gAlg (0) R : gAlg→ Mon(Sp)

K : Comon(Sp)→ gCoalg (0) Q : gCoalg→ Comon(Sp)

Table 18.2. Adjoints of K∨ and K
∨
.

Functor Left adjoint Right adjoint

K∨ : Sp→ gVec R∨ : gVec→ Sp L∨ : gVec→ Sp

K∨ : Mon(Sp)→ gAlg Q∨ : gAlg→ Mon(Sp) ∄

K∨ : Comon(Sp)→ gCoalg ∄ L∨ : gCoalg→ Comon(Sp)

K
∨

: Sp→ gVec R
∨

: gVec→ Sp (0)

K
∨

: Mon(Sp)→ gAlg Q
∨

: gAlg→ Mon(Sp) (0)

K
∨

: Comon(Sp)→ gCoalg R
∨

: gCoalg→ Comon(Sp) (0)

581
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symbol ∄ indicates that the adjoint does not exist and the symbol (0) indicates that
it exists only in characteristic zero.

Since K∨ and K
∨

are the contragredients of K and K (Proposition 15.8), we
know that the corresponding adjoints are related in a similar manner (Proposi-
tion 3.103). For this reason, for the most part, we concentrate on the adjoints

of K and K. Further, in characteristic 0, the functors K and K
∨

are isomorphic
(Proposition 15.21), so the adjoint in this case can be told from either of the two
tables.

18.1. The right adjoint of K

There is an obvious functor from graded vector spaces to species, where a graded
vector space is viewed as a species with trivial actions of the symmetric groups. We
begin with this functor since it plays an important role in the construction of many
adjoints.

18.1.1. The trivialization functor. Define a functor

t(−) : gVec→ Sp by tV [I] := V|I|,

where V = (Vn)n≥0 is a graded vector space. For any bijection I → J , we let
tV [I] → tV [J ] be the identity map. Equivalently, tV is the species given by the
sequence of vector spaces V0, V1, V2, . . . with trivial actions of the symmetric
groups. A linear map V → W induces a morphism of species tV → tW in the
obvious way. Hence t(−) is a functor, which we refer to as the trivialization functor.

We now proceed to turn t(−) into a braided lax monoidal functor with respect
to the Cauchy product. Let

ϕV,W : tV · tW → tV ·W

be given by the maps

(18.1)
⊕

S⊔T=I

V|S| ⊗W|T | →
⊕

s+t=|I|

Vs ⊗Wt, v ⊗ w 7→ v ⊗ w,

with the (S, T )-summand mapping to the (s, t)-summand for |S| = s and |T | = t.
Let the map ϕ0 : 1→ t1 be the obvious isomorphism, where we recall that 1 is the
one-dimensional graded vector space concentrated in degree 0.

Proposition 18.1. The functor (t(−), ϕ) : (gVec, ·)→ (Sp, ·) is lax monoidal.

This is a straightforward check. The contragredient (t∨(−), ϕ
∨) is then a colax

monoidal functor by Proposition 3.102. We first observe that

t(−)
∼= t∨(−)

as functors. The colax structure ϕ∨ is given by mapping the (s, t)-summand by the
identity to all (S, T )-summands for which |S| = s and |T | = t.

We know that a (co)lax monoidal functor induces a functor on the correspond-
ing category of (co)monoids. As an example for the above functors, we note that

(18.2) tk[x] = E as monoids and t∨
k{x} = E as comonoids,

where E is the exponential species of Example 8.15.
We remark that the functor (t(−), ϕ, ϕ

∨) is not bilax.
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18.1.2. A braided lax-lax adjunction. We now show that the functor t(−) is

the right adjoint of K. To ensure uniformity of nomenclature for all the adjoints,
we give another name to this functor and call it R.

Lemma 18.2. Let G be a group and M and N be kG-modules with the action of
G on N being trivial. Let f : M → N be a k-linear map. Then f : M → N is a
morphism of G-modules if and only if f induces a k-linear map MG → N .

The above is a consequence of the definition of group coinvariants (Sec-
tion 2.5.1). More formally, there is an adjunction

ModG

(−)G
%%

ee Vec,

the right adjoint to (−)G being given by the functor which sends a vector space
to itself with the trivial G-action. Applying this result to the family of symmetric
groups yields:

Proposition 18.3. The functor R is the right adjoint to K. In other words, we
have isomorphisms

(18.3) HomgVec(K(p), V ) ∼= HomSp

(
p,R(V )

)

which are natural in V and p.

Proposition 18.4. The adjunction (K,R) in (18.3) is braided lax-lax, as well as
braided colax-lax.

Proof. The functor K is braided strong. So by Proposition 3.95, there is a
unique braided lax structure on R such that the adjunction (K,R) is braided lax-
lax, or equivalently, braided colax-lax. It is easy to verify that this lax structure
matches the one that was defined in (18.1). �

Proposition 18.5. The functor R is the right adjoint to K at the level of monoids.
In other words, we have isomorphisms

(18.4) HomgAlg(K(p), A) ∼= HomMon(Sp)

(
p,R(A)

)
,

which are natural in A and p.
Similar statements hold for the commutative and Lie cases.

Proof. This follows from Propositions 3.91, 3.92 and 18.4. �

Remark 18.6. In the associative and commutative case, one can say more. Namely,
at the level of monoids and commutative monoids, the adjunction (K,R) continues
to be braided lax-lax. This follows from the discussion in Example 7.48.

The functor K does have a right adjoint at the level of comonoids. This is
discussed in Section 18.5.

18.1.3. Interaction with the functors T and S. The construction of R has
some interesting consequences which we briefly discuss. Consider the forgetful
functors

gAlg→ gVec, gAlgco → gVec, and gLie→ gVec,

where the source categories are those of graded algebras, graded commutative al-
gebras and graded Lie algebras. The left adjoints of these functors are given by the
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tensor algebra functor T , the symmetric algebra functor S and the free Lie algebra
functor Lie. Analogues of these functors for species were discussed in Chapter 11.
We now claim that the functor K commutes with these functors.

Proposition 18.7. The following diagrams commute.

Mon(Sp)
K // gAlg

Sp
K

//

T

OO

gVec

T

OO
Mon(Sp)

fℓ

��

gAlg
Roo

fℓ

��

Sp gVec
R

oo

(18.5)

Monco(Sp)
K // gAlgco

Sp
K

//

S

OO

gVec

S

OO
Monco(Sp)

fℓ

��

gAlgcoRoo

fℓ

��

Sp gVec
R

oo

(18.6)

Lie(Sp)
K // gLie

Sp
K

//

Lie

OO

gVec

Lie

OO
Lie(Sp)

fℓ

��

gLie
Roo

fℓ

��

Sp gVec
R

oo

(18.7)

The functors in the diagram on the left are the left adjoints of the corresponding
functors in the diagram on the right.

Proof. The adjunction (K,R) was discussed in Proposition 18.5. The com-
mutativity of the diagrams on the right is clear. The uniqueness of adjoints then
implies the commutativity of the diagrams on the left. �

Remark 18.8. Using Remark 18.6, one can say more regarding diagrams (18.5)
and (18.6). Firstly, since R continues to be braided lax at the level of monoids and
commutative monoids, it follows that the diagrams on the right commute as lax
functors. Secondly, the functors corresponding to each other in adjacent diagrams
form a colax-lax adjunction. This implies that the diagrams on the left in (18.5)
and (18.6) commute as colax functors.

Let ⊙ refer to the modified Cauchy product on positive species (8.55). We
claim that there are colax-lax adjunctions

(Sp+,⊙)
T

%%

(−)+

ee (Mon(Spo), ·) and (Sp+,⊙)
S

%%

(−)+

ee (Monco(Spo), ·).

The first claim was shown in Lemma 11.6 and the second can be established in
the same way. The difference with the above situation is that we now start with
a positive species and end with a connected monoid. As a result, the image of a
finite-dimensional species is again finite-dimensional. Interestingly, the discussion
in Remark 18.8 remains valid in this setting as well. The result is stated below.
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Proposition 18.9. Consider the diagrams

(Mon(Spo), ·)
K // (cgAlg, ·)

(Sp+,⊙)
K

//

T

OO

(gVec+,⊙)

T

OO
(Mon(Spo), ·)

(−)+

��

(cgAlg, ·)
Roo

(−)+

��

(Sp+,⊙) (gVec+,⊙)
R

oo

(18.8)

(Monco(Spo), ·)
K // (cgAlgco, ·)

(Sp+,⊙)
K

//

S

OO

(gVec+,⊙)

S

OO
(Monco(Spo), ·)

(−)+

��

(cgAlgco, ·)
Roo

(−)+

��

(Sp+,⊙) (gVec+,⊙)
R

oo

(18.9)

where cg stands for connected graded. The diagrams on the left commute as colax
functors, while the ones on the right commute as lax functors. Further, the functors
in the diagrams on the left and the corresponding functors in the diagrams on the
right form a colax-lax adjunction.

Proof. One needs to establish the colax-lax adjunction (K,R) on the bottom
horizontal arrows and check that the diagram on the right commutes as lax functors.
The details are omitted. �

Passing the diagrams on the left in (18.8) and (18.9) to the categories of co-
monoids, we obtain commutative diagrams:

Hopf(Spo)
K // cgHopf

Comon(Sp+)
K

//

T

OO

gCoalg+

T

OO
Hopfco(Spo)

K // cgHopfco

Comon(Sp+)
K

//

S

OO

gCoalg+

S

OO

(18.10)

where gCoalg+ denotes the category of positively graded (noncounital) coalgebras.

Example 18.10. We illustrate the preceding results in the simplest situation.
Consider the trivial positive comonoid X. We have

K(X) ∼= X,

the 1-dimensional space with basis {x}. The preceding results will thus relate the
free monoid on X to the free algebra on one generator.

Applying the left diagram in (18.10) to X, one obtains

K(L) ∼= K (T (X)) ∼= T K(X) ∼= T (X) ∼= k[x].

The equalities are as graded Hopf algebras. The right diagram in (18.10) similarly
yields

K(E) ∼= k[x].

We saw this by an explicit computation in Examples 15.14 and 15.17.
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The Lie case is similar. Recall from Section 11.9.1 that Lie ∼= Lie(X). Applying
the diagram on the left in (18.7) to the species X one obtains that

K(Lie) ∼= K
(
Lie(X)

)
∼= Lie

(
K(X)

)
∼= Lie(X),

the free Lie algebra on one generator. (It is one-dimensional except in characteristic
2.) By definition of K,

K(Lie) =
⊕

n

(Lie[n])Sn

as graded vector spaces.

Example 18.11. We now illustrate the preceding results for the positive comonoids
L∗

+ and E∗
+. We know from Examples 15.14 and 15.17 that

K(L∗) ∼= K(E∗) ∼= k{x},

the divided power coalgebra. In characteristic 0, k{x} ∼= k[x] (Example 2.3).

The Hopf monoids
−→
Σ, Σ,

−→
Π and Π are studied in Chapter 12. According to

Proposition 12.59, we have

Σ ∼= T (E∗
+),

−→
Σ ∼= T (L∗

+), Π ∼= S(E∗
+) and

−→
Π ∼= S(L∗

+).

Let NΛ and Λ be the Hopf algebras of noncommutative symmetric functions
and symmetric functions respectively. There are isomorphisms

NΛ ∼= T (k{x}+), H(a1,...,ak) 7→ x(a1) ⊗ · · · ⊗ x(ak)

and

Λ ∼= S(k{x}+), h(λ1,...,λk) 7→ x(λ1) · · ·x(λk).

Here H and h denote the bases of complete (noncommutative) symmetric functions
of NΛ and Λ respectively, as in Sections 17.3 and 17.4.

Applying the diagrams in (18.10) to the noncounital comonoid L∗
+, we obtain

K(
−→
Σ) ∼= K

(
T (L∗

+)
)
∼= T

(
K(L∗

+)
)
∼= T (k{x}+) ∼= NΛ,

K(
−→
Π) ∼= K

(
S(L∗

+)
)
∼= S

(
K(L∗

+)
)
∼= S(k{x}+) ∼= Λ.

We emphasize that these result hold in any characteristic.
Similarly, applying the two diagrams to the noncounital comonoid E∗

+, we
obtain

K(Σ) ∼= K
(
T (E∗

+)
)
∼= T

(
K(E∗

+)
)
∼= T (k[x]+)

0
∼= NΛ,

K(Π) ∼= K
(
S(E∗

+)
)
∼= S

(
K(E∗

+)
)
∼= S(k[x]+)

0
∼= Λ.

The symbol
0
∼= indicates that the isomorphism is only valid in characteristic zero.

The rest of the computation is characteristic free.

18.2. The right adjoint of K

In this section, we construct the right adjoint of K at the level of species and
graded vector spaces, and study its monoidal properties. It is defined in terms of
the trivialization functor t(−) of Section 18.1 and the species L of linear orders
(Example 8.3).
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Recall from Section 10.2 that L is the linearization of the set species of chambers
L. In this section as well as Section 18.5 we will make use of some elementary ideas
and notations from Section 10.2.

Let R : gVec→ Sp be the lax functor defined by

R := L∗ × t(−).

The lax structure ofR is obtained by viewing it as the composite of the lax functors
L∗ × (−) and t(−). For the former, one views L∗ as a monoid as in Example 8.24
and uses Proposition 8.66.

Now consider the following composite of colax-lax adjunctions.

Sp

L×(−)

((

L∗×(−)

hh Sp
K

%%

t(−)

ee gVec.

The first adjunction is colax-lax by (8.81). The composite on the top is the colax
functor K by (15.6). This leads to the following result.

Proposition 18.12. The functor R is the right adjoint to K. In other words, we
have isomorphisms

HomgVec(K(p), V ) ∼= HomSp

(
p,R(V )

)

which are natural in V and p. Further, this adjunction is colax-lax.

The unit of the adjunction

p
η(p)
−−−→ RK(p)

is given by the maps

p[I]→ L[I]∗ ⊗ p[|I|], z 7→
∑

w∈Bij(|I|,I)

(wC(n))
∗ ⊗ p[w−1](z),

and the counit

KR(V )
ξ(V )
−−−→ V

is given by

L[n]∗ ⊗ Vn → Vn, l∗ ⊗ v 7→

{
v if l = C(n),

0 otherwise.

Here C(n) denotes the canonical linear order on the set [n].

Remark 18.13. Since the functor K is not strong, Proposition 3.96 implies that
there is no lax structure on R for which the adjunction (K,R) is lax-lax. In fact,
we will see later that K does not have a right adjoint at the level of monoids
(Section 18.4).

The situation for comonoids is different. The functor K does have a right
adjoint at the level of comonoids; however it is more complicated to define than R.

18.3. The left adjoint of K

In this section, we construct the left adjoint of K at the level of species and
graded vector spaces, as well as at the level of monoids and graded algebras. The
discussion has similarities as well as differences with the discussion in Section 18.2.



588 18. ADJOINTS OF THE FOCK FUNCTORS

18.3.1. The strong functor L. Let L : gVec→ Sp be the lax functor defined by

L := L× t(−),

where L is the monoid in Example 8.16. Let us denote the lax structure of L by γ.
Explicitly, γ0 : 1→ L(k) is the obvious isomorphism while

γV,W : L(V ) · L(W ) −→ L(V ·W )(18.11)

is given by

⊕

S⊔T=I

L[S]⊗ V|S| ⊗ L[T ]⊗W|T | −→
⊕

s+t=|I|

L[I]⊗ Vs ⊗Wt

l⊗ v ⊗m⊗ w 7−→ l ·m⊗ v ⊗ w,

where l ·m is the concatenation of the linear orders l and m. The (S, T )-summand
in the left-hand side maps to the (s, t)-summand in the right-hand side with |S| = s
and |T | = t. As a consequence:

Proposition 18.14. The functor (L, γ) is strong.

Let δ denote the inverse of γ. It yields a colax structure on L. Explicitly, the
map δ0 : L(k)→ 1 is the obvious isomorphism, while

δU,V : L(U · V ) −→ L(U) · L(V )(18.12)

has components

⊕

s+t=|I|

L[I]⊗ Us ⊗ Vt −→
⊕

S⊔T=I

L[S]⊗ U|S| ⊗ L[T ]⊗ V|T |

l ⊗ u⊗ v 7−→ l1 ⊗ u⊗ l2 ⊗ v

Here we write l = wC(n) where w is a bijection from [|I|] to I and let S = w([s])
and T = w([s+1, s+ t]). The linear orders l1 and l2 are the restrictions l|S and l|T .

Proposition 18.15. There is an isomorphism

(L, δ) ∼= (L∨, γ∨)

of costrong functors.

Proof. First note that the contragredient of L is given by the formula

L∨ = L∗ × t∨(−).

Next observe that L and L∗ are isomorphic as species and t(−) and t∨(−) are iso-

morphic as functors. It follows that L and L∨ are also isomorphic as functors. It
is then straightforward to check that the required costrong structures match. �

It follows from the above discussion and (18.2) that

(18.13) L(k[x]) = L as monoids and L(k{x}) = L∗ as comonoids.

Remark 18.16. The definitions of R and L are quite similar; for the former one
uses L∗ while for the latter one uses L. So they are isomorphic as functors; however
they differ as lax functors. The functor L is strong, while R is not.
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18.3.2. The left adjoint of K. One can discover the above lax and colax struc-
tures of L by following a different route as follows.

Proposition 18.17. The functor L is the left adjoint to K. In other words, we
have isomorphisms

(18.14) HomSp(L(V ),p) ∼= HomgVec

(
V,K(p)

)
,

which are natural in V and p.

Proof. We construct the unit and counit of the adjunction. Using (10.10),
we define

V
η(V )
−−−→ KL(V )

Vn −→ L[n]⊗ Vn

v 7−→ C(n) ⊗ v,

LK(p)
ξ(p)
−−−→ p

L[I]⊗ p[|I|] −→ p[I]

wC(n) ⊗ z 7−→ p[w](z),

where w is a bijection from [|I|] to I. Conditions (A.3) may be checked without
difficulty. �

Since K is a lax monoidal functor, Proposition 3.84 guarantees the existence of
a unique colax monoidal functor structure on L such that the adjunction (L,K) is
colax-lax. One finds that this colax structure coincides with δ. We already know
that δ is invertible with inverse γ. Since the adjunction between (L, δ) and (K, ϕ) is
colax-lax, the adjunction between (L, γ) and (K, ϕ) is lax-lax, by Proposition 3.93.
To summarize:

Proposition 18.18. With respect to the lax structure ϕ of K, the lax structure γ
of L in (18.11) and the colax structure δ of L in (18.12), the adjunction (L,K)
in (18.14) is lax-lax and colax-lax.

The fact that the adjunction (L,K) is lax-lax can be further exploited: Propo-
sition 3.91 tells us that the adjunction restricts to the categories of monoids.

Proposition 18.19. The functor L is the left adjoint to K at the level of monoids.
In other words, we have isomorphisms

(18.15) HomMon(Sp)(L(A),p) ∼= HomgAlg

(
A,K(p)

)
,

which are natural in A and p.

18.3.3. The free twisted algebra of Barratt. The monoid L(A), in the special
case when A is a free algebra, appears in the work of Barratt [33, Definition 3],
under the name free twisted algebra. A context for this object is given by the result
below.

Proposition 18.20. The following diagrams commute.

gAlg
L // Mon(Sp)

gVec
L

//

T

OO

Sp

T

OO
gAlg

fℓ

��

Mon(Sp)
Koo

fℓ

��

gVec Sp
K

oo

(18.16)

The functors in the left diagram are the left adjoints of the corresponding functors
in the right diagram.
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Proof. The adjunction (T , fℓ) was discussed in the proof of Theorem 11.3,
while the adjunction (L,K) was discussed in Proposition 18.19. The commutativity
of the diagram on the right is clear. The uniqueness of adjoints then implies the
commutativity of the diagram on the left. �

As an example, applying the diagram on the left in (18.16) to a graded vector
space concentrated in degree 1 (denote the component in degree 1 by V ), we obtain:

L
(
T (V )

)
= T

(
L(V )

)
= L ◦XV = L×EV as monoids.

In the terminology of Barratt, the object on the left is the free twisted algebra on
V . The object on the right was considered in Example 11.11. In the special case
when V is one-dimensional, we have:

L(k[x]) = L ◦X = L as monoids.

We have seen this result in (18.13) where it was arrived at by different means.

18.3.4. Remarks in the negative. Since the functor L is lax and colax, it
sends graded algebras to monoids in species and graded coalgebras to comonoids
in species, by Proposition 3.29. However, (L, γ, δ) is not bilax: diagram (3.11) does
not commute. Alternatively, (L, γ) is clearly not braided lax.

One may wonder about the behavior of the adjunction (L,K) with respect
to the colax structure of K. The answer is that there is no colax structure on
L for which the adjunction (L,K) is colax-colax. If this were the case, then by
Proposition 3.96 the functor K would be strong, which is not true.

Since the adjunction (L,K) is not colax-colax, we cannot conclude the existence
of a left adjoint to K on the categories of comonoids. In fact, such a left adjoint
does not exist (Section 18.4).

18.4. Nonexistence of certain adjoints

We establish the nonexistence of certain adjoints of the Fock functors.

18.4.1. Categorical products and coproducts. Let us first consider the cate-
gory of graded connected algebras. The (categorical) product of two objects A and
B is given by the direct sum A⊕B, with component-wise product. The coproduct
is a little more complicated. The component of positive degree n of the coproduct
of A and B is the direct sum of the spaces

(E1)s1 ⊗ · · · ⊗ (Ek)sk

over all decompositions n = s1 + · · ·+ sk into positive integers, where Ei is either
A or B and Ei 6= Ei+1.

Now consider the category of connected monoids in species. The product of
p and q is given by the sum p + q as defined in (8.2) while the coproduct is the
species whose I-component is the direct sum of the spaces

r1[S1]⊗ · · · ⊗ rk[Sk]

over all decompositions I = S1 ⊔ · · · ⊔ Sk into nonempty subsets, where ri is either
p or q and ri 6= ri+1.

For the categories of graded connected coalgebras or connected comonoids in
species, the descriptions of the products and coproducts get switched.
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18.4.2. The functor K. From the above descriptions, it follows that at the level
of monoids, the functor K preserves products but not coproducts (compare the di-
mensions). Similarly, at the level of comonoids, the functor K preserves coproducts
but not products. Applying Proposition A.10, item (ii), we have

(18.17) Mon(Sp)
K

((

|
hh gAlg and gCoalg

| ((

K

hh Comon(Sp),

which says that at the level of monoids (comonoids), the functor K does not have
a right (left) adjoint.

18.4.3. The functor K. Now we turn our attention to the functor K. We note
that k viewed as a trivial module over kSn is flat for all n only if the characteristic
of k is zero. (Indeed, suppose k is flat as kSn-module. Then, as mentioned in
Section 2.5.2, it is also projective. Hence the augmentation ǫ : kSn → k admits
a section ι : k → kSn of kSn-modules. This implies that 1 = a · n! in k where
ι(1) = a ·

∑
σ∈Sn

σ.) Since
MkSn = M ⊗kSn k,

it follows that the functor K : Sp → gVec (defined using coinvariants) is not left
exact in positive characteristic. Hence, it does not preserve kernels and therefore
by Proposition A.10, item (ii), it cannot have a left adjoint.

The nonexistence of a left adjoint for K in positive characteristic at the level
of (co)monoids can be shown similarly as follows. Let p be the field characteristic.
Fix n ≥ p. Choose an injective morphism f : M → N of kSn-modules such that
MSn → NSn is not injective (take, for example, ι : k→ kSn as defined above). Let
p and q be the positive species concentrated in degree n, whose degree n parts are
M and N respectively. View them as non(co)unital (co)monoids with the trivial
(co)product. It is clear that f induces a map p→ q of non(co)unital (co)monoids.
Now adjoin (co)units to obtain an injective map po → qo of (co)monoids. However,
the image of this map under K is not injective. Thus, K does not preserve kernels
and therefore by Proposition A.10, item (ii), it cannot have a left adjoint.

18.5. The right adjoints of K and K on comonoids

The content of this section is summarized in the following four adjunctions.
In other words, both K and K have right adjoints at the level of (cocommutative)
comonoids.

Comon(Sp)
K

%%

Q

ee gCoalg, Comon(Sp)
K

%%

Q

ee gCoalg.

coComon(Sp)
K

%%

cQ

ee cogCoalg, coComon(Sp)
K

%%

cQ

ee cogCoalg.

Most of the work lies in establishing the adjunctions in the top line. The remaining
two then follow by general considerations.

Instead of working with this setup, we will equivalently describe the left ad-

joints of K∨ and K
∨
. The geometric language of projection maps will be used

for this discussion; adequate background is provided in Chapter 10, particularly
Sections 10.4 and 10.5.
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18.5.1. The functor Q∨ from algebras to monoids. We now define a functor

Q∨ : gAlg→ Mon(Sp).

For a graded algebra A, Q∨(A) is defined to be the quotient of the monoid L
(
T (A)

)

as below.

Q∨(A)[I] :=
L
(
T (A)

)
[I]

Rel
=

L[I]⊗
( ⊕
r1+···+rk=|I|

Ar1 ⊗ · · · ⊗Ark
)

Rel
,

where Rel is the ideal generated by the relations:
For C ∈ L[I], a ∈ As, b ∈ At, s+ t = |I|,

(18.18)

C ⊗ ab =
∑

K a vertex in Σ[I]:
type(K)=(s,t)

KC ⊗ a⊗ b if s 6= 0, t 6= 0.

C ⊗ ab = C ⊗ a⊗ b if s = 0 or t = 0.

The product of the monoid L
(
T (A)

)
is given by concatenating the two linear orders

and the two sets of tensor factors from A, and induces the product on the quotient
Q∨(A).

Observe that

Q∨(A)[∅] = A0.

As an example, for the set I = {g, o, p, i}, and a, b ∈ A2, we have the relation:

(18.19) g|o|p|i⊗ ab = (g|o|p|i+ g|p|o|i+ g|i|o|p+ o|p|g|i+ o|i|g|p+ p|i|g|o)⊗ a⊗ b.

The first term corresponds to K = go|pi, the second corresponds to K = gp|oi,
and so forth. Applying the bijection I → [4], which sends g, o, p, i to 1, 2, 3, 4
respectively yields a relation where the terms on the right are indexed by (2, 2)-
shuffle permutations. More generally, we have the relation:

(18.20) C(n) ⊗ ab =
∑

ζ∈Sh (s,t)

ζC(n) ⊗ a⊗ b.

This is a consequence of Proposition 10.6.

18.5.2. An alternative description of Q∨. We have LT = T L from (18.16).
From here one can give an alternative description of Q∨(A) as a quotient of the
monoid T

(
L(A)

)
as follows.

Q∨(A)[I] =
T
(
L(A)

)
[I]

Rel
=

⊕
I1⊔···⊔Ik=I

(L[I1]⊗A|I1|)⊗ · · · ⊗ (L[Ik]⊗A|Ik|)

Rel

where Rel is the ideal generated by the relations below.
For C ∈ L[I], a ∈ As, b ∈ At, s+ t = |I|,

(18.21)

C ⊗ ab =
⊕

K a vertex in Σ[I]:
type(K)=(s,t)

(C1 ⊗ a)⊗ (C2 ⊗ b) if s 6= 0, t 6= 0.

C ⊗ ab = (C ⊗ a)⊗ (C(0) ⊗ b) if t = 0.

C ⊗ ab = (C(0) ⊗ a)⊗ (C ⊗ b) if s = 0.

The linear orders C1 and C2 are defined by bK(KC) = (C1, C2), where bK is the
break map (10.57), and C(0) denotes the basis element of L[∅].



18.5. THE RIGHT ADJOINTS OF K AND K ON COMONOIDS 593

Returning to the previous example, relation (18.19) takes the form:

g|o|p|i⊗ ab = (g|o⊗ a)⊗ (p|i⊗ b) + (g|p⊗ a)⊗ (o|i⊗ b) + (g|i⊗ a)⊗ (o|p⊗ b)

+ (o|p⊗ a)⊗ (g|i⊗ b) + (o|i⊗ a)⊗ (g|p⊗ b) + (p|i⊗ a)⊗ (g|o⊗ b).

Each term corresponds to a decomposition S ⊔ T = I where |S| = |T | = 2. This
reflects the general fact that vertices K of Σ[I] of type (s, t) correspond to decom-
positions S ⊔ T = I where |S| = s and |T | = t.

18.5.3. The ideal of relations. The ideal generated by the second relation
in (18.18) is linearly spanned by the following relations:

For ak ∈ A0 or ak+1 ∈ A0,

C ⊗ a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an = C ⊗ a1 ⊗ · · · ⊗ ak ⊗ ak+1 ⊗ · · · ⊗ an.

First consider the quotient of the monoid L
(
T (A)

)
by this ideal. Its I-component

for I nonempty is given by

L[I]⊗

( ⊕

(r1,...,rk)�|I|

Ar1 ⊗A0 Ar2 ⊗A0 · · · ⊗A0 Ark

)
,

where the tensor products are taken over A0. Hence Q∨(A) can be viewed as the
quotient of this space by the ideal generated by the first relation in (18.18).

Proposition 18.21. For C ∈ L[I], a composition α = (α1, . . . , αl) of |I|, and
ai ∈ Aαi ,

C ⊗ a1a2 · · ·al =
∑

G a face of Σ[I]:
type(G)=α

GC ⊗ a1 ⊗ a2 ⊗ · · · ⊗ al.

Proof. For l = 1, there is only one term in the summation given by the empty
face G = ∅; hence the result is a tautology. For l = 2, the result is the same as the
first relation in (18.18). We provide details for l = 3, the general case is along the
same lines.

C ⊗ abc =
∑

type(K)=(s+t,u)

KC ⊗ ab⊗ c

=
∑

type(K)=(s+t,u)

∑

type(K′)=(s,t)

j(K ′, ∅)(KC)⊗ a⊗ b⊗ c

=
∑

type(G)=(s,t,u)

GC ⊗ a⊗ b ⊗ c.

The first two steps are obtained by applying the first relation in (18.18) twice.
For the last step, we use the fact that a face G of type (s, t, u) can be uniquely
written in the form j(K ′, ∅)K where K is a vertex of type (s + t, u) and K ′ is a
vertex of type (s, t), and where j(K ′, ∅) is the join map (10.57) applied to (K ′, ∅).
This is straightforward from the definitions; a related discussion is given in [12,
Proposition 6.4.1]. �
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18.5.4. The adjunction (Q∨, K∨). We now come to the main computation in
this section.

Proposition 18.22. The functor Q∨ is the left adjoint to K∨ at the level of mon-
oids. In other words, we have isomorphisms

(18.22) HomMon(Sp)(Q
∨(A),p) ∼= HomgAlg

(
A,K∨(p)

)
,

which are natural in A and p.

Proof. Let p = (p, µ, ι) be a monoid in species and

K(p) = (K(p), µϕ, ιϕ0) and K∨(p) = (K∨(p), µψ∨, ιψ∨
0 )

be the corresponding algebras; for the notation see Definition 3.28. Below we
construct the bijection g ←→ f required by (18.22).

The map from right to left. Given a morphism of algebras f : A→ K∨(p), define

g : L
(
T (A)

)
→ p

as follows. We first view f as a linear map f : A → K(p). Now there are two
equivalent ways to proceed. One way is to extend f to a morphism of algebras
T (A) → K(p) and then use the adjunction (L,K) in (18.15) to obtain g. Another
way is to first use the adjunction (L,K) in (18.14) to obtain a morphism of species
L(A) → p and then extend it to a morphism of monoids T

(
L(A)

)
→ p. Both

descriptions make it clear that g is a morphism of monoids. An explicit formula for
g is given below.

g(C, a1 ⊗ · · · ⊗ ak) := p[w]µϕ
(
f(a1), . . . , f(ak)

)
,

where C = wC(n) as in (10.10).
We next show that f being a morphism of algebras implies that g respects the

relations in (18.18).
We start by checking that g respects the first relation. Let C = wC(n) be a

linear order on I, a ∈ As, b ∈ At and T = (s, t) with both s and t not zero.

g(C, ab) = p[w] f(ab)

= p[w]µψ∨
(
f(a), f(b)

)

=
∑

ζ∈Sh(T )

p[w]p[ζ]µϕ
(
f(a), f(b)

)

=
∑

ζ∈Sh(T )

p[wζ]µϕ
(
f(a), f(b)

)

=
∑

ζ∈Sh(T )

g(wζC(n), a⊗ b)

=
∑

F a vertex in Σ[n]:
type(F )=T

g(w(FC(n)), a⊗ b)

=
∑

K a vertex in Σ[I]:
type(K)=T

g(KC, a⊗ b)

The first and fifth equality follows from the definition of g. The second equality
uses the fact that f is a morphism of algebras. The third equality uses the relation
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between ϕ and ψ∨ involving shuffles given in (15.12). The sixth equality follows
from the bijection between T -shuffle permutations and faces of type T , see Propo-
sition 10.6. The last equality uses (10.15) with J = [n], which says that w is a type
and product preserving map between Σ[n] and Σ[I].

The fact that g respects the second relation in (18.18) is verified next. Let
a ∈ As, b ∈ At with either s or t equal to zero.

g(wC(n), ab) = p[w] f(ab)

= p[w]µψ∨
(
f(a), f(b)

)

= p[w]µϕ
(
f(a), f(b)

)

= g(wC(n), a⊗ b).

The main point is to note that ψ∨
(
f(a), f(b)

)
= ϕ

(
f(a), f(b)

)
if either a or b is of

degree zero. The remaining steps follow from the definitions.

The map from left to right. Given a morphism of monoids g : Q∨(A)→ p, define

f : A→ K∨(p)

by

f(a) := g(C(n), a) ∈ p[n],

for a ∈ An, where C(n) is the canonical linear order on [n]. The two computations
below show that f is a morphism of algebras. In a way, they also show the origin
of the relations in (18.18).

Let a and b both have nonzero degree.

µψ∨
(
f(a), f(b)

)
= µψ∨

(
g(C(s), a), g(C(t), b)

)

= µ

( ∑

ζ∈Sh(T )

ζϕ
(
g(C(s), a), g(C(t), b)

))

= µ

( ∑

ζ∈Sh(T )

ζ
(
g(C(s), a), g(C(s+1,s+t), b)

))

=
∑

ζ∈Sh(T )

ζµ
(
g(C(s), a), g(C(s+1,s+t), b)

)

=
∑

ζ∈Sh(T )

ζg(C(s+t), a⊗ b)

= g

( ∑

ζ∈Sh(T )

(ζC(s+t), a⊗ b)

)

= g(C(s+t), ab)

= f(ab).

The first and last equality follows from the definition of f . For the second equality,
we use the relation between ϕ and ψ∨ given in (15.12). For the third equality, we
use the definition of ϕ and the fact that g is a morphism of species. Here C(s+1,s+t)

refers to the canonical linear order on [s + 1, s + t]. For the fourth equality, we
use that µ is a morphism of species and hence commutes with ζ. For the fifth
equality, we use that g is a morphism of monoids. For the seventh equality, we use
relation (18.20).
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Let the degree of either a or b be zero.

µψ∨
(
f(a), f(b)

)
= µϕ

(
f(a), f(b)

)

= µϕ
(
g(C(s), a), g(C(t), b)

)

= µ
(
g(C(s), a), g(C(s+1,s+t), b)

)

= g(C(s+t), a⊗ b)

= g(C(s+t), ab)

= f(ab).

In the first equality, we use ψ∨
(
f(a), f(b)

)
= ϕ

(
f(a), f(b)

)
which is implied by

our hypothesis. In the fourth equality, we use the second relation in (18.18). The
remaining steps follow from the definitions.

�

18.5.5. The functor Q
∨

from algebras to monoids. We now define a functor

Q
∨

: gAlg→ Mon(Sp).

For a graded algebra A, Q
∨
(A) is defined to be the quotient of the monoid T (tA)

as below.

Q
∨
(A)[I] :=

T (tA)[I]

Rel
=

⊕
I1⊔···⊔Ik=I

A|I1| ⊗ · · · ⊗A|Ik|

Rel
where Rel is the ideal generated by the relations below.

For a ∈ As, b ∈ At, s+ t = |I|,

(18.23) ab =
⊕

S⊔T=I:
|S|=s,|T |=t

a⊗ b.

This is similar to the definition of Q∨(A) as a quotient of T
(
L(A)

)
, with the

above relation being the analogue of (18.21). Comparing the two definitions, it is
clear that

Q
∨
(A)[I] =

Q∨(A)[I]

〈C ⊗ a = D ⊗ a for C,D ∈ L[I], a ∈ A〉
.

An argument along the lines of Proposition 18.22 shows that:

Proposition 18.23. The functor Q
∨

is the left adjoint to K
∨

at the level of mon-
oids. In other words, we have isomorphisms

(18.24) HomMon(Sp)(Q
∨
(A),p) ∼= HomgAlg

(
A,K

∨
(p)
)
,

which are natural in A and p.

18.5.6. The commutative version. Let cQ∨ and cQ
∨

be the functors respec-
tively defined as the composites

gAlgco → gAlg
Q∨

−−→ Mon(Sp)
(−)c
−−−→ Monco(Sp)

gAlgco → gAlg
Q

∨

−−→ Mon(Sp)
(−)c
−−−→ Monco(Sp)

where the functor (−)c sends a monoid to its abelianization. The following are
commutative analogues of Propositions 18.22 and 18.23.
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Proposition 18.24. The functor cQ∨ is the left adjoint to K∨ at the level of
commutative monoids. In other words, we have isomorphisms

(18.25) HomMonco(Sp)(cQ
∨(A),p) ∼= HomgAlgco

(
A,K∨(p)

)
,

which are natural in A and p.

Proof. Observe that the following is an adjunction

Mon(Sp)

(−)c
%%

inc

ee Monco(Sp).

By composing it with the adjunction (Q∨,K∨), we obtain an adjunction between
gAlg and Monco(Sp). Note that gAlgco is a full subcategory of gAlg, and that K∨

preserves commutativity. Now the result follows by using Proposition A.5. �

By a similar argument:

Proposition 18.25. The functor cQ
∨

is the left adjoint to K
∨

at the level of
commutative monoids. In other words, we have isomorphisms

(18.26) HomMonco(Sp)(cQ
∨
(A),p) ∼= HomgAlgco

(
A,K

∨
(p)
)
,

which are natural in A and p.

18.5.7. Interaction with the functors T and S. For completeness, we record
some commutative diagrams involving the Q functors. Similar results for the func-
tors R and L have been discussed earlier in this chapter.

Proposition 18.26. The following diagrams commute. The functors in the left
diagrams are the left adjoints of the corresponding functors in the right diagrams.

gAlg
Q∨

// Mon(Sp)

gVec
R∨

//

T

OO

Sp

T

OO
gAlg

fℓ

��

Mon(Sp)
K∨

oo

fℓ

��

gVec Sp
K∨

oo

gAlg
Q

∨

// Mon(Sp)

gVec
R

∨
//

T

OO

Sp

T

OO
gAlg

fℓ

��

Mon(Sp)
K

∨

oo

fℓ

��

gVec Sp
K

∨
oo

gAlgco cQ∨

// Monco(Sp)

gVec
R∨

//

S

OO

Sp

S

OO
gAlgco

fℓ

��

Monco(Sp)
K∨

oo

fℓ

��

gVec Sp
K∨

oo
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gAlgco cQ
∨

// Monco(Sp)

gVec
R

∨
//

S

OO

Sp

S

OO
gAlgco

fℓ

��

Monco(Sp)
K

∨

oo

fℓ

��

gVec Sp
K

∨
oo

As an example, applying the diagrams on the left to a graded vector space
concentrated in degree 1 (denote the component in degree 1 by V ), we obtain:

Q∨
(
T (V )

)
= Q

∨(
T (V )

)
= L ◦XV = L×EV

cQ∨
(
S(V )

)
= cQ

∨(
S(V )

)
= E ◦XV = EV .

The first object was considered in Example 11.11. It is the free twisted algebra of
Barratt (Section 18.3.3). It is the free object for the forgetful functor from twisted
algebras to vector spaces. Thus the functors L and Q∨ though different yield the
same monoid when evaluated on the free algebra. The second object was considered
in Example 8.18. It is the free commutative twisted algebra [291, Proposition 10].
It is the free object for the forgetful functor from commutative twisted algebras to
vector spaces.

In the special case when V is one-dimensional, we have:

Q∨(k[x]) = Q
∨
(k[x]) = L cQ∨(k[x]) = cQ

∨
(k[x]) = E.

This is consistent with the fact that E is the commutative quotient of L.



CHAPTER 19

Decorated Fock Functors and

Creation-Annihilation

In Chapters 15 and 16, we defined and studied various Fock functors and their
deformations. We recall that these are bilax functors from species to graded vector
spaces. In this chapter, we consider generalizations of these functors which depend
on a vector space (the space of decorations). They are summarized in Table 19.1.
When the vector space is the base field k, we recover the earlier Fock functors. The
earlier theory generalizes in a straightforward way to this more general setting.

In a sense, one may view the result of applying the functor KV (or its relatives)
to a species p as a version of the graded vector space K(p) (or its relatives) in which
the given combinatorial structure determined by the species p has been decorated
with elements of the vector space V .

We begin by defining the decorated full Fock functors and the decorated bosonic
Fock functors in Section 19.1 and show that they are bilax. We also explain how they
can be constructed from their undecorated counterparts using the decorated expo-
nential species. The discussion is continued in Section 19.2 where interrelationships
between these functors are understood via the decorated norm transformation.

The values of the various decorated Fock functors on the exponential species
are the tensor Hopf algebra, the shuffle Hopf algebra, the symmetric and exterior
Hopf algebras, and their deformations (Section 2.6). The underlying vector spaces
of these Hopf algebras are known as Fock spaces; the standard terminology of
these spaces is summarized in Table 19.2. This constitutes our motivation for the
terminology “Fock functors”.

We now turn to a feature which is new to this chapter. Graded vector spaces
with creation-annihilation operators were discussed in Section 2.8. Fock spaces are
examples of such spaces. Further, the creation-annihilation operators that they
carry satisfy canonical commutation relations. The point of view of this chapter is

Table 19.1. Decorated Fock functors.

Fock functor Name

KV , K∨
V Decorated full Fock functor

KV,q, K∨
V,q Deformed decorated full Fock functor

ℑV,q Decorated anyonic Fock functor

KV , ℑV , K
∨
V Decorated bosonic Fock functor

KV,−1, ℑV,−1, K
∨
V,−1 Decorated fermionic Fock functor

KV,0, ℑV,0, K∨
V,0 Decorated free Fock functor

599
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Table 19.2. Fock spaces.

Fock spaces Name

KV (E), K∨
V (E), KV,q(E), K∨

V,q(E) Full Fock space

ℑV,q(E) Anyonic Fock space

KV (E), ℑV (E), K
∨
V (E) Bosonic Fock space

KV,−1(E), ℑV,−1(E), K
∨
V,−1(E) Fermionic Fock space

KV,0(E), ℑV,0(E), K∨
V,0(E) Free Fock space

as follows. Species with up-down operators were discussed in Section 8.12, the basic
example being that of the exponential species (Example 8.55). Now Fock functors
convert up-down operators to creation-annihilation operators. This provides an
explanation for the existence of such operators on Fock spaces. Further, we may
now apply the Fock functors to other species which carry up-down operators leading
to more general Fock spaces equipped with creation-annihilation operators. These
ideas are due to Guţă and Maassen [158] and Bożejko and Guţă [64], and are
explained in Sections 19.3 and 19.4.

Sections 19.5 and 19.6 deal with commutation relations. We introduce the no-
tion of a species with balanced operators. This is a species with up-down operators
where the up and down operators need to satisfy some compatibility relations. The
exponential species is the basic example of a species with balanced operators. The
main result here is that the Fock functors convert a species with balanced opera-
tors to a graded vector space with creation-annihilation operators which satisfy the
canonical commutation relations.

The rest of the chapter deals with deformations. Deformations of the decorated
full Fock functors, along with the fermionic and anyonic cases are treated in Sec-
tion 19.7. The q-commutation relation is treated in Section 19.8. In Section 19.9,
we consider a general situation in which the decorated Fock functors are deformed
using a Yang–Baxter operator on V . The anyonic Fock space in this case is the
Nichols algebra associated to V (also called the quantum symmetric algebra).

There is another approach to combinatorial models for Fock spaces due to Baez
and Dolan [29, Section 5]. It involves a generalization of the notion of species called
stuff type. We also point the reader to the related works [30] and [280]. We do not
pursue the connections between this interesting approach and the ideas presented
here.

We thank Roland Speicher for making us aware of [64, 158].

19.1. Decorated Fock functors

In this section, we define the decorated Fock functors along with their bilax
structures. We explain how the decorated and undecorated Fock functors determine
each other. We also address the behavior of the functors with respect to duality and
the contragredient construction of Section 3.10. The connection to Schur functors
is also explained.
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19.1.1. Decorated Fock functors. Let V be a vector space. For each n ≥ 0,
there is a left action of the symmetric group Sn on V ⊗n given by

σ · (v1 · · · vn) := vσ−1(1) · · · vσ−1(n).

For simplicity, we omit the tensor symbols between the vi’s.
Let p be a species. Then Sn acts diagonally on p[n]⊗ V ⊗n,

(19.1) σ · (x⊗ v1 · · · vn) = p[σ](x) ⊗ σ · (v1 · · · vn).

The spaces of invariants and of coinvariants for this action are respectively denoted
by

p[n]⊗Sn V ⊗n :=
(
p[n]⊗ V ⊗n

)Sn

and

p[n]⊗Sn V
⊗n :=

(
p[n]⊗ V ⊗n

)
Sn
.

In other words, p[n] ⊗Sn V ⊗n is the subspace of p[n] ⊗ V ⊗n consisting of those
tensors

∑
i xi ⊗ v

i
1 · · · v

i
n such that

∑

i

p[σ](xi)⊗ σ · (v
i
1 · · · v

i
n) =

∑

i

xi ⊗ v
i
1 · · · v

i
n

for all σ ∈ Sn, and p[n]⊗Sn V
⊗n is the quotient of p[n]⊗ V ⊗n in which

x⊗ v1 · · · vn = p[σ](x) ⊗ σ · (v1 · · · vn)

for all σ ∈ Sn.

Definition 19.1. The decorated Fock functors

KV ,K
∨
V ,KV ,K

∨
V : Sp→ gVec

are defined by

KV (p) := K∨
V (p) :=

⊕

n≥0

p[n]⊗ V ⊗n,

KV (p) :=
⊕

n≥0

p[n]⊗Sn V
⊗n,

K
∨
V (p) :=

⊕

n≥0

p[n]⊗Sn V ⊗n.

The quotient maps KV (p)։ KV (p) and the inclusions K
∨
V (p) →֒ K∨

V (p) define
natural transformations

KV ⇒ KV and K
∨
V ⇒ K

∨
V .

We refer to KV and K∨
V as the decorated full Fock functors and to KV and K

∨
V as

the decorated bosonic Fock functors.
We refer to V as the space of decorations. Setting V = k recovers the (undec-

orated) Fock functors of Definitions 15.1 and 15.5. The first thing we do below is
to extend the bilax monoidal structure of these functors to the decorated context.
It is this structure that distinguishes between KV and K∨

V (as in the undecorated
context). In the next section, we will see via the decorated norm transformation

that the functors KV and K
∨
V are isomorphic in characteristic 0.
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19.1.2. Schur functors. Let p be a fixed species. The Schur functor associated
to p is [260, Definition 1.24]

Sp : Vec→ Vec, Sp(V ) :=
⊕

n≥0

p[n]⊗Sn V
⊗n.

The functor Sp is analytic. An intrinsic characterization of analytic functors is
given by Joyal in [182, Théorème 1, Appendice]. Together with the results of [182,
§2.0 and §4.1], this implies that if k is a field of characteristic 0, any analytic
functor on Vec is the Schur functor of a unique species p. More precisely, there is
an equivalence between the category of analytic functors on Vec and that of species.
A related result is given by Fresse [137, Proposition 1.2.5].

When dealing with the decorated Fock functors Sp → gVec, the vector space
V is fixed and the species p is varying. Thus

KV (p) = Sp(V ).

The same perspective can be adopted for the functor K
∨
V . This leads to the divided

power functor Γp : Vec→ Vec defined by

Γp(V ) := K
∨
V (p).

This functor is studied by Fresse in [136, Section 1] and [137, Section 1.2.12].
Additional information on Schur functors can be found in [137, Section 1.2].

19.1.3. Bilax structure of the decorated Fock functors. Let V be a fixed
vector space. We proceed to endow the V -decorated Fock functors with a bilax
monoidal structure.

Given species p and q, we define morphisms of graded vector spaces

KV (p) · KV (q)
ϕp,q

//
KV (p · q)

ψp,q

oo

as follows. The degree n components of these maps

⊕

s+t=n

(
p[s]⊗ V ⊗s

)
⊗
(
q[t]⊗ V ⊗t

) ϕp,q
//
( ⊕

S⊔T=[n]

p[S]⊗ q[T ]

)
⊗ V ⊗n

ψp,q

oo

are the direct sum of the following maps:

p[s]⊗ V ⊗s ⊗ q[t]⊗ V ⊗t ϕp,q
−−−→ p[s]⊗ q[s+ 1, s+ t]⊗ V ⊗n

x⊗ v1 · · · vs ⊗ y ⊗ w1 · · ·wt 7−→ x⊗ q[cano](y)⊗ v1 · · · vsw1 · · ·wt,

p[S]⊗ q[T ]⊗ V ⊗n ψp,q
−−−→ p[s]⊗ V ⊗s ⊗ q[t]⊗ V ⊗t

x⊗ y ⊗ v1 · · · vn 7−→ p[cano](x)⊗ vi1 · · · vis ⊗ q[cano](y)⊗ vj1 · · · vjt ,

where we have written S = {i1 < · · · < is} and T = {j1 < · · · < jt} and cano
denotes the canonical order-preserving maps, as in Notation 2.5. Thus ϕ and ψ act
on the species part as in the undecorated case (Section 15.1.1), while on tensors ϕ
concatenates and ψ deshuffles. Note that the composite ψp,qϕp,q is the identity,
but in general these maps are not invertible on the degree n component, as before.



19.1. DECORATED FOCK FUNCTORS 603

Note that KV (1) = 1, the graded vector space of (2.7). We let ϕ0 and ψ0 be
the identity maps

1
ϕ0

//
KV (1).

ψ0

oo

We proceed similarly for the functor K∨
V . The maps

⊕

s+t=n

(
p[s]⊗ V ⊗s

)
⊗
(
q[t]⊗ V ⊗t

) ψ∨
p,q

//
( ⊕

S⊔T=[n]

p[S]⊗ q[T ]
)
⊗ V ⊗n

ϕ∨
p,q

oo

as follows. The lax structure map ψ∨
p,q is the direct sum of the following maps, one

for each s, t and each summand in the target with |S| = s and |T | = t:

p[s]⊗ V ⊗s ⊗ q[t]⊗ V ⊗t −→ p[S]⊗ q[T ]⊗ V ⊗n

x⊗ v1 · · · vs ⊗ y ⊗ w1 · · ·wt 7−→ p[cano](x)⊗ q[cano](y)⊗ u1 · · ·un.

Here, we write S = {i1 < · · · < is} and T = {j1 < · · · < jt} and define

uh :=

{
vk if h = ik ∈ S,

wk if h = jk ∈ T .

In other words, the tensor u1 · · ·un is the result of shuffling the tensors v1 · · · vs and
w1 · · ·wt according to the shuffle determined by S and T .

The colax structure map ϕ∨
p,q is the direct sum of the following maps:

p[s]⊗ q[s+ 1, s+ t]⊗ V ⊗n −→ p[s]⊗ V ⊗s ⊗ q[t]⊗ V ⊗t

x⊗ y ⊗ v1 · · · vn 7−→ x⊗ v1 · · · vs ⊗ q[cano](y)⊗ vs+1 · · · vs+t.

On the components for which S 6= [s] (and hence T 6= [s+ 1, s+ t]), the map ϕ∨
p,q

is zero.
We let ϕ∨

0 and ψ∨
0 be the identity maps of K∨

V (1) = 1.
The structure maps of KV descend to coinvariants and those of K∨

V restrict to
invariants, as indicated below.

KV (p) · KV (q)

����

ϕp,q
//
KV (p · q)

����

ψp,q

oo

KV (p) · KV (q)

ϕp,q
//______
KV (p · q)

ψp,q

oo_ _ _ _ _ _

K∨
V (p) · K∨

V (q)

ψ∨
p,q

//
K∨
V (p · q)

ϕ∨
p,q

oo

K
∨
V (p) · K

∨
V (q)

?�

OO

ψ
∨
p,q

//______
K

∨
V (p · q)

?�

OO

ϕ∨
p,q

oo_ _ _ _ _ _

The proofs of these statements are similar to those in the undecorated case; see the
proof of Proposition 15.2 for the coinvariant case.

We now state the main result of this section.

Theorem 19.2. The functors

(KV , ϕ, ψ), (K∨
V , ψ

∨, ϕ∨) : (Sp, ·, βq)→ (gVec, ·, βq)

are bilax monoidal. The functors

(KV , ϕ, ψ), (K
∨
V , ψ

∨
, ϕ∨) : (Sp, ·, βq)→ (gVec, ·, βq)
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are bistrong monoidal. The natural transformations KV ⇒ KV and K
∨
V ⇒ K

∨
V are

morphisms of bilax monoidal functors.

The proofs are again similar to those in the undecorated case; see Theorems 15.3
and 15.6. We recall here that βq are the deformed braidings on species (9.1) and
vector spaces (2.50). Due to the similarity in their definitions, the parameter q
plays a passive role in the proof.

Alternatively, the above result can be deduced from the following result (whose
proof is straightforward) used in conjunction with Theorem 3.22.

Proposition 19.3. The functor KV is the following composite of bilax functors:

(19.2) (Sp, ·, βq)
(−)×EV
−−−−−→ (Sp, ·, βq)

K
−→ (gVec, ·, βq).

The same result holds for the other decorated Fock functors as well ; they are ob-
tained by precomposing their undecorated counterparts with (−)×EV .

Here, EV is the bimonoid of the decorated exponential species discussed in Ex-
ample 8.18, and (−)×EV is the bilax functor associated to it as in Proposition 8.66.
This functor is in fact bistrong. Strictly speaking, the latter functor was studied for
the case q = 1, but the same can be done for a general q by using Proposition 9.5.

To summarize, the undecorated and decorated Fock functors determine each
other. The former is the special case of the latter in which V = k, while the latter
can be obtained from the former by precomposing with (−)×EV .

Example 19.4. We apply the decorated Fock functors to the Hopf monoid E. In
view of Proposition 19.3 and Example 15.16, we obtain

KV (E) = K(EV ) = T (V ) and KV (E) = K(EV ) = S(V ),

the tensor and symmetric Hopf algebras on V (the elements of V have degree one).
Similarly,

K∨
V (E) = T ∨(V ) and K

∨
V (E) = S∨(V ),

the shuffle Hopf algebra and its symmetric Hopf subalgebra. These examples have
been considered by Fresse [136, Section 1.2.11].

Thus, one may view the result of applying the functor KV (or its relatives) to
a Hopf monoid p in species as a decorated version of the Hopf algebra K(p) (or its
relatives). Hence, every Hopf algebra of the form K(p) admits a decorated version
in this sense.

19.1.4. Duality between decorated Fock functors. Let V be a finite-dimen-
sional vector space. This implies a natural isomorphism of Sn-modules

p[n]∗ ⊗ (V ∗)⊗n ∼= (p[n]⊗ V ⊗n)∗

for any finite-dimensional species p and n ≥ 0, and hence an isomorphism of func-
tors

K∨
V ∗(p∗) ∼= KV (p)∗.
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If p and q are finite-dimensional species, then the bilax structures of KV and
K∨
V ∗ are related through duality as expressed by the following commutative dia-

grams.

K∨
V ∗(p∗) · K∨

V ∗(q∗)
ψ∨

// K∨
V ∗(p∗ · q∗)

KV (p)∗ · KV (q)∗ K∨
V ∗

(
(p · q)∗

)

(
KV (p) · KV (q)

)∗
ψ∗

// KV (p · q)∗

K∨
V ∗(p∗) · K∨

V ∗(q∗) K∨
V ∗(p∗ · q∗)

ϕ∨

oo

KV (p)∗ · KV (q)∗ K∨
V ∗

(
(p · q)∗

)

(
KV (p) · KV (q)

)∗
KV (p · q)∗

ϕ∗
oo

This means that the decorated full Fock functors KV and K∨
V ∗ are contragredient,

in the sense of Section 3.10. A similar statement holds for the decorated bosonic
Fock functors. The above discussion can be summarized as follows.

Proposition 19.5. Let V be a finite-dimensional vector space. On finite-dimen-

sional species, the bilax functors (K∨
V ∗ , ψ∨, ϕ∨) and (K

∨
V ∗ , ψ

∨
, ϕ∨) are respectively

isomorphic to the contragredients of (KV , ϕ, ψ) and (KV , ϕ, ψ).

This result can also be viewed more conceptually as a consequence of earlier
results of a similar nature. For example, the fact that the contragredient of KV is
K∨
V ∗ can be deduced as follows.

(KV )∨(−) ∼= K∨
((

(−)×EV

)∨) ∼= K∨
(
(−)×EV ∗

)
∼= K∨

V ∗ .

The first isomorphism follows by applying the contragredient construction to (19.2),
and noting that the contragredient of K is K∨ (Proposition 15.8). The middle iso-
morphism follows from the self-duality of the Hadamard functor (Proposition 8.60),
and noting that the dual of EV is EV ∗ (Example 8.23). The last isomorphism fol-
lows from Proposition 19.3 applied to K∨

V ∗ .

19.2. The decorated norm transformation

Let V be a vector space. The norm transformation (Definition 15.19) can be
extended to the decorated context.

Definition 19.6. For any species p, let κp : KV (p)→ K∨
V (p) be the map of graded

vector spaces given by

κp(x⊗ v1 · · · vn) :=
∑

σ∈Sn

σ · (x⊗ v1 · · · vn),

for any x ∈ p[n], vi ∈ V .

The action of Sn on p[n]⊗ V ⊗n is as in (19.1). Each homogeneous component
of κp is an instance of the norm map of Section 2.5. It follows that κ : KV ⇒ K∨

V

is a natural transformation, which we call the decorated norm. Note that the
dependence of κ on V is not manifest in the notation.

Proposition 19.7. The decorated norm is a morphism of bilax monoidal functors

κ : KV ⇒ K
∨
V .
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Proof. This can be proved directly in the same way as Proposition 15.20.
Alternatively, it may also be deduced from it, using Proposition 19.3 and noting
that the decorated norm κ : KV ⇒ K∨

V is the composition of the undecorated norm
κ : K ⇒ K∨ with the bilax functor (−)×EV . �

The decorated norm map κp : KV (p) → K∨
V (p) factors through coinvariants

and its image consists of invariant elements (see Section 2.5). It therefore gives rise
to a morphism of bilax monoidal functors

κ : KV ⇒ K
∨
V

fitting in the commutative diagram below.

(19.3)

KV
κ +3

��

K∨
V

KV κ
+3 K

∨
V

KS

Proposition 19.8. If k is a field of characteristic 0, then the morphism of bistrong
monoidal functors

κ : KV ⇒ K
∨
V

is an isomorphism. More generally, for any commutative ring k, if the species p
consists of flat kSn-modules p[n] and V is a flat k-module, then

κp : KV (p)→ K
∨
V (p)

is invertible.

Proof. If V is flat as a k-module, then so is V ⊗n. This and the flatness of
p[n] as a kSn-module imply that p[n] ⊗ V ⊗n is flat as a kSn-module, according
to [69, Exercise III.0.1]. The result then follows from Lemma 2.20. �

19.2.1. The image of the decorated norm. Let ℑV denote the (co)image of
the decorated norm transformation κ : KV ⇒ K∨

V , in the sense of Section 3.11. It
follows from Proposition 19.8 that, in characteristic 0,

KV , ℑV , and K
∨
V

are isomorphic bistrong monoidal functors. In general, these are three distinct
bistrong monoidal functors related by morphisms of bistrong functors

KV ⇒ ℑV ⇒ K
∨
V .

The connection between all five functors is as in the following diagram.

KV
κ +3

��

K∨
V

KV
+3 ℑV +3 K

∨
V

KS
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Suppose now that V and p are finite-dimensional. It follows from Proposi-
tion 19.5 that κ is related to its dual as follows.

K∨
V (p)∗

(κp)∗
// KV (p)∗

KV ∗(p∗) κp∗
// K∨

V ∗(p∗)

This means that the contragredient (3.47) of the V -decorated norm κ : KV ⇒ K∨
V is

the V ∗-decorated norm κ : KV ∗ ⇒ K∨
V ∗ . A similar relation holds for κ : KV ⇒ K

∨
V

and κ : KV ∗ ⇒ K
∨
V ∗ . More generally, Lemma 2.22 yields:

Proposition 19.9. Let V be a finite-dimensional vector space. On finite-dimen-
sional species, the contragredient of diagram (19.3) for V is diagram (19.3) for V ∗.

We also note from Proposition 3.119 and the discussion preceding it that

(ℑV )∨ = ℑV ∗ ,

and hence the image ℑV is self-dual (regardless of the characteristic).

Remark 19.10. Recall the connection between decorated Fock functors and Schur
functors from Section 19.1.2. The norm transformation has been considered by
Fresse in the context of Schur functors in [136, Section 1.1.14] and [137, Sec-
tion 1.2.12].

19.3. Classical creation-annihilation operators

The mathematical context for creation-annihilation operators is that of graded
vector spaces. This was discussed in Section 2.8. We now briefly review the main
motivating example, namely that of creation-annihilation operators on Fock spaces.
The terminology that we are using in this chapter is borrowed from this example.

Bosons and fermions are commonly used terms in particle physics; very roughly,
they stand for classes of particles which behave like +1 and −1 respectively. They
are named after the physicists Enrico Fermi and Satyendra Bose. Fock spaces are
used in quantum mechanics to describe quantum states with a variable number of
particles. They are named after the physicist V. A. Fock. The terms bosonic Fock
space and fermionic Fock space are used depending on whether the particles are
bosons or fermions. A creation operator acts on bosonic or fermionic Fock space
by increasing the number of particles by 1. Similarly, an annihilation operator de-
creases the number of particles by 1. A discussion of these ideas can be found in the
books by Merzbacher [272, Chapter 20] and Landau and Lifshitz [220, Chapter IX].
For the original work of Fock, see [127, paper 32-2].

To relate to the notation below, V stands for the quantum states of a single
particle. It is customary in physics textbooks to choose a basis for V and proceed
from there; however this is not necessary for our purposes. The canonical commuta-
tion relations between creation and annihilation operators are stated here without
proof. They can be checked directly and will also follow from the generalities of
subsequent sections.
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19.3.1. Classical Fock spaces. Let V be a vector space. The algebraic Fock
spaces associated to V are the underlying spaces of the tensor and symmetric alge-
bras of V [368, Examples 1.3.3]. More precisely, full Fock space is

T (V ) =
⊕

n≥0

V ⊗n,

the underlying space of the tensor algebra, and bosonic Fock space is

S(V ) =
⊕

n≥0

(V ⊗n)Sn ,

the underlying space of the symmetric algebra.
Suppose there is given a bilinear form 〈 , 〉 on V . We may extend it to full

Fock space by

〈v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wm〉 :=

{
〈v1, w1〉 · · · 〈vn, wn〉 if n = m,

0 otherwise.

In this context, the following operators on full Fock space are of interest [368,
Example 1.5.3]: the (left) annihilation operator associated to v ∈ V ,

a(v) : T (V )→ T (V ), a(v)(1) = 0, a(v)(v1 ⊗ · · · ⊗ vn) = 〈v, v1〉 ⊗ v2 · · · ⊗ vn,

and the (left) creation operator associated to v,

c(v) : T (V )→ T (V ), c(v)(1) = v, c(v)(v1 ⊗ · · · ⊗ vn) = v ⊗ v1 ⊗ · · · ⊗ vn.

The operators a(v) and c(v) are adjoint with respect to the above bilinear form on
T (V ), in the sense that

〈a(v)(ξ), η〉 = 〈ξ, c(v)(η)〉

for every ξ, η ∈ T (V ).
Note that full Fock space is also the underlying space of the shuffle algebra

T ∨(V ). Thus one may view the creation-annihilation operators as acting on ei-
ther the tensor algebra or the shuffle algebra. It turns out that, from an algebraic
point of view, it is more natural to let creation act on T (V ) and annihilation on
T ∨(V ). Indeed, it is easy to see that each annihilation operator is a derivation for
the product of T ∨(V ) (shuffle), and each creation operator is a coderivation for the
coproduct of T (V ) (deshuffle). In addition, the creation operators descend to coin-
variants and give rise to well-defined operators on bosonic Fock space. Dually, the
annihilation operators restrict to invariants and give rise to well-defined operators
on S∨(V ). This is shown below.

T (V )
c(v)

//

����

T (V )

����

S(V )
c̄(v)

//____ S(V )

T ∨(V )
a(v)

// T ∨(V )

S∨(V )
?�

OO

ā(v)
//____ S∨(V )

?�

OO

If the characteristic of the base field is 0, bosonic Fock space may be identified
with the underlying space of S∨(V ) by means of the transformation κ. In this situ-
ation, creation-annihilation operators act on bosonic Fock space and can therefore
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be composed. The following commutation relations hold on bosonic Fock space.

c̃(w)c̃(v) = c̃(v)c̃(w),

ā(w)ā(v) = ā(v)ā(w),

ā(w)c̃(v) − c̃(v)ā(w) = 〈v, w〉 id

These are identities of operators on S∨(V ). To keep the notation straight, we have
written c̃(v) for the operator corresponding to c̄(v).

We will be working with a more general formulation of these relations given
in (19.4).

19.3.2. The one-dimensional case. Let V = k, the base field, equipped with
the canonical inner product 〈1, 1〉 = 1. In this case, full Fock space and bosonic
Fock space coincide and equal the space of polynomials in one variable:

T (V ) = S(V ) = k[x] and T ∨(V ) = S∨(V ) = k{x}.

These are the polynomial and divided power Hopf algebras of Example 2.3. Since
V is one-dimensional, up to a scalar there is only one creation and one annihilation
operator (corresponding to v = 1). These are given by

x : k[x]→ k[x] xn 7→ xn+1 and k{x} → k{x} x(n) 7→ x(n−1),

with the convention that x(−1) = 0. The former is a coderivation, while the latter
is a derivation.

In characteristic 0, the norm map xn 7→ n!x(n) provides an isomorphism of
Hopf algebras from k[x] to k{x}. The annihilation operator when viewed as an
operator on k[x] via this isomorphism is the derivative operator

d

dx
: k[x]→ k[x] xn 7→ nxn−1.

It is well-known or one verifies directly that the creation-annihilation operators
satisfy:

d

dx
x− x

d

dx
= 1.

This is the simplest instance of the commutation relation on bosonic Fock space
mentioned above.

19.3.3. Generalized Fock spaces. Guţă and Maassen [158] and Bożejko and
Guţă [64] work with the assumption that V is a Hilbert space. We limit our
attention to the algebraic aspects of their constructions. This allows us to work in
a slightly more general setting in which a bilinear form on V is not required. In this
setting, there is a creation operator for each v ∈ V (as in the classical setting), and
an annihilation operator for each functional f ∈ V ∗ (rather than for each v ∈ V ).
The commutation relations on bosonic Fock space then take the following form.

(19.4)

c̃(w)c̃(v) = c̃(v)c̃(w),

ā(g)ā(f) = ā(f)ā(g),

ā(f)c̃(v)− c̃(v)ā(f) = f(v) id

These are also called canonical commutation relations (usually abbreviated C.C.R).
As noted in Example 19.4, the classical Fock spaces are the values of the deco-

rated Fock functors on the exponential species: KV (E) = T (V ) andKV (E) = S(V ).
In the next sections of this chapter, following [158, 64] we present a generalization of



610 19. DECORATED FOCK FUNCTORS AND CREATION-ANNIHILATION

these constructions in which the classical Fock spaces are replaced by the values of
the decorated Fock functors on species with up-down operators. We refer to these
as generalized Fock spaces. We show that if the operators are balanced, then the
commutation relations (19.4) continue to hold on generalized bosonic Fock spaces
(Proposition 19.27).

19.3.4. Fermionic Fock spaces. The emphasis of this chapter is on bosonic
Fock spaces. However, in the final sections, we do touch upon fermionic, and more
generally, anyonic Fock spaces. The fermionic Fock space is

Λ(V ) =
⊕

n≥0

(V ⊗n)Sn ,

the underlying space of the exterior algebra; the invariants are taken with respect
to the signed action of Sn:

(19.5) V ⊗k → V ⊗k, v1 ⊗ · · · ⊗ vk 7→ (−1)invσ vσ−1(1) ⊗ · · · ⊗ vσ−1(k),

where inv σ denotes the number of inversions of σ (2.20). This is the usual action
tensored with the sign representation.

The following commutation relations hold on fermionic Fock space.

(19.6)

c̃(w)c̃(v) = −c̃(v)c̃(w),

ā(g)ā(f) = −ā(f)ā(g),

ā(f)c̃(v) + c̃(v)ā(f) = f(v) id .

We show that these relations continue to hold on generalized fermionic Fock spaces
that arise from species with balanced operators (Proposition 19.39).

19.4. The generalized Fock spaces of Guţă and Maassen

We present a construction of generalized Fock spaces; these are termed com-
binatorial Fock spaces by Guţă and Maassen [158]. We formulate it in functorial
terms, in agreement with the main ideas in this monograph. More precisely, gen-
eralized Fock spaces are the values of the decorated Fock functors on species with
up-down operators. In particular, we add to their constructions by paying atten-
tion to the algebraic properties of the functors and of the resulting Fock spaces.
Our setting is closer to that of Bożejko and Guţă [64, Section 2], but we work with
arbitrary vector spaces rather than Hilbert spaces.

We point out that the entire theory applies to V = k. In this case, there are
canonical choices for v and f . This yields results for undecorated Fock functors
which go beyond those discussed in Chapter 15. We do not make them explicit.

Table 19.3. Categories with +1 and −1 operators.

Categories Description

Spu Species with up operators

Spd Species with down operators

gVecc Graded vector spaces with creation operators

gVeca Graded vector spaces with annihilation operators
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We will freely use the set up of Sections 2.8, 8.11 and 8.12. The notations for
the categories are reviewed in Table 19.3. Throughout this section, V is a fixed
vector space, v ∈ V is a vector, and f ∈ V ∗ is a functional.

19.4.1. Constructions of Guţă and Maassen. We extend the decorated full
Fock functor

KV : Sp→ gVec

to the category of species with up operators, and its companion

K∨
V : Sp→ gVec

to the category of species with down operators. The choices of up operators for
K and down operators for K∨ are not arbitrary; they are justified below (see also
Section 19.3).

Definition 19.11. We define a functor

KV,v : Spu → gVecc

by

KV,v(p, u) :=
(
KV (p), c(v)

)
,

where KV : Sp → gVec is the decorated full Fock functor, and the homogeneous
map

c(v) : KV (p)→ KV (p)

of degree 1 has components

p[n]⊗ V ⊗n → p[n+ 1]⊗ V ⊗(n+1)

defined by

c(v)(x0 ⊗ 1) := u(x0)⊗ v, c(v)(xn ⊗ v1 · · · vn) := u(xn)⊗ vv1 · · · vn,

for xn ∈ p[n], vi ∈ V .

Here we make use of Convention 8.49 in order to have u : p[n]→ p′[n] = p[n+1].
Note that the dependence of c(v) on u is not manifest in the notation.

A morphism in Spu intertwines the up operators and hence its image under KV
intertwines the creation operators. Thus, KV,v is a functor as stated.

Definition 19.12. We define a functor

K∨
V,f : Spd → gVeca

by

K∨
V,f(p, d) :=

(
K∨
V (p), a(f)

)
,

where K∨
V : Sp → gVec is the decorated full Fock functor, and the homogeneous

map

a(f) : K∨
V (p)→ K∨

V (p)

of degree −1 has components

p[n]⊗ V ⊗n → p[n− 1]⊗ V ⊗(n−1)

defined by

a(f)(x0 ⊗ 1) := 0, a(f)(xn ⊗ v1 · · · vn) := d(xn)⊗ f(v1)v2 · · · vn,

for xn ∈ p[n], vi ∈ V .
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19.4.2. Duality between creation and annihilation. Let V be a finite-dimen-
sional vector space and V ∗ be its dual. Recall that the full Fock functors KV and
K∨
V are related by

K∨
V ∗(p∗) ∼= KV (p)∗,

for any species p (Section 19.1.4). The functors KV,v and K∨
V,f considered above

are related in a similar manner. The precise result is given below. The proof is
straightforward.

Proposition 19.13. Let (p, u) be a species with up operators and (q, d) be a species
with down operators. Let (p∗, u∗) and (q∗, d∗) be the dual species with down and
up operators, respectively. Then, the following diagrams commute.

K∨
V ∗,v(p

∗, u∗)
a(v)

// K∨
V ∗,v(p

∗, u∗)

KV,v(p, u)∗
c(v)∗

// KV,v(p, u)∗

K∨
V ∗,f(q

∗, d∗)
c(f)

// K∨
V ∗,f (q

∗, d∗)

KV,f (q, d)∗
a(f)∗

// KV,f (q, d)∗

In other words, on finite-dimensional species, the functors KV,v and KV,f are
contragredient to the functors K∨

V ∗,v and K∨
V ∗,f respectively.

19.4.3. From up-down to creation-annihilation.

Notation 19.14. Recall from Convention 8.49 that we view [n]+ = [1 + n] with 1
being the distinguished element of [n]+. We now extend this convention to sets of
positive integers. Thus, if S = {i1 < · · · < is} is such a set, we let

(19.7) 1 + S = {1 + i1 < · · · < 1 + is} and S+ = {1 < 1 + i1 < · · · < 1 + is}.

Note that if [n] = S ⊔ T , then

(19.8) [n]+ = S+ ⊔ (1 + T ) = (1 + S) ⊔ T+.

Here is a first result that explains why creation goes with KV and annihilation
with K∨

V . Another reason is given later, in Proposition 19.19.

Proposition 19.15. Let (p, u) and (q, w) be species with up operators. The cre-
ation operator c(v) and the colax structure of KV are related by the following com-
mutative diagrams.

KV,v
(
(p, u) · (q, w)

) ψ
//

c(v)

��

KV,v(p, u) · KV,v(q, w)

c(v)·id+id·c(v)

��

KV,v
(
(p, u) · (q, w)

)
ψ

// KV,v(p, u) · KV,v(q, w)

KV,v(1)

c(v)

��

0

��
>>

>>
>>

>>
>>

>

KV,v(1)
ψ0

// 1

(19.9)
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Let (p, d) and (q, e) be species with down operators. The annihilation operator a(f)
and the lax structure of K∨

V are related by the following commutative diagrams.

K∨
V,f (p, d) · K

∨
V,f (q, e)

ψ∨

//

a(f)·id+id·a(f)

��

K∨
V,f

(
(p, d) · (q, e)

)

a(f)

��

K∨
V,f (p, d) · K

∨
V,f (q, e)

ψ∨
// K∨

V,f

(
(p, d) · (q, e)

)

1
ψ∨

0 //

0

��
>>

>>
>>

>>
>>

> K∨
V,f (1)

a(f)

��

K∨
V,f (1)

(19.10)

In the finite-dimensional setting, the two statements are duals of each other.
The same remark applies to the subsequent corollaries.

Proof. Consider the first diagram in (19.9). Start from an element

x⊗ y ⊗ v1 · · · vn ∈ p[S]⊗ q[T ]⊗ V ⊗n

in the component of degree n of KV
(
(p, u) · (q, w)

)
where S ⊔ T = [n]. Applying ψ

takes us to

p[cano](x)⊗ vi1 · · · vis ⊗ q[cano](y)⊗ vj1 · · · vjt ∈ p[s]⊗ V ⊗s ⊗ q[t]⊗ V ⊗t,

where S = {i1 < · · · < is} and T = {j1 < · · · < jt}. Applying now c(v) · id+id ·c(v)
we obtain

u
(
p[cano](x)

)
⊗ vvi1 · · · vis ⊗ q[cano](y)⊗ vj1 · · · vjt

+ p[cano](x) ⊗ vi1 · · · vis ⊗ w
(
q[cano](y)

)
⊗ vvj1 · · · vjt .

On the other hand, applying c(v) to x ⊗ y ⊗ v1 · · · vn we get, in view of (8.68)
and (19.8),

u(x)⊗ y ⊗ vv1 · · · vn + x⊗ w(y)⊗ vv1 · · · vn

∈
(
p[S+]⊗ q[1 + T ]⊗ V ⊗(n+1)

)
⊕
(
p[1 + S]⊗ q[T+]⊗ V ⊗(n+1)

)
.

Therefore, applying ψ we obtain, in view of (19.7),

p[cano]
(
u(x)

)
⊗ vvi1 · · · vis ⊗ q[cano](y)⊗ vj1 · · · vjt

+ p[cano](x) ⊗ vi1 · · · vis ⊗ q[cano]
(
w(y)

)
⊗ vvj1 · · · vjt .

This coincides with the expression obtained above since the up operators u and w
are morphisms of species. Thus the first diagram in (19.9) commutes.

The commutativity of the second diagram in (19.9) follows from that of the
first plus unitality of the lax structure (3.6) (or can be easily checked directly).

The proofs for (19.10) are similar. �

Recalling the definition of the monoidal structure on gVecc (2.75) we see that
diagrams (19.9) say that ψ and ψ0 are morphisms in gVecc. A similar remark
applies to (19.10). In conjunction with Theorem 19.2 which says that KV and K∨

V

are bilax monoidal functors, we deduce at once the following result.

Proposition 19.16. The functor

(KV,v, ψ) : (Spu, ·)→ (gVecc, ·)

is colax monoidal. The functor

(K∨
V,f , ψ

∨) : (Spd, ·)→ (gVeca, ·)
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is lax monoidal.

Recall that (co)lax monoidal functors preserve (co)monoids (Proposition 3.29).
Further, recall that (co)monoids in categories with up, down, creation or annihila-
tion operators are usual (co)monoids equipped with (co)derivations (Sections 8.12.5
and 2.8.3). This yields the following.

Corollary 19.17. The functor KV,v preserves up coderivations while the functor
K∨
V,f preserves down derivations. Explicitly:

Let p be a comonoid in species equipped with an up coderivation u. Then the
creation operator

c(v) : KV,v(p, u)→ KV,v(p, u)

is a coderivation of the coalgebra KV (p) of degree +1.
Similarly, if p is a monoid in species equipped with a down derivation d, then

the annihilation operator

a(f) : K∨
V,f (p, d)→ K

∨
V,f(p, d)

is a derivation of the algebra K∨
V (p) of degree −1.

Example 19.18. Recall from Example 8.55 that the exponential species is
equipped with a down derivation and an up coderivation. We have

KV (E) = T (V ) and K∨
V (E) = T ∨(V ),

the tensor and shuffle algebras, respectively. The underlying space is classical full
Fock space, in both cases. The creation-annihilation operators of Definitions 19.11
and 19.12 coincide with the classical creation-annihilation operators of Section 19.3.
Corollary 19.17 recovers the facts, noted in Section 19.3, that the classical creation
operator is a coderivation for the coproduct of the tensor algebra (deshuffle) and
the classical annihilation operator is a derivation for the shuffle product.

More examples are discussed in Section 19.6.

19.4.4. Creation-annihilation on bosonic Fock functors. Let V be a vector
space. Recall (Theorem 19.2) that the full Fock functors are related to the bosonic
Fock functors by means of transformations (morphisms of bilax functors)

KV ⇒ KV , K
∨
V ⇒ K

∨
V .

The creation-annihilation operators induce homogeneous maps on the bosonic Fock
functors as follows.

Proposition 19.19. For any species with up operators (p, u) and v ∈ V , the
creation operator c(v) descends to coinvariants

KV (p, u)
c(v)

//

����

KV (p, u)

����

KV (p, u)
c̄(v)

//____ KV (p, u)
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yielding a homogeneous map c̄(v) : KV (p, u)→ KV (p, u) of degree +1. Dually, for
any species with down operators (p, d) and f ∈ V ∗, the annihilation operator a(f)
restricts to invariants

K∨
V (p, d)

a(f)
// K∨

V (p, d)

K
∨
V (p, d)

?�

OO

ā(f)
//____ K

∨
V (p, d)

?�

OO

yielding a homogeneous map ā(f) : K
∨
V (p, d)→ K

∨
V (p, d) of degree −1.

Proof. We check the first assertion. Let σ ∈ Sn and consider the elements

x⊗ v1 · · · vn and p[σ](x) ⊗ vσ−1(1) · · · vσ−1(n)

in p[n] ⊗ V ⊗n, the component of degree n of KV (p, u). Note that the second is
obtained from the first by acting by σ. Now applying c(v) to both of them yields

u(x)⊗ vv1 · · · vn

and

u
(
p[σ](x)

)
⊗ vvσ−1(1) · · · vσ−1(n) = p[σ+]

(
u(x)

)
⊗ vvσ−1(1) · · · vσ−1(n).

The equality holds by naturality of u and the definition of σ+ (8.65). Observe that
acting by σ+ on the first element gives the second element above; so they yield the
same element in the space of coinvariants. �

Proposition 19.19 allows us to give the following definition.

Definition 19.20. We define functors

KV,v : Spu → gVecc and K
∨
V,f : Spd → gVeca

by

KV,v(p, u) :=
(
KV (p), c̄(v)

)
and K

∨
V,f(p, d) :=

(
K

∨
V (p), ā(f)

)

where c̄(v) and ā(f) are the maps of Proposition 19.19.

Theorem 19.2 and Proposition 19.16 yield:

Proposition 19.21. The functor

(KV,v, ψ) : (Spu, ·)→ (gVecc, ·)

is bistrong monoidal and KV,v ⇒ KV,v is a morphism of colax monoidal functors.
The functor

(K
∨
V,f , ψ

∨
) : (Spd, ·)→ (gVeca, ·)

is bistrong monoidal and K∨
V,f ⇒ K

∨
V,f is a morphism of lax monoidal functors.

By arguing as for Corollary 19.17, we obtain the following consequence.

Corollary 19.22. The functor KV,v preserves up derivations and up coderivations

while the functor K
∨
V,f preserves down derivations and down coderivations.
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In view of the above observations, it is natural to consider the functor ℑV of
Section 19.2.1. Indeed, there is an induced functor

ℑV,v,f : Spu
d → gVecc

a

from species with up-down operators to graded vector spaces with creation-annihi-
lation operators. This point of view will be taken up later in Section 19.8.4.

19.5. Creation-annihilation on generalized bosonic Fock spaces

Classically, creation and annihilation are viewed as operators on the same
(Fock) space, and therefore can be composed. Our presentation leads to opera-

tors acting on different spaces (KV and KV for creation, K∨
V and K

∨
V for annihila-

tion). However, over a field of characteristic 0, the bosonic functors KV and K
∨
V are

naturally isomorphic (Proposition 19.8). This identification allows us to compose
creation and annihilation operators at the bosonic level.

These operators do not commute. A result of Guţă and Maassen [158, Lem-
mas 6 and 7] describes the situation explicitly. This is recalled in Proposition 19.25.
Since our setting is slightly more general and the notation is different from theirs,
we provide a proof. The main result of this section is Proposition 19.24 which is a
variant of this result. It is in fact easier to derive and more useful for later purposes.

We assume throughout this section that k is a field of characteristic 0. We also
continue to assume that V is a fixed vector space, v ∈ V is a vector, and f ∈ V ∗ is
a functional.

19.5.1. The commutation setup. Let (p, u, d) be a species with up-down oper-
ators. Consider the following (noncommutative) diagram

(19.11)

KV,v(p, u)
c(v)

//

κ

~~}}
}}

}}
}}

}}
}

KV,v(p, u)

κ

  A
AA

AA
AA

AA
AA

K∨
V,f (p, d)

a(f)

��

K∨
V,f (p, d)

a(f)

��

K∨
V,f (p, d) K∨

V,f (p, d)

KV,v(p, u)

κ

``AAAAAAAAAAA

c(v)
// KV,v(p, u)

κ

>>}}}}}}}}}}}

in which κ is the decorated norm transformation (Definition 19.6). Using the in-
vertibility of κ at the bosonic level, this diagram yields two new noncommutative
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diagrams as follows.

K
∨
V,f (p, d)

ā(f)

��

c̃(v)
// K

∨
V,f (p, d)

ā(f)

��

K
∨
V,f (p, d) c̃(v)

// K
∨
V,f (p, d)

KV,v(p, u)
c̄(v)

//

ã(f)

��

KV,v(p, u)

ã(f)

��

KV,v(p, u)
c̄(v)

// KV,v(p, u)

(19.12)

Here c̃(v) denotes the conjugate of c̄(v) by κ̄,

(19.13) K
∨
V,f(p, d)

κ̄−1
// KV,v(p, u)

c̄(v)
// KV,v(p, u)

κ̄ // K
∨
V,f(p, u),

and ã(f) denotes the conjugate of ā(f) by κ̄−1,

(19.14) KV,v(p, u)
κ̄ // K

∨
V,f (p, d)

ā(f)
// K

∨
V,f (p, d)

κ̄−1
// KV,v(p, u).

The lack of commutativity of diagrams (19.12) is of interest; it is systematically
studied in the rest of this section. We will use the first diagram in (19.12) for
working purposes.

Notation 19.23. For each 1 ≤ i, j ≤ n, we let (i, j) ∈ Sn denote the transposition
that switches i with j. For simplicity, we use σ · x instead of p[σ](x) to denote the
action of σ ∈ Sn on x ∈ p[n].

We let (k, . . . , 1) be the permutation which sends k to k − 1, k − 1 to k − 2,
and so on, and finally 1 to k, while fixing the elements greater than k.

19.5.2. Composition formulas: first version. We begin by deriving an explicit
formula for the creation operator c̃(v). We have emphasized that creation goes with
KV ; however there is a sensible creation operator on K∨

V given by

(19.15) c(v) : x⊗ v1 · · · vn 7→
n∑

k=0

(k + 1, . . . , 1) · u(x)⊗ v1 · · · vkv · · · vn.

With this definition, the following diagram commutes.

KV (p, u)
c(v)

//

κ

��

KV (p, u)

κ

��

K∨
V (p, u)

c(v)
// K∨

V (p, u)
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To see this, note that

κ
(
c(v)(x⊗ v1 · · · vn)

)

=
∑

τ∈Sn+1

τ ·
(
u(x)

)
⊗ τ · (vv1 · · · vn)

=

n∑

k=0

∑

σ∈Sn

(k + 1, . . . , 1)σ+ · u(x)⊗ vσ−1(1) · · · vσ−1(k)v · · · vσ−1(n)

=

n∑

k=0

∑

σ∈Sn

(k + 1, . . . , 1) · u(σ · x)⊗ (k + 1, . . . , 1) · (vvσ−1(1) · · · vσ−1(n))

= c(v)
(
κ(x⊗ v1 · · · vn)

)
.

Here σ+ is as in (8.65). For the equalities, note that any permutation τ of vv1 · · · vn
is the composite of a permutation σ+ of vv1 · · · vn which fixes v in the first position
followed by a permutation (k + 1, . . . , 1) which inserts v in the (k + 1)-st position.

Since K
∨
V (p) is a subspace of K∨

V (p), it follows that the creation operator c̃(v)
is given by the same formula (19.15). Using this, we obtain:

Proposition 19.24. Let (p, u, d) be a species with up-down operators and
∑

i

xi ⊗ v
i
1 · · · v

i
n ∈ p[n]⊗Sn V ⊗n

an element of degree n in K
∨
V (p, u, d). We have

(19.16) ā(f)c̃(v)

(∑

i

xi ⊗ v
i
1 · · · v

i
n

)

=
∑

i

du(xi)⊗ f(v) vi1 · · · v
i
n

+
∑

i

n∑

k=1

d
(
(k + 1, . . . , 1) · u(xi)

)
⊗ f(vi1) v

i
2 · · · v

i
kv · · · v

i
n

and

(19.17) c̃(v)ā(f)

(∑

i

xi ⊗ v
i
1 · · · v

i
n

)

=
∑

i

n∑

k=1

(k, . . . , 1) · ud(xi)⊗ f(vi1) v
i
2 · · · v

i
kv · · · v

i
n.

A q-deformation of this result is given later in Proposition 19.40.

19.5.3. Composition formulas: second version. We now present variants
of the above formulas, mainly for completeness. We begin with a slight variant
of (19.15) which is as follows.

(19.18) c̃(v)

(∑

i

xi ⊗ v
i
1 · · · v

i
n

)
=
∑

i

u(xi)⊗ vv
i
1 · · · v

i
n

+
∑

i

n∑

k=1

(k + 1, 1) · u(xi)⊗ v
i
kv
i
1 · · · v · · · v

i
n,

where v appears at position k + 1.
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Proof. To prove this, we note that by Sn-invariance, for 1 ≤ k ≤ n,
∑

i

xi ⊗ v
i
1 · · · v

i
n =

∑

i

(k, . . . , 1)−1 · xi ⊗ v
i
kv
i
1 · · · v

i
k−1v

i
k+1 · · · v

i
n.

Now apply the operator which acts by the up operator u followed by the permuta-
tion (k + 1, . . . , 1) on the first factor and inserts v in position k + 1 in the second
factor. Now summing over 1 ≤ k ≤ n and adding the term

∑

i

u(xi)⊗ vv
i
1 · · · v

i
n

to both sides, one obtains (19.18). Here we made use of (19.15), the observation
that

(k + 1, . . . , 1) = (k + 1, 1)(k + 1, . . . , 2) for 1 ≤ k ≤ n,

and the Sn-invariance of u. �

Proposition 19.25 (Guţă and Maassen). Let (p, u, d) be a species with up-down
operators and ∑

i

xi ⊗ v
i
1 · · · v

i
n ∈ p[n]⊗Sn V ⊗n

an element of degree n in K
∨
V (p, u, d). We have

(19.19) ā(f)c̃(v)

(∑

i

xi ⊗ v
i
1 · · · v

i
n

)

=
∑

i

du(xi)⊗ f(v) vi1 · · · v
i
n

+
∑

i

n∑

k=1

d
(
(k + 1, 1) · u(xi)

)
⊗ f(vik) v

i
1 · · · v · · · v

i
n

and

(19.20) c̃(v)ā(f)

(∑

i

xi ⊗ v
i
1 · · · v

i
n

)

=
∑

i

n∑

k=1

(k, 1) · ud
(
(k, 1) · xi

)
⊗ f(vik) v

i
1 · · · v · · · v

i
n.

In both summations over k, v appears at position k.

Proof. The first part follows directly from (19.18). For the second part, we
apply the transposition (k, 1) to the Sn-invariant element and then apply ā(f) to
obtain

ā(f)

(∑

i

xi ⊗ v
i
1 · · · v

i
n

)
=
∑

i

(k, 1) · xi ⊗ f(vik) v
i
2 · · · v

i
1 · · · v

i
n,

where vi1 is in position k. This holds for 1 ≤ k ≤ n and further we have the same
Sn−1-invariant element written in n different ways. Note that (19.18) expresses c̃(v)
acting on the degree n part as a sum of n + 1 operators. Here c̃(v) is acting on
the degree n− 1 part since we are first applying the annihilation operator. So it is
a sum of n operators. By letting the k-th operator act on the above formula, and
summing over all 1 ≤ k ≤ n, the result follows. �
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For deriving the formulas in the second version, we crucially used the fact that
we were dealing with an Sn-invariant element. Hence, unlike for the first version,
these formulas do not generalize to the q-setting. In that scenario, one has to
deal with the generalized anyonic Fock spaces ℑV,q(p) elements of which cannot be
interpreted as invariants.

19.6. Species with balanced operators

So far, we have dealt with species with up-down operators but never specified
any relations between these operators. The discussion in Section 19.5 motivates
the following definition.

Definition 19.26. A species with balanced operators is a species (p, u, d) with
up-down operators such that all relations (19.21)–(19.23c) below hold. We use
Notation 19.23.

The up-up and down-down relations. For n = 0, 1, 2, . . . ,

(1, 2) · u2(−) = u2(−),(19.21)

d2
(
(1, 2) · (−)

)
= d2(−)(19.22)

as maps
p[n]→ p[n+ 2] and p[n+ 2]→ p[n]

respectively.

The up-down relations. For n = 0, 1, 2, . . . and 1 ≤ k ≤ n,

du = λn id,(19.23a)

d
(
(k + 1, . . . , 1) · u(−)

)
= (k, . . . , 1) · u

(
d(−)

)
,(19.23b)

d
(
(k + 1, 1) · u(−)

)
= (k, 1) · u(d((k, 1) · (−)),(19.23c)

where λn is an arbitrary scalar. In the left-hand sides above,

u : p[n]→ p[n+ 1] and d : p[n+ 1]→ p[n],

while in the right-hand sides,

u : p[n− 1]→ p[n] and d : p[n]→ p[n− 1].

By using invariance under the appropriate symmetric groups, one sees that rela-
tions (19.23b) and (19.23c) imply each other; in other words, they are equivalent.

Proposition 19.27. Let (p, u, d) be a species with up-down operators. Let v, w ∈ V
and f, g ∈ V ∗, and let c̃(v) and ā(f) be as in (19.12).

(i) If (19.21) holds, then c̃(w)c̃(v) = c̃(v)c̃(w).
(ii) If (19.22) holds, then ā(g)ā(f) = ā(f)ā(g).
(iii) If (19.23) holds, then ā(f)c̃(v)− c̃(v)ā(f) = λnf(v) id.

In the third statement, (19.23) refers to all three relations (19.23a)–(19.23c).

In particular, the generalized bosonic Fock space of a species with balanced
operators satisfies the usual bosonic commutation relations (19.4). Conjugating by
κ̄ or its inverse and using (19.13) and (19.14), the above result is equivalent to:

(i) If (19.21) holds, then c̄(w)c̄(v) = c̄(v)c̄(w).
(ii) If (19.22) holds, then ã(g)ã(f) = ã(f)ã(g).
(iii) If (19.23) holds, then ã(f)c̄(v) − c̄(v)ã(f) = λnf(v) id.
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Proof. Consider (i), the case of up operators. It is convenient here to work
with c̄ rather than c̃. Applying the operators c(w)c(v) and c(v)c(w) to x⊗v1v2 · · · vn
yields

u2(x)⊗ wvv1v2 · · · vn and u2(x)⊗ vwv1v2 · · · vn

respectively. If (19.21) holds, then applying the transposition (1, 2) to one yields
the other. So they represent the same element in the space of coinvariants, thus
c̄(w)c̄(v) = c̄(v)c̄(w), proving (i).

Case (ii) is similar and omitted. Case (iii) follows by applying either Proposi-
tions 19.24 or 19.25. �

We illustrate this result with some interesting examples. Examples 19.31
and 19.32 are due to Guţă and Maassen [158, Section 4.1].

Example 19.28. Let (E, u, d) be the exponential species with up-down operators,
as in Example 8.55. In this case u and d are inverse and the symmetric group action
is trivial. Thus (E, u, d) is a species with balanced operators with λn = 1. By
applying Proposition 19.27, one recovers the bosonic commutation relations (19.4).

Example 19.29. Let e be the species of elements defined in Section 8.13.7. Thus,
e[I] = kI, the vector space with basis the elements of I. We first note that e
carries up-down operators, the up operator being the natural inclusion and the
down operator being given by

e[I+]→ e[I] i 7→

{
i i ∈ I,

0 i = ∗I .

It is straightforward to check that (e, u, d) is a species with balanced operators
with λn = 1. By applying Proposition 19.27, one sees that the same commutation
relations (19.4) hold on the generalized bosonic space of the species of elements.

This can be understood more explicitly as follows. The generalized bosonic
space of the species of elements can be identified with

KV (e)
∼=
−−→ k⊕ V ⊗ S(V ), i⊗ v1 · · · vn 7→ vi ⊗ v1 · · · vi−1vi+1 · · · vn.

Under this identification, the creation operator c̄(v) and annihilation operator ã(f)
send v0 ⊗ v1 · · · vn to

v0 ⊗ vv1 · · · vn and

n∑

i=1

v0 ⊗ v1 · · · f(vi) · · · vn

respectively. With these descriptions, the commutation relations may also be
checked directly.

Example 19.30. Let E·2 = E · E be the species of subsets (Example 8.17). We
may use the up-down operators of E on either factor to define

u1, u2 : E·2[I]→ E·2[I+] and d1, d2 : E·2[I+]→ E·2[I]

by

u1(S) = S, u2(S) = S ∪ {∗I},

and

d1(S) =

{
S ∗I /∈ S,

0 ∗I ∈ S,
d2(S) =

{
0 ∗I /∈ S,

S \ {∗I} ∗I ∈ S.
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It is straightforward to check that (E·2, u1, d1) and (E·2, u2, d2) are species with
balanced operators with λn = 1, while (E·2, u1, d2) and (E·2, u2, d1) are species
with balanced operators with λn = 0.

Proceeding more directly, generalized bosonic space of the subset species can
be identified with

KV (E·2)
∼=
−−→ S(V )⊗ S(V ), T ⊗ v1 · · · vn 7→ vi1 · · · vit ⊗ vj1 · · · vjs ,

where T = {i1, . . . , it} and its complement in [n] is {j1, . . . , js}. Under this identi-
fication, the creation operators c̄1(v) and c̄2(v) send u1 · · ·um ⊗ v1 · · · vn to

vu1 · · ·um ⊗ v1 · · · vn and u1 · · ·um ⊗ vv1 · · · vn

respectively, and the annihilation operators ã1(f) and ã2(f) send it to
m∑

i=1

u1 · · · f(ui) · · ·um ⊗ v1 · · · vn and

n∑

i=1

u1 · · ·um ⊗ v1 · · · f(vi) · · · vn

respectively. With these descriptions, the various commutation relations asserted
above can be checked directly.

Example 19.31. Let (L, u, d) be the species of linear orders with up-down oper-
ators, as in Example 8.56. Interestingly, (L, u, d) is not a species with balanced
operators; among the required relations only (19.23a) holds. So Proposition 19.27
does not apply.

Let us write down the creation and annihilation operators explicitly. First
observe that

KV (L)
∼=
−−→ T (V ), 1| · · · |n⊗ v1 · · · vn 7→ v1 · · · vn,

which is classical full Fock space. Under this identification, the creation operator
c̄(v) and the annihilation operator ã(f) send v1 · · · vn to

vv1 · · · vn and f(v1)v2 · · · vn

respectively. These are the classical creation and annihilation operators on full Fock
space of Section 19.3. It follows that

ã(f)c̄(v) = ā(f)c̃(v) = f(v) id .

This can also be verified from equation (19.16) as follows.
For any l ∈ L[n] we have

du(l) = l and d
(
(k + 1, . . . , 1) · u(l)

)
= 0 for every k = 1, . . . , n,

since the minimum element of (k + 1, . . . , 1) · u(l1| · · · |ln) is not 1.
The relation noted above does not look like a commutation relation. However,

it is indeed the case q = 0 of a q-commutation relation. This point will be clarified
later in Example 19.43.

Example 19.32. Consider the species a of rooted trees (Section 13.3.1): a[I] is
the space with basis consisting of all rooted trees with vertex set I. Given a rooted
tree t ∈ a[I], a vertex i ∈ I, and a new element j /∈ I, let

tji ∈ a[I ⊔ {j}]

be the rooted tree obtained by attaching a new leaf with label j to vertex i. In
addition, given a leaf k of t, let

t \ k ∈ a[I \ {k}]
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be the rooted tree obtained by removing leaf k from t. These constructions are
illustrated below, for I = {i, k, y, z}.

/.-,()*+k

'&%$ !"#z

>>
>>

>>
> '&%$ !"#i

��
��

��
�

'&%$ !"#y
t

/.-,()*+k

<<
<<

<<
< /.-,()*+j

��
��

��
�

'&%$ !"#z

>>
>>

>>
> '&%$ !"#i

��
��

��
�

'&%$ !"#y
tji

'&%$ !"#z

>>
>>

>>
> '&%$ !"#i

��
��

��
�

'&%$ !"#y
t \ k

The maps

a[I]
u // a[I+]
d

oo

given by

u(t) :=
∑

i∈I

t∗Ii for t ∈ a[I]

and

d(t) :=

{
t \ ∗I if ∗I is a leaf of t,

0 otherwise,
for t ∈ a[I+],

turn a into a species with up-down operators. However, (a, u, d) is not a species
with balanced operators; relations (19.21) and (19.22) do not hold. However, re-
lation (19.23) holds with λn = n. Details are as follows. For any t ∈ a[n] we
have

du(t) = n t

and for any k = 1, . . . , n

d
(
(k + 1, 1) · u(t)

)
=





∑
i∈[n]\{k}

(t \ k)ki if k is a leaf of t

0 otherwise

= (k, 1) · ud
(
(k, 1) · t

)
.

The summation above consists of all trees obtained from t by removing leaf k and
reattaching it to a vertex of the remaining tree. An example follows.

/.-,()*+k

'&%$ !"#z

<<
<<

<<
< '&%$ !"#i

��
��

��
�

'&%$ !"#y

7−→

/.-,()*+k

'&%$ !"#z

<<
<<

<<
< '&%$ !"#i

��
��

��
�

'&%$ !"#y

+

/.-,()*+k

'&%$ !"#z

<<
<<

<<
< '&%$ !"#i

��
��

��
�

'&%$ !"#y

+
'&%$ !"#z

<<
<<

<<
< /.-,()*+k '&%$ !"#i

��
��

��
�

'&%$ !"#y

It follows from Proposition 19.27 that

(19.24)
(
ā(f)c̃(v)− c̃(v)ā(f)

)
(x) = n f(v)x

for any unlabeled, V -decorated rooted tree x with n vertices.
Proceeding more directly, the generalized bosonic Fock space of rooted trees

can be identified with the space of unlabeled rooted trees with n vertices, each
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vertex decorated by an element of V . For instance, the unlabeled V -decorated tree
below

/.-,()*+v1

88
88

88
/.-,()*+v3

��
��

��

/.-,()*+v2

if viewed as a coinvariant, is the image of

'&%$ !"#1

..
..

.
'&%$ !"#3

��
��
�

'&%$ !"#2

⊗ v1v2v3 or, say,

'&%$ !"#2

..
..

.
'&%$ !"#3

��
��
�

'&%$ !"#1

⊗ v2v1v3

and, if viewed as an invariant, is the following element of a[3]⊗S3 V ⊗3.

'&%$ !"#1

..
..

.
'&%$ !"#3

��
��
�

'&%$ !"#2

⊗ (v1v2v3 + v3v2v1) +

'&%$ !"#2

..
..

.
'&%$ !"#3

��
��
�

'&%$ !"#1

⊗ (v2v1v3 + v2v3v1)

+

'&%$ !"#1

..
..

.
'&%$ !"#2

��
��
�

'&%$ !"#3

⊗ (v1v3v2 + v3v1v2)

In keeping with the previous notation, we make the following definitions. For an
unlabeled V -decorated tree t, vertex n and v ∈ V , we let tvn be the tree obtained
by attaching a new leaf with label v to vertex n. In addition, for a leaf l, we let
t \ l be the tree obtained by removing leaf l from t.

Under the above identification (say with invariants), the creation and annihi-
lation operators are:

c̃(v)(t) =
∑

n:vertex of t

tvn and ā(f)(t) =
∑

l:leaf of t

f(vl) t \ l,

where vl ∈ V is the label of the leaf l.
The creation operator c̃(v) applied to the above example yields

'&%$ !"#v

/.-,()*+v1

==
==

==
/.-,()*+v3

��
��

��

/.-,()*+v2

+

'&%$ !"#v

/.-,()*+v1

==
==

==
/.-,()*+v3

��
��

��

/.-,()*+v2

+ /.-,()*+v1

==
==

==
'&%$ !"#v /.-,()*+v3

��
��

��

/.-,()*+v2

while the annihilation operator ā(f) yields

f(v3)

/.-,()*+v1

/.-,()*+v2

+ f(v1)

/.-,()*+v3

.

/.-,()*+v2

One can now check directly that (19.24) holds. Further, one sees that neither the
creation operators nor the annihilation operators commute. This is consistent with
the conclusion drawn from Proposition 19.27.
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19.7. Deformations of decorated Fock functors

The theory of undecorated Fock functors developed in Chapter 15 admits sev-
eral generalizations, one of them being the one-parameter deformations of Chap-
ter 16. In this section we briefly consider this type of deformation in the decorated
case.

19.7.1. The decorated fermionic Fock functor. It is natural to ask for a dec-
orated version of the fermionic Fock functor K−1. Recall that the bosonic and
fermionic Fock functors determine each other by precomposing with the signature
functor. Following this idea, we define the decorated fermionic Fock functor, de-
noted KV,−1, as the composite:

(Sp, ·, βp)
(−)−

−−−→ (Sp, ·, β−p)
KV−−→ (gVec, ·, β−p),

where we recall that (−)− is the signature functor (9.10). As a functor, KV,−1(p)

is given by the same formula as given for KV (p) in Definition 19.1, with the un-
derstanding that the coinvariants are taken with respect to the signed action of
Sn on V ⊗n as in (19.5). Since the composite of bilax functors is bilax, the above
formulation defines KV,−1 not just as a functor but as a bilax functor. Since KV
itself can be viewed as a composite (Proposition 19.3), there are alternative ways
of viewing KV,−1 as a composite. For example, the composites

(19.25)
(Sp, ·, βp)

(−)×(EV )−

−−−−−−−−→ (Sp, ·, β−p)
K
−→ (gVec, ·, β−p),

(Sp, ·, βp)
(−)×EV
−−−−−→ (Sp, ·, βp)

K−1
−−−→ (gVec, ·, β−p)

both yield KV,−1. Here (EV )− is the signed partner of EV which is the same as
the signature functor applied to EV .

The functor K
∨
V,−1 can be defined similarly as the composite:

(Sp, ·, βp)
(−)−

−−−→ (Sp, ·, β−p)
K

∨
V−−→ (gVec, ·, β−p),

and described in alternative ways by using K
∨

and K
∨
−1 in the above discussion. It

follows from Proposition 19.5 that

K
∨
V ∗,−1

∼= (KV,−1)
∨.

19.7.2. One-parameter deformations. Recall that the full Fock functors can
be deformed to yield functors Kq and K∨

q which depend on a scalar q. This was
explained in Section 16.1. In a similar manner, the decorated full Fock functors can
be deformed to yield functors KV,q and K∨

V,q. We call them the deformed decorated
full Fock functors. We now comment on their bilax structures.

Recall the structure maps ϕ and ψ of KV from Section 19.1.3. For the functor
KV,q, the lax structure ϕ remains unchanged while the colax structure ψ is deformed

to ψq by the coefficient qschn(S), the exponent being the Schubert statistic. The
structure maps of K∨

V,q, denoted ψ∨
q and ϕ∨, can be made explicit in the same

manner.

Theorem 19.33. The functors

(KV,q, ϕ, ψq), (K∨
V,q, ψ

∨
q , ϕ

∨) : (Sp, ·, βp)→ (gVec, ·, βpq).

are bilax monoidal.
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Proposition 19.34. The functors KV,q and K∨
V,q are the following composites of

bilax functors

(Sp, ·, βp)
(−)×EV
−−−−−→ (Sp, ·, βp)

Kq
−−→ (gVec, ·, βpq)

(Sp, ·, βp)
(−)×EV
−−−−−→ (Sp, ·, βp)

K∨
q
−−→ (gVec, ·, βpq)

respectively.

Decorated versions of results in Chapter 16 can be obtained as a consequence
of this result. We state some of them below.

Proposition 19.35. There are isomorphisms of bilax functors

KV,q(−) ∼= KV
(
Lq × (−)

)
and K∨

V,q(−) ∼= K
∨
V

(
L∗
q × (−)

)

from (Sp, ·, βp) to (gVec, ·, βpq).

Proof. We give the argument for the first part.

KV,q(−) ∼= Kq
(
(−)×EV

)
∼= K(Lq × (−)×EV ) ∼= KV

(
Lq × (−)

)
.

The first isomorphism follows from Proposition 19.34, the second follows from
Proposition 16.6, and the third follows from Proposition 19.3. �

We now discuss a deformation of the decorated norm transformation of Defini-
tion 19.6. Let

κq : KV,q ⇒ K
∨
V,q

be defined as follows. For any species p, let

(19.26) (κq)p(x⊗ v1 · · · vn) :=
∑

σ∈Sn

qinv(σ)σ · (x ⊗ v1 · · · vn),

for any x ∈ p[n], vi ∈ V . This is the decorated q-norm. The dependence of κq on
V is not manifest in the notation.

It follows directly from the definition that the decorated q-norm is the result
of precomposing the undecorated q-norm κq of Definition 16.13 with the functor
(−) × EV . It then follows from Proposition 16.15 that the decorated q-norm is a
morphism of bilax functors. Similarly, one can deduce from Proposition 16.14 that
the contragredient for the decorated q-norm for V is the decorated q-norm for V ∗.

Let ℑV,q be the image of the decorated q-norm. We call it the decorated anyonic
Fock functor. It fits into the following commutative diagram.

KV,q
κq +3

�&
EE

EE
EE

EE

EE
EE

EE
EE

K∨
V,q

ℑV,q.

8@yyyyyyyy

yyyyyyyy
(19.27)

On finite-dimensional species, the dual of this diagram is the same diagram with V
replaced by V ∗.

It follows that ℑV,q is the composite:

(Sp, ·, βp)
(−)×EV
−−−−−→ (Sp, ·, βp)

ℑq
−−→ (gVec, ·, βpq),
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where ℑq is the anyonic Fock functor (Section 16.3.5). We define anyonic Fock
space to be the value of the decorated anyonic Fock functor on the exponential
species. We note that

ℑV,1 = ℑV ,

the functor considered in Section 19.2.1. This is the case q = 1. For q = −1, in
characteristic 0, we have

ℑV,−1
∼= KV,−1

∼= K
∨
V,−1,

the decorated fermionic Fock functors. For q = 0, the decorated 0-norm is the
identity, so

(19.28) KV,0 = ℑV,0 = K∨
V,0.

We call this the decorated free Fock functor. In this situation, the result of Propo-
sition 19.35 says that

(19.29) ℑV,0(−) ∼= ℑV
(
L0 × (−)

)
.

This is an isomorphism of bilax functors from (Sp, ·, βp) to (gVec, ·, β0).

19.8. Deformations related to up-down and creation-annihilation

In the previous section, we looked at deformations of decorated Fock functors.
We now look at the behavior of these functors on species with up-down operators.
The main result is Proposition 19.41 which says that if the up-down operators
are balanced (in a weaker sense) then the resulting creation-annihilation operators
satisfy a q-commutation relation.

19.8.1. The Hadamard and signature functors. We know from Proposi-
tion 8.58 that the Hadamard functor (×, ϕ, ψ) on species is bilax with respect
to the Cauchy product. We would like to upgrade this result to species with up or
down operators. This is not possible. The best one can say is the following.

Proposition 19.36. The functor

(×, ψ) : (Spu × Spu, ·p × ·q)→ (Spu, ·pq)

is colax. Dually, the functor

(×, ϕ) : (Spd × Spd, ·p × ·q)→ (Spd, ·pq)

is lax.

Proof. We give the argument for the first part. First, define the Hadamard
product of two species with up operators (p, u) and (q, v) to be (p · q, w) where

(19.30) w : p× q
u×v
−−−→ p′ × q′ = (p× q)′.

Let (p1, u1), (p2, u2), (q1, v1) and (q2, v2) be species with up operators. We need
to check that the following diagram commutes, with τq as in (8.69).

(p1 · q1)× (p2 · q2)
ψ

//

(u1·id+τp·v1)×(u2·id+τq·v2)

��

(p1 × p2) · (q1 × q2)

(u1×u2)·id+τpq·(v1×v2)

��

(p1 · q1)
′ × (p2 · q2)

′

ψ
//
(
(p1 × p2) · (q1 × q2)

)′
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One verifies this on each component. The first observation is that the diagram
commutes trivially unless one starts in a component of the form

(p1[S]⊗ q1[T ])⊗ (p2[S]⊗ q2[T ]).

On this component, the check is straightforward. One needs to use τpτq = τpq. �

Recall the signature functor (−)− which sends a species p to its signed partner
p− = p×E−. The above result along with the observation of Section 9.3 that E−

is a comonoid in (Spu, ·−1) and a monoid in (Spd, ·−1) implies the following.

Proposition 19.37. The functor

(−)− : (Spu, ·q)→ (Spu, ·−q)

is colax. Dually, the functor

(−)− : (Spd, ·q)→ (Spd, ·−q)

is lax.

19.8.2. The up-down properties of the deformed Fock functors. Let v ∈ V
and f ∈ V ∗ be fixed. Consider the functors

KV,q,v : Spu → gVecc and K∨
V,q,f : Spd → gVeca,

with the creation operator on the former and the annihilation operator on the latter
defined in the same way as before. So far, there is no dependence on q. The depen-
dence comes when one considers the monoidal properties of these functors. Keeping
in mind the undeformed case, we do not expect these functors to be bilax; rather,
we expect the former to be colax, and dually the latter to be lax. Accordingly:

Proposition 19.38. The functor

(KV,q,v, ψq) : (Spu, ·p)→ (gVecc, ·pq)

is colax monoidal. The functor

(K∨
V,q,f , ψ

∨
q ) : (Spd, ·p)→ (gVeca, ·pq)

is lax monoidal.

The proof is straightforward and omitted.

19.8.3. Creation-annihilation on generalized fermionic Fock spaces. The
entire discussion in Section 19.5 can be carried out for the decorated fermionic
Fock functors of Section 19.7.1. The starting point is to take diagram (19.11) and
replace KV , K∨

V and κ with KV,−1, K∨
V,−1 and κ−1 respectively. Up to isomorphism,

this is equivalent to precomposing (19.11) with the signature functor. Using the
invertibility of κ−1 at the fermionic level, this yields two new noncommutative
diagrams as follows.

K
∨
V,−1,f(p, d)

ā(f)
��

c̃(v)
// K

∨
V,−1,f(p, d)

ā(f)
��

K
∨
V,−1,f(p, d) c̃(v)

// K
∨
V,−1,f(p, d)

KV,−1,v(p, u)
c̄(v)

//

ã(f)

��

KV,−1,v(p, u)

ã(f)

��

KV,−1,v(p, u)
c̄(v)

// KV,−1,v(p, u)

(19.31)
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Formulas (19.16) and (19.17) hold with the coefficients (−1)k and (−1)k−1 respec-
tively inserted inside the double summations. More details are given in the q-version
below. The same is true for the formulas (19.19) and (19.20). This leads to the
following fermionic version of Proposition 19.27.

Proposition 19.39. Let (p, u, d) be a species with up-down operators. Let v, w ∈ V
and f, g ∈ V ∗, and let c̃(v) and ā(f) be as in (19.31).

(i) If (19.21) holds, then c̃(w)c̃(v) = −c̃(v)c̃(w).
(ii) If (19.22) holds, then ā(g)ā(f) = −ā(f)ā(g).
(iii) If (19.23) holds, then ā(f)c̃(v) + c̃(v)ā(f) = λnf(v) id.

In the third statement, (19.23) refers to all three relations (19.23a)–(19.23c).

In particular, the generalized fermionic Fock space of a species with balanced
operators satisfies the usual fermionic commutation relations (19.6). Conjugating
by κ̄−1 or its inverse, the same relations hold with c̃ and ā replaced by c̄ and ã.

In the examples of Section 19.6, we had derived various bosonic commutation
relations. In light of the above result, we see that they have corresponding fermionic
analogues. We content ourselves by mentioning that for the exponential species,
the above result recovers the commutation relations on fermionic Fock space (19.6).

19.8.4. Creation-annihilation on generalized anyonic Fock spaces. We
would like to unify the bosonic and fermionic settings. For that purpose, we con-
sider the decorated anyonic Fock functor ℑV,q. It turns out that there is a induced
functor

ℑV,q,v,f : Spu
d → gVecc

a,

from species with up-down operators to graded vector spaces with creation-annihi-
lation operators. This means that

KV,q,v ⇒ ℑV,q,v,f and ℑV,q,v,f ⇒ K
∨
V,q,f

are natural transformations, the former for up and creation, and the latter for down
and annihilation.

From now on, we simply write ℑV,q, suppressing the dependence on v and f .
The value of this functor on a species with up-down operators is a generalized
anyonic Fock space. It carries both creation and annihilation operators, which we
denote simply by c(v) and a(f) without bar or tilde, keeping in view their unbiased
nature.

Explicitly, the creation operator is given by

(19.32) c(v) : x⊗ v1 · · · vn 7→
n∑

k=0

qk(k + 1, . . . , 1) · u(x)⊗ v1 · · · vkv · · · vn.

Note that this is (19.15) with the coefficient qk inserted. This formula can be
derived in the same manner using the decorated q-norm (19.26). One sees that the
exponent of q must be the number of inversions of (k + 1, . . . , 1) which is k.

The annihilation operator is given by

(19.33) a(f) : x⊗ v1v2 · · · vn 7→ d(x) ⊗ f(v1) v2 · · · vn,

as before with no dependence on q.
These formulas imply the following q-analogue of Proposition 19.24:
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Proposition 19.40. Let (p, u, d) be a species with up-down operators and
∑

i

xi ⊗ v
i
1 · · · v

i
n

an element of degree n in ℑV,q(p). Then (19.16) and (19.17) hold with coefficients
qk and qk−1 respectively inserted inside the double summations.

We point out that there is no similar statement for (19.19) and (19.20). As
a further implication, we obtain the following q-analogue which simultaneously
generalizes part (iii) of Propositions 19.27 and 19.39. Note that no claim is being
made about the commutativity of creation operators or of annihilation operators.

Proposition 19.41. Let (p, u, d) be a species with up-down operators. If (19.23)
holds, then

a(f)c(v)− q c(v)a(f) = λnf(v) id

where the operators are acting on the degree n component of ℑV,q(p).

These type of deformed creation-annihilation operators and q-commutation re-
lations for anyonic Fock space ℑV,q(E) have been considered in the literature, start-
ing with the work of Bożejko and Speicher [65, Section 2]; for additional work and
more recent references see also Anshelevich [26].

19.8.5. Relating the decorated anyonic Fock functors. Consider the deco-
rated free Fock functor

ℑV,0 : Spu
d → gVecc

a.

One can see from (19.32) and (19.33), or using (19.28) that creation and annihilation
on generalized free Fock space are given by

c(v) : x⊗ v1 · · · vn 7→ u(x)⊗ vv1 · · · vn,

a(f) : x⊗ v1 · · · vn 7→ d(x) ⊗ f(v1) v2 · · · vn.

They verify Proposition 19.41 for q = 0.
Now recall from Proposition 19.36 and its proof that if p and q are species with

up-down operators, then so is their Hadamard product p × q. Also let L be the
linear order species with up-down operators as defined in Example 8.56.

Proposition 19.42. The following is an isomorphism of functors

(19.34) ℑV,0(−) ∼= ℑV
(
L× (−)

)

from Spu
d to gVecc

a.

This is a straightforward check which we omit.
It is worth comparing the claim made above with (19.29). We point out that in

the present situation we are not making any claims about the monoidal properties
of the functors; so it does not matter whether we write L or L0.

Example 19.43. Applying (19.34) to the exponential species, we obtain

ℑV,0(E) ∼= ℑV (L).

The first space is the free Fock space. Creation-annihilation operators on this space
satisfy the 0-commutation relation, that is, the relation of Proposition 19.41 with
q = 0. The second space is the generalized bosonic Fock space of the linear order
species. However, L is not a species with balanced operators; so we do not expect
the bosonic commutation relations to hold on this space. Rather, we are seeing
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that the 0-commutation relation should hold which is exactly what was noted in
Example 19.31.

Example 19.44. Applying (19.34) to the species of elements (Example 19.29), we
obtain

ℑV,0(e) ∼= ℑV (L× e).

The first space is the generalized free Fock space of the species of elements. Since e
is a species with balanced operators, the creation-annihilation operators acting on
it satisfy the 0-commutation relation.

The pointing of the species of linear orders L• = L× e carries up-down opera-
tors; however, they do not turn L• into a species with balanced operators. Hence
we do not expect the creation-annihilation operators acting on generalized bosonic
Fock space of L• to satisfy the usual commutation relation. Instead, the above
isomorphism shows that they satisfy the 0-commutation relation.

19.9. Yang–Baxter deformations of decorated Fock functors

In Section 19.7, we discussed one-parameter deformations of the decorated Fock
functors. We now sketch a more general framework for deformations in the deco-
rated setting. To express the monoidal properties of these deformed functors, one
needs to generalize the notion of a bilax functor to the context where the source
category is braided but the target category is only partially braided. We explain
the main idea behind this notion, and then discuss the examples of interest to us.

19.9.1. Bilax functors in the context of a Yang–Baxter operator. Let
(D, •) be a monoidal category. Recall that a Yang–Baxter operator on a functor
F : C→ D consists of a natural isomorphism

(19.35) ν : F(A) • F(B)→ F(B) • F(A)

satisfying the dodecagon axiom [184, Definition 2.4]. If C has only one arrow,
then we recover the more common notion of a Yang–Baxter operator [191, Defini-
tion XIII.3.1].

Now suppose that C is a braided monoidal category and let (F , ν) be as above.
Note that we do not require D to be braided. Even then we can make sense of when
(F , ν) is bilax: in the braiding axiom (3.11) use ν instead of β. This idea can be
used to give an abstract definition of a bilax functor in this setting. In the recent
paper [265], McCurdy and Street have discussed this notion (independently from
our work). However, we point out that in addition to the usual axioms one would
also need compatibilities of ν with the lax and colax structures of F . In the usual
setting, these compatibilities follow from properties of the braiding. One reason
for this can be seen from the requirement: If C has only one object, then a bilax
functor should specialize to a braided bialgebra [356, Definition 5.1].

The results of Takeuchi [356, Section 5] relating braided bialgebras to bialgebras
in certain braided monoidal categories can be extended to results relating bilax
monoidal functors in the context of a Yang–Baxter operator to bilax monoidal
functors between braided monoidal categories.
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19.9.2. Yang–Baxter deformations of decorated full Fock functors. Start
with a Yang–Baxter operator R on V . This implies that the tensor power V ⊗n

carries an action of the braid group Bn. Recall that there is a canonical section

(19.36) s : Sn → Bn

which sends generators to generators in the usual presentations of these groups [246,
Section 2.1.2]. This section is not a group homomorphism.

For any decomposition S ⊔ T = [n], consider the permutation ζ : [n] → [n]
whose restrictions to S and T are the order-preserving maps cano : S → [s] and
cano : T → [s+ 1, s+ t], where s = |S| and t = |T |. Then there is an induced map

(19.37) V ⊗n → V ⊗s ⊗ V ⊗t

given by the action of the element s(ζ) ∈ Bn. More explicitly, we repeatedly apply
the Yang–Baxter operator so that the V ’s which lie in the positions specified by S
move to the first s positions.

Now for s+ t = n, consider the permutation ζ : [n]→ [n] whose restrictions to
[s] and [s + 1, s + t] are the order-preserving maps cano : [s] → [t + 1, t + s] and
cano : [s+ 1, s+ t]→ [t]. Then there is an induced map

(19.38) V ⊗s ⊗ V ⊗t → V ⊗t ⊗ V ⊗s

given by the action of the element s(ζ) ∈ Bn.

We now explain how these ideas can be used to construct a bilax functor

KV,R : (Sp, ·, β)→ (gVec, ·).

To start with, the functor is defined by:

KV,R(p) := p[n]⊗ V ⊗n.

The lax structure is the same as for KV while the colax structure is defined us-
ing (19.37). The structure map ν of (19.35) is defined using (19.38). This turns
KV,R into a bilax functor.

The functor K∨
V,R is constructed along similar lines.

For any species p, let κp : KV,R(p) → K∨
V,R(p) be the map of graded vector

spaces given by

κp(x⊗ v1 · · · vn) :=
∑

σ∈Sn

σ · x⊗ s(σ) · (v1 · · · vn),

for any x ∈ p[n], vi ∈ V . This defines the norm transformation

κ : KV,R ⇒ K
∨
V,R.

It is a morphism of bilax functors. The image gives rise to the bilax functor ℑV,R.

Example 19.45. Consider the flip operator on V which interchanges the two
tensor factors of V ⊗ V . This, as well as any scalar multiple q of it, is a Yang–
Baxter operator Rq on V . This gives the representation of Bn in which the action
of the standard generators is by multiplication by q. In this case, the Yang–Baxter
operator ν on KV,Rq extends in fact to the braiding βq on gVec. The functors we
obtain in this situation are

KV,Rq = KV,q, K∨
V,Rq = K∨

V,q, and ℑV,Rq = ℑV,q,

the functors of diagram (19.27). These are bilax in the usual sense.
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Example 19.46. We now generalize the previous example. Let Q be a square
matrix of size r, where r is the dimension of V . Fix a basis x1, x2, . . . , xr of V , and
consider the Yang–Baxter RQ operator on V :

V ⊗ V → V ⊗ V, xi ⊗ xj 7→ qji xj ⊗ xi

where i and j vary between 1 and r, and qji denotes the entries of the matrix Q.
(We recover the previous example if all entries are equal.) The operator RQ is an
involution precisely if Q is log-antisymmetric. Let us denote the resulting functors
by

KV,RQ , K
∨
V,RQ and ℑV,RQ .

They are not bilax in the usual sense in general.
In Chapter 20, we construct these functors using colored species and multi-

graded vector spaces. We highlight an important result. If the field characteristic is
0 and Q is such that no monomial in the qij ’s equals 1 then the norm transformation
is an isomorphism and the three functors above are isomorphic (Theorem 20.11).

Example 19.47. We continue the discussion in the preceding example. Applying
the above deformed functors to a bimonoid in species yields a braided bialgebra
rather than a usual bialgebra.

Recall the bimonoid E associated to the exponential species. The object
KV,RQ(E) is the free algebra on r generators k〈x1, . . . , xr〉 of Example 2.14. The
object K∨

V,RQ
(E) is the quantum shuffle algebra as defined by Green [152] and

Rosso [316, Proposition 9]. It has the same underlying space as the free algebra but
the structure maps are different: the product is a deformation of the shuffle product
and the coproduct is deconcatenation. The object ℑV,RQ(E) is Rosso’s quantum
symmetric algebra associated to the matrix Q. This is also called the Nichols alge-
bra of diagonal type associated to Q [23, Proposition 2.11]. These objects appear in
the classification of pointed Hopf algebras with abelian coradical [20, 22, 23, 24, 25].
Sections 3.2 and 4 of the survey by Andruskiewitsch and Schneider [23] contain re-
sults on Nichols algebras of diagonal type. More information can be found in the
lecture notes by Heckenberger [165].

A more detailed discussion of this example is given later in Example 20.21.

Other Yang–Baxter operators would lead to more general deformations of the
decorated Fock functors. The resulting braided Hopf algebras after applying the
functor ℑV,R would include, for the special case of the exponential species, the
Nichols algebra (also called quantum symmetric algebra) associated to the Yang–
Baxter operator R. For information on Nichols algebras, see [23] and [165]. They
are named after Warren Nichols who considered them in [284].

19.9.3. Up-down and creation-annihilation. The construction in Section 19.8
of creation-annihilation operators from species with up-down operators can also
be extended to the setting of Yang–Baxter operators. The creation-annihilation
operators act on usual anyonic Fock space but the action is deformed by the Yang–
Baxter operator. We explain this briefly.

Fix v ∈ V and f ∈ V ∗. Then the value of the functor ℑV,R on a species with
up-down operators carries both creation and annihilation operators which are as
follows.
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The creation operator is given by

(19.39) c(v) : x⊗ v1 · · · vn 7→
n∑

k=0

(k+ 1, . . . , 1) · u(x)⊗ s(k+ 1, . . . , 1) · (vv1 · · · vn),

where s is the canonical section of (19.36). The Yang–Baxter operator R appears
in this map via the action on the tensors.

The annihilation operator is given by

(19.40) a(f) : x⊗ v1v2 · · · vn 7→ d(x) ⊗ f(v1) v2 · · · vn,

as before with no dependence on R

To get the commutation relations, pick a basis x1, x2, . . . , xr of V , and write

R(xa ⊗ xb) =
∑

c,d

Rcdab xc ⊗ xd

for suitable coefficients Rcdab. One may check that:

Proposition 19.48. Let (p, u, d) be a species with up-down operators, and let R
be a Yang–Baxter operator. If (19.23) holds, then for any i and j between 1 and r,

a(x∗i )c(xj)−
∑

k,l

Rikjl c(xk)a(x
∗
l ) = λnδij id

where the operators are acting on the degree n component of ℑV,q(p).

If R = RQ as in Example 19.46, then the above commutation relation becomes:

a(x∗i )c(xj)− qij c(xj)a(x
∗
i ) = λnδij id .

If all the qij ’s are equal, then one recovers the q-commutation relation of Proposi-
tion 19.41.

The special case of the exponential species recovers the creation-annihilation
operators introduced by Bożejko and Speicher [66]. The commutation relation of
Proposition 19.48 is given on [66, p. 109].



CHAPTER 20

Colored Fock Functors

The main goal of this chapter is the construction of multivariate versions of
the Fock functors of Chapters 15 and 16. This is done by replacing species by
colored species and graded vector spaces by multigraded vector spaces. One of the
advantages of the multivariate setting is the existence of a variety of braidings on
these categories, as we saw in Sections 2.4 and 14.1. In particular, for each integer
square matrix Q of size r there is a braiding on the category of r-colored species as
well as on the category of Nr-graded vector spaces. When the matrix Q is related
to a matrix A of Cartan type via (2.33), such braidings are used to define the
deformations of simple Lie algebras usually known as quantum groups. They also
play a key role in the theory of (abstract) pointed Hopf algebras. Remarkably, it is
possible to construct monoidal functors from r-colored species to Nr-graded vector
spaces that are bilax with respect to these braidings. For r = 1, this recovers the
Fock functors and their q-deformations.

This opens the doors to largely unexplored territory in the universe of combi-
natorial Hopf algebras and connects it with the world of quantum groups and the
classification theory of abstract Hopf algebras.

In this chapter we content ourselves with the main details of these construc-
tions, leaving further study for future work, and hopefully, other interested authors.
We begin with the construction of the colored Fock functors in Section 20.1. We
also introduce, for any log-antisymmetric matrix Q, a colored version which simul-
taneously generalizes the bosonic and fermionic Fock functors. In Section 20.2, we
construct the colored norm transformation between the colored full Fock functors.
Its image yields the colored anyonic Fock functor. In particular, we recover the
bosonic and fermionic Fock functors when Q = [1] and Q = [−1] respectively. In
Section 20.3, we study the behavior of the colored full Fock functor KQ with re-
spect to commutativity. The functor KQ is not braided colax in general. We show
that conjugating the colax structure with the braidings yields the functor KQ−t .
We also construct a q-analogue of the half-twist transformation. In Section 20.4,
we relate these colored Fock functors to the deformations of the decorated Fock
functors constructed in Section 19.9. We conclude with Section 20.5 which shows

Table 20.1. Colored Fock functors.

Fock functor Name

KQ, K∨
Q Colored full Fock functor

KQ, K
∨
Q Colored bosonic-fermionic Fock functor

ℑQ Colored anyonic Fock functor

635
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how nontrivial quantum groups arise by applying the colored Fock functors to even
the simplest Q-Hopf monoids.

20.1. The colored Fock functors

In this section, we construct the colored or Q-deformed version of the full Fock
functors. We refer to these as the Q-Fock functors. We obtain the free Fock functor
as a special case. We then explain how invariants and coinvariants can be used to
obtain colored generalizations of the bosonic and fermionic Fock functors.

20.1.1. The colored full Fock functors. Define a functor K(r) by

(20.1) K(r)(q) :=
⊕

n≥0

⊕

f : [n]→[r]

q[n, f ].

This space is graded over the set of all functions f : [n]→ [r], with n ≥ 0 (the free
monoid on r generators). Hence it is also graded over Nr (the free commutative
monoid on r generators). Explicitly, the degree of an element in q[n, f ] is d(f) as
defined in (2.38). We may write

K(r)(q) =
⊕

d∈Nr

⊕

f : [n]→[r]
d(f)=d

q[n, f ].

We now proceed to turn this into a bilax monoidal functor

(K(r), ϕ(r), ψ
(r)
Q ) : (Sp(r), ·, βP )→ (gVec(r), ·, βP×Q),

where βP is the braiding on r-colored species defined in (14.3), βP×Q is the braiding
on Nr-graded vector spaces defined in (2.60), and P×Q is the Hadamard product of
matrices (Section 2.2.5). For the bilax structure, we need to define transformations

K(r)(p) · K(r)(q)

ϕ(r)
p,q

//
K(r)(p · q).

(ψ
(r)
Q )p,q

oo

Considering the component of degree n of both spaces, and using the definitions of
the Cauchy products (2.59) and (14.2), we need to define maps

⊕

s+t=n

⊕

f1 : [s]→[r]
f2 : [t]→[r]

p[s, f1]⊗ q[t, f2]

ϕ(r)
p,q

// ⊕

S⊔T=[n]

⊕

f : [n]→[r]

p[S, f |S ]⊗ q[T, f |T ].
(ψ

(r)
Q )p,q

oo

The natural transformation ϕ
(r)
p,q is given by

p[s, f1]⊗ q[t, f2]
p[id]⊗q[cano]
−−−−−−−−→ p[S, g]⊗ q[T, h]

where
S = [s], g = f1, T = [s+ 1, s+ t], h = f2 cano−1,

with
cano: [t]→ [s+ 1, s+ t].

being the canonical order-preserving map. We are following Notation 2.5. Thus ϕ(r)

simply embeds the domain into certain distinguished components of the codomain.

Before going to the colax structure, we review some terminology. Recall the
multiplicative weighted Schubert statistic (2.35). It can be equivalently formulated
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as a weighted cocycle (10.102). Further, it is closely related to the multiplicative
weighted distance function on chambers (10.75). The notations for these notions
and the relations between them are summarized below.

schQn (S, f) = schQS,T,f (C(n)) = distQf (C(n),KC(n)),

where K is the vertex S|T and C(n) is the canonical linear order on [n]. On the
left is the statistic, in the middle is the cocycle, and on the right is the distance
function. The equalities hold by (10.103) and the multiplicative version of (10.100).

We proceed. The natural transformation (ψ
(r)
Q )p,q is given by

p[S, f |S ]⊗ q[T, f |T ]→ p[s, f1]⊗ q[t, f2]

x⊗ y 7→ schQn (S, f) x⊗ y,(20.2)

or equivalently,

x⊗ y 7→ distQf (C(n),KC(n)) x⊗ y.(20.3)

where
s = |S|, t = |T |, f1 = f |S cano−1, f2 = f |T cano−1,

with
cano: S → [s] and cano: T → [t].

being the canonical order-preserving maps,

x = p[cano](x) and y = q[cano](y).

Note that several components of the domain map onto one same component of the

codomain under ψ
(r)
Q .

Finally, we let ϕ
(r)
0 and (ψ

(r)
Q )0 be the identity maps

k
ϕ

(r)
0−−→ K(r)(1(r))

(ψ
(r)
Q )0

−−−−→ k.

We use KQ to shorten (K(r), ϕ(r), ψ
(r)
Q ).

Theorem 20.1. The functor

KQ : (Sp(r), ·, βP )→ (gVec(r), ·, βP×Q)

is bilax monoidal.

Proof. The proof reduces to checking that certain products of the entries
taken from the matrices P and Q match. This is a generalization of the proof
of Theorem 16.1 where one checked that certain powers of p and q match (recall
that in that case P = [p] and Q = [q]). These checks boiled down to properties
of the Schubert statistic. Now we need to use the corresponding properties of the
weighted Schubert statistic. For example, coassociativity (dual of diagram (3.5))
follows from (2.42). Similarly, the braiding axiom (3.11) follows from (2.43) (also
see the results on braids in [6] in this regard). �

It follows from the definitions that for r = 1 and Q = [q],

KQ = Kq,

the bilax monoidal functor Kq of Section 9.4. For this reason, KQ is a colored
version of Kq, and hence also a deformation of the full Fock functor K. Another
special case worth mentioning is when Q = 1r,r. The multiplicative distance is
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identically 1 in this case, so it essentially drops out of the definition of the colax
structure.

We now proceed to define another bilax functor

K∨
Q = ((K(r))∨, (ψ

(r)
Qt )

∨, (ϕ(r))∨).

The reason for this terminology will be clear shortly. The functor

(K(r))∨ := K(r)

and is given by (20.1). Define a natural transformation

(ψ
(r)
Qt )

∨
p,q : (K(r))∨(p) · (K(r))∨(q)→ (K(r))∨(p · q)

with components

p[s, f1]⊗ q[t, f2]→
⊕

S⊔T=[n]

p[S, g]⊗ q[T, h]

which map

(20.4) x⊗ y 7→
∑

S⊔T=[n]
|S|=s,|T |=t

schQn (S, f)p[cano](x) ⊗ q[cano](y),

where the canonical maps in question are, for each term in the sum,

cano: [s]→ S and cano: [t]→ T,

and f is defined such that its restriction to S is f1 cano−1 and its restriction to T
is f2 cano−1. Note that g = f1 cano−1 and h = f2 cano−1 necessarily.

The natural transformation

(ϕ(r))∨p,q : (K(r))∨(p · q)→ (K(r))∨(p) · (K(r))∨(q)

is the direct sum of the following maps:

p[s, g]⊗ q[[s+ 1, s+ t], h]
p[id]⊗q[cano]
−−−−−−−−→ p[s, f1]⊗ q[t, f2]

where f1 = g and f2 = h cano−1 for

cano: [s+ 1, s+ t]→ [t].

On the components for which S 6= [s] (and T 6= [s+ 1, s+ t]), the map (ϕ(r))∨p,q is
zero.

We let (ψ
(r)
Qt )

∨
0 and (ϕ(r))∨0 be the identity maps

k
(ψ

(r)

Qt
)∨0

−−−−−→ (K(r))∨(1(r))
(ϕ(r))∨0−−−−−→ k.

It is straightforward to show that:

Theorem 20.2. The functor

K∨
Q : (Sp(r), ·, βP )→ (gVec(r), ·, βP×Q)

is bilax monoidal.
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Recall that duality on colored species (14.6) changes the braiding βP to βP t .
Similarly, duality on multigraded vector spaces (2.63) changes βP×Q to βP t×Qt .
Thus, applying the contragredient construction of Section 3.10 to KQ yields a new
bilax monoidal functor which is related to K∨

Q (in the finite-dimensional setting)
via

K∨
Q = (KQt)

∨.

This explains why we write Qt in the notation for the colax structure of K∨
Q.

We refer to the functors KQ andK∨
Q collectively as the colored full Fock functors.

20.1.2. The colored free Fock functor. Let 0r,r denote the matrix of size r,
all of whose entries are zero. We claim that

(20.5) K0r,r = K∨
0r,r .

We check the colax part; the lax part follows similarly or by applying the contra-
gredient. For the colax structure of K0r,r , put Q = 0r,r in (20.3). Observe that
this map is nonzero only if C(n) = KC(n), that is, if K = S|T is a face of C(n), or
equivalently, if S = [s] and T = [s + 1, s + t]. In addition, whenever this occurs,
the coefficient (multiplicative distance) is 1. So it clearly agrees with the colax
structure of K∨

0r,r .

The bilax functor constructed in (20.5) is the colored version of the free Fock
functor of (16.1). We refer to it as the colored free Fock functor.

20.1.3. The colored bosonic-fermionic Fock functors. We now introduce a
colored version which simultaneously generalizes the bosonic and fermionic Fock
functors. More precisely, for any log-antisymmetric matrix Q, we define bistrong

functors KQ and K
∨
Q (which will be isomorphic in characteristic 0) such that

K[1] = K, K[−1] = K−1, K
∨
[1] = K

∨
and K

∨
[−1] = K

∨
−1.

In other words, the matrices [1] and [−1] yield the bosonic and fermionic functors
respectively.

For simplicity, let us first discuss the case when Q = 1r,r, that is, all matrix
entries are 1. Let d ∈ Nr be fixed. The starting point is the observation that for
any r-colored species, the symmetric group Sn acts on the space

(20.6)
⊕

f : [n]→[r], d(f)=d

q[n, f ].

The action is as follows. Any element σ ∈ Sn defines a map

[n, f ]→ [n, fσ−1]

of colored sets which by functoriality induces a map of vector spaces

(20.7) q[σ] : q[n, f ]→ q[n, fσ−1] denoted z 7→ σ · z.

Now take direct sum of these maps to obtain the action. Observe that the kSn-
module (20.6) is the same as the induced module

(20.8)
⊕

f : [n]→[r], d(f)=d

q[n, f ] = kSn ⊗kSd
q[nd, fd],

with notations as in Remark 14.2.
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Now let

K1r,r(q) :=
⊕

d∈Nr

(
⊕

f : [n]→[r], d(f)=d

q[n, f ]

)

Sn

(20.9)

=
⊕

d∈Nr

(
q[nd, fd]

)
Sd
.

The functor K
∨
1r,r is defined similarly by taking invariants instead of coinvariants.

Then, by definition, there are natural transformations

K1r,r ⇒ K1r,r and K
∨
1r,r ⇒ K

∨
1r,r .

Further, by arguing as in the proof of Proposition 15.2, one can show that these

natural transformations induce bistrong structures on K1r,r and K
∨
1r,r . It follows

that these functors are contragredients of each other.
Now we go to the general case. For Q a log-antisymmetric matrix, the functors

KQ and K
∨
Q are defined as composites of bistrong functors:

(20.10) KQ(−) := K1r,r

(
(−)Q

)
and K

∨
Q(−) := K

∨
1r,r

(
(−)Q

)

where (−)Q is the colored signature functor (see Proposition 14.10). It follows that

K
∨
Q = (KQt)

∨.

Let us now understand the functor KQ in more explicit terms. The same discussion

can be carried out for K
∨
Q by replacing coinvariants with invariants. Since the

signature functor is defined as the Hadamard product with the colored exponential
species EQ, it follows that

(20.11) KQ(q) :=
⊕

d∈Nr

(
⊕

f : [n]→[r], d(f)=d

q[n, f ]⊗EQ[n, f ]

)

Sn

.

Since EQ is one-dimensional on each colored set, there is a canonical isomorphism

q[n, f ]⊗EQ[n, f ]→ q[n, f ] x⊗ (1 ∧ · · · ∧ n) 7→ x.

Further, note that

σ ·
(
x⊗ (1 ∧ · · · ∧ n)

)
= σ · x⊗

(
σ(1) ∧ · · · ∧ σ(n)

)

= distQfσ−1(σC(n), C(n))σ · x⊗ (1 ∧ · · · ∧ n).

An example will serve to clarify this further. Using blue for color 1 and red for
color 2,

(312) ·
(
x⊗ (1 ∧ 2 ∧ 3)

)
= (312) · x⊗ (3 ∧ 1 ∧ 2) = q21q11 (312) · x⊗ (1 ∧ 2 ∧ 3).

The above coefficient can be written alternatively in terms of the weighted multi-
plicative inversion statistic (2.45) as follows.

distQfσ−1(σC(n), C(n)) = distQf (C(n), σ
−1C(n)) = invQf (σ),

The first equality holds by (10.78) and the second equality holds by (10.116). This
shows that:
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Proposition 20.3. If Q is log-antisymmetric, then

(20.12) z 7→ σ ∗ z, where σ ∗ z := invQf (σ)σ · z

defines an action of Sn on the space (20.6).

The above action is a twisted version of (20.7). Thus, (20.11) can be rewritten
as

KQ(q) =
⊕

d∈Nr

(
⊕

f : [n]→[r], d(f)=d

q[n, f ]
)

Sn
,

with the understanding that the coinvariants are taken with respect to the twisted
action of Sn given in (20.12).

20.1.4. Relations to the signature functor and the linear order species.
Recall the signature functor (−)Q on colored species from Section 14.4.3. It was
used in the construction of the colored bosonic-fermionic functors. We now record
its relation with the colored full Fock functor. This is a colored generalization of
Proposition 16.5 and can be proved in the same manner.

Proposition 20.4. Let P,Q, and R be square matrices of the same size and let
Q be log-antisymmetric. The following diagram commutes (up to isomorphism) as
bilax monoidal functors.

(20.13)

(Sp(r), ·, βP )
(−)Q

//

KQ×R &&MMMMMMMMMM
(Sp(r), ·, βP×Q)

KRwwppppppppppp

(gVec(r), ·, βP×Q×R)

The same result holds with KQ replaced by K∨
Q.

We now show how the Q-Hopf monoids LQ and L∗
Q of colored linear orders

studied in Section 14.5 can be used to construct the colored full Fock functors
from the colored bosonic-fermionic functors. This generalizes Propositions 16.6
and 16.22.

Proposition 20.5. Let P,Q, and R be square matrices of the same size and let Q
be log-antisymmetric. There are isomorphisms of bilax functors

KP×Q(−) ∼= KQ
(
LP × (−)

)
and K∨

P×Q(−) ∼= K
∨
Q

(
L∗
P × (−)

)

from (Sp(r), ·, βR) to (gVec(r), ·, βR×P×Q).

Proof. We start with the special case when all entries of Q are 1. Given a
colored species p, define a map of multigraded vector spaces

KP (p) ∼= K1r,r(LP × p)

with components

p[n, f ]→

( ⊕

f : [n]→[r]

L[n, f ]× q[n, f ]

)

Sn

, x 7→ C(n) ⊗ x,

where C(n) = 1| · · · |n is the canonical linear order on [n] and the overline denotes
the projection to coinvariants. By arguing as in the proofs of Propositions 15.9
and 16.6, one can show that this is an isomorphism of bilax functors.
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The general case can be derived from this one as follows.

KP×Q(−) ∼= K1r,r

(
LP×Q × (−)

)
∼= K1r,r

(
(LP )Q × (−)

)

∼= K1r,r

((
LP × (−)

)
Q

)
∼= KQ

(
LP × (−)

)

The second isomorphism follows from (14.24), the third follows from Proposi-
tion 14.11, and the last follows from (20.10). �

20.2. The colored norm transformation and the anyonic Fock functor

We generalize the q-norm transformation of Section 16.2 to the colored setting
and study its implications. In particular, we consider the colored version of the
anyonic Fock functor introduced in Section 16.3.5. Further, we show that the
colored norm transformation is an isomorphism if Q is symmetric and has generic
entries.

20.2.1. Relating the structure constants of the colored full Fock functors.
Let Sh(s, t) denote the set of (s, t)-shuffle permutations (2.21).

Lemma 20.6. The structure maps ϕ(r) and (ψ
(r)
Qt )

∨, and ψ
(r)
Q and (ϕ(r))∨, are

related by the formulas

(20.14) (ψ
(r)
Qt )

∨(x⊗ y) =
∑

ζ∈Sh (s,t)

invQf (ζ−1) ζ
(
ϕ(r)(x ⊗ y)

)

for x ∈ p[s, f1], y ∈ q[t, f2], and f as in (20.4),

(20.15) ψ
(r)
Q (a⊗ b) =

∑

ζ∈Sh (|S|,|T |)

invQf (ζ−1) (ϕ(r))∨
(
ζ−1(a⊗ b)

)

for a ∈ p[S, g], b ∈ q[T, h], and f such that its restriction to S is g and to T is h.

The result follows along the lines of the proof of Lemma 15.18 complemented
with (2.46).

20.2.2. The colored norm transformation.

Definition 20.7. For any colored species p, let

(κQ)p : KQ(p)→ K∨
Q(p)

be the map which on component (20.6) is given by

(20.16) z 7→
∑

σ∈Sn

invQf (σ) σ · z, or equivalently, z 7→
∑

σ∈Sn

σ ∗ z

for any z ∈ p[n, f ], with σ · z as in (20.7), invQf as in (2.45), and σ ∗ z as in (20.12).

This defines a natural transformation κQ : KQ ⇒ K∨
Q which we call the Q-norm,

or, colored norm.

Proposition 20.8. For finite-dimensional colored species, for a symmetric matrix
Q, the Q-norm is self-dual. More generally, we have

(κQ)∨ = κQt .
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Proof. We proceed along the lines of the proof of Proposition 16.14. One
starts out by writing the norm map on the dual species p∗. Thus

(κQ)p∗ :
⊕

p∗[n, f ]→
⊕

p∗[n, f ] α 7→
∑

σ∈Sn

invQf (σ)σ · α

for α ∈ p∗[n, f ]. Dualizing this map and identifying (p∗)∗ with p, we obtain:

(κQ)∨p :
⊕

p[n, g]→
⊕

p[n, g] z 7→
∑

σ∈Sn

invQgσ(σ)σ−1 · z

for any z ∈ p[n, g]. The result now follows from (2.47). �

Proposition 20.9. The Q-norm is a morphism of bilax monoidal functors

κQ : KQ ⇒ K
∨
Q.

Proof. We proceed along the lines of the proof of Proposition 16.15. Let
a⊗ b ∈ p[S, g]⊗ q[T, h]. Using (20.15) we find
(
(κQ)p · (κQ)q

)
(ψ

(r)
Q )p,q(a⊗ b)

=
∑

σ∈Ss
τ∈St

∑

ζ∈Sh(s,t)

invQf (ζ−1) invQg (σ) invQ
h

(τ) (ϕ(r))∨p,q
(
(σ × τ) · ζ−1 · (a⊗ b)

)
,

where g and h are defined using (2.48)

=
∑

ρ∈Sn

invQf (ρ) (ϕ(r))∨p,q
(
ρ · (a⊗ b)

)

where f is such that its restriction to S is g and to T is h

= (ϕ(r))∨p,q(κQ)p·q(a⊗ b).

The second to last equality requires argument. We need to show that

(20.17) invQf (ρ) = invQf (ζ−1) invQg (σ) invQ
h

(τ),

where ρ = (σ × τ)ζ−1. This follows from (2.22) and (2.49). Equivalently, in
geometric terms, using (10.116), we need to show that

distQf (C(n), ρ
−1C(n)) = distQf (C(n), ζC(n)) distQg (C(s), σ

−1C(s)) distQ
h

(C(t), τ
−1C(t)).

This follows from (2.22) and (10.117). We emphasize that the gate property is at
the root of this identity. To conclude:

(κQ · κQ)ψ
(r)
Q = (ϕ(r))∨κQ

and κQ is a morphism of colax functors. The proof can be summarized in the
following commutative diagram

p[S, g]⊗ q[T, h]
p[cano]⊗q[cano]

//

p[ρ|S ]⊗q[ρ|T ]

��

p[s, g]⊗ q[t, h]

p[σ]⊗q[τ ]

��

p[ρ(S), gρ−1|ρ(S)]⊗ q[ρ(T ), hρ−1|ρ(T )]
p[cano]⊗q[cano]

// p[s, gσ−1]⊗ q[t, hτ−1]
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and (20.17), where ρ = (σ × τ) · ζ−1 and ζ is the unique (s, t)-shuffle permutation
which sends [s] to S and [s+ 1, s+ t] to T .

The fact that κQ is a morphism of lax functors can be similarly verified. In the
finite-dimensional setting, it follows from Proposition 20.8. �

20.2.3. The colored anyonic Fock functor. Proposition 20.9 allows us to intro-
duce a new bilax monoidal functor ℑQ as the image of κQ. It fits in a commutative
diagram:

KQ
κQ +3

�%
BB

BB
BB

BB

BB
BB

BB
BB

K∨
Q

ℑQ.

9A|||||||

|||||||

For Q = [q], the above discussion specializes to the one in Section 16.3.5; thus ℑQ is
the colored version of the anyonic Fock functor. It follows from Propositions 3.119
and 20.8 that if Q is symmetric, then ℑQ is self-dual (regardless of the character-
istic). More generally, the dual of the above diagram is the same diagram with Q
replaced by Qt.

If Q is log-antisymmetric, then we have an expanded commutative diagram:

KQ
κQ +3

��

K∨
Q

KQ +3 ℑQ +3 K
∨
Q.

KS

Further, we claim that in characteristic 0,

KQ ∼= ℑQ ∼= K
∨
Q.

In this situation, Proposition 20.3 shows that σ∗z defines an action of the symmetric
group; hence, using Lemma 2.20, one may view the image as (co)invariants of this
action. The claim follows.

20.2.4. The generic case for the norm map. Our goal now is to show that
κQ is an isomorphism if Q is generic. We begin by studying the behavior of κQ on
the colored linear order species.

Example 20.10. Consider the colored linear order species L(r) given by

L(r)[n, f ] := L[n].

We will denote an element of this component by (C, f), where C is a linear order
on n.

The norm map κQ on L(r) can be written as

(C, g) 7→
∑

π∈Sn

distQg (C(n), π
−1C(n)) (πC, gπ−1).

An illustrative example, with blue denoting color 1 and red denoting color 2, is
given below.

3|1|2 7→ 3|1|2 + q12 3|2|1 + q11 2|1|3 + q11q12 1|2|3 + q212 2|3|1 + q212q11 1|3|2.
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Observe that the labels change but the colors stay in the same position. Such a set
of elements can be expressed in general as

(20.18) {(σC(n), fσ
−1) | σ ∈ Sn},

where f : [n]→ [r] is fixed. In the above example, (C(n), f) = 1|2|3.
The norm map splits as a direct sum of rn maps, each map defined on the space

spanned by the above set. Explicitly, using (10.78), it can be written as

(σC(n), fσ
−1) 7→

∑

π∈Sn

distQf (σ−1C(n), (πσ)−1C(n)) (πσC(n), f(πσ)−1).

This is induced by the following bilinear form on the space spanned by (20.18):
〈
(σC(n), fσ

−1), (πσC(n), f(πσ)−1)
〉

= distQf (σ−1C(n), (πσ)−1C(n)).

After precomposing with the bijection

σ−1C(n) 7→ (σC(n), fσ
−1),

between the set of linear orders on [n] and the set in (20.18), the above bilinear
form coincides with the bilinear form on L[n] given by (10.134). It follows from
Lemma 10.33 that (κQ)L(r)

is an isomorphism if no monomial in the qij ’s equals 1.

Theorem 20.11. Assume that for the matrix Q, no monomial in the qij ’s equals
1 and the field characteristic is 0. Then the Q-norm transformation

κQ : KQ ⇒ K
∨
Q

is an isomorphism of bilax monoidal functors.

Proof. Let p be a r-colored species and let d ∈ Nr. Consider the Sn-module
given in (20.6). Let us call this Md. We know from (20.8) that

Md = kSn ⊗kSd
q[nd, fd],

which is a representation induced from a parabolic subgroup.
We need to show that the norm map κQ on Md is an isomorphism. For this, we

show that it is an isomorphism on every irreducible component of Md. Accordingly,
let I be an irreducible in Md. Then there is an irreducible, say I1 ⊗ · · · ⊗ Ir, in
q[nd, fd] whose induction to Sn contains I.

Now, note that L(r)[nd, fd] is the tensor product of the regular representations
of the Sdi ’s. So I1 ⊗ · · · ⊗ Ir can be viewed as a submodule of this tensor product.
It follows by inducing up that I can be viewed as a submodule of

⊕

f : [n]→[r], d(f)=d

L(r)[n, f ].

The norm map κQ is an isomorphism on this module by the analysis of Exam-
ple 20.10. The result follows. �

20.2.5. From colored Hopf monoids to multigraded Hopf algebras. Using
the above discussion along with the proofs of Theorem 15.12, Theorem 15.13, and
Corollary 15.22, one can immediately derive the following results.

Theorem 20.12. If h is a P -Hopf monoid, then KQ(h),K∨
Q(h) and ℑQ(h) are

(P ×Q)-Hopf algebras. If h is finite-dimensional, there are natural isomorphisms
of (P ×Q)-Hopf algebras

K∨
Q(h) ∼= KQ(h∗)∗
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given by the canonical identification h[n, f ] ∼= (h[n, f ]∗)∗. In addition, there is a
commutative diagram of natural morphisms of (P ×Q)-Hopf algebras

KQ(h)
(κQ)h

//

$$ $$I
IIIIIIII

K∨
Q(h)

ℑQ(h).

::uuuuuuuuu

If Q is log-antisymmetric, then in addition to all of the above, one can conclude:

Theorem 20.13. Let Q be a log-antisymmetric matrix. If h is a P -Hopf monoid,

then KQ(h) and K
∨
Q(h) are (P ×Q)-Hopf algebras. If h is finite-dimensional, there

are natural isomorphisms of (P ×Q)-Hopf algebras

K
∨
Q(h) ∼= KQ(h∗)∗

given by the canonical identification h[n] ∼= (h[n]∗)∗. In addition, there is a com-
mutative diagram of natural morphisms of (P ×Q)-Hopf algebras

KQ(h)
(κQ)h

//

����

K∨
Q(h)

KQ(h) // ℑQ(h) // K
∨
Q(h).

?�

OO

If the field characteristic is 0, then the maps on the bottom horizontal line are
isomorphisms of (P ×Q)-Hopf algebras.

If Q is generic, then there is only one object to consider. More precisely, using
Theorem 20.11, one can conclude:

Theorem 20.14. Let Q be such that no monomial in the qij ’s equals 1, and let the
field characteristic be 0. If h is a P -Hopf monoid, then

KQ(h) ∼= ℑQ(h) ∼= K∨
Q(h)

as (P ×Q)-Hopf algebras.

20.3. The colored full Fock functor and commutativity

We now concentrate on the functor KQ and study its behavior with respect to
commutativity, as is done in Section 16.4 for the functor Kq. In this section, we
assume that P , Q and R are matrices of size r all of whose entries are nonzero.

20.3.1. Conjugating the functor KQ by the braiding. We have seen that the
functor Kq is not braided colax in general. However, one can understand the situ-
ation by conjugating the colax structure by the braiding. We now do the same for
the functor KQ. We use notations similar to the one-dimensional case. Accordingly,
following Definition 16.25, we define four transformations

(ϕ(r))b(P,R), b(P,R)(ϕ(r)), (ψ
(r)
Q )b(P,R) and b(P,R)(ψ

(r)
Q )
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as the following composites:

K(r)(p) · K(r)(q)
βR
−−→ K(r)(q) · K(r)(p)

ϕ(r)
q,p
−−−→ K(r)(q · p)

K(r)(β−1
P )

−−−−−−→ K(r)(p · q),

K(r)(p) · K(r)(q)
β−1
R−−→ K(r)(q) · K(r)(p)

ϕ(r)
q,p
−−−→ K(r)(q · p)

K(r)(βP )
−−−−−−→ K(r)(p · q),

K(r)(p · q)
K(r)(βP )
−−−−−−→ K(r)(q · p)

(ψ
(r)
Q )q,p

−−−−−−→ K(r)(q) · K(r)(p)
β−1
R−−→ K(r)(p) · K(r)(q),

K(r)(p · q)
K(r)(β−1

P )
−−−−−−→ K(r)(q · p)

(ψ
(r)
Q )q,p

−−−−−−→ K(r)(q) · K(r)(p)
βR
−−→ K(r)(p) · K(r)(q).

Let Q−t denote the matrix obtained from Q by taking transpose and inverting
all the entries as in Section 2.2.5. Since

(βQ)−1 = βQ−t

both for multigraded vector spaces (2.62) and for colored species (14.4), it follows
that

(ψ
(r)
Q )b(P,R) = b(P−t,R−t)(ψ

(r)
Q ) and (ϕ(r))b(R,P ) = b(R−t,P−t)(ϕ(r)).

We have the following generalization of Proposition 16.26.

Proposition 20.15. There is an equality

(K(r), ϕ(r), (ψ
(r)
Q )b(P,P×Q)) = (K(r), ϕ(r), ψ

(r)
Q−t)

of bilax monoidal functors

(Sp, ·, βP−t)→ (gVec, ·, βP−t×Q−t).

The former is a conjugate of KQ, as in Proposition 3.16, and the latter is the functor
KQ−t .

Proof. The proof is similar to that of Proposition 16.26; we provide a geo-
metric version of the previous proof. We need to check that the diagram

p[S, g]⊗ q[T, h]
ψ

(r)
Q

// p[s, g]⊗ q[t, h]

β−1
P×Q

��

q[T, h]⊗ p[S, g]
ψ

(r)

Q−t

//

βP

OO

q[t, h]⊗ p[s, g]

commutes, where S ⊔ T = [n] and s = |S|, t = |T |, and g, h, g and h are related
by (2.48).

For this, one essentially has the check that the factors coming from P and Q,
by following the two directions, match. The factors coming from P clearly cancel,
so it drops out of the calculation. We now consider the factors coming from Q. Let
f : [n] → [r] be the function whose restriction to S is g and whose restriction to T
is h. We need to show that

schQn (S, f) brdQ
−t

d(g),d(h)
= schQ

−t

n (T, f).

The terms involving the statistic come from the colax structure by using (20.2),
while the term involving the braid coefficient comes from the braiding (2.60). The
usage of Q−t in the braid coefficient is due to (2.62). By transferring the Q−t-terms
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to the other side (which gets rid of the inverse), one sees that the above identity
reduces to (2.40). This completes the proof.

It is worth mentioning that the above identity, using (10.100) and (10.106), is
equivalent to

schQS,T,f(C(n)) brdQ
−t

S,T,f = schQ
−t

T,S,f (C(n)).

This identity follows from (10.109). It is further equivalent to

distQf (C(n),KC(n)) distQ
−t

f (KC(n),KC(n)) = distQ
−t

f (C(n),KC(n))

where K is the vertex S|T . This identity follows from (10.110). �

20.3.2. The colored half-twist transformation. Define a natural transforma-
tion θQ : K(r) ⇒ K(r) with components

p[n, f ]→ p[n, fωn], x 7→ invQf (ωn)p[ωn](x),

where ωn is the longest permutation in Sn and

(20.19) invQf (ωn) = distQf (C(n), C(n)) =
∏

i<j

qf(j)f(i).

The left-hand side is the multiplicative inversion statistic, as defined in (2.45),
applied to ωn. The first equality holds since ωn applied to C(n) is its opposite

chamber C(n). Thus,

invQf (ωn)

is the product of the weights of all half-spaces which contain C(n).
We call θQ the colored half-twist transformation.

Proposition 20.16. The transformation θQ is an isomorphism of bilax monoidal
functors

(
K(r), b(P,P×Q)(ϕ(r)), b(P,P×Q)(ψ

(r)
Q )
)
⇒ (K(r), ϕ(r), ψ

(r)
Q ).

Proof. We need to generalize the proof of Proposition 16.27. Since the de-
tails become quite intricate, we provide full details. We present the arguments in
geometric language since it makes the computations more transparent.

For the lax part, the diagram whose commutativity one needs to check is

p[s, g]⊗ q[t, h]

(θQ)p·(θQ)q

��

β−1
P×Q

// q[t, h]⊗ p[s, f ]
ϕ(r)

// q[t, h]⊗ p[s̃, g̃]
βP // p[s̃, g̃]⊗ q[t, h]

(θQ)p·q

��

p[s, gωs]⊗ q[t, hωt]
ϕ(r)

// p[s, gωs]⊗ q[t̃, h̃ωt]

where s̃ = [t+ 1, t+ s] and t̃ = [s+ 1, s+ t], with g̃ and h̃ωt are defined by

[s]
cano //

g
��

??
??

??
?

[t+ 1, t+ s]

g̃
zztttttttttt

[r]

[t]
cano //

hωt ��
@@

@@
@@

@@
[s+ 1, s+ t]

ghωtyyssssssssss

[r].
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If we let P and Q be the matrices with all entries 1, then the diagram clearly
commutes. So the main step is to check that the factors coming from P and Q
by following the two directions match. The matrix P is only involved in two top
horizontal arrows and it is clear that these contributions cancel each other. The
interesting case is that of the matrix Q; it is involved in the three arrows, which
are shown dotted. We need to show that

brdQ
−t

d(g),d(h) invQf (ωn) = invQg (ωs) invQh (ωt).

The first term comes from the braiding (2.60), the second term comes from (θQ)p · q,
while the term in the right-hand side come from (θQ)p and (θQ)q. By transferring
the Q−t-term to the right (which gets rid of the inverse), the above is equivalent to

invQf (ωn) = brdQ
d(h),d(g) invQg (ωs) invQh (ωt),

= brdQ[t],[t+1,t+s],f invQg (ωs) invQh (ωt),

where f : [n]→ [r] is the function whose restriction to [t] is h and whose restriction
to [t+ 1, t+ s] is g̃. The first equality follows from (2.37), while the second follows
from (10.106). The above is a higher dimensional generalization of the identity

(
n

2

)
= st+

(
s

2

)
+

(
t

2

)
.

We give a geometric proof. Let F be the vertex of C(n) defined by

F := [t]|[t+ 1, t+ s].

Then by using (20.19), (10.107), and the compatibility of the gallery metric with
joins (10.82), we are reduced to showing that

distQf (C(n), C(n)) = distQf (C,FC) distQf (FC(n), C(n)).

The first term on the right is independent of which chamber C is chosen. By
choosing C = C(n) and noting from Proposition 10.4 that there is a minimum
gallery

C(n) − FC(n) −C(n),

the identity follows from (10.79).
For the colax part, the diagram whose commutativity one needs to check is

p[S,g]⊗q[T,h]

(θQ)p·q

��

β−1
P // q[T,h]⊗p[S,g]

ψ
(r)
Q
// q[t,h]⊗p[s,g]

βP×Q
// p[s,g]⊗q[t,h]

(θQ)p·(θQ)q

��

p[ωn(S),gωn]⊗q[ωn(T ),hωn]
ψ

(r)
Q

// p[s,gωs]⊗q[t,hωt],

where S⊔T = [n] and s = |S|, t = |T |, and where g, h, g and h are related by (2.48).
As in the lax case, the interesting part is to check that the factors coming from

Q by following the two directions match. The arrows that contribute are shown
dotted. We need to show that

schQn (T, f) brdQ
d(h),d(g) invQg (ωs) invQ

h
(ωt) = invQf (ωn) schQn (ωn(S), fωn),
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where f : [n]→ [r] is the function whose restriction to S is g and whose restriction
to T is h.

In the left-hand side, the first term comes from ψ
(r)
Q using (20.2), the second

comes from the braiding using (2.60), and the last two come from (θQ)p and (θQ)q.
Similarly, in the right-hand side, the first term comes from (θQ)p·q and the second

comes from ψ
(r)
Q .

The complication in the above identity comes from the fact that it cannot be
easily split into two. For example, the terms involving the Schubert statistic do
not cancel: (2.41) does not apply because we are not assuming Q to be symmetric.
This complication was not present in the one-dimensional case.

The above identity can be rewritten in geometric language as below. The
translations are made as in the lax case, with K being the vertex S|T . The two
terms involving the inversion statistic have been combined into one.

distQf (C(n),KC(n)) distQf (KC,KC) distQf (KC(n),KC(n))

= distQf (C(n), C(n)) distQfωn(C(n), ωn(K)C(n)),

where C is any chamber. Let us prove this. There are no direct cancellations as
mentioned above; so one has to cancel in steps.

Let us first rewrite the last term on the right using (10.78) as

distQfωn(C(n), ωn(K)C(n)) = distQfωn
(
ωn(C(n)), ωn(KC(n))

)

= distQf (C(n),KC(n)).

As a first step, using the minimum gallery

C(n) −KC(n) −KC(n) − C(n)

(existence follows from Proposition 10.4) and applying (10.79), we cancel off the
first and third terms in the left-hand side from the first term in the right-hand side.
So the identity to be proved reduces to

distQf (KC,KC) = distQf (KC(n), C(n)) distQf (C(n),KC(n))

In the left-hand side, we put C = C(n) and observe that there is a minimum gallery

KC(n) − C(n) −KC(n).

The identity follows from (10.79). �

20.3.3. Commutativity of the Hopf monoids obtained by evaluating KQ.
We now state the consequences for Hopf monoids of the properties of the functor KQ
regarding commutativity. They will be expressed in terms of the op and cop con-
structions of Section 1.2.9. These are the colored analogues of Corollaries 16.28
and 16.29. They can be proved in the same manner using Propositions 20.15
and 20.16. Recall that in this context P and Q are matrices with nonzero entries.

Corollary 20.17. For any comonoid (Hopf monoid) h in (Sp(r), ·, βP ),

KQ−t(hcop) = KQ(h)cop

as comonoids (Hopf monoids) in (gVec(r), ·, βP−t×Q−t).
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Corollary 20.18. For any P -Hopf monoid h, the map

KQ(hop,cop)→ KQ(h)op,cop

whose degree (n, f) component is invQf (ωn)h[ωn] is a natural isomorphism of (P ×

Q)-Hopf algebras.

20.4. Colors and decorations

The colored Fock functors KQ, K∨
Q and ℑQ studied in this chapter are closely

related to the deformed decorated Fock functors KV,RQ , K∨
V,RQ

and ℑV,RQ of Ex-

ample 19.46. In this section, we explain the connection between the two situations.

20.4.1. From multigraded vector spaces to graded vector spaces. An Nr-
graded vector space has an underlying N-grading for which an element of multide-
gree (d1, . . . , dr) has degree d1 + · · ·+ dr. More formally, there is a functor

F : gVec(r) → gVec.

This functor is strong with respect to the Cauchy product. Further, viewed as a
functor

(gVec(r), ·, βq1r,r )→ (gVec, ·, βq),

it is braided.
It is natural to ask what happens if one uses the braiding βQ on multigraded

vector spaces. A satisfactory answer can be given using the notion of a bilax functor
with a Yang–Baxter operator (Section 19.9.1). More precisely, for multigraded
vector spaces V and W , define the structure map ν of (19.35) by

F(V ) · F(W )
ν //____ F(W ) · F(V )

F(V ·W )
F(βQ)

// F(W · V )

where the vertical identifications use the fact that F is strong. Then

(F , ν) : (gVec(r), ·, βQ)→ (gVec, ·)

is bilax in the sense of Section 19.9.1.

20.4.2. Colors and decorations. Let V be a vector space with dimension r. Fix
a basis of V , say x1, x2, . . . , xr. The main observation is the following. The diagram

Sp
KV,RQ

//

(−)(r)

��

gVec

Sp(r)
KQ

// gVec(r)

F

OO

(20.20)

commutes up to isomorphism via the identification
⊕

f : [n]→[r]

p[n]←→ p[n]⊗ V ⊗n
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which sends z ∈ p[n] in the component f : [n]→ [r] to

z ⊗ xf(1) ⊗ xf(2) ⊗ · · · ⊗ xf(n).

It is straightforward to check that:

Theorem 20.19. The following diagram of bilax functors with Yang–Baxter oper-
ators

(Sp, ·, β)
KV,RQ

//

(−)(r)

��

(gVec, ·)

(Sp(r), ·, β1r,r) KQ
// (gVec(r), ·, βQ)

(F ,ν)

OO

(20.21)

commutes up to isomorphism.

The result holds with KV,RQ and KQ replaced by K∨
V,RQ

and K∨
Q. Further,

these isomorphisms are compatible with the norm transformations, so the result
also holds with KV,RQ and KQ replaced by ℑV,RQ and ℑQ.

Corollary 20.20. Let p be a bimonoid in species. Then

KV,RQ(p) ∼= KQ(p(r)), K∨
V,RQ(p) ∼= K∨

Q(p(r)), ℑV,RQ(p) ∼= ℑQ(p(r))

as braided bialgebras.

The objects on the right are multigraded vector spaces; one views them as
graded vector spaces using the functor F which has been suppressed in the result.

20.5. Quantum objects

We now apply the results of the preceding sections to some of the simplest
colored Hopf monoids. They will lead to some well-known Q-Hopf algebras, such
as the quantum linear space, or more generally, the quantum symmetric algebra.
The entries of the matrix Q enter into the definitions of the product and coproduct
of these objects making them both noncommutative and noncocommutative for
generic Q. This is one justification for the quantum terminology. The quantum
objects may be viewed as deformations of classical objects. The latter are either
commutative or cocommutative and correspond to those Q whose entries are more
special such as 1, −1 or 0.

Example 20.21. We start from the simplest nontrivial Hopf monoid, the exponen-
tial species E. Its Hopf monoid structure has been discussed throughout Chapter 8.
When applied to E, the bistrong functors of Proposition 14.4 yield the same result:

E(r) = E(r).

This was discussed in Section 14.3. Let us write E(r) from now on. We now
apply the colored Fock functors to this object. In view of Corollary 20.20, this is
equivalent to applying the deformed decorated Fock functors of Example 19.46 to
E. As a result, the present discussion parallels that in Example 19.47.

We have that

KQ(E(r))
∼=
−−→ k〈x1, . . . , xr〉,
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the free algebra on r generators of Example 2.14, under

∗([n],f) ↔ xf = xf(1) · · ·xf(n).

Corollary 20.17 says that

KQ(E(r))
cop = KQ−t(E(r))

and Corollary 20.18 says that the map

(θQ)E(r)
: KQ(E(r))→ KQ(E(r))

op,cop, xf 7→

(∏

i<j

qf(j)f(i)

)
xfωn

is an isomorphism of Q-Hopf algebras.
Similarly, K∨

Q(E(r)) is the space k〈x1, . . . , xr〉 equipped with a deformation of
the shuffle product and with the usual deconcatenation coproduct. This is the
same as the quantum shuffle algebra as defined by Green [152] and Rosso [316,
Proposition 9].

The Q-norm transformation is the map

(κQ)E(r)
: KQ(E(r))→ K

∨
Q(E(r))

xf 7→
∑

σ∈Sn

( ∏

(i,j)∈Inv(σ)

qf(j)f(i)

)
xfσ−1 .

Now let us consider the functor ℑQ. The object ℑQ(E(r)) is Rosso’s quantum
symmetric algebra, also called the Nichols algebra of diagonal type. We now con-
sider some important special cases in which ℑQ(E(r)) can be explicitly described.

• If Q is such that no monomial in the qij ’s equals 1, then Theorem 20.14
implies that ℑQ(E(r)) is the free algebra on r generators. For related
work, see [268, Theorem 1.9.2].
• Let Q be a log-antisymmetric matrix. In characteristic zero [316, Exam-

ple 1, p. 409], we have

ℑQ(E(r)) = KQ(E(r))
∼=
−−→ k〈x1, . . . , xr〉/(xixj − qjixjxi),

which is the quantum linear space of Example 2.15. Using (20.11) for the
left-hand side, it is straightforward to see that the map

i1 ∧ · · · ∧ in 7→ xf(i1) . . . xf(in)

is an isomorphism. As an explicit example, with blue denoting color 1
and red denoting color 2,

2 ∧ 3 ∧ 4 ∧ 1 7→ x2x1x2x1.

This situation can be generalized slightly: Let Q satisfy qijqji = 1
for i 6= j. Then the Nichols algebra (still assuming characteristic zero) is
given by the relations:

xixj = qijxjxi, xNii = 0,

where Ni is the order of qii if qii is a root of unity different from 1.
The reason for the latter relation is the same as in the one-dimensional
case (16.10). In characteristic p, there is an additional relation xpi = 0
whenever qii = 1.

We thank Mat́ıas Graña for this input.
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• Let Q be of the form (2.33), q is not a root of unity, and A is the sym-
metrization of a symmetrizable generalized Cartan matrix C. Then a the-
orem of Lusztig [246, Corollary 33.1.5] and of Rosso [316, Theorem 15.1]
states that

ℑQ(E(r)) = U+
q (C),

the nilpotent part of the quantum enveloping algebra associated with C.
In general, this will be a proper quotient of the free algebra on r

generators. This does not contradict Theorem 20.14 because, in general,
the matrix A will contain both positive and negative entries and hence
there will be monomials in the qaij ’s which equal 1.

Example 20.22. Now we briefly consider the colored linear order species of Sec-
tion 14.5. Let L(r) and L∗

(r) denote the image of L and L∗ under one of the bistrong

functors of Proposition 14.4. They are the same as the Q-Hopf monoids L1r,r and
L∗

1r,r . Now using Proposition 20.5,

KQ(L∗
(r)) = K1r,r (L

∗
(r) × LQ) = K1r,r(ILQ),

where ILQ is the colored Hopf monoid based on pairs of linear orders (Sec-
tion 14.7.1). The above object is a Q-Hopf algebra indexed by r-signed permu-
tations. It is a higher-dimensional analogue of the Hopf algebra of permutations
and its deformed version which we had obtained by similar means in Example 16.32.
For Q = 1r,r, this appears in the work of Baumann and Hohlweg [35].

Now let Q be a log-antisymmetric matrix. Then again using Proposition 20.5,

KQ(L(r)) = KQ(E(r)).

This is the free algebra on r generators which we saw in Example 20.21.

We have arrived at very interesting objects starting simply from the Hopf mon-
oids E and L in species. One is compelled to wonder what Hopf algebras might arise
when starting from the other Hopf monoids in species discussed in this monograph,
or when working directly with Hopf monoids in colored species that need not come
from Hopf monoids in species. The theory presented in this monograph provides
a uniform way for constructing these Hopf algebras and for understanding their
interrelationships. On the other hand, as the above examples suggest, describing
each of them in explicit terms should be a difficult problem.
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APPENDIX A

Categorical Preliminaries

We review some basic notions from category theory, including products, ad-
junctions, equivalences, colimits, Kan extensions and comma categories.

A.1. Products, coproducts and biproducts

The notions reviewed here can also be found in [250, Sections III.3–5 and VIII.2].

A.1.1. Products. Let A and B be objects of a category C. An object A × B
along with arrows

A
πA←−− A×B

πB−−→ B

is said to be a product of A and B, if it satisfies the following property: given arrows

A
f
←− C

g
−→ B,

there exists a unique arrow (f, g) : C → A×B for which

C

f

����
��

��
��

��
�

g

��
>>

>>
>>

>>
>>

>

(f,g)

��

A A×BπA
oo

πB
// B

commutes. If the product exists, it is unique up to isomorphism.
The product of an arbitrary family of objects is defined similarly. The product

of an empty family is a terminal object : an object J with a unique arrow from any
other object in the category.

Suppose that every pair of objects in C has a product. In this situation, choosing
a product A×B for each pair (A,B) yields a functor

× : C× C→ C.

Given morphisms f : A→ A′ and g : B → B′, we set

f × g := (fπA, gπB) : A×B → A′ ×B′.

If in addition C has a terminal object, then it has all finite products [250, Proposi-
tion III.5.1]. They are obtained from iterations of the functor ×.

A.1.2. Coproducts. Dually, a coproduct of two objects A and B is an object
A∐B with arrows

A
ιA−→ A ∐B

ιB←− B

such that given any arrows

A
f
−→ C

g
←− B,

657
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there is a unique arrow

(
f
g

)
: A ∐B → C for which

A

ιA

��

f

%%K
KKKKKKKKKK

A∐B
(
f
g

)
// C

B

ιB

OO

g

99sssssssssss

commutes.
An initial object I has a unique arrow to any other object in the category.

A.1.3. Biproducts. Suppose that C has all finite products and finite coproducts.
In this case, given arrows

A
p

  
@@

@@
@@

@
f

��~~
~~

~~
~

C D

B

g

__@@@@@@@ q

>>~~~~~~~

the following arrows A ∐B → C ×D coincide:
((

f
g

)
,

(
p
q

))
and

(
(f, p)
(g, q)

)
.

We denote this arrow by the symbol
(
f p
g q

)
: A ∐B → C ×D.

Note that, contrary to standard matrix notation, A and B index the rows, while C
and D index the columns.

If the unique arrow

I → J

from the initial to the final object is invertible, so that I and J are isomorphic, we
say that either one is a zero object in C.

Suppose this is the case. Then, for any objectA, we may consider the composite

A→ J → I → B.

We call it the zero arrow from A to B and denote it by 0A,B. We employ these
arrows to define a map

(A.1)

(
idA 0A,B
0B,A idB

)
: A ∐B → A×B.

If this arrow is invertible, we say that either A ∐ B or A × B is a biproduct of A
and B.

If all arrows A ∐ B → A × B of this form are invertible, we say that C is a
category with finite biproducts. We write

A⊕B instead of A ∐B or A× B,
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and

Z instead of I or J .

Categories with finite biproducts are sometimes also called semi-additive. An
example is provided by the category of vector spaces, where A⊕B is direct sum.

Remark A.1. Suppose C is a category with finite products and finite coproducts,
and there is a family of isomorphisms

A ∐B ∼= A×B

natural in A and B. A recent result of Lack [217, Theorem 5] states that then C

has finite biproducts. In other words, the above assumption implies I ∼= J and the
invertibility of the canonical map (A.1).

A.2. Adjunction and equivalence

We review the notions of adjunction between functors, and equivalence between
categories.

A.2.1. Adjunctions. Various equivalent formulations of the notion of adjunction
are discussed in Mac Lane’s book [250, Section IV.1, Theorem 2]. We briefly discuss
two of these.

Definition A.2. Let F : C→ D and G : D→ C be a pair of functors. We say that
F is a left adjoint to G or that G is a right adjoint to F if there exists a natural
isomorphism

HomD(F(−),−)
∼=
−−→ HomC

(
−,G(−)

)

of functors Cop × D→ Set.

In other words, the functors are adjoint if there exists a bijection

(A.2) HomD(F(A), X)
∼=
−−→ HomC

(
A,G(X)

)

which is natural in A and X .
We use the notation

C

F
%%

G

ee D

to indicate that the functor on the top is left adjoint to the functor on the bottom.

Proposition A.3. Let F : C→ D and G : D→ C be functors. Then F is left adjoint
to G (or G is a right adjoint to F) if and only if there exist natural transformations
η : id⇒ GF and ξ : FG ⇒ id such that the following diagrams commute.

F(A)
F(ηA)

//

id
&&MMMMMMMMMM
FGF(A)

ξF(A)

��

F(A)

GFG(X)

G(ξX )

��

G(X)
ηG(X)

oo

id
xxqqqqqqqqqq

G(X)

(A.3)

The tuple (F ,G, η, ξ) is called an adjunction. The transformations η and ξ are
the unit and counit of the adjunction respectively.
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Proof. Starting with (A.2), one sets X = F(A) and defines ηA as the mor-
phism corresponding to the identity. Setting A = G(X) one obtains ξX . Conversely,
given η and ξ, one defines (A.2) by sending f : F(A)→ X to the composite

(A.4) A
ηA
−−→ GF(A)

G(f)
−−−→ G(X).

The inverse correspondence sends g : A→ G(X) to the composite

�(A.5) F(A)
F(g)
−−−→ FG(X)

ξX
−−→ X.

Definition A.4. A subcategory C′ of C is said to be full if

HomC′(A,B) = HomC(A,B)

for any objects A, B of C′; isomorphism-dense if for any object C of C there is
an object C′ of C′ and an isomorphism C ∼= C′ in C; a skeleton of C if it is full,
isomorphism-dense, and no two distinct objects of C′ are isomorphic.

The definitions imply:

Proposition A.5. Let (F ,G, η, ξ) be an adjunction between C and D. Let D′ be a

full subcategory of D such that the image of F lies in D′. Then (F|D
′

,G|D′ , η′, ξ′) is
an adjunction between C and D′.

Here, F|D
′

and G|D′ are the functors such that

C
F //

F|D
′

��
@

@
@ D

D′
?�

OO D
G

// C,

D′
G|D′

>>~
~

~?�

OO

where D′ →֒ D is the inclusion functor. Similarly for η′ and ξ′.
A similar statement holds if we have a full subcategory C′ of C.

A.2.2. Equivalences.

Definition A.6. An equivalence of categories C and D is a tuple (F ,G, η, ξ), where

F : C→ D and G : D→ C

are functors, and

η : id⇒ GF and ξ : FG ⇒ id

and natural isomorphisms.
An adjoint equivalence is an adjunction that is also an equivalence.

If (F ,G, η, ξ) is an adjoint equivalence, then so is (G,F , ξ−1, η−1). Not every
equivalence is an adjoint equivalence. However, given an equivalence (F ,G, η, ξ),
there is always an adjoint equivalence of the form (F ,G, η′, ξ′). In fact, one may
always choose η′ = η or ξ′ = ξ (but not both at the same time); see the comments
following the proof of [58, Proposition 3.4.3].

Proposition A.7. A subcategory C′ of C is full and isomorphism-dense if and only
if the inclusion functor C′ → C is an equivalence.

Proof. This follows from [250, Theorem IV.4.1]. �
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In this monograph, we encounter adjunctions, equivalences, and adjoint equiv-
alences not only between categories but also between monoidal categories and other
structured categories. Bicategories and 2-categories, discussed in Section C.1, pro-
vide a general context for these notions. Various types of adjunctions between
monoidal categories are discussed in detail in Section 3.9.

A.3. Colimits of functors

We review the concept of colimit. More information can be found in the books
by Borceux [58, Chapter 2] or Mac Lane [250, Chapters III and V].

A.3.1. Cones and colimits.

Definition A.8. Let F : D→ C be a functor. Consider an object V in C equipped
with morphisms τY : F(Y )→ V , one for each object Y in D, and such that for each
morphism f : Y → Z in D the following diagram commutes.

V

F(Y )

τY

CC���������

F(f)

;;
F(Z)

τZ

[[777777777

Such a structure is called a cone from the base F to the vertex V .

Definition A.9. The colimit of a functor F : D→ C is an object of C, denoted

colimF or colim
X
F(X),

together with morphisms ιY : F(Y ) → colimF for each object Y in D, satisfying
the following properties.

• The maps ιY form a cone from the base F to the vertex colimF . In other
words,

ιZF(f) = ιY

for each morphism f : Y → Z in D.
• For any cone from F to a vertex V in C, there is a unique morphism

colimF → V , such that for each object Y in D the following diagram
commutes, where τY is the structure map of the cone to V .

F(Y )
ιY //

τY
%%J

JJJJJJJJJ colimF

��
�
�
�

V

The cone with vertex colimF is called the limiting cone or universal cone (from
F).

Let G : E→ D be another functor and FG : E→ C the composite. Suppose the
colimit of G exists and let ιY : G(Y )→ colimG be a universal cone. Then

FG(ιY ) : FG(Y )→ F (colimG)
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is a cone from FG to F (colimG). Therefore, there is a canonical map

colimFG → F (colimG) .

When this map is an isomorphism, or equivalently when the above cone is universal,
we say that F preserves the colimit of G, and we have

colimFG ∼= F (colimG) .

We state some basic properties of colimits.

Proposition A.10 ([250, Theorems V.3.1 and V.5.1, Section IX.2]).

(i) The colimit may not exist, but if it does, then it is unique up to isomor-
phism.

(ii) A functor which admits a right adjoint, or which is part of an equivalence,
preserves colimits.

(iii) In a functor category, colimits may be calculated pointwise.
(iv) Let F : C1 × C2 → D be a functor and suppose its colimit colim

X,Y
F(X,Y )

exists. Then the iterated colimits exist and

colim
X

colim
Y
F(X,Y ) ∼= colim

X,Y
F(X,Y ) ∼= colim

Y
colim
X
F(X,Y ).

Example A.11. Colimits of functors into vector spaces commute with tensor prod-
ucts and direct sums. The precise meaning of these statements is explained below.

For any vector space V , the functor (−) ⊗ V : Vec → Vec has a right adjoint
given by the functor HomVec(V,−): For any vector spaces U, V and W , there is a
natural bijection

(A.6) HomVec(U ⊗ V,W ) ∼= HomVec

(
U,HomVec(V,W )

)
.

Therefore, by item (ii) in Proposition A.10 it preserves all colimits. Explicitly, if
F : C→ Vec is a functor then

(
colimF

)
⊗ V ∼= colim

X

(
F(X)⊗ V

)
.

The dual situation is discussed in Example A.15.
Now suppose Fi : Ci → Vec are functors, i = 1, 2. Then

(
colimF1

)
⊗
(
colimF2) ∼= colim

X1,X2

(
F1(X1)⊗F2(X2)

)
.

This follows by combining item (iv) in Proposition A.10 with the preceding discus-
sion.

We now turn to direct sum. The functor

⊕ : Vec× Vec→ Vec (V,W ) 7→ V ⊕W

has a right adjoint given by V 7→ (V, V ). Therefore it preserves all colimits. This
can be rephrased as follows.

Suppose F ,G : C→ Vec are functors. Then
(
colimF

)
⊕
(
colimG) ∼= colim

X

(
F(X)⊕ G(X)

)
.

This fact can also be deduced from item (iv) in Proposition A.10, since direct sums
are special colimits (Section A.3.2).
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A.3.2. Special colimits. Coproducts, coequalizers and coinvariants are special
cases of the notion of colimit.

Let D be the category with two objects 1 and 2 and no arrows other than
identities. A choice of two objects A and B of a category C uniquely determines
a functor F : D → C, and the colimit of F is the coproduct A ∐ B as defined in
Section A.1.2. More generally, if D1,D2 and D are categories such that

D = D1 ⊔D2

(no arrows between D1 and D2), then

colimF = colimF|D1 ∐ colimF|D2 .

A category is discrete if every morphism is an identity. Let D be the discrete
category whose objects are indexed by a set J . The coproduct of a family {Xj}j∈J
of objects in C is the colimit of the functor D → C which sends j to Xj . It is
denoted by ∐

j∈J

Xj .

We say that C has countable coproducts if the coproduct exists for one (and hence
all) countable sets J .

Let D be the category with two objects 1 and 2, their identities, and two arrows
from 1 to 2:

1
//
// 2.

A functor F : D→ C is uniquely determined by a diagram of the form

A
f

//

g
// B.

in C. The colimit of F is the coequalizer of f and g.

Let G be a group. Let D be the category with one object, say ∗, with morphisms
HomD(∗, ∗) indexed by the elements of G and composition given by the group law.
Let F : D→ C be a functor and set V := F(∗). Then we say that V has a G-action
and the coinvariants of V with respect to G, denoted VG, is the colimit of this
functor.

For example, if C = Set, then V is a G-set and VG is the set of orbits, and if C =
Vec, then V is a G-module and VG is the space of coinvariants as in Section 2.5.1.

A category D is indiscrete if there is a unique morphism between any two
objects. The colimit of a functor F : D → C always exists: choose an object X of
D, let V := F(X), and let ιY be the image under F of the unique arrow Y → X in
D. This defines a universal cone from F to V .

A.3.3. Colimits from groupoids. A groupoid is a category in which every arrow
is invertible. Given objects A and B in a small groupoid G, write

A ∼ B if there exists an arrow A→ B in G.

Then ∼ is an equivalence relation on the set of objects. Let π0(G) denote the set
of equivalence classes. Also, let

ΩAG := EndG(A)

be the group of automorphisms of A. If A ∼ B, then the groups ΩAG and ΩBG are
isomorphic.
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View each group ΩAG as a category as in Section A.3.2. The category

⊔

[A]∈π0(G)

ΩAG

is a skeleton of G. It follows that the colimit of any functor F : G → C can be
calculated in terms of coproducts and coinvariants as follows:

(A.7) colimF =
∐

[A]∈π0(G)

F(A)ΩAG.

Example A.12. A discrete category G with set of objects J is a groupoid with
π0(G) = J and every group ΩjG trivial. An indiscrete category G is also a groupoid.
In this case π0(G) reduces to one equivalence class and again every automorphism
group is trivial. Formula (A.7) recovers the colimit descriptions for such categories
of Section A.3.2.

Example A.13. A species with values in C is a functor of the form

F : Set× → C,

where we recall that Set× is the category of finite sets with bijections as the
morphisms. The category Set× is a groupoid; π0(Set×) = {∅, [1], [2], . . . } and
Ω[n]Set× = Sn, the symmetric group on n letters. Therefore, if the category C has
coequalizers and countable coproducts, the colimit of F exists and is given by

(A.8) colimF ∼=
∐

n≥0

F [n]Sn ,

where F [n] denotes the image of the set [n] under F .

Example A.14. Let a monoid G act on a set X . The category of elements elG(X)
is defined as follows. The set of objects is X . A morphism from x to y is a pair
(x, g) such that g · x = y. Composition is (y, h) ◦ (x, g) = (x, hg) and the identity
of x is (x, 1). This is illustrated below.

x

(x,g)

��

(x,hg)

<<
g · x

(g·x,h)

��

h · g · x

x

(x,1)

��

If G is a group, then elG(X) is a groupoid. Thus, the colimit of a functor
F : elG(X)→ C can be calculated as

colimF =
∐

[x]∈π0(elG(X))

F(x)Ωx(elG(X)).

In this case, π0(elG(X)) is the set of orbits for the action, and Ωx(elG(X)) is the
stabilizer of x.

The category elG(X) is a special comma category; see Example A.23.
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A.3.4. Limits. The notion of limit of a functor is dual to that of colimit (Defini-
tion A.9). If G : E→ D and F : D→ C are functors, there is a canonical map

(A.9) F (limG)→ limFG.

When this map is an isomorphism, we say that F preserves the limit of G.

Example A.15. Let V be a vector space. In Example A.11 we noted that the
functor (−) ⊗ V : Vec → Vec preserves all colimits. If V is finite-dimensional,
then (A.6) implies

HomVec(U ⊗ V
∗,W ) ∼= HomVec(U, V ⊗W ).

Thus, in this case the functor V ⊗ (−) : Vec → Vec has a left adjoint and hence it
preserves all limits.

If V is infinite-dimensional, the functor V ⊗ (−) does not preserve all limits.
In fact, let Wn = k for each n ∈ N, and consider the canonical map

V ⊗
(∏

n∈N

Wn

)
→
∏

n∈N

V ⊗Wn.

The canonical projections yield maps

pn :
∏

n∈N

(V ⊗Wn)։ V ⊗Wn
∼= V.

If x is a fixed vector in V ⊗
(∏

n∈N
Wn

)
, then the subspace of V generated by

{pn(x)}n∈N is finite-dimensional. On the other hand, if {vn}n∈N is a sequence of
linearly independent vectors in V , and y := (vn ⊗ 1)n∈N ∈

∏
n∈N

V ⊗Wn, then the
subspace of V generated by {pn(y)}n∈N is infinite-dimensional. Thus, the canonical
map is not surjective and V ⊗ (−) does not preserve the product of the W ’s.

A.3.5. Completeness. The category D is said to be (co)complete if the (co)limit
of every functor F : C→ D exists, for every small category C.

Suppose D is (co)complete and C is small. It follows from item (iii) in Proposi-
tion A.10 that the category of functors C → D is also (co)complete. In particular,
the category of species with values in D is (co)complete.

Example A.16. The category Vec of vector spaces and linear maps is complete
and cocomplete. Hence so is the category Sp of vector species. The same is true of
the categories of sets and of set species.

A.4. Kan extensions

Kan extensions are discussed in [58, Section 3.7] and [250, Chapter X]. We
briefly review this notion and apply it to the calculation of certain colimits.

Definition A.17. Let F : A → C and P : A → B be two functors defined on the
same category. A left Kan extension of F along P consists of a functor L : B→ C

and a natural transformation α : F ⇒ LP that are initial among such pairs.

A
P //

F

��

B

L

}}zz
zz

zz
zz

zz
zz

zz
z

α +3

C
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In other words, given another functor L′ : B → C and natural transformation
α′ : F ⇒ L′P , there exists a unique natural transformation γ : L ⇒ L′ such that

F(A)
αA //

α′
A $$I

IIIIIIII
LP(A)

γP(A)

��

L′P(A)

commutes, for every object A of A.

When a left Kan extension exists, it is unique up to isomorphism. Sometimes
we refer to the functor L as the left Kan extension, letting the transformation α
implicit.

Proposition A.18. Let L be a left Kan extension of F along P. If one of colimF
or colimL exists, so does the other, and

colimF ∼= colimL.

Proof. This follows from [250, Exercise X.4.3 and Theorem X.7.1]. �

Example A.19. Let a group G act on a set X and consider the category elG(X)
as in Example A.14. Let {∗} be a singleton. The unique map X → {∗} induces a
functor

P : elG(X)→ elG({∗}).

The latter category has only one object and the morphisms are the elements of G.
Let C be a cocomplete category and suppose a functor F : elG(X)→ C is given.

Define a functor L : elG({∗})→ C as follows. On the unique object,

L(∗) :=
∐

x∈X

F(x).

On a morphism g ∈ G, L(g) : L(∗)→ L(∗) is defined through the universal property
of coproducts from the maps

F(x)
F(g)
−−−→ F(g · x)→

∐

y∈X

F(y) = L(∗).

According to Example A.14, we have

colimF =
∐

[x]∈π0(elG(X))

F(x)Ωx(elG(X)) and colimL =
(∐

x∈X

F(x)
)
G
.

There is a natural transformation α : F ⇒ LP with αx equal to the canonical
map

F(x)→
∐

y∈X

F(y) = L(∗) = LP(x).

It is easy to see that L and α constitute a left Kan extension of F along P . It
follows from Proposition A.18 that

∐

[x]∈π0(elG(X))

F(x)Ωx(elG(X))
∼=
(∐

x∈X

F(x)
)
G
.



A.5. COMMA CATEGORIES 667

Example A.20. Let D be a category and X an object of D. The slice category
over X , denoted D ↓ X , is defined as follows. The objects are the morphisms

h : Y → X

of D with target X . A morphism from h : Y → X to h′ : Y ′ → X is a morphism
f : Y → Y ′ in D such that

Y h
((RRRRRR

f
��

X

Y ′ h′

66mmmmmm

commutes. Composition and identities are inherited from D.
The category D ↓ X is a special comma category; see Example A.22.
There is a functor

P : D ↓ X → D

which sends h : Y → X to Y , and is the identity on morphisms.
Let D× be the category with the same objects as D and with morphisms the

isomorphisms of D. It is a groupoid. Consider also the groupoid (D ↓ X)× and the
induced functor

P× : (D ↓ X)× → D×.

Let C be a cocomplete category and suppose a functor F : (D ↓ X)× → C is
given. Define a functor L : D× → C as follows. On an object Y ,

L(Y ) :=
∐

k : Y→X

F(k).

On a morphism σ : Y → Y ′, L(σ) : L(Y )→ L(Y ′) is defined through the universal
property of coproducts from the maps

F(h)
F(σ)
−−−→ F(h ◦ σ−1)→

∐

k : Y ′→X

F(k) = L(Y ′).

There is a natural transformation α : F ⇒ LP× which for h : Y → X has αh equal
to the canonical map

F(h)→
∐

k : Y→X

F(k) = L(Y ) = LP×(h).

It is easy to see that L and α constitute a left Kan extension of F along P×. It
follows from Proposition A.18 that

(A.10) colim
h
F(h) ∼= colim

Y

∐

k : Y→X

F(k).

A.5. Comma categories

Several categories considered in the preceding sections are particular comma
categories. We briefly review this notion, following [250, Section II.6].

Definition A.21. Let F : A → C and G : B → C be two functors to the same
category. The comma category F ↓ G is defined as follows. The objects are triples
(A, γ,B) where A is an object of A, B is an object of B, and

γ : F(A)→ G(B)



668 A. CATEGORICAL PRELIMINARIES

is a morphism in C. A morphism (A, γ,B) → (A′, γ′, B′) is a pair (α, β) where
α : A→ A′ is a morphism in A and β : B → B′ is a morphism in B such that

F(A)
γ

//

F(α)

��

G(B)

G(β)

��

F(A′)
γ′

// G(B′)

commutes. Composition and identities are coordinatewise.

Example A.22. If A = B = C and both F and G are the identity functor, then
the comma category is the category of arrows of C of Section 3.11.1:

idC ↓ idC = D(2).

Let I denote the one-arrow category. Given an object X of C, let FX : I→ C be the
functor that sends the unique object of I to X . The comma category idC ↓ FX is
the slice category over X of Example A.20:

idC ↓ FX = C ↓ X.

The slice category of objects under X is

X ↓ C := FX ↓ idC.

Given objects C and A of C, the comma category

FC ↓ FA

is the discrete category corresponding to the set Hom(C,A) (also see Section 3.4.5).

Example A.23. Let F : C → Set be a functor. Let {∗} be a singleton and
F{∗} : I → Set the corresponding functor. The category of elements of F is de-
fined as

el(F) := F{∗} ↓ F .

If G is a monoid and C is the corresponding one-object category (as in Sec-
tion A.3.2), then F amounts to a G-set X , and

el(F) = elG(X),

the category of elements considered in Example A.14.
The category of elements el(F) is also called the Grothendieck construction. It

can be carried out in a more general setting than the above; see [58, Definition 1.6.4]
or [251, Section VII.6, p. 386].



APPENDIX B

Operads

There are various approaches to the notion of operad. One consists in viewing
operads in relation to species as algebras sit in relation to vector spaces. We adopt
this point of view in this appendix.

We do not go into the theory of operads in any depth, but we address a number
of basic points whose discussion is not always explicit in the literature. We discuss
a number of examples of positive (co)operads in concrete combinatorial terms and
a construction of positive cooperads of Schmitt (Sections B.1, B.2 and B.3). We
provide a careful discussion of the substitution product for general (not necessarily
positive) species. In contrast with the case of positive species, there are two different
notions of substitution for general species. One notion of substitution gives rise to
the general notion of operad and the other to the general notion of cooperad. We
discuss these ideas in Section B.4. We also study the interaction between the
former substitution product and the Hadamard product and discuss the notion of
Hopf operad (Section B.6).

The main use for operads in this monograph occurs in Chapter 4, where we
explain that to each operad corresponds a type of monoid (in a monoidal category)
and a type of monoidal functor (between monoidal categories). Types of monoids
may also be understood in terms of modules over operads, as discussed in Sec-
tion B.5. The link between monoids and modules is made via the internal Hom for
the former substitution product, which we describe explicitly.

The language of monoidal and 2-monoidal categories (Part I) is employed
throughout this appendix.

B.1. Positive operads

Positive operads are positive species with extra structure: that of a monoid with
respect to the substitution product (8.8). We make this structure more explicit in
Section B.1.2, after reviewing the substitution product in Section B.1.1. We then
discuss a number of examples in Section B.1.4.

B.1.1. Substitution for positive species. Let m be a positive species (Sec-
tion 8.9.2) and p an arbitrary species. The substitution of m in p is the species
p ◦m with components

(B.1) (p ◦m)[I] :=
⊕

X⊢I

p[X ]⊗

(
⊗

S∈X

m[S]

)
,

where the direct sum is over all partitionsX of I, and I is a finite set. We considered
this operation briefly in (8.8).

We now discuss associativity. In order to do this, fix a finite set I and consider
partitions X and Y of I, with Y refining X . As in Section 10.1.4, we write X ≤ Y .

669
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There is a map f : Y → X which sends T ∈ Y to the unique block S ∈ X such
that T ⊆ S. The fiber of f over S ∈ X is the set whose elements are the blocks of
Y which refine the block S of X . We write

p[X : Y ] :=
⊗

S∈X

p[f−1(S)].

Let 0̂ denote the unique partition of I into one block and 1̂ the unique partition
into singletons. Note that

p[0̂ : X ] = p[X ] and p[X : 1̂] = p(X),

the latter as defined in Notation 11.1. Thus,

(p ◦m)[I] =
⊕

0̂≤X≤1̂

p[0̂ : X ]⊗m[X : 1̂].

Let n be a second positive species. Consider the species p ◦m ◦ n defined by

(p ◦m ◦ n)[I] :=
⊕

0̂≤X≤Y≤1̂

p[0̂ : X ]⊗m[X : Y ]⊗ n[Y : 1̂].

Associativity follows from the fact that

(p ◦m) ◦ n[I] ∼= (p ◦m ◦ n)[I] ∼= p ◦ (m ◦ n)[I].

The former holds because partitions of I which are coarser than Y may be identified
with partitions of Y . The latter holds because partitions of I which refine X may
be identified with a family of partitions, one partition of S for each block S of X .

There is only one partition of the empty set, the partition with no blocks. In
this case, (B.1) is to be understood as follows:

(p ◦m)[∅] := p[∅].

Therefore, if p is positive, then so is p ◦m. It follows that the category Sp+ of
positive species is a monoidal category under substitution. The unit object is the
positive species X characteristic of singletons (8.3).

The monoidal category (Sp+, ◦,X) is not braided: we may consider monoids
and comonoids, but not bimonoids or (co)commutative (co)monoids.

B.1.2. Definition of positive operad. A positive operad is a monoid in
(Sp+, ◦,X); a morphism of positive operads is a morphism of monoids.

Thus, a positive operad is a positive species p together with morphisms of
species

γ : p ◦ p→ p and η : X→ p

which are associative and unital. We refer to γ as the operadic composition and to
η as the operadic unit.

A morphism (p1, γ1, η1)→ (p2, γ2, η2) of positive operads is a map p1 → p2 of
species which commutes with γ1 and γ2, and η1 and η2 respectively.

A partition X ⊢ I determines a surjection I ։ X such that

i 7→ S ⇐⇒ i ∈ S ∈ X.

Conversely, a surjection f : I ։ J between finite sets determines a partition X of
I given by

X := {f−1(j) | j ∈ J}.
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Using this correspondence one may reformulate (B.1) in terms of surjections be-
tween finite sets. This approach is taken in [260, Definition 1.63].

In the same vein, a positive operad is a positive species p with the following
structure. For each surjection f : I ։ X between nonempty finite sets, there is a
linear map

(B.2) γf : p[X ]⊗
⊗

x∈X

p[f−1(x)]→ p[I],

and for each singleton {∗}, there is a linear map

(B.3) η∗ : k→ p[{∗}].

These structure maps are subject to the conditions that follow.

Naturality. Given a commutative diagram of finite sets

I
σ //

f

��

J

g

��

X τ
// Y

where σ and τ are bijections and f and g are surjections, let

σx : f−1(x)→ g−1
(
τ(x)

)

denote the restriction of σ. The following diagram must commute.

p[X ]⊗
⊗

x∈X

p[f−1(x)]
γf

//

p[τ ]⊗
N

x∈X
p[σx]

��

p[I]

p[σ]

��

p[Y ]⊗
⊗

y∈Y

p[g−1(y)] γg
// p[J ].

In addition, for any singletons {x} and {y}, the following diagram must commute

p[{x}]
p[σx,y ]

// p[{y}]

k

ηx

bbEEEEEEEEE ηy

<<zzzzzzzzz

where σx,y is the unique map {x} → {y}.

Associativity. Given a commutative diagram of finite sets and surjections

Z
g

//

f
  @

@@
@@

@@
Y

h
~~~~

~~
~~

~~

X,

let

gx : f−1(x)→ h−1(x)
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denote the restriction of g. The following diagram must commute.

(
p[X ]⊗

⊗

x∈X

p[h−1(x)]

)
⊗
⊗

y∈Y

p[g−1(y)]

γh⊗id

��

p[X ]⊗
⊗

x∈X

(
p[h−1(x)] ⊗

⊗

y∈h−1(x)

p[g−1(y)]

)

id⊗
N

x∈X
γgx

��

p[Y ]⊗
⊗

y∈Y

p[g−1(y)]

γg
&&MMMMMMMMMMM

p[X ]⊗
⊗

x∈X

p[f−1(x)]

γf
xxqqqqqqqqqqq

p[Z]

Unitality. For each nonempty finite sets X and I, the following diagrams must
commute.

p[X ]⊗
⊗

x∈X

k

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRR

id⊗
N

x∈X
ηx

// p[X ]⊗
⊗

x∈X

p[{x}]

γidX

��

p[X ]

k⊗ p[I]
η∗⊗id

//

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
p[{∗}]⊗ p[I]

γI→{∗}

��

p[I].

A morphism (p1, γ1, η1)→ (p2, γ2, η2) of positive operads is a map p1 → p2 of
species such that the following diagrams commute, for each surjection f : I → X
between finite sets, and for each singleton {∗}.

p1[X ]⊗
⊗

x∈X

p1[f
−1(x)]

(γ1)f
//

��

p1[I]

��

p2[X ]⊗
⊗

x∈X

p2[f
−1(x)]

(γ2)f

// p2[I]

p1[{∗}] // p2[{∗}]

k
(η1)∗

aaCCCCCCCC (η2)∗

=={{{{{{{{
(B.4)

This completes the explicit definition of a positive operad. A similar description
of the operad axioms is given in [260, Theorem 1.60].

B.1.3. Set positive operads and linearized operads. The substitution oper-
ation can also be defined for positive set species, replacing direct sums and tensor
products of vector spaces by disjoint unions and Cartesian product of sets; see
Section 8.7.1.

A set positive operad is a monoid in the category of positive set species with
the substitution product.

The linearization functor (Section 8.7) turns a set operad Q into an operad
q := kQ. A linearized operad is an operad of this form. In this situation, for any
finite set I, q[I] comes equipped with a canonical linear basis.
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B.1.4. Examples of positive operads.

Example B.1. Consider the positive exponential species E+: for each nonempty
finite set I,

E+[I] = k{∗I}.

It carries a structure of a positive operad as follows. The operadic composition
E+ ◦E+ → E+ has components

E+[X ]⊗
⊗

S∈X

E+[S]→ E+[I], ∗X ⊗
⊗

S∈X

∗S 7→ ∗I

which simply identify the two one-dimensional spaces on the left by means of their
distinguished basis elements. The components of the unit X→ E+ are

X[I]→ E+[I],

{
1 7→ ∗I if I is a singleton,

0 otherwise.

This turns E+ into a positive operad; it is the positive commutative operad,
denoted by Com+.

Example B.2. Consider the positive species L+ of linear orders. It is the same as
L (Example 8.3) except that it is zero on the empty set. It is a positive operad as
follows.

Let X be a partition of a finite set I. Suppose we are given a linear order lX
on X and linear orders lS on each S ∈ X . The ordinal sum of these is the linear
order lI on the set I for which i < j if

i ∈ S, j ∈ T , and either S = T and i < j in lS , or S < T in lX .

The operadic composition has components

L+[X ]⊗
⊗

S∈X

L+[S]→ L+[I], lX ⊗
⊗

S∈X

lS 7→ lI

The unit map is defined as for the commutative operad (Example B.1).
This is the positive associative operad, denoted As+.

Example B.3. We define an operad structure on the species L+ which is different
from the associative operad.

Given a partition X of I and linear orders lX on X and lS on S for each S ∈ X ,
the operadic composition yields the sum of all the linear orders l on I such that:

• The restriction of l to S is lS for every S ∈ X ,
• The order induced by l on the subset X ′ := {minS : S ∈ X} of I coincides

with lX under the bijection X → X ′, S 7→ minS.

The unit map is defined as for the commutative or associative operads.
This turns L+ into an operad. It is the Zinbiel operad, denoted Zinb.

Example B.4. Let e be the species of elements (Section 8.13.7), that is, e[I] is
the vector space with linear basis I; in particular e[∅] = 0.

The species of elements is a positive operad as follows. The operadic composi-
tion has components

e[X ]⊗
⊗

S∈X

e[S]→ e[I], T ⊗
⊗

S∈X

aS 7→ aT ,
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where T is a block of the partition X and aS ∈ S for each S ∈ X . The unit map
is defined as for the commutative operad.

This is the permutative operad, denoted Perm. It was introduced by Chapo-
ton [80].

The commutative, associative, and permutative operads are linearized. The
Zinbiel operad is not, since in this case the operadic composition involves a sum.

The commutative operad is the terminal object in the category of positive
linearized operads. For instance, there are morphisms of operads

As+ → Com+ and Perm→ Com+

which map all basis elements of As+[I] or Perm[I] to ∗I (the basis element of
Com+[I]).

There is also a morphism of operads Com+ → Zinb which sends ∗I to the
sum of all linear orders on I.

Example B.5. We now proceed to define a related example which is that of the
Lie operad [260, Definition 1.28]. Assume that k is a field of characteristic different
from 2. A bracket sequence on I is a way to parenthesize the elements of I, each
one appearing exactly once. For example,

[
[x y][w z]

]
is a bracket sequence on the

set {x, y, z, w}. The space Lie[I] is the span of all bracket sequences of I subject
to the relations generated by antisymmetry and the Jacobi identity. For example,
Lie[{x, y}] is the span of [x y] and [y x] subject to the relation

[x y] = −[y x];

hence it is one-dimensional. Also Lie[{∗}] = k.
The operadic composition is as follows. Suppose we are given a bracket sequence

aX on X and bracket sequences aS on each S ∈ X . Then this yields a bracket
sequence on I by replacing each element S ∈ X in the bracket sequence aX by the
bracket sequence aS . The unit map is defined to be the obvious isomorphism.

There is a morphism of operads

Lie→ As+.

It is obtained by replacing each bracket symbol [x y] by xy−yx and concatenating.
For example, [

[x y] z
]
7→ xyz − yxz − zxy + zyx.

where the notation, say yxz, denotes the linear order y|x|z on the set {x, y, z}.

B.1.5. Algebras as operads. Let p be a species concentrated in degree one; in
other words, p[I] = 0 if I is not a singleton. Suppose that an operad structure on
p is given. In this situation, the operadic compositions γf (B.2) must be 0, except
when f is a bijection between singletons. The axioms in Section B.1.2 then simply
express the fact that p[∗] is an associative algebra with product γid∗ and unit η∗,
plus the fact that this algebra is independent of the chosen singleton. In summary,
given a species p concentrated in degree one, we have that

p is a positive operad ⇐⇒ p[1] is a unital associative algebra.

In this manner, the category of operads concentrated in degree one is equivalent to
the category of unital associative algebras.
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B.2. Positive cooperads

Reversing the arrows in the definition of positive operads results in that of
positive cooperads. We discuss this notion and provide several examples.

B.2.1. Definition. A positive cooperad is a comonoid in (Sp+, ◦,X). A morphism
of positive cooperads is a morphism of comonoids.

Explicitly, a positive cooperad consists of a positive species p with linear maps

p[I]→ p[X ]⊗
⊗

S∈X

p[S], and p[{∗}]→ k

one for each surjection I ։ X and each singleton {∗} respectively, subject to axioms
which are dual to those in Section B.1.2.

B.2.2. Duality between operads and cooperads. The dual p∗ of a species p
is defined in Section 8.6.1.

Let p and m be positive species and I a finite set. There is a canonical inclusion

(p∗ ◦m∗)[I] =
⊕
X⊢I

p[X ]∗ ⊗

( ⊗
S∈X

m[S]∗
)

� _

��(
⊕
X⊢I

p[X ]⊗

( ⊗
S∈X

m[S]

))∗

= (p ◦m)∗[I]

and an identification X∗ = X. These turn duality into a lax monoidal functor

(Sp
op
+ , ◦)→ (Sp+, ◦).

In particular, the dual of a positive cooperad (a monoid in (Sp
op
+ , ◦)) is a positive

operad.
There are finitely many partitions of a finite set. Therefore, if p and m are

finite-dimensional (Definition 8.2), then so is p ◦m. Restricted to the category of
finite-dimensional species, duality is a strong monoidal functor

(Sp
op
+ , ◦)→ (Sp+, ◦),

and an involution. In particular, the dual of a finite-dimensional positive operad is
a positive cooperad.

B.2.3. Examples of positive cooperads.

Example B.6. The positive exponential species E+ carries a structure of a coop-
erad as follows. The coproduct E+ → E+ ◦E+ has components

E+[I]→ E+[X ]⊗
⊗

S∈X

E+[S], ∗I 7→ ∗X ⊗
⊗

S∈X

∗S ,

which simply identify the two one-dimensional spaces on the left by means of their
distinguished basis elements. The components of the counit E+ → X are

E+[I]→ X[I], ∗I 7→

{
1 if I is a singleton,

0 otherwise.

This is the positive commutative cooperad Com∗
+. It is dual to the positive

operad Com+ of Example B.1.
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Example B.7. Consider the positive species L+ of linear orders.
Given a linear order l on I and S ⊆ I, we say that S is an interval (with respect

to l) if x ≤ y ≤ z and x, z ∈ S imply y ∈ S. We say that a partition X ⊢ I is
into intervals if every block of X is an interval (with respect to l). In this case, the
order l induces a linear order on X in which S < S′ if one (and hence any) element
of S precedes one (and hence any) element of S′ with respect to l. We denote this
order by l/X .

Define a coproduct L+ → L+ ◦ L+ by letting its components

L+[I]→ L+[X ]⊗
⊗

S∈X

L+[S], l 7→

{
l/X ⊗

⊗
S∈X l|S if X is into intervals,

0 otherwise,

where l|S is the linear order l restricted to the subset S, and l/X is as above. The
counit L+ → X is defined as for the commutative cooperad above.

This is the positive associative cooperad As∗+. It is dual to the positive operad
As+ of Example B.2.

Example B.8. Consider again the positive species L+. It carries another cooperad
structure as follows. The coproduct has components

L+[I]→ L+[X ]⊗
⊗

S∈X

L+[S], l 7→ l/X ⊗
⊗

S∈X

l|S ,

where l|S is the linear order l restricted to the subset S, and l/X is defined as
follows. The order induced by l on the subset X ′ := {minS : S ∈ X} of I coincides
with l/X under the bijection X → X ′, S 7→ minS. The counit L+ → X is defined
as for the associative cooperad above.

This is the Zinbiel positive cooperad Zinb∗. It is dual to the positive operad
Zinb of Example B.3.

Example B.9. We now discuss a cooperad of graphs. For each finite set I, let
Gc[I] be the vector space with basis the set of connected simple graphs with vertex
set I. We ignore the empty set and view Gc as a positive species. It is a subspecies
of the species G of simple graphs (Section 13.2.1).

Let g be such a graph with vertex set I. Given a nonempty subset S ⊆ I,
let g|S be the graph with vertex set S whose edges are all edges of g which join
elements of S. The graph g|S is simple but not necessarily connected. Given a
partition X ⊢ I, let g/X be the graph with vertex set X such that there is an edge
between S, T ∈ X if there is at least one edge in g between an element of S and
an element of T . In other words, g/X is obtained from g by identifying all vertices
in each block of X and removing all loops and multiple edges that may arise as a
result. The graph g/X is always simple and connected. The lattice of contractions
of g is the set

(B.5) L(g) := {X ⊢ I | the graph g|S is connected for each S ∈ X}.

The positive species Gc carries a structure of cooperad as follows. The coprod-
uct has components

Gc[I]→ Gc[X ]⊗
⊗

S∈X

Gc[S], g 7→

{
g/X ⊗

⊗
S∈X g|S if X ∈ L(g),

0 otherwise.

The counit is as for the positive commutative cooperad.
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Note that the only those partitions of the vertex set that are contractions of
the graph g are involved in the coproduct.

This cooperad is implicit in work of Schmitt [323, Section 14].

Example B.10. Let a be the species of rooted trees, as in Example 19.32. Thus,
a[I] is the vector space with basis the set of rooted trees (connected acyclic graphs
with a distinguished vertex) with vertex set I. The species a is positive. We proceed
to endow it with a structure of cooperad.

Let t be such a rooted tree with vertex set I. Given a nonempty subset S ⊆ I,
let t|S be the graph with vertex set S whose edges are all edges of t which join
elements of S. The graph t|S is acyclic but not necessarily connected. Let L(t)
have the same meaning as in (B.5). In other words, L(t) consists of those partitions
X ⊢ I such that t|S is connected (and hence a tree) for each S ∈ X . In this situation,
we declare that the root of t|S is its vertex that is closest to the root of t. Given
a partition X ∈ L(t), let t/X be the graph obtained by contracting each edge of t
which joins two elements in one same block of X . In other words, t/X is obtained
from t by identifying all vertices in each block of X . The vertices of t/X are thus
labeled by the blocks of X . The graph t/X is acylic and connected, so it is a tree.
We turn it into a rooted tree by declaring that its root is the block of X to which
the root of t belongs.

The cooperad structure is as follows. The coproduct has components

a[I]→ a[X ]⊗
⊗

S∈X

a[S], t 7→

{
t/X ⊗

⊗
S∈X t|S if X ∈ L(t),

0 otherwise.

The counit is as for the positive commutative cooperad.
For example, if

t =

'&%$ !"#x /.-,()*+k

'&%$ !"#z

==
==

==
==

= /.-,()*+j '&%$ !"#i

��
��

��
��

�

'&%$ !"#y

and X = {x, jyz, ik},

then

t/X =

'&%$ !"#x

55
55

55
5 /.-,()*+ik

��
��

��
�

?>=<89:;jyz

, t|x = '&%$ !"#x , t|jyz =

'&%$ !"#z

==
==

==
==

= /.-,()*+j

'&%$ !"#y

, t|ik =

/.-,()*+k

'&%$ !"#i

.

This is the pre-Lie positive cooperad. The dual positive operad was explicitly
described by Chapoton and Livernet [81].

Example B.11. We consider now a different positive cooperad structure on the
species a of rooted trees. Given a rooted tree t with vertex set I, let

R(t) := {X ∈ L(t) | the roots of the trees t|S , for S ∈ X , are adjacent in t}.
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Thus, R(t) consists of those partitions of the vertex set of t such that each block is
a subtree and in addition the roots of the blocks form a subtree. For example, if

t =

'&%$ !"#x /.-,()*+k

'&%$ !"#z

==
==

==
==

= /.-,()*+j '&%$ !"#i

��
��

��
��

�

'&%$ !"#y

, X = {x, jyz, ik}, and Y = {xyz, j, ik},

then X ∈ L(t) but X /∈ R(t) (because x is not adjacent to y in t), while Y ∈ R(t).
The map

a[I]→ a[X ]⊗
⊗

S∈X

a[S], t 7→

{
t/X ⊗

⊗
S∈X t|S if X ∈ R(t),

0 otherwise.

defines a new coproduct on a. The counit is as for the positive commutative coop-
erad. This defines a new positive cooperad structure on a. The dual is the nonas-
sociative permutative positive operad introduced by Livernet in [232, Section 2.2].

B.2.4. Some morphisms of positive cooperads. Consider the positive coop-
erads of Examples B.7, B.9 and B.10. A linear order l = l1|l2| · · · |ln gives rise to a
rooted tree in which l1 is the root and li is the only child of li−1 for i ≥ 2:

l1|l2| · · · |ln 7−→

/.-,()*+ln

�
�
�

/.-,()*+l2

/.-,()*+l1

In turn, a rooted tree may be viewed as a simple graph by forgetting the root. This
defines maps

L+
λ1−→ a

λ2−→ Gc

(the former is the same as the map in Section 13.3.4).
Now consider a partition X ⊢ I. Clearly X is into intervals with respect to l

if and only if X ∈ L
(
λ1(l)

)
, and X ∈ L(t) if and only if X ∈ L

(
λ2(t)

)
. It follows

that λ1 and λ2 are morphisms of positive cooperads. Note that λ2 is not injective,
since all trees differing only in the choice of root map to the same graph.

Consider the positive cooperads of Examples B.6 and B.8. There is a morphism

L+ ։ E+

which sends any linear order l on I to ∗I .

B.3. Hereditary species. Schmitt’s construction of positive cooperads

The first of Schmitt’s constructions, discussed in Section 8.7.8, produces comon-
oids in (Sp, ·). We turn to another construction of Schmitt from [322, Section 4]
which produces comonoids in (Sp+, ◦) (positive cooperads). Schmitt originally for-
mulated his construction as one of graded bialgebras, but the ingredients for a
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cooperad are present in his work. The construction takes for input a heriditary
species (see definition below). This notion is the same as that of a Ω-set in the
sense of Pirashvili.

B.3.1. Heriditary species. Consider the category of nonempty finite sets with
partially defined surjections as morphisms. A partially defined surjection from I
to J is a pair (S, f) where S is a subset of I and f : S ։ J is a surjection. The
composite of two such morphisms

I
(S,f)
−−−→ J

(T,g)
−−−→ K

is (f−1(T ), g ◦ f|f−1(T )
).

A hereditary species [322] is a functor from the category of nonempty finite sets
and partially defined surjections to the category of sets.

Remark B.12. Given a finite set I, let I+ := I ⊔ {∗I}, as in Section 8.11.1.
The element ∗I is the base point of I+. Partially defined surjections I → J are
in one-to-one correspondence with base-point preserving surjections I+ → J+: to
(S, f) : I → J one associates f+ : I+ → J+ given by

f+(i) :=

{
f(i) if i ∈ S,

∗J otherwise.

The category of nonempty finite sets and partially defined surjections identifies in
this manner with the category Ω considered by Pirashvili in [296, Section 2]. A
hereditary species in the sense of Schmitt is thus a Ω-set in the sense of Pirashvili.

Pirashvili’s Ω is a subcategory of the opposite of Segal’s category Γ. The latter
is defined in [327, Definition 1.1]. A Γ-set is a contravariant functor from Γ to the
category of sets. Therefore, every Γ-set gives rise to a hereditary species.

We thank Clemens Berger for help with this remark.

Warning. Pirashvili renames Segal’s category, so that Segal’s Γ is Pirashvili’s Γop.

B.3.2. Schmitt’s construction of positive cooperads. Let Q be a hereditary
species. Given a nonempty finite set I and a nonempty subset S of I, let

ρI,S : Q[I]→ Q[S]

denote the image under the functor Q of the partially defined surjection (S, idS) : I
→ S. In addition, given a partition X of I, let

ρI,X : Q[I]→ Q[X ]

denote the image under the functor Q of the canonical projection to the quotient
I ։ X (which is a partially defined surjection).

Consider the linearization q = kQ, which is in particular a positive species.
Given a nonempty finite set I and a partition X ⊢ I, define a map

∆: q[I]→ q[X ]⊗
⊗

S∈X

q[S] by x 7→ ρI,X(x)⊗
⊗

S∈X

ρI,S(x)

for all x ∈ Q[I]. Also, define a map ǫ : q[I]→ X[I] by sending all elements of Q[I]
to 1 if I is a singleton and to 0 otherwise. This defines morphisms

∆: q→ q ◦ q and ǫ : q→ X.
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Proposition B.13 (Schmitt). Let Q be a hereditary species. The triple (q,∆, ǫ),
as defined above, is a positive cooperad.

B.3.3. Examples. The positive exponential species E+ can be turned into a
hereditary species: send a partially defined surjection I → J to the unique map
that sends ∗I to ∗J . The cooperad yielded by Proposition B.13 in this case is the
positive commutative cooperad of Example B.6.

The positive linear order species L+ can also be turned into a hereditary species:
for a partially defined surjection f : I → J the map L+[I] → L+[J ] sends l to lJ ,
where lJ is defined as follows. Let X := {f−1(j) : j ∈ J} be the set of fibers of
f . The order induced by l on the subset X ′ := {minS : S ∈ X} of I coincides
with lJ under the bijection J → X ′, j 7→ min f−1(j). The cooperad yielded by
Proposition B.13 in this case is the Zinbiel cooperad of Example B.8.

Consider the cooperad of graphs of Example B.9. Since certain components of
the coproduct of a graph g are 0 (those corresponding to partitions of the vertex
set which are not contractions of g), this cooperad structure does not arise from
Schmitt’s construction.

For a similar reason, the cooperads of Examples B.7, B.10 and B.11 do not
arise from this construction either.

B.4. General operads and cooperads

In Section 8.1.2, we discussed various monoidal structures on species. Among
these, the substitution operation was defined only in the case when the second
argument was a positive species. This special case gives rise to the notion of positive
(co)operad studied in Sections B.1 and B.2.

The goal of this section is to discuss the substitution operation in full generality.
In contrast with the case of positive species, there are two different notions of
substitution for general species. They are discussed in Sections B.4.2 and B.4.4.
The first one is given as a colimit; see (B.10) and (B.11) below. This operation
gives rise to the general notion of operad (Section B.4.3). The second one is given
as a limit and gives rise to the general notion of cooperad (Section B.4.5). Duality
between the two notions is discussed in Sections B.4.6 and B.4.7. The connection
between the general notion of (co)operad and that of positive (co)operad is discussed
in Section B.4.8.

A careful discussion of associativity for the colimit version of substitution op-
eration is given by Kelly [197]. Our presentation differs from his and is based on an
explicit description of the iterated substitution products. This approach becomes
essential when discussing the limit version of substitution, since this operation is not
strongly associative. We employ the notion of lax monoidal category to overcome
this difficulty (Definition D.3).

B.4.1. Divided set powers and related functors. We recall the notion of
divided set power of a species due to Joyal [181, Section 2.2].

Let m be a species and X a finite set. The divided X-power of m is the species
m·X defined by

(B.6) m·X [I] :=
⊕

f : I→X

⊗

x∈X

m[f−1(x)].
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The sum is over all functions from the finite set I to the finite set X . Given a
bijection σ : I → J , the map

m·X [σ] : m·X [I]→ m·X [J ]

has components

⊗

x∈X

m[f−1(x)]

N

m

[
σ|
f−1(x)

]
−−−−−−−−−−→

⊗

x∈X

m[g−1(x)]

where f : I → X is given and g := fσ−1 : J → X . In this manner, m·X is a species.
Recall the Cauchy product of species (8.6). A function f : I → [k] is equivalent

to an ordered decomposition I = S1 ⊔ · · · ⊔ Sk via Sx = f−1(x), and therefore

m·k[I] =
⊕

I=S1⊔···⊔Sk

m[S1]⊗ · · · ⊗m[Sk].

Thus the species m·k is isomorphic to the Cauchy product of m with itself k times,
as suggested by the notation. More generally,

(B.7) m·X ∼= ·
x∈X

m.

In other words, the divided X-power of m is the same as the unordered tensor
product of m over X (Section 1.4).

A bijection τ : X → Y induces an isomorphism of species

m·τ : m·X →m·Y

with components ⊗

x∈X

m[f−1(x)]
∼=
−→

⊗

y∈Y

m[g−1(y)]

where f : I → X is given and g := τf : I → Y . The above map is the isomorphism
between unordered tensor products induced by τ . In addition, a morphism of
species m → n induces a morphism of species m·X → n·X . These constructions
combine to give a functor

Sp× Set× → Sp, (m, X) 7→m·X .

In particular, for each fixed species m, there is a functor

Set× → Sp, X 7→m·X .

Let p be another species. We then have a species p[X ]⊗m·X whose value on
a finite set I is p[X ]⊗m·X [I]. Moreover, in view of the above, we obtain a functor

(B.8) Set× → Sp, X 7→ p[X ]⊗m·X

for fixed species p and m.

B.4.2. Substitution of species: the colimit version. Let p and m be arbi-
trary species. The substitution of m in p is the species p ◦m defined by

(B.9) p ◦m := colim
X

p[X ]⊗m·X .

This is the colimit of the functor (B.8). Since the category Sp is cocomplete (Exam-
ple A.16), the colimit exists. Moreover, since Sp is a functor category, the colimit
can be calculated pointwise (item (iii) in Proposition A.10):

(B.10) (p ◦m)[I] = colim
X

p[X ]⊗m·X [I].
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Note that even when p and m are finite-dimensional species, the colimit p◦m may
not be so.

Using formula (A.8), equation (B.9) can be written in a more explicit form as

(B.11) p ◦m =
⊕

k≥0

(p[k]⊗m·k)Sk .

Since p is a species, the symmetric group Sk acts on p[k] for all k. Since (Sp, ·) is
a symmetric monoidal category, Sk acts on m·k by permuting the tensor factors.
The coinvariants in the above formula are taken with respect to the diagonal action
of Sk.

Formula (B.11) can be found in [137, Section 1.3.5].

We turn to associativity of substitution. Given finite sets X and Y , let us write

(B.12) p[X : Y ] :=
⊕

f :Y→X

⊗

x∈X

p[f−1(x)].

The direct sum is over all functions f from Y to X . With this notation, for-
mula (B.10) may be rewritten as

(p ◦m)[I] ∼= colim
X

p[{∗} : X ]⊗m[X : I].

Here {∗} denotes a fixed singleton, so that there is a unique map X → {∗}.
Let n be a third species. Consider the species p ◦m ◦ n defined by

(p ◦m ◦ n)[I] := colim
X,Y

p[{∗} : X ]⊗m[X : Y ]⊗ n[Y : I].

Here both X and Y vary in the category Set×, independently of each other.

Lemma B.14. We have

(p ◦m) ◦ n[I] ∼= (p ◦m ◦ n)[I] ∼= p ◦ (m ◦ n)[I].

Proof. We first calculate with the left hand side.

(p ◦m) ◦ n[I] ∼= colim
Y

(p ◦m)[{∗} : Y ]⊗ n[Y : I]

∼= colim
Y

(p ◦m)[Y ]⊗ n[Y : I]

∼= colim
Y

colim
X

p[{∗} : X ]⊗m[X : Y ]⊗ n[Y : I]

∼= colim
X,Y

p[{∗} : X ]⊗m[X : Y ]⊗ n[Y : I] = (p ◦m ◦ n)[I]

We have used that tensor products preserve colimits (Example A.11) and that
double colimits can be calculated iteratively (Proposition A.10, item (iv)).
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We now work with the right hand side.

p ◦ (m ◦ n)[I]

∼= colim
X

p[{∗} : X ]⊗ (m ◦ n)[X : I]

∼= colim
X

p[X ]⊗
( ⊕

f :I→X

⊗

x∈X

(m ◦ n)[f−1(x)]
)

∼= colim
X

p[X ]⊗
( ⊕

f :I→X

⊗

x∈X

colim
Yx

m[{∗} : Yx]⊗ n[Yx : f−1(x)]
)

∼= colim
X

p[X ]⊗
( ⊕

f :I→X

⊗

x∈X

colim
Yx

m[Yx]⊗
( ⊕

gx:f−1(x)→Yx

⊗

y∈Yx

n[g−1
x (y)]

))

∼= colim
X

p[X ]⊗
(

colim
(Yx)x∈X

⊕

f :I→X

⊗

x∈X

m[Yx]⊗
( ⊕

gx:f−1(x)→Yx

⊗

y∈Yx

n[g−1
x (y)]

))

Above, we commuted colimits first with tensor products and then with direct sums
as in Example A.11. This results in the inner-most colimit in the previous formula,
which is calculated over the product category (Set×)X . We proceed by commuting
the tensor product over elements x with the direct sums over functions gx.

p ◦ (m ◦ n)[I]

∼= colim
X

p[X ]⊗
(

colim
(Yx)x∈X

⊕

f :I→X

⊕

(gx:f−1(x)→Yx)x∈X

⊗

x∈X

(
m[Yx]⊗

⊗

y∈Yx

n[g−1
x (y)]

))

∼= colim
X

p[X ]⊗
(

colim
(Yx)x∈X

⊕

f :I→X

⊕

(gx:f−1(x)→Yx)x∈X

(⊗

x∈X

m[Yx]
)
⊗
(⊗

x∈X
y∈Yx

n[g−1
x (y)]

))

Now, the category SetX is equivalent to the slice category Set ↓ X . The
equivalence sends the object (Yx)x∈X to h : Y → X given by

Y :=
∐

x∈X

Yx and h|Yx ≡ x,

and the arrow (gx)x∈X :
(
f−1(x)

)
x∈X

→ (Yx)x∈X to g : I → Y given by g|f−1(x) =
gx. Note that

I
f

//

g
��

??
??

??
??

X

Y

h

>>~~~~~~~

commutes, so that f is determined by h and g. It follows that (Set×)X is equivalent
to the groupoid (Set ↓ X)×.

In view of the above, the preceding calculation can be continued as follows.

p ◦ (m ◦ n)[I] ∼= colim
X

p[X ]⊗
(

colim
h:Y→X

⊕

g:I→Y

⊗

x∈X

m[h−1(x)] ⊗
⊗

y∈Y

n[g−1(y)]
)
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The inner-most colimit is over the groupoid (Set ↓ X)×. We use (A.10) to calculate
it, and proceed as follows.

p ◦ (m ◦ n)[I]

∼= colim
X

p[X ]⊗
(
colim
Y

⊕

h:Y→X

⊕

g:I→Y

⊗

x∈X

m[h−1(x)]⊗
⊗

y∈Y

n[g−1(y)]
)

∼= colim
X

colim
Y

p[X ]⊗
( ⊕

h:Y→X

⊗

x∈X

m[h−1(x)]
)
⊗
( ⊕

g:I→Y

⊗

y∈Y

n[g−1(y)]
)

∼= colim
X,Y

p[{∗} : X ]⊗m[X : Y ]⊗ n[Y : I] = (p ◦m ◦ n)[I]

This completes the proof. �

It follows that (Sp, ◦,X) is a monoidal category, where the unit object X is the
species characteristic of singletons (8.3).

B.4.3. Definition of operad: the general case. An operad is a monoid in
(Sp, ◦,X); a morphism of operads is a morphism of monoids.

An operad is thus a species p together with morphisms of species

γ : p ◦ p→ p and η : X→ p

which are associative and unital. As for positive operads, this can be made very
explicit. The structure amounts to a linear map

(B.13) γf : p[X ]⊗
⊗

x∈X

p[f−1(x)]→ p[I],

for each (arbitrary) map f : I → X between finite sets I and X , and a linear map

(B.14) η∗ : k→ p[{∗}].

for each singleton {∗}. These maps are subject to the same list of axioms as in
Section B.1.2, where now arbitrary maps are used instead of surjections.

Example B.15. The exponential species E carries an operad structure. The defi-
nition is as in Example B.1, with γf and η∗ being the obvious isomorphisms. This
is the commutative operad, denoted Com.

The species L of linear orders is an operad. The operadic composition is given
by ordinal sum, as in Example B.2. This is the associative operad, denoted As.

The term operad and its first formal definition is due to May [261]; however
this concept had appeared implicitly earlier or about the same time in the works
of many others such as Boardman and Vogt [56], Lazard [222, 223], Lambek [219]
and Stasheff [345]. Kelly [197] noted that operads may be viewed as monoids in
(Sp, ◦,X); this is also done by Smirnov [330] and Joyal [181]. More recent references
that treat this point are [137, Part 1], [260, Definition 1.67] and [226, Section A.2].
For generalizations of the notion of operad, see [34] and [226, Part II].

B.4.4. Substitution of species: the limit version. It is possible to define
another operation on arbitrary species as follows:

(B.15) p ◦′ m := lim
X

p[X ]⊗m·X .
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This is the limit of the functor (B.8). Since the category Sp is complete (Exam-
ple A.16), the limit exists and it can be calculated pointwise:

(B.16) (p ◦′ m)[I] = lim
X

p[X ]⊗m·X [I].

Even when p and m are finite-dimensional species, the limit p ◦′ m may not be so.
Using (the dual of) formula (A.8), equation (B.15) can be written in a more

explicit form as

(B.17) p ◦′ m =
∏

k≥0

(p[k]⊗m·k)Sk .

Since p is a species, the symmetric group Sk acts on p[k] for all k. Since (Sp, ·) is
a symmetric monoidal category, Sk acts on m·k by permuting the tensor factors.
The invariants in the above formula are taken with respect to the diagonal action
of Sk.

Let us consider associativity for the operation ◦′. Since limits commute with
finite direct sums, we have

(p ◦′ m)[I] ∼= lim
X

p[{∗} : X ]⊗m[X : I],

with p[X : Y ] as in (B.12). Given a third species n, consider the species p ◦m ◦ n
defined by

(p ◦′ m ◦′ n)[I] := lim
X,Y

p[{∗} : X ]⊗m[X : Y ]⊗ n[Y : I].

The canonical maps (A.9) yield maps

(p ◦′ m) ◦′ n[I]→ (p ◦′ m ◦′ n)[I]← p ◦′ (m ◦′ n)[I].

At this point, the situation regarding the operation ◦′ is no longer as for the oper-
ation ◦: these maps are not isomorphisms in general, and the operation ◦′ is not
strongly associative. The proof of Lemma B.14, which gave the result for ◦, breaks
down in view of the fact that tensor products do not preserve limits (Example A.15).

However, the above definitions of p ◦′ m and p ◦′ m ◦′ n can be extended
to any number of factors in the obvious manner. These satisfy the conditions in
Definition D.3 and thus turn (Sp, ◦′,X) into a lax monoidal category. The unit
object is the species X characteristic of singletons (8.3).

In the context of lax monoidal categories it is still possible to consider the
notion of (co)monoid and also of (co)lax monoidal functors. (We do not provide
the details of this.)

B.4.5. Definition of cooperad: the general case. A cooperad is a comonoid
in the lax monoidal category (Sp, ◦′,X).

A cooperad structure on a species p amounts to a linear map

(B.18) p[I]→ p[X ]⊗
⊗

x∈X

p[f−1(x)]

for each (arbitrary) map f : I → X between finite sets I and X , and a linear map

(B.19) p[{∗}]→ k

for each singleton {∗}. The axioms are obtained from those in Section B.1.2 by
reversing the arrows.



686 B. OPERADS

Example B.16. The exponential species E carries a cooperad structure, for which
the maps (B.18) and (B.19) are the obvious isomorphisms. This is the commutative
cooperad, denoted Com∗.

The species L is also a cooperad, with structure maps defined in the same
manner as in Example B.7. This the associative cooperad, denoted As∗.

These cooperads are dual to the operads Com and As, in the sense of Sec-
tions B.4.6 and B.4.7 below.

Remark B.17. Our definition of cooperad differs from the one by Fresse [137,
Section 1.2.17]. His cooperads are comonoids in (Sp, ◦,X). The norm map (Sec-
tion 2.5) defines a transformation

(p[k]⊗m·k)Sk → (p[k]⊗m·k)Sk

This gives rise to a colax monoidal functor

(Sp, ◦,X)→ (Sp, ◦′,X)

which is the identity on objects. Hence, every cooperad in Fresse’s sense is a
cooperad in ours. The converse is not true. The commutative and associative
cooperads are not cooperads in Fresse’s sense.

B.4.6. The dual of a cooperad. Let p and m be arbitrary species (not neces-
sarily positive or finite-dimensional).

Lemma B.18. For each finite set I and each k ≥ 0, the kSk-module

m·k[I]

is free, where Sk acts on m·k by permuting the tensor factors.

Proof. We employ Notation 11.1. We have

m·k[I] =
⊕

F�I
deg(F )=k

m(F ) =
⊕

X⊢I
deg(X)=k

⊕

F�I
supp(F )=X

m(F ).

For each fixed X , the space ⊕

F�I
supp(F )=X

m(F )

is stable under the action of Sk and isomorphic to

m(X)⊗ k{F � I | supp(F ) = X}

as kSk-modules, where Sk acts trivially on m(X) and permutes the basis of the
space k{F � I | supp(F ) = X}. Permuting the parts of a set composition always
yields a different set composition. Hence, the latter action has no fixed points, and
the kSk-modules above are free. �

It is worth pointing out that the analogue of the latter fact for vector spaces
V is not true: the action of Sk on V ⊗k is not free.

Using now Lemma 2.17 we deduce that the kSk-module

p[k]⊗m·k[I],

where Sk acts diagonally, also is free. Then, by Lemma 2.21, item (b), there is a
canonical isomorphism

((
p[k]⊗m·k[I]

)∗)
Sk

∼=
((

p[k]⊗m·k[I]
)Sk)∗.
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We make use of this isomorphism to form the composite below. We also use (B.11),
(B.17) and canonical inclusions.

(p∗ ◦m∗)[I]

⊕
k≥0

(
p[k]∗ ⊗m·k[I]∗

)
Sk

� � //
⊕
k≥0

((
p[k]⊗m·k[I]

)∗)
Sk

≀

⊕
k≥0

((
p[k]⊗m·k[I]

)Sk)∗ � � //

(
∏
k≥0

(
p[k]⊗m·k[I]

)Sk
)∗

(p ◦′ m)[I]∗

The above maps define a natural transformation:

p∗ ◦m∗ → (p ◦′ m)∗.

We endow the duality functor with this transformation and with the canonical
identification X ∼= X∗.

Proposition B.19. With the above structure, the duality functor

(Sp, ◦′)op → (Sp, ◦)

is lax monoidal.

As a consequence:

Corollary B.20. Let p be an arbitrary cooperad. Then p∗ is an operad.

B.4.7. The dual of an operad. Assume now that both species p and m are
finite-dimensional (Definition 8.2). In this situation, we may construct the following
composite.

(p ◦m)[I]∗

(⊕
k≥0

(p[k]⊗m·k[I])Sk

)∗
∼
∏
k≥0

((
p[k]⊗m·k[I]

)
Sk

)∗

≀

∏
k≥0

((
p[k]⊗m·k[I]

)∗)Sk
∼
∏
k≥0

(
p[k]∗ ⊗m·k[I]∗

)Sk

(p∗ ◦′ m∗)[I]

The first isomorphism is canonical. The vertical isomorphism uses Lemma 2.21,
item (a). The third isomorphism in the chain uses finite-dimensionality.

These maps define an invertible transformation which is natural in the finite-
dimensional species p and m:

(p ◦m)∗ → p∗ ◦′ m∗.

Proposition B.21. When restricted to finite-dimensional species, and with the
above structure, the duality functor

(Sp, ◦)op → (Sp, ◦′)

is (co)strong monoidal.

As a consequence:
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Corollary B.22. Let p be a finite-dimensional operad. Then p∗ is a cooperad.

B.4.8. Positive (co)operads versus general (co)operads. In the preceding
sections, we have defined two operations ◦ and ◦′ on the category of species. We
now check that when restricted to positive species, they both coincide with the
substitution product defined in Section B.1.1 (and which we also denote by ◦).

Let p be an arbitrary species and m a positive one. We analyze the divided
powers of m. Since m[∅] = 0, the only functions f : I → X that contribute to the
sum (B.6) are the surjective ones. For such f ,

X̃ := {f−1(x) | x ∈ X}

is a partition of I (no empty blocks). The map f induces a bijection X̃ ∼= X and

p[X̃]⊗m· eX [I] ∼= p[X ]⊗m·X [I].

Composing with the canonical maps we obtain
∏

eX⊢I

p[X̃]⊗

(⊗

S∈ eX

m[S]

)
→ p[X ]⊗m·X [I]→

⊕

eX⊢I

p[X̃]⊗

(⊗

S∈ eX

m[S]

)

where the product and the sum are over all partitions X̃ of I. If τ : X → Y is a
bijection and g = τf , then {f−1(x) | x ∈ X} and {g−1(y) | y ∈ Y } are the same
partition of I. It follows that

lim
X

p[X ]⊗m·X [I] =
∏

X⊢I

p[X ]⊗

(⊗

S∈X

m[S]

)
.

and

colim
X

p[X ]⊗m·X [I] =
⊕

X⊢I

p[X ]⊗

(⊗

S∈X

m[S]

)
.

Since there are only finitely-many partitions of I, the above sum and product
coincide. Thus, all three definitions (B.1), (B.11) and (B.15) coincide in this case.
More formally:

Proposition B.23. The inclusion functor inc : Sp+ → Sp is strong monoidal in
two ways: As a functor

(Sp+, ◦,X)→ (Sp, ◦,X)

and as a functor
(Sp+, ◦,X)→ (Sp, ◦′,X).

Recall from Proposition 3.94 that the left adjoint of a strong functor carries a
canonical colax structure while the right adjoint carries a canonical lax structure.
Further recall from (8.57) that the functor (−)+ : Sp→ Sp+ of (8.56) is a two-sided
adjoint of inc : Sp+ → Sp. It then follows that

(−)+ : (Sp, ◦,X)→ (Sp+, ◦,X) and (−)+ : (Sp, ◦′,X)→ (Sp+, ◦,X)

carry both a lax and a colax monoidal structure. Since (co)lax functors preserve
(co)monoids (Proposition 3.29), we deduce:

Corollary B.24. If p is a positive (co)operad, then it is also a (co)operad. If p
is a (co)operad, then p+ is a positive (co)operad.

As an illustration, the commutative and associative operads Com and As give
rise to the positive commutative and associative operads Com+ and As+.
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B.5. Modules over operads and monoids in species

In Chapter 4 we defined a type of monoid for each operad and discussed many
explicit examples. Now consider such types of monoid in the monoidal category
(Sp, ·) of species under Cauchy product (8.6). It turns out in this case that the same
notion arises in a different manner: if p is an operad, then a p-monoid structure
on a species is the same as a p-module structure on that species.

In this section, we first review modules, then discuss the internal Hom for the
substitution product, and finally use it to derive the equivalence between monoids
and modules.

B.5.1. Modules over operads. Let p be an operad. Since operads are monoids
in a certain monoidal category, there is a corresponding notion of module (Defini-
tion 1.12). Thus, a (left) p-module is a species m with a map χ : p◦m→ m which
is associative and unital.

A morphism m→ n of p-modules is a map m→ n of species which commutes
with the module structure maps.

More explicitly, a p-module is a species m with the following structure. For
each map f : I → X between finite sets, there is a linear map

(B.20) χf : p[X ]⊗
⊗

x∈X

m[f−1(x)]→m[I].

These maps are subject to conditions similar to those for an operad given in Sec-
tion B.1.2. (Replace the last instance of p by m in each entry of all diagrams, and
omit the first unitality diagram.)

Proposition B.25. For an operad p, the free p-module over a species m is p◦m.

The p-module structure on p ◦m is

p ◦ p ◦m
γ◦id
−−−→ p ◦m

where γ is the operadic composition of p. The inclusion of generators is

m = X ◦m
η◦id
−−−→ p ◦m,

where η is the operadic unit of p.
The above result is stated in [137, Section 2.1.10]; it holds in the general context

of monoidal categories.

B.5.2. Internal Hom for the substitution of species. The discussion of this
section complements that on substitution of species in Section B.4.2.

Given species m and n, define a species H◦(m,n) by

H◦(m,n)[X ] := HomSp(m
·X ,n),

for any finite set X . This is the set of all maps of species from the divided power
m·X to n.

A bijection σ : X → Y induces an isomorphism m·X → m·Y and hence a
bijection

H◦(m,n)[X ]→ H◦(m,n)[Y ].

In this manner, H◦(m,n) is a species.

Proposition B.26. For any species p,m, and n, there is a natural bijection

HomSp(p ◦m,n) ∼= HomSp

(
p,H◦(m,n)

)
.
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Proof. Start from a map p ◦m → n. For each finite set I, we are given a
map

colim
X

p[X ]⊗m·X [I]→ n[I],

and this family of maps is natural in I. By universality of the colimit (Defini-
tion A.9), this is equivalent to a family of maps

p[X ]⊗m·X [I]→ n[I]

which are natural in I and form a cone with respect toX . By the familiar adjunction
between ⊗ and HomVec (A.6), this is equivalent to a family of maps

p[X ]→ HomVec(m
·X [I],n[I])

subject to the naturality and cone conditions. Naturality in I implies that this is
equivalent to a map

p[X ]→ HomSp(m
·X ,n),

and the cone property translates into the naturality inX of this map. In conclusion,
the given data is equivalent to a map

p→ H◦(m,n). �

Proposition B.26 says that H◦ is the internal Hom for the monoidal category
(Sp, ◦), in the sense of Section 1.3. It follows from Proposition 1.28 that the species

(B.21) E◦(m) := H◦(m,m)

is an operad and that, if p is an operad, then a p-module structure on a species m
is equivalent to a morphism of operads

p→ E◦(m).

B.5.3. Equivalence between monoids and modules. In Section 4.2.1 we de-
fined the endomorphism operad of an object in an arbitrary symmetric linear
monoidal category. Choosing the latter to be the category (Sp, ·) of species un-
der Cauchy product, we obtain the endomorphism operad Endm of a species m.
From (4.6) we have that

Endm[I] := HomSp(m
·I ,m).

On the other hand, we have the operad E◦(m) of (B.21).

Proposition B.27. Let m be a species. The operads E◦(m) and Endm are the
same.

Proof. Equation (B.7) shows that

E◦(m)[X ] = HomSp(m
·X ,m) = Endm[X ].

Thus E◦(m) and Endm agree as species. The verification that their operad struc-
tures agree as well is straightforward, and we omit it. �

It follows that the operad structure of E◦(m) can be described purely in terms
of the Cauchy product on species.

Let p be an operad. In Section 4.2.2 we discussed the notion of p-monoids
in an arbitrary symmetric linear monoidal category. Choosing the latter to be the
category (Sp, ·) of species under Cauchy product, we obtain the notion of p-monoids
in species.

It turns out that this coincides with the notion of p-modules of Section B.5.1.
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Corollary B.28. Let p be an operad and m a species. A p-module structure on a
species m is equivalent to a p-monoid structure on m.

Proof. As discussed in Section B.5.2, a p-module structure on m is equivalent
to a morphism of operads p → E◦(m). By Proposition B.27, this is the same as a
morphism of operads p→ Endm, which according to Definition 4.16 is a p-monoid
structure on m. �

It follows from Corollary B.28 that the category of p-modules in (Sp, ·) is equiv-
alent to the category of p-monoids in (Sp, ·). In particular, Proposition B.25 also
describes the free p-monoid over a species m.

Example B.29. Consider the associative operad As (Example B.15). Let m be an
As-module, or equivalently, an As-monoid. We found in Example 4.18 that such
a structure is equivalent to a monoid structure on the object m in the monoidal
category (Sp, ·). Proposition B.25 says that the free monoid in (Sp, ·) over a species
m is given by L ◦m. This is in agreement with the construction of Section 11.2.1.

Example B.30. Consider the Zinbiel operad Zinb (Example B.3). The underlying
species is L+, the positive part of the species of linear orders. Since any operad is a
module over itself, L+ is a module over the operad Zinb. Hence, by Corollary B.28,
L+ is a Zinb-monoid in (Sp+, ·), or according to Table 4.1, a Zinbiel monoid, as in
Definition 4.2.

The Zinbiel monoid structure of L+ can be explicitly described. The structure
map µ : L+ · L+ → L+ is as follows. Choose a finite set I and a decomposition
I = S ⊔ T into nonempty disjoint subsets. The corresponding component of µ is

µS,T : L+[S]⊗ L+[T ]→ L+[I], l1 ⊗ l2 7→
∑

l

l,

where the sum is over all linear orders l ∈ L[I] such that

l|S = l1, l|T = l2, and min(l1) < min(l2) with respect to l.

The latter condition can be equivalently formulated by saying that the minimum
element of I according to the order l belongs to S.

The commutativity of the diagram in Definition 4.2 boils down to the following
fact. Given a decomposition I = S ⊔ T ⊔U into nonempty disjoint subsets, the set
of linear orders l on I with prescribed restrictions to each of the three subsets and
such that min(l) ∈ S can be decomposed into two classes, according to whether
min(l|T ) < min(l|U ) or min(l|T ) > min(l|U ) (always with respect to the order l).
Thus, L+ is a Zinbiel monoid.

Proposition 4.5 implies that µ + µβ defines a nonunital commutative monoid
structure on L+. Note that µβ is given by a similar sum to that above, but involving
those linear orders l such that min(l1) > min(l2). It follows that µ+µβ is given by
the sum of all shuffles of l1 and l2.

This is not the monoid structure of L+ of Example 8.16, but rather the com-
mutative monoid structure of L∗

+ of Example 8.24, after the canonical identification
of species L ∼= L∗, l 7→ l∗ for all linear orders l.

B.6. Hopf operads

There is an interchange law between the substitution and Hadamard products
on species which leads to the notion of Hopf operad. Hopf operads first appeared
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in work of Getzler and Jones [145] (also see [260, Definition 3.135]). Some recent
papers dealing with this notion are [233, 234, 241].

B.6.1. Substitution and Hadamard products on positive species. Consider
the operations ◦ (substitution) and × (Hadamard product) defined in Section 8.1.2.
They restrict to the category Sp+ of positive species. The category (Sp+, ◦,X) is
monoidal (Section B.1.1) and the category (Sp+,×,E+) is braided monoidal (the
unit object is the positive exponential species of Example B.1). We now show that
these structures combine into that of a 2-monoidal category (Section 6.1).

Let p, q, r and s be positive species. Consider the species (p×q) ◦ (r× s) and
(p ◦ r)× (q ◦ s). Their I-components, for I a nonempty finite set, are

⊕

X⊢I

(p[X ]⊗ q[X ])⊗

(⊗

S∈X

r[S]⊗ s[S])

)

and
⊕

X,Y ⊢I

p[X ]⊗

(⊗

S∈X

r[S]

)
⊗ q[Y ]⊗

(⊗

T∈Y

s[T ]

)
.

Each summand of the former appears also in the latter (for Y = X , T = S).
Rearranging the middle factors we thus obtain a map

(B.22) ζ : (p× q) ◦ (r× s)→ (p ◦ r)× (q ◦ s).

Consider also the maps

(B.23) ∆X : X→ X×X, µE+ : E+ ◦E+ → E+, ιE+ = ǫX : X→ E+.

The first map is defined to be the obvious isomorphism. The second and third maps
are the operadic composition and unit of the positive commutative operad, as in
Example B.1.

Proposition B.31. With the structure maps (B.22) and (B.23), (Sp+, ◦,X,×,E+)
is a 2-monoidal category. Moreover, it is ×-braided.

The proof is a straightforward verification of the axioms. By applying the
contragredient construction, one sees that (Sp+,×, ◦) is also a 2-monoidal category.

B.6.2. Hadamard product of positive operads. From Propositions B.31 and
6.35, we obtain that

(Mon(Sp+, ◦),×) and (Comon(Sp+,×), ◦)

are both monoidal categories. We expand further on these statements.
First, recall that Comon(Sp,×) is the category of species with values in Coalg,

the category of coalgebras (Section 8.2.2). Hence the second statement above says
that the substitution product can be extended to species with values in Coalg.

Next, recall that Mon(Sp+, ◦) is the category of positive operads. Hence the
first statement above says that the category of positive operads has a monoidal
structure given by the Hadamard product. In particular, if p and q are positive
operads, then so is p × q. The structure maps of p× q are obtained by tensoring
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the structure maps of q and p. Explicitly, let

p[X ]⊗
⊗

x∈X

p[f−1(x)]→ p[I], k→ p[{∗}]

a⊗
⊗

x∈X

ax 7→ c 1 7→ i

and

q[X ]⊗
⊗

x∈X

q[f−1(x)],→ q[I] k→ q[{∗}]

b⊗
⊗

x∈X

bx 7→ d 1 7→ j

be the generic notation for the structure maps of p and q respectively, as in (4.7).
Then

(p× q)[X ]⊗
⊗

x∈X

(p× q)[f−1(x)]→ (p× q)[I], k ∼= k⊗ k→ (p× q)[{∗}]

(a⊗ b)⊗
⊗

x∈X

(ax ⊗ bx) 7→ c⊗ d 1⊗ 1 7→ i⊗ j

yield the structure maps of p× q.
We note that

q× p ∼= p× q and E× p ∼= p

as operads.

B.6.3. Pointing of operads. The pointing operation is defined in Section 8.13.7.
We saw in Example B.4 that the species of elements e carries a positive operad
structure, denoted Perm. Since e is self-dual, this species also carries a positive
cooperad structure, denoted Perm∗. Since p• = p×e, we may use this (co)operad
structure to turn pointing into a lax and colax monoidal functor

(−)• : (Sp+, ◦)→ (Sp+, ◦).

In particular, if p is a positive (co)operad, then so is p• and (p•)∗ ∼= (p∗)• as
positive (co)operads.

We have Com•
+ = Perm. The operad As•+ is the diassociative operad. Alge-

bras over this operad are the dialgebras of Section 10.10.3.

B.6.4. Positive Hopf operads. The 2-monoidal structure of Proposition B.31
allows us to consider bimonoids in (Sp+, ◦,X,×,E+). (Bimonoids in 2-monoidal
categories are defined in Section 6.5.1.)

Definition B.32. A positive Hopf operad is a bimonoid in the 2-monoidal category
(Sp+, ◦,X,×,E+). A bimonoid in the 2-monoidal category (Sp+,×,E+, ◦,X) is a
positive Hopf cooperad.

Explicitly, a positive Hopf operad is a positive species p with maps

µ : p ◦ p→ p, ι : X→ p, ∆: p→ p× p, ǫ : p→ E

satisfying axioms (6.3)–(6.7).
In light of Proposition 6.36, there are two other interpretations one may give

for a Hopf operad. Namely, it is a comonoid in the category of operads, or it is an
operad with values in Coalg.
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Example B.33. Let P be a positive set operad and p = kP its linearization
(Section B.1.3). The diagonal map P→ P×P is a morphism of set operads. There
is also a (unique) morphism of set operads P→ E, which sends all elements of P[I]
to ∗I . Linearizing, one obtains morphisms p → p × p and p → E which turn p
into a positive Hopf operad.

Example B.34. Recall from Section B.1.5 that an algebra can be viewed as an
operad concentrated in degree 1. Similarly, a bialgebra can be viewed as a positive
Hopf operad concentrated in degree 1.

This may be seen as follows. The functor

X(−) : (Vec,⊗,⊗)→ (Sp+, ◦,×) V 7→ XV

(with XV as in (8.4)) is bilax. In fact, it is strong-costrong. In other words, there
are isomorphisms

XV ◦XW

∼=
−−→ XV⊗W and XV⊗W

∼=
−−→ XV ×XW .

Further, the costrong structure is braided, that is, the braidings commute with
the second isomorphism. Since a bilax functor preserves bimonoids, X(−) takes
bialgebras to positive Hopf operads.

B.6.5. Substitution and Hadamard products on general species. Hopf
operads. The considerations of Sections B.6.1 and B.6.4 can be carried out in the
context of general (not necessarily positive) species with minor adjustments.

Let p, q, r and s be (general) species. From (B.6), note that there is a diagonal
embedding

(r× s)
·X → r·X × s·X .

This induces a map

p[X ]⊗ q[X ]⊗ (r× s)·X → (p[X ]⊗ r·X)⊗ (q[X ]⊗ s·X).

Passing to colimits (B.9), one obtains a map

(B.24) ζ : (p× q) ◦ (r× s)→ (p ◦ r)× (q ◦ s).

In addition, there are maps

(B.25) ∆X : X→ X×X, µE : E ◦E→ E, ιE = ǫX : X→ E.

The first map is as in (B.23); the remaining two are the operadic composition and
unit of the commutative operad (Example B.15).

Proposition B.35. With the structure maps (B.24) and (B.25), (Sp, ◦,X,×,E)
is a 2-monoidal category. Moreover, it is ×-braided.

Extending the considerations of Section B.4.8, we have the following result.

Proposition B.36. The inclusion functor

inc : (Sp+, ◦,×)→ (Sp, ◦,×)

is strong-costrong.

A Hopf operad is a bimonoid in the 2-monoidal category (Sp, ◦,X,×,E). In
view of Proposition B.36, every positive Hopf operad is in particular a Hopf operad.

It is also possible to construct a 2-monoidal category involving the operations
◦′ and ×. To this end, one starts from the projection

r·X × s·X → (r× s)
·X
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which sends the non-diagonal terms to 0. Passing to limits one obtains an inter-
change law

ζ : (p ◦′ r)× (q ◦′ s)→ (p× q) ◦′ (r× s)

which turns (Sp,×,E, ◦′,X) into a 2-monoidal category.
A Hopf cooperad is a bimonoid in (Sp,×,E, ◦′,X). Every positive Hopf coop-

erad is in particular a Hopf cooperad.

B.7. Nonsymmetric operads

Nonsymmetric operads relate to graded vector spaces the same way as operads
relate to species.

This seems to be the choice of terminology for most authors, including [260].
Some authors emphasize the distinction between nonsymmetric operads and oper-
ads by referring to the latter as symmetric operads. Other authors [226] use operad
for our nonsymmetric operads, and symmetric operad for our operads.

B.7.1. Substitution for graded vector spaces. The substitution operation ◦
for graded vector spaces is discussed in Section 2.1.1. Recall that

(V ◦W )n :=
⊕

k≥0

Vk ⊗

( ⊕

i1+···+ik=n

Wi1 ⊗ · · · ⊗Wik

)
.

It defines a monoidal structure on the category gVec for which the unit object is
X (2.7).

A nonsymmetric operad is a monoid in the monoidal category (gVec, ◦). The
terminology is that in [260, Definition 1.14].

Explicitly, a nonsymmetric operad consists of a graded vector space V with a
linear map

Vk ⊗ Vi1 ⊗ · · · ⊗ Vik → Vi1+···+ik

for any nonnegative integers k, i1, . . . , ik, and a linear map

k→ V1

satisfying associativity and unitality axioms (Definition 1.9).

There is a different operation on graded vector spaces defined as follows:

(V ◦′ W )n :=
∏

k≥0

Vk ⊗

( ⊕

i1+···+ik=n

Wi1 ⊗ · · · ⊗Wik

)

It defines a lax monoidal structure on gVec for which the unit object is still X .
A nonsymmetric cooperad is a comonoid in the lax monoidal category (gVec, ◦′).

There is an explicit description in terms of maps as the one above for operads,
obtained by reversing the arrows.

On positively graded vector spaces, the operations ◦ and ◦′ coincide.

B.7.2. The full Fock functor K and substitution. We relate the substitution
product on species to that on graded vector spaces via the full Fock functor K
(Definition 15.1). We limit our attention to the operation ◦; similar considerations
apply to the operation ◦′.

Let n be a nonnegative integer and (i1, . . . , ik) a weak composition of n (Sec-
tion 10.1.1). Let f : [n]→ [k] be the map that sends the initial segment of size i1 to
1, the next segment of size i2 to 2, and so on. In other words, f is order-preserving
and |f−1(j)| = ij for all j ∈ [k].
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Let q be a species. The order-preserving bijections

[i1]→ [i1], [i2]→ [i1 + 1, i1 + i2], . . . ,

with [ij] mapping to the j-th fiber of f , induce a map

q[i1]⊗ q[i2]⊗ · · · ⊗ q[ik]
∼=
−→ q[i1]⊗ q[i1 + 1, i1 + i2]⊗ · · · ⊗ q[i1 + · · ·+ ik−1 + 1, n].

According to (B.6), we have a canonical inclusion

q[i1]⊗ q[i1 + 1, i1 + i2]⊗ · · · ⊗ q[i1 + · · ·+ ik−1 + 1, n] =
⊗

j∈[k]

q[f−1(j)] →֒ q·k[n].

Let p be another species. The above gives rise to a map

p[k]⊗ q[i1]⊗ · · · ⊗ q[ik]→ p[k]⊗ q·k[n].

From (B.11) we also have a canonical map

p[k]⊗ q·k[n]→ (p ◦ q)[n].

Composing, we obtain a map

p[k]⊗ q[i1]⊗ · · · ⊗ q[ik]→ (p ◦ q)[n].

The vector space in the left-hand side is a direct summand of the degree n compo-
nent of K(p) ◦ K(q), while the other space is the degree n component of K(p ◦ q).

We define a map
ϕp,q : K(p) ◦ K(q)→ K(p ◦ q)

by letting its components be the above maps. We also let

ϕ0 : X → K(X)

be the identity.

Proposition B.37. The functor (K, ϕ, ϕ0) : (Sp, ◦,X) → (gVec, ◦, X) is lax mon-
oidal.

Proposition 3.29 now implies the familiar fact that every operad is a nonsym-
metric operad if one forgets the symmetric group actions:

Corollary B.38. If p is an operad, then K(p) is a nonsymmetric operad.

In Example 6.23 we discussed the 2-monoidal category (gVec, ◦,×), which is
analogous to the 2-monoidal category (Sp, ◦,×) of Section B.6.5. The two construc-
tions can be related via the following result, which extends that of Proposition B.37.

Proposition B.39. The functor K : (Sp, ◦,×) → (gVec, ◦,×) is bilax. In fact, it
is lax-costrong.



APPENDIX C

Pseudomonoids and the Looping Principle

The set of endomorphisms of an object in a category is an ordinary monoid
under composition. This is the first instance of a very general principle in category
theory, the looping principle. We discuss instances of this principle in Section C.4.

We are mainly interested in a 2-dimensional version of the principle which
relates pseudomonoids (in a monoidal 2-category) to bicategories (enriched in the
same monoidal 2-category). We arrive at this in Section C.4.4.

A monoidal 2-category is a 2-category (with objects, arrows, and 2-cells) with a
compatible monoidal structure. These notions are discussed in Section C.1. Pseu-
domonoids are discussed in Section C.2 and enrichment in Section C.3.

This appendix provides context to Section 6.11 on 2-monoidal categories. In
Proposition 6.73 we showed that 2-monoidal categories can be viewed as pseu-
domonoids (in two different monoidal 2-categories). It follows that 2-monoidal
categories arise as loops in certain enriched bicategories. In Section C.5 we illus-
trate this point with some concrete examples. In particular, in Section C.5.1 we
describe the enriched bicategory of bipartite graphs, where loops give rise to the
2-monoidal category of graphs of Example 6.17.

C.1. 2-categories and bicategories

In a category there are objects and arrows between objects. In a bicategory
there are also cells between arrows. A 2-category is a similar but simpler structure.
Bicategories go back to Bénabou [38] and 2-categories to Ehresmann [114, 115].
We review these notions in Sections C.1.1 and C.1.2. More details may be found
in [216], [250, Chapter XII] or [58, Chapter 7]; other references are given below.

Of the 2-dimensional analogues of the notion of monoidal category, we are main-
ly interested in monoidal 2-categories. We sketch the definition in Section C.1.3.
Monoidal 2-categories are a special class of the more general monoidal bicategories.

Monoidal 2-categories provide the context for pseudomonoids, as monoidal cat-
egories do for monoids. Pseudomonoids are the object of Section C.2.

C.1.1. 2-categories. Let I be the one-arrow category (Example 1.3).

Definition C.1. A 2-category C consists of the following data:

• A class of objects A, B, C,. . .
• For each pair of objects A, B, a category

HomC(A,B).

• For each object A, a functor

I
ιA−→ HomC(A,A).

697
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• For each triple of objects A,B,C, a functor

HomC(A,B)×HomC(B,C)
µA,B,C
−−−−−→ HomC(A,C).

The following diagrams must commute, for all objects A,B,C,D.

I×HomC(A,B)
ιA×id

// HomC(A,A) ×HomC(A,B)

µA,A,B

��

HomC(A,B)

∼=

iiSSSSSSSSSSSSSSSSSSSSS

HomC(A,B)×HomC(B,B)

µA,B,B

��

HomC(A,B) × I
id×ιBoo

HomC(A,B)

∼=

55kkkkkkkkkkkkkkkkkkkkk

HomC(A,B) ×HomC(B,C) ×HomC(C,D)
id×µB,C,D

//

µA,B,C×id

��

HomC(A,B)×HomC(B,D)

µA,B,D

��

HomC(A,C) ×HomC(C,D)
µA,C,D

// HomC(A,D)

Let C be a 2-category. The objects of C are also called 0-cells. For each pair of
objects A, B of C, the objects of the category HomC(A,B) are arrows or 1-cells of
C and the arrows of HomC(A,B) are 2-cells of C. The diagram

A

f

''

g

77⇓ α B

shows two objects A and B, two arrows f and g, and one 2-cell α in a 2-category C.
The functors µA,B,C allow us to horizontally compose 1 and 2-cells in C. The

1 and 2-cells in the images of the functors ιA are identities. Composition in the
category HomC(A,B) allows us to vertically compose 2-cells in C. Functoriality of
µ implies that the possible iterations of horizontal and vertical composition in the
following diagram yield the same result.

⇓ α1 ⇓ β1

A

f1

��

f3

??
f2 // B

g1

��

g3

??
g2 // C

⇓ α2 ⇓ β2

For more details, see [58, Section 7.1], [151, Chapter I.2], [199, Section 1.2] or [250,
Section XII.3].

Example C.2. There is a 2-category whose 0-cells, 1-cells and 2-cells are categories,
functors and natural transformations respectively. We denote this 2-category by
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Cat. We are also interested in 2-categories of a similar nature whose 0-cells are
monoidal categories rather than categories, see Tables 6.3 and 6.4.

One can define adjunctions, equivalences, and adjoint equivalences in any 2-
category C: in Definition A.2, one replaces the functors F and G by 1-cells in C

and the natural transformations η and ξ by 2-cells. For more information, see [151,
Chapter I.6]. Setting C := Cat recovers Definition A.2.

Using the other 2-categories mentioned in Example C.2, one obtains notions of
adjunctions, equivalences, and adjoint equivalences for monoidal categories, some
of which are discussed in Section 3.9.2.

In the world of categories one can define functors and natural transformations.
Similarly, in the world of 2-categories one can define functors, transformations
and modifications. The definitions can be found in [58, Section 7.2], [199], [250,
Chapter XII], or [227], along with a discussion of other commonly used terms for
these notions. One can in fact consider various kinds of functors: lax, colax, strong,
strict. For example, for a lax functor F : C → D between 2-categories there must
be given 2-cells in D of the form

F(f)F(g)⇒ F(fg) and idF(A) ⇒ F(idA),

for any composable 1-cells f and g in C and object A in C. These 2-cells are subject
to certain axioms. When they are invertible, the functor is strong; when they are
identities, the functor is strict. Strict functors are also called 2-functors.

Similarly, transformations can be lax, strong, or strict (also called 2-natural).
A lax transformation σ : F ⇒ G between functors F ,G : C → D consists of 1-cells
σA and 2-cells σf as in the diagram below.

F(A)
F(f)

//

σA

��

F(B)

σB

��

σf ⇓

G(A)
G(f)

// G(B)

These are subject to certain axioms. The transformation is strong if the 2-cells σf
are invertible and strict if they are identities. The transformation is invertible if
both σA and σf are invertible.

C.1.2. Bicategories. The notion of bicategory generalizes that of a 2-category.
Bicategories were first considered by Bénabou [38]. We do not provide a complete
definition, but refer to [38], [58, Section 7.7], [151, Chapter I.3], [250, Section XII.6],
[226, Section 1.5] and [227].

As a 2-category, a bicategory consists of 0, 1, and 2-cells. The feature which
distinguishes a bicategory from a 2-category is that horizontal composition is not
required to be strictly associative or unital. Instead, it satisfies a weak form of these
axioms, in which invertible 2-cells intervene. These 2-cells are in turn subject to
further compatiblity conditions, similar to (1.1)–(1.2) in the definition of monoidal
category.

Bicategories are also called weak 2-categories.
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As for 2-categories, functors between bicategories may be lax, strong, or strict.
Strong functors are usually called homomorphisms. Leinster [227] also uses mor-
phism for lax functor.

C.1.3. Monoidal 2-categories and bicategories (sketch). A monoidal bicat-
egory is a tricategory with a single object. A complete definition of tricategories is
given by Gordon, Power and Street [148, Chapter 2]. A monoidal 2-category is a
monoidal bicategory whose underlying bicategory is a 2-category [148, Section 2.6].

An early reference to monoidal 2-categories is [371]. Closely related notions
are considered by Kapranov and Voevodsky [188, Section 4], including that of a
semistrict monoidal 2-category [188, Section 4.3]. The latter notion is the same as
that of a Gray monoid [93]. We mention in passing that [189, Section 4] discusses
braided semistrict monoidal 2-categories and [264, Appendix A] discusses braided
monoidal bicategories; we will not make use of these notions.

We now describe some of the main ingredients in the definition of monoidal
2-categories, following [148, Chapter 2]. Let I be the one-arrow category.

A monoidal 2-category is a 2-category C with strong functors

• : C× C→ C and I→ C,

and constraints (a, l, r,A,U) as specified below. Let I be the object of C which is
the image of the unique object of I under the latter functor. The constraints consist
of invertible transformations (a, l, r) as below

aA,B,C : (A •B) • C → A • (B • C), lA : A→ I •A and rA : A→ A • I,

and invertible modifications (A,U) as below

(A •B) • (C •D)

aA,B,C•D

##G
GGGGGGGGGGGGGGGGG

(
(A •B) • C

)
•D

aA,B,C•idD

��
44

44
44

44
44

44
4

aA•B,C,D

;;wwwwwwwwwwwwwwwwww
⇓ AA,B,C,D A •

(
B • (C •D)

)

(
A • (B • C)

)
•D

aA,B•C,D

// A •
(
(B • C) •D

)

idA•aB,C,D

EE














(C.1)

(A • I) •B
aA,I,B

// A • (I •B)

⇒ UA,B

A •B

rA•idB

]]::::::::::::::::::

idA•lB

AA������������������

(C.2)
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subject to certain axioms which we do not provide. As for monoidal categories, we
refer to • as the monoidal operation and to I as the unit object of C.

We mention that two more modifications are given as part of the definition
in [148, Chapter 2]; however, they are uniquely determined by the rest of the
structure [148, Remark 2.3].

C.2. Pseudomonoids

The notion of pseudomonoid (in a monoidal 2-category) is a 2-dimensional
analogue of the notion of monoid (in a monoidal category). The relevant definitions
are discussed in Section C.2.1 and C.2.2. In Section C.2.4 we discuss the examples
of monoidal 2-categories and pseudomonoids of interest to this monograph.

Pseudomonoids appear at various places in the literature. In the context of
Gray monoids, they are defined by Day and Street [93, Section 3]; in the context
of monoidal 2-categories, by McCrudden [264, Section 2]. We follow these authors
below. Pseudomonoids are called monoidales in [82] and monoidal objects in [245].
They generalize the tensor objects of Joyal and Street [184, Definition 5.1] and are
a special case of the lax monoids of Day and Street (Section D.2).

C.2.1. Definition. Let (C, •, I) be a monoidal 2-category with structure trans-
formations (a, l, r) and modifications (A,U) as in Section C.1.3.

Definition C.3. A pseudomonoid in (C, •, I) is an object A in C, along with 1-cells
µ : A •A→ A and ι : I → A, and invertible 2-cells α, λ, and ρ as below.

(A •A) •A
µ•id

//

a

��

A •A
µ

##H
HHH

HH
HH

⇓ α A

A • (A •A)
id•µ

// A •A

µ

;;vvvvvvvv

(C.3)

I •A
ι•id //

l−1

""E
EE

EE
EE

EE
EE

EE
EE

EE
E A •A

µ

��

A • I
id•ιoo

r−1

||yy
yy

yy
yy

yy
yy

yy
yy

yy

λ ⇓ ⇒ ρ

A

(C.4)
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The following diagrams of 2-cells are required to commute (the operation • has
been omitted).

A

AA

µ

66mmmmmmmmmmmmmmmm
AA

µ

OO

AA

µ

hhRRRRRRRRRRRRRRRR

(AA)A

µ id

GG�������������
a // A(AA)

idµ

CC��������������
(AA)A

µ id

[[77777777777777

(AA)A

idµ

WW0000000000000
//a

(AA)A

µ id

TT********************
a // A(AA)

idµ

JJ��������������������

(AA)(AA)

µ id

4444444

YY4444444 idµ

�������

EE�������

a
TTTTTT

**TTTTTTTTT

(
(AA)A

)
A

(µ id) id

OO

a jjjjjjjjj

44jjjjjj

a
&&LLLLLLLLLL

A
(
A(AA)

)

id(idµ)

OO

(
A(AA)

)
A

a
//

(idµ) id

OO

A
(
(AA)A

)
a

88rrrrrrrrrr

id(µ id)

OO

(C.5)

(AA)A
a //

µ id

��
??

??
??

??
??

A(AA)

idµ

��
??

??
??

??
??

AA
µ

((RRRRRRRRRRR AA
µ

tthhhhhhhhhhhhhhhhh

A

(AI)A
a //

(id ι) id

OO

r−1 id
��

??
??

??
??

??
A(IA)

id l−1

��
??

??
??

??
??

id(id ι)

OO

AA

id ((RRRRRRRRRR

id

OO

AA

idtthhhhhhhhhhhhhhhh

id

OO

AA

µ

OO

(C.6)

In these diagrams, each face is either one of the 2-cells in (C.3)–(C.4), or one of the
structure modifications in (C.1)–(C.2), or the identity.
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C.2.2. Morphisms of pseudomonoids. Let (C, •, I) be a monoidal 2-category
as in Section C.1.3, and let A and B be pseudomonoids in (C, •, I).

Definition C.4. A lax morphism from A to B is a 1-cell f : A → B in C, along
with 2-cells ϕ and ϕ0 as below

A •A
µ

//

f•f

��

A

f

��

ϕ ⇓

B •B µ
// B

A

f

��
88

88
88

88
88

8

ϕ0 ⇑

I

ι

CC�����������
ι

// B

(C.7)

and such that the following diagrams of 2-cells commute.

(AA)A
a //

µ id

��
??

??
??

??
??

(ff)f

��

A(AA)

idµ

��
??

??
??

??
??

f(ff)

��

AA
µ

((QQQQQQQQQQ

ff

��

AA
µ

tthhhhhhhhhhhhhhhh

ff

��

A

f

��

(BB)B
a //

µ id

��
??

??
??

??
??

B(BB)

idµ

��
??

??
??

??
??

BB

µ
((QQQQQQQQQQ BB

µ
tthhhhhhhhhhhhhhhh

B

(C.8)

A
f

// B

AA

µ

OO

ff
// BB

µ

OO

IA

l−1

FF
id ι

>>|||||||||

id f
// IB

l−1

FF
ι id

==|||||||||

A
f

// B

AA

µ

OO

ff
// BB

µ

OO

AI

r−1

FF
id ι

>>|||||||||

f id
// BI

r−1

FF
id ι

==|||||||||

(C.9)

In these diagrams, each face is either one of the 2-cells in (C.3)–(C.4), or one of the
2-cells in (C.7), possibly tensored with an identity 2-cell.

A colax morphism from A to B is a 1-cell A → B in C, along with 2-cells as
in (C.7) but with reverse directions such that the above diagrams (with the 2-cells
drawn appropriately) commute.
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Definition C.5. A morphism between (co)lax morphisms f, f ′ : A→ B is a 2-cell
θ : f ⇒ f ′ in C such that the following diagrams of 2-cells commute.

AA
µ

//

ff

��

f ′f ′

��

ϕ

��

		������ ��
&& ** -- 11

ϕ′

��

A

f

��

�
�

-
f ′

��

θθ
⇒

θ
⇒

BB µ
// B

A

f

**

f ′

44⇓ θ B

I

ι

]];;;;;;;;;;;
ι

AA�����������

(C.10)

The cylinder has two side faces labeled ϕ and ϕ′ and two bases labeled θ and θ • θ,
as shown. The back face of the cone is ϕ0, the front face is ϕ′

0 and the base is θ.

A strong morphism of pseudomonoids is a (co)lax morphism for which the 2-
cells in (C.7) are invertible. Morphisms between strong morphisms are defined as
in Definition C.5.

C.2.3. The lax, colax, and strong constructions. Combining the preced-
ing definitions we obtain the 2-categories l(C) and c(C), whose objects are pseu-
domonoids in C, 1-cells are lax and colax morphisms respectively, and 2-cells are
morphisms between them. Similarly, the 2-category s(C) has pseudomonoids in C

for objects and strong morphisms for 1-cells.
We refer to the passages from a monoidal 2-category C to the 2-categories l(C),

c(C), and s(C) as the lax, colax, and strong constructions respectively.
One may wonder when the 2-categories l(C), c(C), and s(C) are themselves mon-

oidal; in which case these constructions could be iterated. We refrain from address-
ing this question in full generality, which would require a discussion of braidings on
monoidal 2-categories, but we note that for C = Cat, the monoidal structure (Carte-
sian product) is indeed inherited. The results of the iteration of the constructions
are discussed below.

C.2.4. Examples of monoidal 2-categories and their pseudomonoids. We
discuss a few instances of the notions discussed in the preceding sections.

Let C be a monoidal category. We may view it as a monoidal 2-category in
which all 2-cells are identities. In this case, a pseudomonoid (Definition C.3) is a
monoid in the sense of Definition 1.9 and lax and colax morphisms (Definition C.4)
coincide with ordinary morphisms of monoids. Thus,

l(C) = c(C) = Mon(C).

Let us regard the 2-category Cat (Example C.2) as a monoidal 2-category under
Cartesian product. A pseudomonoid in Cat is a monoidal category in the sense of
Definition 1.1. Moreover, applying the lax construction (Section C.2.3) to Cat we
obtain the 2-category l(Cat) whose 0-cells are monoidal categories, 1-cells are lax
functors and 2-cells are morphisms between lax functors. Similarly, c(Cat) is the
2-category whose 1-cells are colax functors between monoidal categories. These
assertions are verified in Proposition 6.72. Equivalently, in terms of the notation
introduced in Section 3.3.3, l(Cat) = lCat and c(Cat) = cCat. (Elsewhere in the
text, we prefer the latter notation to the former.)

The 2-category l(Cat) is again a monoidal 2-category under Cartesian product.
A pseudomonoid in l(Cat) is a 2-monoidal category; moreover, l(l(Cat)) is the 2-
category whose 0-cells are 2-monoidal categories, 1-cells are double lax functors, and
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2-cells are morphisms between double lax functors. These assertions are verified in
Propositions 6.73 and 6.75.

Since the 2-categories l(Cat) and c(Cat) are again monoidal (under Cartesian
product), the lax and colax constructions can in this context be iterated and com-
bined. This leads to higher monoidal categories and higher monoidal functors, as
discussed in more depth in Sections 6.11 and 7.9.

Applying the strong construction to Cat we obtain the 2-category s(Cat) con-
sisting of strong monoidal categories, strong monoidal functors, and morphisms
of such. It is monoidal under Cartesian product. A pseudomonoid in s(Cat) is a
braided monoidal category. Iterating this construction leads to symmetric monoidal
categories, at which point further iterations yield nothing new. This is reviewed in
more detail in Section 7.9.2.

Let C be a 2-category. We proceed to define a new 2-category which we denote
C(l). It is analogous to the category of arrows D(2) which is associated to an
arbitrary category D and which we discussed in Section 3.11.1. An object of C(l) is
a triple (A, f,B) where A and B are objects of C and f : A→ B is a 1-cell in C. A
1-cell from (A, f,B) to (C, g,D) is a triple (h, θ, k) where h and k are 1-cells and θ
is a 2-cell in C as below.

A
f

//

h

��

B

k

��

⇐θ

C g
// D

Finally, given 1-cells (h, θ, k) and (h′, θ′, k′) both from (A, f,B) to (C, g,D), a 2-
cell from (h, θ, k) to (h′, θ′, k′) is a pair (η, κ) of 2-cells in C making the following
cylinder commute.

A
f

//

h

��

h′

��

θ

��

		����
�� ��
&&
.. 22

θ′

��

B

k

��

�
�

.
k′

��

η
⇒

κ
⇒

C g
// D

This means that the 2-cells from (A, kf,D) to (A, gh′, D) obtained respectively by
pasting θ to η and κ to θ′ must coincide.

If the 2-category C is monoidal, then so is C(l). On objects, the tensor product
of C(l) is

(A, f,B) • (A′, f ′, B′) := (A •A′, f • f ′, B •B′).

It is easy to see that, in analogy to Proposition 3.110, a pseudomonoid in C(l) con-
sists of a pair of pseudomonoids A and B in C and a lax morphism of pseudomonoids
f : A→ B (Definition C.4).

If in the above construction we change the definition of 1-cells and 2-cells by
requiring that θ, η and κ map in the opposite direction, we obtain a monoidal 2-
category C(c) in which a pseudomonoid consists of a pair of pseudomonoids A and
B in C and a colax morphism of pseudomonoids f : A→ B.
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Table C.1. Pseudomonoids in various monoidal 2-categories.

Monoidal 2-category Pseudomonoid

Cat monoidal category

l(Cat) 2-monoidal category

c(Cat) 2-monoidal category

s(Cat) braided monoidal category

s(s(Cat)) symmetric monoidal category

Cat(l) lax monoidal functor

Cat(c) colax monoidal functor

In particular, pseudomonoids in Cat(l) and Cat(c) are lax and colax monoidal
functors, respectively (Definitions 3.1 and 3.2).

Table C.1 summarizes some of the examples discussed in this section.

C.3. Enrichment

Enriched categories originated in the work of Eilenberg and Kelly [117]. A
detailed study can be found in [196]. A more general theory of category enrichment
is given in [225] and [226, Sections 1.3 and 6.8].

We review the definition of enriched categories (by a monoidal category) in
Section C.3.1. A 2-dimensional analogue of this notion involving enrichment by a
monoidal 2-category is outlined in Section C.3.2.

C.3.1. Enriched categories. Let (V, •, I) be a monoidal category. We employ
the notation of Definition 1.1.

Definition C.6. A category enriched by (V, •, I), or more simply a V-category,
denoted C, consists of the following data:

• A class of objects A, B, C,. . .
• For each pair of objects A, B, an object

HomC(A,B)

in the category V.
• For each object A, an arrow

I
ιA−→ HomC(A,A)

in V.
• For each triple of objects A,B,C, an arrow

HomC(A,B) •HomC(B,C)
µA,B,C
−−−−−→ HomC(A,C)

in V.
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The following diagrams must commute, for all objects A,B,C,D.

I •HomC(A,B)
ιA•id

// HomC(A,A) •HomC(A,B)

µA,A,B

��

HomC(A,B)

λ

∼=

iiSSSSSSSSSSSSSSSSSSSS

(C.11)

HomC(A,B) •HomC(B,B)

µA,B,B

��

HomC(A,B) • I
id•ιBoo

HomC(A,B)

ρ

∼=

55kkkkkkkkkkkkkkkkkkkk

(C.12)

HomC(A,B) •HomC(B,C) •HomC(C,D)
id•µB,C,D

//

µA,B,C•id

��

HomC(A,B) •HomC(B,D)

µA,B,D

��

HomC(A,C) •HomC(C,D) µA,C,D
// HomC(A,D)

(C.13)

Example C.7. Consider the monoidal category Set of sets under Cartesian product
(Example 1.3). A category enriched by Set is just an ordinary category.

A category enriched by (Vec,⊗, k) is precisely a k-linear category (Defini-
tion 1.6).

Example C.8. Let Cat be the category whose objects are categories and whose
morphisms are functors. It is a monoidal category under Cartesian product ×; the
unit object is the one-arrow category I (Example 1.3). Comparing Definitions C.6
and C.1 we see that a 2-category is precisely a category enriched by (Cat,×, I).

Remark C.9. In general, a V-category is not necessarily an ordinary category.
On the other hand, if there is given a lax monoidal functor F : V → Set, then any
V-category C gives rise to an ordinary category F(C) with the same objects and
with arrows

HomF(C)(A,B) := F
(
HomC(A,B)

)
.

More generally, if F : V→ V′ is a lax monoidal functor and C is a V-category, then
F(C) is a V′-category. This is a straightforward generalization of Proposition 3.29.

Now suppose that C is a comonoid in V. Then the functor

HomV(C,−) : V→ Set

is lax monoidal (in view of Example 3.17 and Proposition 3.25). In particular, we
may choose C = I, and use the functor HomV(I,−) to turn any V-category into an
ordinary category.

Example C.10. The forgetful functor F : Vec→ Set is lax monoidal via the canon-
ical maps

V ×W → V ⊗W, (v, w) 7→ v ⊗ w.

If C is a k-linear category, then F(C) is the underlying ordinary category.
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Example C.11. Let sCat denote the full subcategory of Cat consisting of small
categories (categories for which the class of objects is a set). It is a monoidal
subcategory under Cartesian product. An sCat-category is a 2-category in which
for any two objects A and B, the 1-cells from A to B form a set.

Let F : sCat → Set be the functor which sends a small category to its set of
objects. It is a strong monoidal functor with respect to Cartesian product. If C is
a 2-category as in the preceding paragraph, then F(C) is the underlying category
(obtained from C by forgetting the 2-cells).

C.3.2. Enriched bicategories. Let (V, •, I) be a monoidal 2-category, as in Sec-
tion C.1.3. We may consider a notion of enrichment by such categories V, as
outlined below. We do not know of a reference for a complete definition.

A bicategory enriched by (V, •, I), or more simply a V-bicategory, denoted C,
consists of a class of objects A, B, C,. . . , an object

HomC(A,B)

in the category V for each pair of objects A and B in C, an arrow

I
ιA−→ HomC(A,A)

in V for each object A in C, an arrow

HomC(A,B) •HomC(B,C)
µA,B,C
−−−−−→ HomC(A,C)

in V for each triple of objects A,B,C in C. Instead of the commutativity of dia-
grams (C.11)–(C.13), the existence of invertible 2-cells in V filling in those diagrams
is required. These 2-cells are in turn subject to further compatiblity conditions
(similar to those alluded to in Section C.1.2).

Example C.12. Let V := Cat viewed as a monoidal 2-category under Cartesian
product (combining the structures in Examples C.2 and C.8). Then a V-bicategory
is the same as an ordinary bicategory.

We are mainly interested in bicategories enriched by lCat or cCat; see Sec-
tion C.5 for concrete examples. As for enriched categories, an enriched bicategory
need not be an ordinary bicategory.

We mention that one may envision a more general notion of enrichment by
monoidal bicategories (rather than monoidal 2-categories). We do not need this
notion for our purposes.

C.4. The looping principle

The looping principle can be loosely stated as follows. Given a certain notion
of “higher category” involving cells of various dimensions, such as the notions of
bicategory or tricategory, define a corresponding notion of “higher monoid” as a
higher category with only one 0-cell. Now suppose an arbitrary higher category C

is given and a 0-cell A in C is chosen. Consider “loops” based at A, denoted ΩAC,
by keeping only the higher cells incident to A and no other 0-cell. The principle
then claims simply that the higher category structure on C induces a higher monoid
structure on ΩAC:

higher category C
loops
7−→ higher monoid ΩAC.

This idea has been considered by Kapranov and Voevodsky [189, Section 2.10]; see
also Baez and Dolan [28, Section V].
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In this section we make this principle precise in a number of special cases. We
are mainly interested in two instances in which 2-monoidal categories arise as higher
monoids.

C.4.1. Loops in topological spaces. We start with a topological version of the
looping principle, for motivation purposes only.

Let X be a topological space and x a point in X . A loop based at x is a
continuous map

γ : [0, 1]→ X such that γ(0) = γ(1) = x,

where [0, 1] denotes the unit interval. Let

ΩxX

denote the set of loops based at x. The set ΩxX is given the compact-open topology.
In order to concatenate two loops based at x, one must make a choice of

reparametrization. This leads to an operation

ΩxX × ΩxX → ΩxX

which is associative and unital up to homotopy. In this manner, ΩxX becomes an
H-space. For more information, see [160, Sections 4.3 and 4.J].

C.4.2. Loops in ordinary categories. Let C be a category and A an object of
C. The endomorphism set

ΩAC := EndC(A)

is an ordinary monoid under composition of arrows in C. Elements of ΩAC are
sometimes called loops based at A.

The passage from the category C to the monoid ΩAC is a first instance of the
looping principle.

C.4.3. Loops in enriched categories. Let V be a monoidal category and C a
V-category, as in Section C.3.1. As before, we set

ΩAC := EndC(A).

This is an object of V and it follows from Definition C.6 that (ΩAC, µA,A, ιA) is
a monoid in V. Indeed, axioms (C.11)–(C.13) specialize to the axioms in Defini-
tion 1.9.

If V = Set, this recovers the looping principle for ordinary categories mentioned
in Section C.4.2. If V = Cat viewed as a monoidal category as in Example C.8,
then C is a 2-category and ΩAC is a strict monoidal category.

C.4.4. Loops in enriched bicategories. Let V be a monoidal 2-category and C

a V-bicategory, as in Section C.3.2. Let

ΩAC := EndC(A).

This is an object of V. The looping principle states in this context that ΩAC is in
a natural way a pseudomonoid in V.

If V = Cat viewed as a monoidal 2-category as in Example C.12, then C is a
bicategory and ΩAC is a monoidal category (not necessarily strict).

If V = lCat or cCat, then ΩAC is a 2-monoidal category (since according to
Section C.2.4, a pseudomonoid in any of these two monoidal 2-categories is precisely
a 2-monoidal category). We discuss concrete examples in Section C.5.
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C.5. Bipartite graphs, spans, and bimodules

We discuss some examples of V-enriched bicategories (Section C.3.2) where
the monoidal 2-category V is either lCat or cCat (consisting of monoidal categories
and lax or colax monoidal functors, respectively). The looping principle then yields
pseudomonoids in V, which are 2-monoidal categories (Table C.1). In particular, we
discuss a bicategory of bipartite graphs where looping gives rise to the 2-monoidal
category of directed graphs of Example 6.17.

The consideration of such enriched structures and their connection to 2-mon-
oidal categories was suggested to us by Steve Chase.

C.5.1. The enriched bicategory of bipartite graphs. Let X and Y be two
sets. A bipartite graph with vertex set (Y,X) is a triple (A, s, t) where

A
t

~~~~
~~

~~
~

s

��
@@

@@
@@

@

X Y

are two maps. The elements of A may be visualized as arrows directed from Y to
X . There are as many arrows with source y and target x as the cardinality of the
set s−1(y) ∩ t−1(x).

A morphism (A, s, t) → (B, s, t) of bipartite graphs is a map f : A → B such
that both triangles below commute.

A
t

~~~~
~~

~~
~

s

  
@@

@@
@@

@

f

��

X Y

B

t

``@@@@@@@@ s

>>~~~~~~~

This defines the category of bipartite graphs with vertex set (Y,X).
Given two bipartite graphs (A, s, t) and (B, s, t) with vertex set (Y,X), define

a new one (A ⋆ B, s, t) by

A ⋆ B := {(a, b) ∈ A×B : s(a) = s(b) and t(a) = t(b)},

s(a, b) := s(a) = s(b) and t(a, b) := t(a) = t(b).

This operation turns the category of bipartite graphs with vertex set (Y,X) into
a monoidal category. The unit object is the bipartite graph (Y × X, p1, p2) with
p1(y, x) = y and p2(y, x) = x.

Recall that cCat denotes the monoidal 2-category whose 0-cells are monoidal
categories, 1-cells are colax monoidal functors, and 2-cells are morphisms of colax
monoidal functors. The monoidal structure is Cartesian product of categories.

We proceed to define a cCat-bicategory (Section C.3.2) of all bipartite graphs,
denoted C. The objects are sets X,Y, Z, . . . . For each pair of objects X , Y , we let
HomC(X,Y ) be the monoidal category of bipartite graphs with vertex set (Y,X)
defined above. The functor

ιX : I→ HomC(X,X)
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sends the unique object of I to the discrete graph (X, id, id), and the unique arrow
to the identity. The functor

µX,Y,Z : HomC(X,Y )×HomC(Y, Z)→ HomC(X,Z)

sends a pair of bipartite graphs (A, s, t) and (B, s, t) to (A ⋄B, s, t) where

A ⋄B := {(a, b) ∈ A×B : s(a) = t(b)},

s(a, b) := s(b) and t(a, b) := t(a).

Schematically,

A ⋄B
p1

||xxxxxxxx
p2

""F
FFFFFFF

A
t

~~~~
~~

~~
~

s

""F
FF

FF
FF

FF B
t

||xx
xx

xx
xx

x
s

��
@@

@@
@@

@

X Y Z

We need to turn ιX and µX,Y,Z into colax monoidal functors. The colax structure
of ιX boils down to the map

X → X ×X, x 7→ (x, x),

which is a morphism of bipartite graphs (X, id, id) → (X × X, p1, p2). The colax
structure of µX,Y,Z boils down to

(A1 ⋆ A2) ⋄ (B1 ⋆ B2)→ (A1 ⋄B1) ⋆ (A2 ⋄B2) (a1, a2, b1, b2) 7→ (a1, b1, a2, b2),

where A1 and A2 are bipartite graphs with vertex set (Y,X) and B1 and B2 are
bipartite graphs with vertex set (Z, Y ).

To complete the definition of the enriched bicategory C, we need to specify
the 2-cells controlling the associativity and unitality of ιX and µX,Y,Z . These are
inherited from corresponding properties of the Cartesian product of sets.

In this manner, C is a bicategory enriched by the monoidal 2-category cCat.

Note that an endomorphism of an object X in C is a directed graph with vertex
set X . According to the looping principle (Section C.4.4), ΩXC = EndC(X) is a
2-monoidal category for any set X . This is the 2-monoidal category of directed
graphs of Example 6.17.

C.5.2. The enriched bicategory of spans. Let D be a category with finite pull-
backs (finite products and equalizers). There is a straightforward generalization of
the construction of Section C.5.1 in which sets are replaced by the objects of D.
Briefly, there is a cCat-bicategory whose objects are the objects of D, the objects
of the monoidal category HomC(X,Y ) are spans in D, that is triples (A, s, t) where

A
t

~~~~
~~

~~
~

s

��
@@

@@
@@

@

X Y

is a diagram in D; the tensor product of two such objects (A, s, t) and (B, s, t) is
the equalizer of the maps

A
(s,t)
−−−→ X × Y and B

(s,t)
−−−→ X × Y,
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where × denotes the product in D; horizontal composition of (A, s, t) from X to Y
and (B, s, t) from Y to Z is the pull-back of the diagram below.

A

s
��

@@
@@

@@
@ B

t
~~~~

~~
~~

~

Y

This bicategory of spans has often been considered in the literature; see for
instance [151, Section I.3.4] and [250, Section XII.7]. We do not know if the finer
cCat-bicategory structure has been pointed out.

C.5.3. The enriched bicategory of bimodules. Recall that lCat denotes the
monoidal 2-category whose 0-cells are monoidal categories, 1-cells are lax mon-
oidal functors, and 2-cells are morphisms of lax monoidal functors. The monoidal
structure is Cartesian product of categories.

We now explain how the 2-monoidal category of K-bimodules of Example 6.18
arises from the looping principle. For this, we need to construct an lCat-bicategory
C of bimodules over commutative algebras. This is done as follows.

We fix a ground field k. The objects are commutative k-algebras F,G,K, . . . .
The monoidal category HomC(F,G) consists of F -G-bimodules and their mor-
phisms, the tensor product being

M ⋄N := M ⊗F⊗G N.

Here, we make use of commutativity to view M as a right F ⊗ G-module and N
as a left F ⊗ G-module. Horizontal composition of an F -G-bimodule M and a
G-K-bimodule N is

M ⋆N := M ⊗G N.

The lax structure of horizontal composition ⋆ with respect to the monoidal structure
⋄ is defined as in (6.21).

It is clear that looping the lCat-bicategory C at the object K yields the 2-
monoidal category of K-bimodules of Example 6.18.



APPENDIX D

Monoids and the Simplicial Category

Mac Lane’s simplicial category M∆ is universal for monoids: it is a monoidal
category, it contains a distinguished monoid object, and given a monoid in another
monoidal category C, there is a strong monoidal functor M∆ → C sending one mon-
oid to the other; moreover, this functor is unique up to equivalence. In Sections D.1
and D.2, we review the definition of M∆ and the above property. Relaxing the con-
ditions on the functor leads to generalizations of the notion of monoid. Two such
notions, lax monoids and homotopy monoids, are outlined in the latter section,
following Day and Street, and Leinster, respectively.

In Section D.3 we discuss lax monoidal categories (a special case of lax mon-
oids). Lax monoidal categories play only a minor role in this monograph; they
appear briefly in Section B.4.4 and tangentially in Remark 6.45. Nevertheless, the
notion is discussed here in some detail.

The set of maps from a comonoid to a monoid forms an ordinary monoid
under convolution. In Section D.4, we study the analogous structure on the natural
transformations from a colax monoidal functor to a lax monoidal functor; we find
it to be that of an augmented simplicial set with a lax monoidal structure (as a
functor on Mac Lane’s simplicial category). This is an example of a homotopy
monoid.

D.1. Mac Lane’s simplicial category

The simplicial category of Mac Lane [250, Section VII.5], also called the alge-
braist’s simplicial category, has for objects the nonnegative integers 0, 1, 2, . . . . The
morphisms from n to m are the order-preserving functions

g : [n]→ [m].

(Mac Lane uses {0, 1, . . . , n − 1} instead of [n] = {1, 2, . . . , n}, but this makes no
difference.) Morphisms are composed as ordinary functions. We let M∆ denote this
category.

Remark D.1. Recall the simplicial category ∆ of Section 5.1.1. This is sometimes
called the topologist’s simplicial category. It differs from the algebraist’s simplicial
category M∆ defined above. There is a functor

∆→ M∆, n 7→ n+ 1

that embeds ∆ as a full subcategory of M∆. However, this connection is not relevant
to our purposes.

Warning. Mac Lane uses ∆ for M∆ [250, Section VII], while Leinster uses D [226,
Example 1.2.2]. We reserve ∆ for the topologist’s simplicial category.
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Given nonnegative integers m and n, let us write

m • n := m+ n.

The concatenation of two functions f : m→ m′ and g : n→ n′ is

f • g : m • n→ m′ • n′, (f • g)(i) :=

{
f(i) if 1 ≤ i ≤ m,

g(i−m) +m′ if m+ 1 ≤ i ≤ m+ n.

Concatenation • and composition ◦ are related as follows: for each double pair of
composable order-preserving functions

[n1]
g1
−→ [m1]

f1
−→ [l1] and [n2]

g2
−→ [m2]

f2
−→ [l2],

we have

(D.1) (f1 • f2) ◦ (g1 • g2) = (f1 ◦ g1) • (f2 ◦ g2).

Thus, addition of numbers and concatenation of functions define a functor

M∆ ×M∆
•
−→ M∆.

This turns M∆ into a strict monoidal category with tensor product • and unit object
the number 0.

A weak composition of n is a sequence α = (j1, . . . , jm) of nonnegative integers
such that

j1 + · · ·+ jm = n.

In this case, we say that α has m parts and write α � n.
Given an order-preserving function g : [n] → [m], the sequence of fiber cardi-

nalities

(D.2)
(
g−1(1), . . . , g−1(m)

)

is a weak composition of n with m parts. The weak composition determines the
map, since each fiber must precede the next. Therefore, we may identify the set of
morphisms in M∆ from n to m with

{α � n | α has m parts}.

In this notation, tensor product of morphisms is simply concatenation of weak
compositions,

(m
(i1,...,im′ )
−−−−−−−→ m′) • (n

(j1,...,j′n)
−−−−−−→ n′) = m+ n

(i1,...,im′ ,j1,...,jn′ )
−−−−−−−−−−−−→ m′ + n′

and composition of morphisms is as follows:

m
(i1,...,il)

��
??

??
??

??

n

(j1,...,jm)
>>~~~~~~~~

(k1,...,kl)
//_______ l

where given (i1, . . . , il) � m and (j1, . . . , jm) � n, we define

(D.3)

k1 := j1 + · · ·+ ji1 ,

k2 := ji1+1 + · · ·+ ji2 ,

...

kl := ji1+···+il−1+1 + · · ·+ ji1+···+il−1+il .
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Note that

k1 + · · ·+ kl = j1 + · · ·+ jm = n

so (k1, . . . , kl) is a morphism from n to l. For example, composing (2, 1) with
(1, 2, 1) yields the morphism (3, 1): 4→ 2.

For each object n ≥ 1, the identity of n is the composition (1, 1, . . . , 1) with n
parts equal to 1. The identity of the object 0 is the unique weak composition with
no parts. The object 0 is initial: for any object n there is a unique map 0 → n,
namely,

0
(0,...,0)
−−−−−→ n.

A generating set of morphisms is shown below [250, Proposition VII.5.2].

0
(0)

// 1
(1,0)

//

(0,1)
// 2

(1,1,0)
//

(1,0,1) //

(0,1,1)
//
3 // 4

0 1 2
(2)

oo 3
(2,1)

oo

(1,2)
oo

4

(2,1,1)
oo

(1,2,1)oo

(1,1,2)
oo

oo

The morphisms in the first row are called face maps and those in the second row
are called degeneracies.

An augmented simplicial set is a contravariant functor

M∆ → Set.

This terminology extends that of a simplicial set which we recall is a contravariant
functor ∆→ Set.

D.2. Monoids, lax monoids, and homotopy monoids

In this section, we review the universal property of Mac Lane’s simplicial cat-
egory and two related generalizations.

D.2.1. Monoids. The object 0 is initial in the category M∆, and the object 1 is
terminal. Therefore, the maps

2
(2)
−−→ 1 and 0

(0)
−−→ 1

define a monoid structure on 1.
Let (A, µ, ι) be a monoid in a monoidal category (C, •, I).
We define a functor F : M∆ → C as follows. On objects,

F(0) := I and for n ≥ 1, F(n) := A•(n),

where

A•(n) := A • · · · •A︸ ︷︷ ︸
n

is the unbracketed tensor product as in Section 1.4. Given an order-preserving map
g : [n] → [m], let (n1, . . . , nm) be the sequence of fiber cardinalities (D.2). We
define

F(g) : F(n)→ F(m)
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as the following composite:

A•(n) ∼= A•(n1) • · · · •A•(nm) µ(n1)•···•µ(nm)

−−−−−−−−−−→ A•(m).

The first map is the canonical isomorphism between unbracketed tensor products;
the second map is built out of the iterated products of A (which are well-defined
by associativity and unitality). There are canonical isomorphisms

F(m • n) ∼= F(m) • F(n)

and the functor F is strong monoidal.
Conversely, given a strong monoidal functor F : M∆ → C, the object A := F(1)

is a monoid in C (as in Section 3.4.3).
These constructions define an equivalence between the category of monoids in

C and the category of strong monoidal functors from Mac Lane’s simplicial category
to C.

Proposition D.2 ([250, Propositon VII.5.1]). Monoids in C and strong monoidal
functors M∆ → C are equivalent notions.

This result is the starting point for various generalizations of the notion of
monoid, as we briefly review in the rest of the section.

D.2.2. Lax monoids. Let C be a monoidal 2-category (Section C.1.3). Day and
Street [94, Section 2] define a lax monoid in C as a strict monoidal lax functor
F : M∆ → C. Here “lax” refers to the fact that F need not preserve compositions
and identities on the nose. Instead, there are 2-cells in C

F(f) ◦ F(g)⇒ F(f ◦ g) and idF(n) ⇒ Fidn

for each pair of composable order-preserving functions [n]
g
−→ [m]

f
−→ [l] and for each

nonnegative integer n, respectively. These are subject to various axioms. We make
this explicit in the case when C = Cat in Section D.3.1.

One may also consider strong monoids : these are strict monoidal strong func-
tors F : M∆ → C, that is, lax monoids for which the 2-cells above are invertible. It
may be shown [94, Section 2, Example 2] that strong monoids and pseudomonoids
(Section C.2) are equivalent notions. This is a 2-dimensional analogue of Proposi-
tion D.2.

D.2.3. Homotopy monoids. In a different direction, Leinster has proposed a
definition of homotopy monoids in an arbitrary monoidal category C [229, Sec-
tion 2.2]. A homotopy monoid in C is a colax monoidal functor F : M∆ → C. The
colax structure maps

F(m • n)→ F(m) • F(n) and F(0)→ I

must come from a specified class of arrows in C. Different choices for this class lead
to different classes of homotopy monoids. Two extreme cases are on the one hand
the class of all isomorphisms in C, and on the other, the class of all morphisms
in C [229, Section 2.1, Examples a,b]. In the former case, homotopy monoids and
monoids are equivalent notions [229, Theorem 1.6.1]. We give an example of the
latter kind of homotopy monoid in Section D.4. Leinster’s ideas are summarized
in [228]. In [229], he in fact develops the homotopy version of the p-monoids of
Section 4.2.2, where p is an operad.
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D.3. Lax monoidal categories

There is a more general notion than that of monoidal category, in which the
invertibility of the associativity and unit constraints is not required. To compensate
for this, one assumes the existence of n-ary tensor products for n ≥ 0 and transfor-
mations between the various bracketed tensor products of a string of objects. We
discuss this notion next.

D.3.1. Lax monoidal categories as lax monoids. View Cat as a monoidal
2-category under Cartesian product. Day and Street [94, Section 2] define a lax
monoidal category as a lax monoid in Cat, as in Section D.2.2. Below we provide an
explicit translation of this definition. We make use of the notion of concatenation
of order-preserving functions, as discussed in Section D.1.

Given a category C and n ∈ N, let

Cn :=





C× · · · × C︸ ︷︷ ︸
n

(Cartesian product), if n > 0,

I the one-arrow category, if n = 0.

Definition D.3. A category C is lax monoidal if there is given a family of functors

Mg : Cn → Cm,

one for each order-preserving function g : [n] → [m]; a family of natural transfor-
mations αf,g :Mf ◦Mg ⇒Mf◦g,

Cm Mf

��
αf,g

��Cn

Mg
11

Mf◦g

55 Cl

one for each pair of composable order-preserving functions [n]
g
−→ [m]

f
−→ [l]; and a

sequence of natural transformations ιn : idCn ⇒Midn ,

ιn

��
Cn

idCn

$$

Midn

99 C
n

one for each n ∈ N. These are subject to the following conditions.

Associativity. For each triple of composable order-preserving functions

[n]
g
−→ [m]

f
−→ [l]

e
−→ [k]

the following diagram commutes.

Me ◦Mf ◦Mg
αe,f◦id

//

id◦αf,g

��

Me◦f ◦Mg

αe◦f,g

��

Me ◦Mf◦g αe,f◦g
//Me◦f◦g
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Unitality. For each order-preserving function [n]
g
−→ [m], the following diagrams

commute.

Midm ◦Mg
αidm,g //Mg

idCm ◦Mg

ηm◦id

OO ppppppppppp

ppppppppppp

Mg ◦Midn

αg,idn //Mg

Mg ◦ idCn

id◦ηn

OO ppppppppppp

ppppppppppp

Multiplicativity. For each pair of functions

[n1]
g1
−→ [m1] and [n2]

g2
−→ [m2],

the functors Mg1•g2 and Mg1 × Mg2 are equal. In other words, the following
diagram commutes.

Cn1 × Cn2
Mg1×Mg2 // Cm1 × Cm2

Cn1+n2

Mg1•g2

// Cm1+m2

For each double pair of composable order-preserving functions

[n1]
g1
−→ [m1]

f1
−→ [l1] and [n2]

g2
−→ [m2]

f2
−→ [l2],

the transformations αf1•f2,g1•g2 and αf1,g1 × αf2,g2 are equal. In other words, the
following diagram commutes. (We make use of (D.1).)

Mf1•f2 ◦Mg1•g2

αf1•f2,g1•g2 //M(f1•f2)◦(g1•g2)

(Mf1 ×Mf2) ◦ (Mg1 ×Mg2) M(f1◦g1)•(f2◦g2)

(Mf1 ◦Mg1)× (Mf2 ◦Mg2) αf1,g1×αf2,g2

//Mf1◦g1 ×Mf2◦g2

For each pair of nonnegative integers n1 and n2, the transformations ηn1+n2 and
ηn1 × ηn2 are equal. In other words, the following diagram commutes.

idCn1+n2

ηn1+n2 //Midn1•n2

idCn1 × idCn2
ηn1×ηn2

//Midn1
×Midn2

This completes the definition of lax monoidal category.

Definition D.4. A lax monoidal category is normal if the transformations ηn are
identities. A strong monoidal category is a lax monoidal category for which the
transformations αf,g and ηn are invertible.

In Leinster’s book, strong monoidal categories are called unbiased monoidal
categories [226, Definition 3.1.1].
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Remark D.5. The multiplicativity conditions in Definition D.3 imply that a cer-
tain part of the structure determines the rest, as we now explain. For each n ∈ N,
let

pn : [n]→ [1]

be the unique such map. Write:

Mn :=Mpn .

Given an order-preserving map g : [n] → [m], let (n1, . . . , nm) be the sequence of
fiber cardinalities (D.2). We have

g = pn1 • · · · • pnm .

Therefore,

Mg =Mn1 × · · · ×Mnm .

Write also

αg := αpm,g.

Since pm ◦ g = pn, we have αg : Mm ◦Mg ⇒Mn.

C× · · · × C = Cm

Mm

��αg

��
Cn1 × · · · × Cn1 = Cn

Mn1×···×Mnm

11

Cl66

Mn

Given an order-preserving map f : [m] → [l], let (m1, . . . ,ml) be the sequence of
fiber cardinalities (D.2). Then there are nonnegative integers (n1, . . . , nl) and order-
preserving functions gi : [ni]→ [mi] such that the following diagram commutes.

n
g

// m

n1 • · · · • nl g1•···•gl
// m1 • · · · •ml

Therefore,

αf,g = αg1 × · · · × αgl .

Finally, write η := η1 : idC ⇒M1. Then

ηn =

n︷ ︸︸ ︷
η × · · · × η .

This allows for a reformulation of the notion of lax monoidal category in terms
of less structure; namely, the functorsMn, the transformations αg and the map η.
The corresponding list of axioms is given explicitly in [94, Section 2, Example 3] or
[226, Section 3.1].
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D.3.2. Monoidal categories as strong monoidal categories. Let C be a mon-
oidal category with tensor product •, associativity constraint α, and unit object I,
as in Definition 1.1. We proceed to turn it into a strong monoidal category, and for
this we take advantage of Remark D.5.

First of all, we define the functors Mn : Cn → C by

Mn(A1, . . . , An) := A1 • · · · •An.

This is the unbracketed tensor product of Section 1.4.
Second, with the notation as in Remark D.5, we have

(Mm ◦Mg)(A1, . . . , An) =

(A1 • · · · •An1) • (An1+1 • · · · •An1+n2) • · · · • (An1+···+nm−1+1 • · · · •An1+···+nm).

We let the transformation αg : Mm ◦ Mg ⇒ Mn consist of the canonical iso-
morphisms between this particular bracketed tensor product and the unbracketed
product A1 • · · · •An. This is constructed from the associativity constraint α as in
Section 1.4. Notice this makes use of coherence for monoidal categories.

Finally, note that in this situation M1 = idC. We let ι be the identity trans-
formation of this functor.

With this structure, C is a normal strong monoidal category.
Conversely, from a strong monoidal category (not necessarily normal), one may

derive a monoidal category in the sense of Definition 1.1.
When the two constructions are iterated one returns to a category that is

equivalent to the original one. One thus has the following result.

Proposition D.6 ([226, Corollary 3.2.5]). Strong monoidal categories (as in Def-
inition D.4) and monoidal categories (as in Definition 1.1) are equivalent notions.

D.4. The convolution homotopy monoid

We present an analogue of the convolution monoid Hom(C,A) associated to a
comonoid C and a monoid A (Definition 1.13). Given a colax monoidal functor F
and a lax monoidal functor G, we construct an augmented simplicial set NF ,G (a
contravariant functor on Mac Lane’s simplicial category) in terms of natural trans-
formations. This is the analogue of the set Hom(C,A). The role of the convolution
product is played by convolution of natural transformations, which turns NF ,G into
a lax monoidal functor (Theorem D.9). As an application, we explain how the con-
volution identities of Section 3.7.5 can be deduced from this theorem. It turns out
that NF ,G is an example of a homotopy monoid; we explain this in Remark D.10.

D.4.1. The simplicial set of natural transformations. Let (D, •) be an arbi-
trary category and F : C → D a functor. Let (I, •) be the one-arrow category and
let ∗ denote its unique object.

We let Fn : Cn → D be the functor given by

(D.4) Fn(A1, . . . , An) := F(A1 • · · · •An).

In particular, F1 = F , F2 is the functor introduced in (3.1), and F0 is the functor
introduced in (3.2), that is,

F0 : I→ D is F0(∗) = F(I),

the image of the unit object of C.
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Suppose that G : C→ D is another functor and θ : F ⇒ G is a natural transfor-
mation. We let θ(n) : Fn ⇒ Gn be the natural transformation

(D.5) θ
(n)
A1,...,An

: F(A1 • · · · •An)
θA1•···•An
−−−−−−−→ G(A1 • · · · •An).

This generalizes the construction in (3.36). Observe that θ(1) = θ.
Using these ideas, we proceed to define an augmented simplicial set of natural

transformations. It is convenient to think of morphisms in M∆ in terms of weak
compositions, as explained in Section D.1.

Definition D.7. Define a functor

NF ,G : M
op
∆ → Set

as follows. On objects, we let NF ,G(n) be the set of natural transformations from
Fn to Gn. Given a morphism

α = (j1, . . . , jm) : n→ m,

we define a map

NF ,G(m)→ NF ,G(n), θ 7→ θα,

by

θαA1,...,An := θAα1 ,...,Aαm ,

where

Aα1 := A1 • · · · •Aj1 ,

Aα2 := Aj1+1 • · · · •Aj1+j2 ,

...

Aαm := Aj1+···+jm−1+1 • · · · •Aj1+···+jm .

Note that

Aα1 • · · · •A
α
m

∼=
−−→ A1 • · · · •An,

so θα is a natural transformation Fn ⇒ Gn.

For weak compositions with a single part, namely α = (n), note that θα agrees
with the construction in (D.5). Empty tensor products are taken to be equal to the
unit object I of C. These arise when a part of α is 0. For instance,

θ(0,...,0) : F0(∗) = F(I)
θI,...,I
−−−−→ G(I) = G0(∗).

Proposition D.8. Let F and G be functors from a monoidal category C to an
arbitrary category D. The above defines a functor

NF ,G : M
op
∆ → Set.

Thus, NF ,G is an augmented simplicial set.

Proof. If indices i, j, and k are related as in (D.3), then grouping n variables
into intervals of lengths jr and then grouping the resultingm variables into intervals
of lengths is, yields the same result as directly grouping the n variables into intervals
of lengths kt. Thus, NF ,G preserves compositions. Further,

θ(1,1,...,1) = θ,

thus NF ,G preserves identities. �
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D.4.2. The lax monoidal functor of natural transformations. Now suppose
that (F , ψ) is a colax monoidal functor and (G, ϕ) is a lax monoidal functor, both
from a monoidal category (C, •) to a monoidal category (D, •). We claim that in
this case NF ,G can be turned into a lax monoidal functor

(Mop
∆ , •)→ (Set,×),

where (Set,×) is the monoidal category of sets under Cartesian product (Exam-
ple 1.3).

Given natural transformations

σ : Fm ⇒ Gm and τ : Fn ⇒ Gn,

define their convolution

σ ∗ τ : Fm+n ⇒ Gm+n

by

F(A1• · · · •Am•B1• · · · •Bn)
(σ∗τ)A1,...,Am,B1,...,Bn //_________

ψA1•···•Am,B1•···•Bn

��

G(A1• · · · •Am•B1• · · · •Bn)

F(A1• · · · •Am)•F(B1• · · · •Bn)σA1,...,Am•τB1,...,Bn

// G(A1• · · · •Am)•G(B1• · · · •Bn).

ϕA1•···•Am,B1•···•Bn

OO

The structure map

(D.6) NF ,G(m)× NF ,G(n)→ NF ,G(m+ n)

is defined by (σ, τ) 7→ σ ∗ τ . The structure map

{∅} → NF ,G(0)

sends ∅ to the map

F0(∗) = F(I)
ψ0
−−→ I

ϕ0
−→ G(I) = G0(∗).

Theorem D.9. Let (F , ψ) be a colax monoidal functor and (G, ϕ) a lax monoidal
functor, both from a monoidal category C to a monoidal category D. The above
turns

NF ,G : (Mop
∆ , •)→ (Set,×).

into a lax monoidal functor.

Proof. The associativity and unitality of (D.6) follow readily from those of
ϕ and ψ (axioms (3.5) and (3.6)). Let us take a closer look at the naturality
of (D.6). Take natural transformations σ : Fm′ → Gm′ and τ : Fn′ → Gn′ , and weak
compositions α � m and β � n with m′ and n′ parts respectively. We have to show
that

(σ ∗ τ)α•β = σα ∗ τβ .
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This follows from the commutativity of the diagram below (in which the tensor
product symbol is omitted).

F(Aα1 · · ·A
α
m′B

β
1 · · ·B

β
n′)

ψ
Aα1 ···Aα

m′ ,B
β
1 ···B

β

n′

��

∼= // F(A1 · · ·AmB1 · · ·Bn)

ψA1···Am,B1···Bn

��

F(Aα1 · · ·A
α
m′)F(Bβ1 · · ·B

β
n′)

σAα
1
,...,Aα

m′
τ
B
β
1
,...,B

β
n′

��

∼= // F(A1 · · ·Am)F(B1 · · ·Bn)

σαA1,...,Am
τβB1,...,Bn

��

G(Aα1 · · ·A
α
m′)G(B

β
1 · · ·B

β
n′)

ϕ
Aα

1
···Aα

m′ ,B
β
1
···B

β
n′

��

∼= // G(A1 · · ·Am)G(B1 · · ·Bn)

ϕA1···Am,B1···Bn

��

G(Aα1 · · ·A
α
m′B

β
1 · · ·B

β
n′)

∼= // G(A1 · · ·AmB1 · · ·Bn) �

We refer to NF ,G as the convolution lax monoidal functor.

Remark D.10. A lax monoidal functor (Mop
∆ , •) → (C, •) is equivalent to a co-

lax monoidal functor (M∆, •) → (Cop, •). This is precisely a homotopy monoid
(Section D.2.3). Thus, we may restate Theorem D.9 by saying that convolution
of natural transformations from a colax functor to a lax functor gives rise to a
homotopy monoid

NF ,G : (M∆, •)→ (Setop,×).

Recall that in Leinster’s setting, the colax structure maps must come from a speci-
fied class of equivalences. To satisfy this requirement in our case, we may choose the
class of equivalences to consist of all maps in Setop [229, Section 2.1, Example b].

We mention in passing and without further argument that if the functors F and
G are braided and the underlying monoidal categories are symmetric, then NF ,G is
a homotopy commutative monoid in the sense of Leinster.

The following result generalizes Proposition 3.61.

Proposition D.11. Let (F , ψ) and (F ′, ψ′) be colax functors and (G, γ) and (G′, γ′)
be lax functors, all from C to D. Let

θ : (F ′, ψ′)⇒ (F , ψ) and κ : (G, γ)⇒ (G′, γ′)

be a morphism of colax functors and a morphism of lax functors, respectively. Then
the maps

NF ,G ⇒ NF ′,G , σ 7→ σθ(n)

and

NF ,G ⇒ NF ,G′ , σ 7→ κ(n)σ,

where σ ∈ NF ,G(n), are morphisms of lax monoidal functors.

The proof is straightforward.
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D.4.3. Application to Hopf lax functors. We now explain how the results in
Section 3.7.5 can be given succinct proofs based on Theorem D.9. Let idm denote
the identity natural transformation of the functor Fm. First note that the definition
of a Hopf lax functor and its associated convolution units (Definitions 3.54 and 3.57)
can be reformulated as below.

Proposition D.12. A Hopf lax monoidal functor (F , ϕ, ψ,Υ) consists of a bilax
monoidal functor (F , ϕ, ψ) from C to D and a natural transformation Υ: F ⇒ F
such that

(D.7) id1 ∗Υ ∗ id1 = id3, Υ ∗ id1 ∗Υ = Υ(3), id
(0)
1 ∗Υ(0) = Υ(0) ∗ id

(0)
1 = ϕ0ψ0.

Similarly the convolution units associated to F are given by

(D.8) υ = id1 ∗Υ(0) and υ′ = Υ ∗ id
(0)
1 .

Now Proposition 3.63 can be proved as follows. First observe that for any weak
composition α of n with m parts we have

(D.9) (idm)α = idn.

Therefore,

υ ∗ id1 = id1 ∗Υ(0) ∗ id1 = id
(1)
1 ∗Υ(0) ∗ id

(1)
1 = (id1 ∗Υ ∗ id1)

(1,0,1) = id
(1,0,1)
3 = id2.

The first equality holds by associativity of (D.6) and (D.8), the third by naturality
of (D.6), the fourth by (D.7), and the second and fifth by (D.9).

Regarding Proposition 3.64, we have

Υ ∗ υ = Υ(1) ∗ id1 ∗Υ(0) = (Υ ∗ id1 ∗Υ)(1,1,0) = (Υ(3))(1,1,0) = Υ(2).

Propositions 3.65 and 3.68 can be given similar proofs.

D.4.4. The convolution monoid as a special case. We close this section by
explaining the sense in which the convolution lax monoidal functor NF ,G generalizes
the convolution monoid Hom(C,A) (Definition 1.13).

First note that any set X may be seen as a (trivial) simplicial set

TX : M
op
∆ → Set

by defining
TX(n) = X and TX(α) = idX

for any object n and any morphism α of M∆. This embeds Set as a full subcategory
of the category of augmented simplicial sets. Observe that X is a monoid if and
only if TX is a lax monoidal functor.

Given a comonoid C and a monoid A in a monoidal category C, we may consider
the monoidal functors

FC : I→ C and FA : I→ C,

as in Section 3.4.1. The former is colax and the latter is lax. Hence, we can consider
the augmented simplicial set

NFC,GA : M
op
∆ → Set

which is a lax monoidal functor (Theorem D.9). We have that

NFC ,GA = THom(C,A)

as augmented simplicial sets and as lax monoidal functors.
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78. E. Čech, Multiplications on a complex, Ann. of Math. (2) 37 (1936), no. 3, 681–697. 138
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80. , Un endofoncteur de la catégorie des opérades, Dialgebras and related operads,

Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 105–110. 674
81. F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math.

Res. Notices (2001), no. 8, 395–408. 677
82. D. Chikhladze, S. Lack, and R. Street, Hopf monoidal comonads, available at

arXiv:1002.1122v2. 701
83. A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry,

Comm. Math. Phys. 199 (1998), no. 1, 203–242. 579
84. H. Crapo and W. Schmitt, A free subalgebra of the algebra of matroids, European J. Combin.

26 (2005), no. 7, 1066–1085. 579
85. , A unique factorization theorem for matroids, J. Combin. Theory Ser. A 112 (2005),

no. 2, 222–249. 579
86. , Primitive elements in the matroid-minor Hopf algebra, J. Algebraic Combin. 28

(2008), no. 1, 43–64. 579
87. H. H. Crapo and G.-C. Rota, On the foundations of combinatorial theory : Combinatorial

geometries, preliminary ed., The M.I.T. Press, Cambridge, MA–London, 1970. 477
88. B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd ed., Cambridge

Univ. Press, New York, 2002. 425, 485
89. M. W. Davis, The geometry and topology of Coxeter groups, London Math. Soc. Monogr.

Ser., vol. 32, Princeton Univ. Press, Princeton, NJ, 2008. 305
90. B. Day, Middle-four maps and net categories, available at arXiv:0911.5200. 163
91. B. Day, E. Panchadcharam, and R. Street, Lax braidings and the lax centre, Hopf Algebras

and Generalizations, Contemp. Math., vol. 441, Amer. Math. Soc., Providence, RI, 2007,
pp. 1–17. 6

92. B. Day and C. Pastro, Note on Frobenius monoidal functors, New York J. Math. 14 (2008),
733–742. 84

93. B. Day and R. Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997),
no. 1, 99–157. 700, 701

94. , Lax monoids, pseudo-operads, and convolution, Diagrammatic Morphisms and Ap-
plications (San Francisco, CA, 2000), Contemp. Math., vol. 318, Amer. Math. Soc., Provi-
dence, RI, 2003, pp. 75–96. xlviii, 716, 717, 719

95. P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math.,
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Notation Index

Number systems

N set of nonnegative integers {0, 1, 2, . . . }
Z set of integer numbers
Q set of rational numbers
R set of real numbers
k field or commutative ring
Fq finite field with q elements

Sets and maps

{∗} one-element set 255
{∅} one-element set 6
I finite set 19
S, T finite sets (usually subsets of a finite set I) 26
I = S ⊔ T ordered disjoint decomposition of a finite set I into subsets S and T 27
I+ set I augmented by a singleton 270
σ+ augmentation of the bijection σ 271
[n] set {1, . . . , n} 26
[s+ 1, s+ t] set {s+ 1, . . . , s+ t} 26
cano order-preserving bijection between equal cardinality subsets of integers 26
[n]+ set [1 + n] 271, 612
1 + S set of integers of the form 1 + s where s ∈ S 143, 612
S+ set consisting of 1 and the elements of 1 + S 612
δh,k order-preserving, injective map associated to the indices h, k 142
S(h, k) subset of the integers 144
Bij([n], I) set of bijections from [n] to I 312
L(p, q) lattice paths from (0, 0) to (p, q) 50
(S, f) partially defined surjection 679

Numbers and counting

n! factorial (number of bijections of [n])
`

n
s

´

binomial coefficient
(n)q! q-factorial 29
`

n
s

´

q
q-binomial coefficient 29

⌊x⌋ largest integer smaller than or equal to x 29
Cn Catalan number 453
pk(n) number of partitions of n into k parts 306
S(n, k) Stirling number of the second kind 307
λ ⊢ n partition of n 306

741
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α � n composition of n 306
α! factorial of a composition or partition 311
deg(α) number of parts of the composition α 573
α composition α written in reverse order 573
γL(α, β) quasi-shuffle of α and β corresponding to the lattice path L 50
X ⊢ I partition of I 306
F � I composition of I 306
deg(G) number of blocks in the set composition G 389
deg(X) number of blocks in the set partition X 391
X! factorial of a set partition 310
X!b cyclic factorial of a set partition 310
(X : Y )! relative factorial of set partitions 310
F ! factorial of a set composition 311
(L : M)! relative factorial of linear set partitions 432

Symmetric group

Sn symmetric group on n letters 28
Sd parabolic subgroup 488
Bn braid group on n strands 632
inv(σ) number of inversions of the permutation σ 28
Inv(σ) inversion set of the permutation σ 28
l(σ) length of the permutation σ 28
ωn longest permutation in Sn 27
Sh (s, t) set of (s, t)-shuffle permutations 28
σ × τ permutation of p+ q symbols that acts as σ on the first p and as τ on the last

q 28
des(w) number of descents of the permutation w 325
gdes(w) number of global descents of the permutation w 325
Des(w) set of descents of the permutation w 325
gDes(w) set of global descents of the permutation w 325
σ ≤ τ weak left Bruhat order on permutations 326
(i, j) transposition that switches i with j 617
(k, . . . , 1) permutation which sends k → k − 1 → · · · → 1 → k and fixes the elements

greater than k 617

Matrices

0r,r square matrix of size r all of whose entries are 0 30
1r,r square matrix of size r all of whose entries are 1 30
Ir,r identity matrix of size r 30
1(s, t) square matrix of size r = s+ t of a specified form 30
Qt transpose of the matrix Q 30
Q− matrix obtained by inverting each entry of Q 30
Q−t transpose and entrywise inversion of Q 30
P ×Q Hadamard product of the matrices P and Q 30
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Categories and functors

C, D, E categories 3
G groupoid 663
Cop opposite category of C 4
C × C′ Cartesian product of C and C′ 4
HomC(A,B) set of morphisms from A to B in C 4, 697
EndC(A) set of endomorphisms of the object A in C 709
ΩAC loops based at A in the category C 709
π0(G) isomorphism classes of objects in G 663
(A, f,B) object in the category of arrows 111, 705
F , G functors 62
A×B product of objects A and B 657
A∐B coproduct of objects A and B 657
A⊕B biproduct of objects A and B 658

πA, πA×B
A canonical projection A×B → A 657

ιA, ιA∐B
A canonical map A→ A ∐B 657

0A,B zero arrow from A to B 658
‘

j∈J

Xj coproduct of the family Xj indexed over the set J 663

colimF , colim
X

F(X) colimit of the functor F 661

F ⇒ G natural transformation between F and G 64
Nat(F , G) set of natural transformations between F and G 128
η, ξ unit and counit of an adjunction 659

Examples of categories.

I one-arrow category 5
Set category of sets 6, 235
Set× category of finite sets and bijections 235
Vec category of vector spaces 6, 236
Ab category of abelian groups 300
Mod category of modules over a commutative ring 138
K indiscrete category on the vertices of the associahedron 18
CN discrete category on N 69

D(2) category of arrows in D 111
elG(X) category of elements of the G-set X 664
el(F) category of elements of the functor F 668
D ↓ X slice category over X 667
X ↓ C slice category under X 668
F ↓ G comma category 667
∆ simplicial category 138
M∆ simplicial category of Mac Lane 713
sSet category of simplicial sets 139
fsSet category of fibrant simplicial sets 142

fsSet homotopy category of fibrant simplicial sets 142
sMod category of simplicial modules 139

sMod homotopy category of simplicial modules 141
Top category of topological spaces 141

Top homotopy category of topological spaces 141
ModG category of left G-modules 83
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Examples of functors.

k(−) linearization functor 87, 254

k(−) dual linearization functor 195
fℓ forgetful functor 199
(−)G functor of invariants 83
(−)G functor of coinvariants 583
Hθ functor to the category of arrows 112

ℑ : D(2) → D image functor 114
P1 and P2 canonical projection functors 116
ℑθ image of the transformation θ 116
TX set X as a (trivial) simplicial set 724
T : (C,∐) → (C, ⋆) free monoid functor 198
I, J , K functors from the one-arrow category to a 2-monoidal category 211

Monoidal categories

(C, •) monoidal category 3
(C, •, β) braided or symmetric monoidal category 4
αA,B,C associativity constraint in a monoidal category 4
ρA, λA unit constraints in a monoidal category 4
βA,B braiding in a monoidal category 4
(C, •̃) transpose of (C, •) 4
M tensor product functor 4
A • B tensor product of A and B 4
β−1 inverse of the braiding β 5
βop opposite of the braiding β 5
βt transpose of the braiding β 5
H• internal Hom for (C, •) 16
E• internal End for (C, •) 17
V1 • V2 • · · · • Vk unbracketed tensor product of V1, V2, . . . , Vk 17
•

i∈I
Vi unordered tensor product of {Vi}i∈I 19

V •I I-tensor power (a special unordered tensor product) 125

A•(n) n-tensor power 715
ν Yang–Baxter operator on a functor 631

Examples of monoidal categories.

(I, •) monoidal category with one arrow 5
(Set,×) monoidal category of sets with cartesian product 6
(Vec,⊗) monoidal category of vector spaces with tensor product 6
(Modk,⊗k) monoidal category of k-modules with tensor product 7
(C,×) cartesian monoidal category 6
(C,∐) cocartesian monoidal category 6
(C,⊕) bicartesian monoidal category 6
(Top,×) monoidal category of topological spaces with Cartesian product 141
(sSet,×) monoidal category of simplicial sets 140
(sMod,×) monoidal category of simplicial modules 140

Categories resulting from monoidal categories.

Mon(C) monoids in C 7, 8
Comon(C) comonoids in C 7, 8
Bimon(C) bimonoids in C 7, 9
Hopf(C) Hopf monoids in C 7, 11
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Monco(C) commutative monoids in C 12
coComon(C) cocommutative comonoids in C 12
Bimonco(C) commutative bimonoids in C 7, 12
coBimon(C) cocommutative bimonoids in C 7, 12
coBimonco(C) commutative and cocommutative bimonoids in C 7, 12
Hopfco(C) commutative Hopf monoids in C 7
coHopf(C) cocommutative Hopf monoids in C 7
coHopfco(C) commutative and cocommutative Hopf monoids in C 7
Lie(C) Lie monoids in C 16
ModA(C) left A-modules in C 9, 184
ComodC(C) left C-comodules in C 10, 185

Monoidal functors.

F2, F2, F
0, F0 functors associated to F 62

FI and FI functors associated to F and the set I 128
(F , ϕ) lax or strong functor 62
(F , ψ) colax or costrong functor 62
(F , ϕ, ψ) bilax or bistrong functor between braided monoidal categories

or between 2-monoidal categories 63, 84, 189
(GF , ϕγ) composite of lax functors 72
(GF , δψ) composite of colax functors 72
(GF , ϕγ, δψ) composite of bilax functors 72
FA lax functor associated to the monoid A 75
FC colax functor associated to the comonoid C 76
FH bilax functor associated to the bimonoid H 76
(F , ϕ, γ) double lax functor 190
(F , ψ, δ) double colax functor 191
(F , ϕ, γ, ψ) lax-lax-colax functor 218
ϕA,B, ϕ0 components of the lax structure ϕ 62
ψA,B, ψ0 components of the colax structure ψ 62

ϕb, bϕ conjugate of the lax structure map ϕ 66

ψb, bψ conjugate of the colax structure map ψ 66
ϕ(A,B),C , ϕA,(B,C), ϕA,B,C iterations of the lax structure ϕ 121, 88
ψ(A,B),C , ψA,(B,C), ψA,B,C iterations of the colax structure ψ 88

Monoids.

(A,µ, ι) monoid 7
(C,∆, ǫ) comonoid 8
(H,µ, ι,∆, ǫ) bimonoid 8
(M,χ) module 9
A1-A2-bimodule bimodule over the monoids A1 and A2 9
(M,χ1, χ2) bimodule 9
(L, γ) Lie monoid 16
op(−), (−)op op construction 14
cop(−), (−)cop cop construction 14
Aop, opA opposite of the monoid A 13
Ccop, copC opposite of the comonoid C 13

H bimonoid opposite to H 179

Hopf monoids and Hopf lax functors.

Hom(C,A) convolution monoid 10
End(H) convolution monoid of the bimonoid H 11
f ∗ g convolution of maps f and g 10
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s antipode of a Hopf monoid 11
(F , ϕ, ψ,Υ) Hopf lax functor 89
υ and υ′ convolution units associated to a Hopf lax functor 90
Υ antipode of a Hopf lax functor 89
(GF , ϕγ, δψ,ΩΥ) composite of Hopf lax functors 96

θ(2) natural transformation associated to θ 92
σ ∗ τ convolution of the natural transformations σ and τ 92
NF,G augmented simplicial set of natural transformations 720

2-monoidal categories and higher monoidal categories

(C, ⋄, ⋆) 2-monoidal category 163
(C, ⋄, ⋆, ·) 3-monoidal category 210
(C, ⋄1, . . . , ⋄n) n-monoidal category 221
ζA,B,C,D interchange law in a 2-monoidal category 162
∆I structure map in a 2-monoidal category 162
µJ structure map in a 2-monoidal category 162
ιJ = ǫI structure map in a 2-monoidal category 162
(Cop, ⋆, ⋄) opposite 2-monoidal category 164
Ct⋄ = (C, ⋄̃, ⋆) ⋄-transpose of C 164
Ct⋆ = (C, ⋄, ⋆̃) ⋆-transpose of C 164
Ct = (C, ⋄̃, ⋆̃) transpose of C 164
(Cop, ·, ⋆, ⋄) opposite 3-monoidal category 209
Ct⋄ = (C, ⋄̃, ⋆, ·) ⋄-transpose of C 209
Ct = (C, ⋄̃, ⋆̃, ·̃) transpose of C 209
Ct = (C, ⋄̃1, . . . , ⋄̃n) transpose of C 221
dMon(C, ⋄, ⋆) category of double monoids in C 183
Bimon(C, ⋄, ⋆) category of bimonoids in C 183
dComon(C, ⋄, ⋆) category of double comonoids in C 183
Bimonco(C, ⋄, ⋆) category of commutative bimonoids in C 183
coBimon(C, ⋄, ⋆) category of cocommutative bimonoids in C 183
dMonco(C, ⋄, ⋆) category of commutative double monoids in C 183
codComon(C, ⋄, ⋆) category of cocommutative double comonoids in C 183
n−iMoni(C) category of (i, n− i)-monoids in C 223
Ci, Cij , C[i,j] categories associated to a higher monoidal category C 221, 223
Fi, Fij functors associated to a higher monoidal functor F 224, 225

Examples of 2-monoidal categories and higher monoidal categories.

(C, •, •) 2-monoidal category with identical monoidal structures 172
(C, ⋄,×) 2-monoidal category of products 176
(C,∐, ⋆) 2-monoidal category of coproducts 176
(CX , ⋄, ⋆) 2-monoidal category of graphs with vertex set X 173
(CK , ⋄, ⋆) 2-monoidal category of K-bimodules 174
(C,∨,∧) 2-monoidal category associated to a poset 176
(gVec, ·,×), (gVec,×, ·) braided 2-monoidal categories on graded vector spaces 176
(gVec, ◦,×) 2-monoidal category on graded vector spaces 177
(Vec,⊙,⊙) 2-monoidal category on vector spaces 178
(Sp, ·,×), (Sp,×, ·) braided 2-monoidal categories on species 280
(Sp, ·,×, ·) self-dual 3-monoidal category on species 281
(Spr, ·,×) braided 2-monoidal category on species with restrictions 281
(Sp+, ◦,×) 2-monoidal category on positive species 692
(Sp, ◦,×) 2-monoidal category on species 694
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(A, s, t) directed or bipartite graph 172, 710
A ⋄ B, A ⋆ B products of the directed graphs A and B 173
M ⋆N , M ⋄N products of the bimodules M and N 174

Contragredient construction

A •∨ B contragredient of the tensor product • 107
β∨ contragredient of the braiding β 107
F∨ contragredient of the functor F 108
θ∨ contragredient of the natural transformation θ 108
(F∨, ϕ∨) contragredient of the lax functor (F , ϕ) 109
ϕ∨

A,B component of the contragredient of the colax structure ϕ∨ 109
(F∨, ψ∨) contragredient of the colax functor (F , ψ) 109
(F∨, ψ∨, ϕ∨) contragredient of the bilax functor (F , ϕ, ψ) 109
ψ∨ and ϕ∨ lax and colax structures contragredient to ψ and ϕ 109
ζ∨ contragredient of the interchange law ζ 204
(C′, ⋆∨, ⋄∨) contragredient of (C, ⋄, ⋆) 203
(C′, ·∨, ⋆∨, ⋄∨) contragredient of (C, ⋄, ⋆, ·) 231

2-categories

Cat 2-category of categories, functors and natural transformations 75
sCat full subcategory of Cat consisting of small categories 708
lCat 2-category of monoidal categories and lax functors 75, 200
cCat 2-category of monoidal categories and colax functors 75, 200
llCat 2-category of 2-monoidal categories and double lax functor 200
lcCat 2-category of 2-monoidal categories and bilax functors 200
ccCat 2-category of 2-monoidal categories and double colax functors 200
bCat 2-category of braided monoidal categories and bilax functors 203
blCat 2-category of braided monoidal categories and braided lax functors 203
bcCat 2-category of braided monoidal categories and braided colax functors 203
cblCat 2-category of ⋄-braided 2-monoidal categories and ⋄-braided bilax functors 203
lbcCat 2-category of ⋆-braided 2-monoidal categories and ⋆-braided bilax functors 203
Cat(i, j) 2-category of (i+ j)-monoidal categories and (i, j)-functors 229

Monoidal 2-categories.

aA,B,C , AA,B,C,D associativity constraints in a monoidal 2-category 700
rA, lA, UA,B unit constraints in a monoidal 2-category 700
l(C), c(C), and s(C) lax, colax, and strong constructions 704

C(l), C(c) 2-categories constructed from C 705

Vector spaces

V , W vector spaces
HomVec(V,W ) space of linear maps from V to W 19
EndVec(V ) space of linear maps from V to itself 278
kI vector space with basis I over a field k 287
kA space of all functions from the set A to k 195
VG coinvariants of G-module V 42

V G invariants of G-module V 42
V ∗ dual of V 44
c : V → V creation operator 55
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a : V → V annihilation operator 55
Det(V ) highest exterior power of a finite-dimensional vector space V 287
Det(kI) highest exterior power of the vector space with basis I 287
RI vector space consisting of functions from I to R 311
c(v), c̄(v) creation operators associated to the vector v 608, 611
a(v), ā(v) annihilation operators associated to the vector v 608
a(f), ā(f) annihilation operators associated to the functional f 611
kx component of degree 1 in k[x] 23
d/dx derivative operator 609
R Yang–Baxter operator 632

Graded vector spaces.

V ·W Cauchy product of the graded vector spaces V and W 22
V ×W Hadamard product of the graded vector spaces V and W 22
V ◦W substitution product of the graded vector spaces V and W 22
V ⊙W modified Cauchy product of the graded vector spaces V and W 37
Vn component of degree n of a graded vector space V 22
1 unit for the Cauchy product on graded vector spaces 22
E unit for the Hadamard product on graded vector spaces 22
X unit for the substitution product on graded vector spaces 22
(−)∗ duality functor on graded vector spaces 25
β braiding on graded vector spaces 23
βq braiding on graded vector spaces 34
H· internal Hom for the Cauchy product on graded vector spaces 26
H× internal Hom for the Hadamard product on graded vector spaces 26
H◦ internal Hom for the substitution product on graded vector spaces 26
(−)o functor on graded vector spaces 37
(−)+ functor on graded vector spaces 37
µ+ positive part of the product µ 36
∆+ positive part of the coproduct ∆ 36

Multigraded vector spaces.

Nr r-fold product of N with itself 39
d, e elements of Nr 39
0 = (0, . . . , 0) unit element of the monoid Nr 39

gVec(r) category of Nr-graded vector spaces 39
βQ braiding on multigraded vector spaces 40
βA,q braiding on multigraded vector spaces 40

Categories related to graded vector spaces.

gVec graded vector spaces 21
sVec super vector spaces 39
gVeco connected graded vector spaces 36
dgVeca chain complexes 52
dgVecc cochain complexes 52
gVeca graded vector spaces with annihilation operators 55
gVecc graded vector spaces with creation operators 55
dgVecN N-complexes with maps of degree −1 56
dgVecN N-complexes with maps of degree 1 57
Alg algebras 24
Coalg coalgebras 24
gAlg graded algebras 24
gCoalg graded coalgebras 24
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gAlgco graded commutative algebras 24
gLie graded Lie algebras 24
gHopf graded Hopf algebras 24
cgAlg connected graded algebras 585
cgAlgco connected graded commutative algebras 585
cgHopf connected graded Hopf algebras 585
cgHopfco connected graded commutative Hopf algebras 585
gMod graded k-modules 138
dgModa chain complexes of k-modules (differential graded modules) 138

dgModa chain complexes of k-modules up to homotopy 138
dgModc cochain complexes of k-modules 138

dgModc cochain complexes of k-modules up to homotopy 138
gModa graded k-modules with annihilation operators 138
gModc graded k-modules with creation operators 138
dgModN N-complexes of k-modules 138

Examples of Hopf algebras.

k[x] polynomial Hopf algebra in the variable x 25
k{x} divided power Hopf algebra in the variable x 25
k[x]/(xp) polynomial Hopf algebra in characteristic p 25
k〈x, y〉 Hopf algebra of polynomials in noncommuting variables x and y 529
k[x, y] Hopf algebra of polynomials in commuting variables x and y 529
kq[x] Eulerian q-Hopf algebra 35
kq{x} divided power q-Hopf algebra 35
k−1[x]/(x

2) exterior algebra on one generator 561

kq[x]/(x
N ) q-Hopf algebra of polynomials if q is a root of unity of order N 561

SΠ, RΠ Hopf algebra of pairs of permutations 568
SΛ Hopf algebra of permutations of Malvenuto and Reutenauer 530, 568
SΛq q-Hopf algebra of permutations 562, 571
RΛ Hopf algebra of permutations 568
PΠ Hopf algebra of set compositions 572
QΠ Hopf algebra of linear set compositions 572
NΠ Hopf algebra of linear set compositions 572
MΠ Hopf algebra of set compositions 572
QΛ Hopf algebra of quasi-symmetric functions 572
NΛ Hopf algebra of noncommutative symmetric functions 572
NΛq q-Hopf algebra of noncommutative symmetric functions 574
QΛq q-Hopf algebra of quasi-symmetric functions 574
ΠL, ΠL∗ Hopf algebra of set partitions 576
ΠZ Hopf algebra of linear set partitions 576
ΠZ∗ Hopf algebra of linear set partitions 576
Λ, ΛL, ΛL∗ Hopf algebra of symmetric functions 576
U+

q (C) nilpotent part of the quantum enveloping algebra associated to C 654

Examples of multigraded Hopf algebras.

k〈x1, . . . , xr〉 polynomials in noncommuting variables x1, . . . , xr

(free algebra on r generators) 41
k〈x1, . . . , xr〉/(xixj − qji xjxi) quantum linear space 41
k[x1, . . . , xs] ⊗ k{xs+1, . . . , xs+t} algebra of differential forms 41

Bases elements.

x(n) canonical element of degree n in k{x} 25
xf monomial 41
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x[f ] commutative monomial 41
Fv, Mv bases of SΛ 568
Fα, Mα bases of QΛ 572
mλ, pλ, hλ monomial, power sum and complete bases of Λ 576

Universal constructions.

T (V ) tensor algebra 45
T ∨(V ) shuffle algebra 46
S(V ) symmetric algebra 45
S∨(V ) variant of the symmetric algebra 46
Tq(V ) q-tensor algebra 46
T ∨

q (V ) q-shuffle algebra 46
Λ(V ) exterior algebra 47
Λ∨(V ) variant of the exterior algebra 47
Lie(V ) free Lie algebra 45
κ : T (V ) → T ∨(V ) symmetrization 46
κq : Tq(V ) → T ∨

q (V ) q-symmetrization 46
P(H) space of primitive elements of the Hopf algebra H 394
U(g) universal enveloping algebra of the Lie algebra g 542

Species

p, q, r species 236
p[I ] I-component of the species p 236
p[σ] value of the species p on the bijection σ 236
σ · z action of permutations on a species 532
p + q addition of the species p and q 237
p · q Cauchy product of the species p and q 238
p × q Hadamard product of the species p and q 238
p ◦ q substitution product of the species p and q 238, 681
p ◦′ q substitution product of the species p and q 685
p ⊙ q modified Cauchy product of the species p and q 267
p∗ contragredient or dual of the species p 252
p+ positive part of the species p 267
po connected species associated to p 266
p′ derivative of the species p 270

p[X] X-derivative of the species p 271
p• pointing of the species p 282
p− signed partner of the species p 289
p(F ) unbracketed tensor product of components of the species p 364
p(X) unordered tensor product of components of the species p 364

p·k k-power of the species p with respect to Cauchy product 681
p·X divided X-power of the species p 680
β braiding on species 239
βq braiding on species 283
βS,T component of the braiding in the category of species 241
µS,T component of the product of a monoid in species 240
ι∅ ∅-component of the unit of a monoid in species 240
∆S,T component of the coproduct of a comonoid in species 241
ǫ∅ ∅-component of the counit of a comonoid in species 241
sI component of the antipode of a Hopf monoid in species 245
µS1,...,Sk component of the iterated product 246
∆S1,...,Sk component of the iterated coproduct 246
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∆+ positive part of the coproduct ∆ for species 267
µH H-component of the iterated product 388
∆H H-component of the iterated coproduct 388
µF\G tensor product of iterated products 388
∆G/F tensor product of iterated coproducts 388
βG,F map which reorders the factors in a tensor product 388
∆Y/X tensor product of iterated coproducts 390
µX\Y tensor product of iterated products 391
∆−

Y/X tensor product of iterated coproducts 392

µ−
X\Y

tensor product of iterated products 392

∗I basis element in the I-component of the exponential species 237
std(l) standardization of the linear order l 529
sftJ (l) shifting of the linear order l to J 529

Set species.

P, Q set species 254
kP linearization of the set species P 254
P1 + P2 addition of set species P1 and P2 256
P · Q Cauchy product of set species P and Q 255
P × Q Hadamard product of set species P and Q 255
P ◦ Q substitution product of positive set species P and Q 255
x · y product in a linearized monoid 256
x|S restriction of x to S in a linearized comonoid 257
x/S contraction of S from x in a linearized comonoid 257
ρV,U structure maps of a species with restrictions 260
1 set species characteristic of the empty set 255
X set species characteristic of singletons 255
E exponential set species 255
L set species of chambers, or linear orders 312
IL set species of pairs of chambers, or linear orders 325
Σ set species of faces, or set compositions 312
−→
Σ set species of directed faces, or linear set compositions 330
Π set species of flats, or set partitions 313
−→
Π set species of directed flats, or linear set partitions 330

Species with up-down operators.

(p, u) species p with an up operator u 272
(p, d) species p with a down operator d 272
(p, u, d) species p with an up operator u and a down operator d 273
(E, u, d) exponential species with up-down operators 274
(L, u, d) species of linear orders with up-down operators 275
(e, u, d) species of elements with up-down operators 621
(E·2, ui, dj) subset species with up-down operators 622
(a, u, d) species of rooted trees with up-down operators 623

Categories related to species.

Set× category of finite sets and bijections 235
Sp category of species 236
Spo category of connected species 266
Sp+ category of positive species 267
Spr category of species with restrictions 261
Spu category of species with up operators 272
Spd category of species with down operators 272
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Spu
d category of species with up and down operators 272

Mon(Sp, ·) category of monoids in species 240
Comon(Sp, ·) category of comonoids in species 240
Monco(Sp, ·, β) category of commutative monoids in species 240
coComon(Sp, ·, β) category of cocommutative comonoids in species 240
Bimon(Sp, ·, β) category of bimonoids in species 243
Hopf(Sp, ·, β) category of Hopf monoids in species 243
q-Bimon(Sp) category of q-bimonoids in species 284
q-Hopf(Sp) category of q-Hopf monoids in species 284

Functors related to species.

(−)∗ duality functor on species 252
inc inclusion functor 266, 267
(−)o functor on species 266
(−)+ functor on species 267
H· internal Hom for the Cauchy product on species 272
H× internal Hom for the Hadamard product on species 278
H◦ internal Hom for the substitution product on species 689
E× internal End for the Hadamard product on species 279
E◦ internal End for the substitution product on species 690
(−×−) Hadamard functor 275
m× (−) Hadamard product with the species m 279
(−)− signature functor 289
Sp Schur functor associated to the species p 602
Γp divided power functor associated to the species p 602

Cohomology of species.

A abelian group 294
αI 1-cochain 294
γS,T 2-cochain 294
∆γ deformation of ∆ by the normal 2-cocycle γ 295
H2(p,Z) 2nd cohomology group of the linearized comonoid p 295

H2
mul(p,Z) 2nd cohomology group of the linearized bimonoid p 298

H2(p,A) 2nd cohomology group of the linearized comonoid p with coefficients in A 299

H2
mul(p,A) 2nd cohomology group of the linearized bimonoid p with coefficients in A 299

SchS,T (l) set underlying the Schubert cocycle 290
schS,T (l) Schubert cocycle 290
DS,T (l) set of descents 303
dS,T (l) descent cocycle 303
eS,T (r) 2-cocycle on relations 460
ℓS,T (c) 2-cocycle on closure operators 479

Universal constructions for species.

T free monoid functor 365
S free commutative monoid functor 370
T ∨ cofree comonoid functor 372
S∨ cofree cocommutative comonoid functor 377
Tq variant of free monoid functor 382
T ∨

q variant of cofree comonoid functor 383
T−1 specialization of Tq 387
Λ signed free commutative monoid functor 384
T ∨
−1 specialization of T ∨

q 387
Λ∨ signed cofree cocommutative comonoid functor 384



NOTATION INDEX 753

π : T ⇒ S abelianization 380
κ : T ⇒ T ∨ norm transformation 380
π−1 : T−1 ⇒ Λ signed abelianization 386
κq : Tq ⇒ T ∨

q q-norm transformation 386
T (q) free Hopf monoid 368
T ∨(q) cofree Hopf monoid 376
S(q) free commutative Hopf monoid 371
S∨(q) cofree cocommutative Hopf monoid 378
Tq(q) free q-Hopf monoid 382
T ∨

q (q) cofree q-Hopf monoid 383
Λ(q) free commutative (−1)-Hopf monoid 385
Λ∨(q) cofree cocommutative (−1)-Hopf monoid 385
Lie free Lie monoid functor 393
P(h) species of primitive elements of the Hopf monoid h 269, 394
P primitive element functor 394
U(g) universal enveloping monoid 395

P(k)(h) component of the positive coradical filtration of h 269
L(A) free twisted algebra 589

Examples of species and Hopf monoids in species.

0 zero species 237
1 species characteristic of the empty set 237
1V species characteristic of the empty set decorated by V 238
X species characteristic of singletons 237
XV species characteristic of singletons decorated by V 238
E exponential species 237
E− signed exponential species 287
EV decorated exponential species 238
E−

V decorated signed exponential species 385
E·2 species of subsets 251
L linear order species 237
IL species of pairs of linear orders 325
Σ species of set compositions 312
−→
Σ species of linear set compositions 330
Π species of set partitions 313
−→
Π species of linear set partitions 330
a positive species of rooted trees 453
~a positive species of planar rooted trees 454
b species of bijections 371
c species of cycles 371
e species of elements 282
B species of Boolean algebras 462
C species of closure operators 478

C species of loopless closure operators 480
F species of rooted forests 453
−→
F species of planar rooted forests 454
G species of simple graphs 450
cG species of convex geometries 479

cG species of loopless convex geometries 480
K species of set-balanced simplicial complexes 475
M species of matroids 478

M species of loopless matroids 480
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P species of posets 444
O species of preposets 450
sgP species of set-graded posets 469
swP species of set-weighted posets 472

s̃wP subspecies of swP 472
elP species containing EL posets 471
R species of relations 460
Q species of equivalence relations 462
T species of topologies 481
kT species of Kolmogorov topologies (T0-topologies) 481
Lq q-Hopf monoid of linear orders 290, 403
ILq q-Hopf monoid of pairs of linear orders 406
Σq q-Hopf monoid of set compositions 414
−→
Σq q-Hopf monoid of linear set compositions 419
−→
F q q-Hopf monoid of planar rooted forests 456
Cq Hopf monoid of closure operators which deforms C = C1 480
Gq Hopf monoid of simple graphs which deforms G = G1 461
Mq Hopf monoid of matroids which deforms M = M1 480
Pq Hopf monoid of posets which deforms P = P0 461
Qq Hopf monoid of equivalence relations which deforms Π ∼= Q1 462
Oq Hopf monoid of preposets which deforms O = O0 461
Rq Hopf monoid of relations 461

Bases elements.

H(E,D), K(C,D) bases of IL 403
F(E,D), M(C,D) bases of IL∗ 403

H(G,D), K(H,D) bases of
−→
Σ 403

F(G,D), M(H,D) bases of
−→
Σ∗ 403

HF basis of Σ 414
MG basis of Σ∗ 414

hL basis of
−→
Π 429

mL basis of
−→
Π∗ 429

hY , qX bases of Π 403
pY , mX bases of Π∗ 403

Morphisms of Hopf monoids.

π L → E 251
πq T (q)։ S(q) (abelianization) 380

Υ
−→
Π → Σ∗ 436

~β IL∗ →
−→
Σ∗ 436

β IL∗ → Σ∗ 437
η̂ P → Σ∗ 446
ω̂ P → L∗ 447

ζ̂ L ×P → Σ∗ 448

ν̂
−→
Π → P 448

~ν
−→
Σ → L × P 449

ζ̂ G → Π∗ 451
ρ G → P 452

υ
−→
F → F 454

φ F → P 454
~φ

−→
F → L × P 455



NOTATION INDEX 755

λ
−→
Π → F 456

~λ
−→
Σ →

−→
F 456

η̂ sgP → Σ∗ 469
ω̂ sgP → L∗ 470

ζ̂ L × sgP → Σ∗ 470

ζ̂ M → Σ∗ 479
J P → sgP (Birkhoff transform) 482
J O → swP (Birkhoff transform) 483
sq switch map on pairs of chambers 408
tq, t

∗
q interchange of coordinates in the M or H basis 410

Colored species

(I, f) colored set 487
p[I, f ] (I, f)-component of the colored species p 488
(S, g) ⊔ (T, h) colored decomposition 488
q[nd, fd] component of the colored species q 488
p · q Cauchy product of colored species p and q 489
p × q Hadamard product of colored species p and q 497
1(r) unit for the Cauchy product on r-colored species 489
E(r) unit for the Hadamard product on r-colored species 490, 497
X(r) colored species characteristic of singletons 490
L(r) colored linear order species 490
pQ Hadamard product of p with the colored exponential species 498
q(F, f) unbracketed tensor product of components of q 502
q(X,f) unordered tensor product of components of q 502
βQ braiding on colored species 489
βA,q braiding on colored species 489
βS,g,T,h component of the braiding in the category of colored species 489

(−)(r), (−)(r) functors from species to r-colored species 490
(−)∗ duality functor on colored species 490
(−)Q colored signature functor 498
σ · z action of permutations on a colored species 641
σ ∗ z twisted action of permutations on a colored species 641
µS,g,T,h component of the product of a monoid in colored species 491
ι∅,∗ ∅-component of the unit of a monoid in colored species 491
∆S,g,T,h component of the coproduct of a comonoid in colored species 492
ǫ∅,∗ ∅-component of the counit of a comonoid in colored species 492
sI,f component of the antipode of a Q-Hopf monoid 492

DetQ
f (kI) Q-analogue of the highest exterior power 495

DetQ
f (kX) Q-analogue of the highest exterior power 503

sQ switch map on pairs of chambers 512
∗(I,f) basis element in the (I, f)-component of the colored exponential species

496
∗([n],f) basis element in the ([n], f)-component of the colored exponential

species 653
(C, f) element of the [n, f ]-component of the colored linear order species 644
µH,f (H, f)-component of the iterated product 507
∆H,f (H, f)-component of the iterated coproduct 507
µF\G,f tensor product of iterated products 508
∆G/F,f tensor product of iterated coproducts 508
βG,F,f map which reorders the factors in a tensor product 508
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∆Q
Y/X,f tensor product of iterated coproducts 508

µQ
X\Y,f

tensor product of iterated products 509

Categories related to colored species.

Set(r) r-colored sets 488

Sp(r) r-colored species 488

Sp
(r)
+ positive r-colored species 494

Mon(Sp(r)) r-colored monoids 490

Comon(Sp(r)) r-colored comonoids 490

Monco(Sp(r)) r-colored commutative monoids 490
coComon(Sp(r)) r-colored cocommutative comonoids 490

Q-Bimon(Sp(r)) Q-bimonoids 490

Q-Hopf(Sp(r)) Q-Hopf monoids 490

Hopf monoids in colored species.

EQ colored exponential species 495
LQ colored linear order species 499
ΣQ colored species of set compositions 512
−→
ΣQ colored species of linear set compositions 513
ILQ colored species of pairs of linear orders 510

Universal constructions for colored species.

TQ free colored monoid functor 503
T ∨

Q cofree colored comonoid functor 505
SQ free colored commutative monoid functor 503
S∨

Q cofree colored cocommutative monoid functor 505
πQ : TQ ⇒ SQ colored abelianization 504
κQ : TQ ⇒ T ∨

Q Q-norm transformation 506

Simplicial sets and homology

X × Y tensor product of the simplicial modules X and Y 140
ψX,Y Alexander–Whitney map 143
ϕX,Y Eilenberg–Zilber map 144
(ϕq)X,Y q-deformation of the Eilenberg–Zilber map 155
δi and σi face and degeneracy maps 139
∂ : K → K boundary operator 52
d : K → K coboundary operator 52
K∗ dual of the chain complex K 53
Hn(K), Hn(K) (co)homology of the (co)chain complex K 53
H•, H

• (co)homology functor 54
C(A,M), C(C,M) cochain complexes for Hochschild cohomology 54
C(X) unnormalized chain complex of the simplicial module X 145
N (X) normalized chain complex of the simplicial module X 145
H•(X), H•(X) (co)homology of the simplicial module X 152
(C, ϕ, ψ) unnormalized chain complex functor 147
(N , ϕ, ψ) normalized chain complex functor 148
(C, ϕq , ψ) q-version of the unnormalized chain complex functor 154
Cq(X) ∞-complex associated to a simplicial module X 156

C unnormalized chain complex functor up to homotopy 150

N normalized chain complex functor up to homotopy 150
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Braid arrangement

F , G, H set compositions or faces 306
(F,C), (G,D) linear set compositions or directed faces 330
X, Y set partitions or flats 306
L, M linear set partitions or directed flats 308
F ·G concatenation of the set compositions F and G 309
F |S restriction of the set composition F to the subset S 309
l1 · l2 ordinal sum, or concatenation, of the linear orders l1 and l2 250
l|S restriction of the linear order l to the subset S 250
X|S restriction of the set partition X to the subset S 310
X ⊔ Y union of the set partitions X and Y 310
L|S restriction of the linear set partition L to the subset S 310
L ⊔M union of the linear set partitions L and M 310
(C1,D1) ≤ (C2, D2) partial order on pairs of linear orders 327
(F,C) ≤ (G,D) partial order on linear set compositions 308
X ≤ Y partial order on set partitions (Y refines X) 308
L ≤M , L ≤′ M partial orders on linear set partitions 308
supp(F ) support of the set composition F 308
supp(F,C) support of the linear set composition (F,C) 309
base(F,C) base of the linear set composition (F,C) 309
base(L) base of the linear set partition L 309
type(F ) type of the set composition F 308
Hij hyperplane xi = xj in the braid arrangement 311
Σ[I ] poset of faces of the braid arrangement in RI 312
L[I ] set of chambers of the braid arrangement in RI 312
Π[I ] lattice of flats in the braid arrangement in RI 313
−→
Σ[I ] set of directed faces in the braid arrangement in RI 330
−→
Π[I ] set of directed flats in the braid arrangement in RI 330
C(n) canonical linear order on the set [n] 312

F face opposite to the face F 312
FG product of the faces F and G 317
E ∨ F join of the faces E and F (if it exists) 318
K ·X action of the face K on the flat X 319
F ∼ G equivalence relation on faces 319
(G,D) ∼ (F, C) equivalence relation on directed faces 330
K · (G,D) left action of the face K on the directed face (G,D) 333
(F,C) ·G right action of the face G on the directed face (F,C) 336
X ·M left action of the flat X on the directed flat M 336
L ·X right action of the flat X on the directed flat L 336
Ψ(F,C) top-dimensional cone of the directed face (F,C) 331
Ψ(L) top-dimensional cone of the directed flat L 332
Star(K) star of the set composition K in the poset of faces 338
Star(X) star of the partition X in the lattice of flats 340
LF set of chambers containing F 322
C −D − E minimum gallery 320
pF Tits projection map 320
bS|T break map for the vertex S|T 338
jS|T join map for the vertex S|T 338
bK break map for the face K 338
jK join map for the face K 338
Des(C,D) set of descents of the pair of chambers (C,D) 325



758 NOTATION INDEX

gDes(C,D) set of global descents of the pair of chambers (C,D) 325
Inv(C,D) inversion set of the pair of chambers (C,D) 321
Inv(F,G) inversion set of the pair of faces (F,G) 323
dist(C,D) gallery distance between chambers C and D 320
d(C,D) Weyl-valued distance between chambers C and D 321
dist(F,G) distance between faces F and G 322
distA

f (C,D) weighted additive distance between chambers C and D 341

distQ
f (C,D) weighted multiplicative distance between chambers C and D 342

distA
f (F,G) weighted additive distance between faces F and G 345

distQ
f (F,G) weighted multiplicative distance between faces F and G 345

〈C,D〉 bilinear form on chambers 355
〈(F,C), (G,D)〉 bilinear form on directed faces 357
〈F,G〉 bilinear form on faces 358
〈T,U〉 bilinear form on the space spanned by subsets of S 360
〈L,F 〉 pairing between directed flats and faces 437

Simplicial complexes

∆[n−1] simplex of dimension n− 2 316
∆V simplex with vertex set V 314
k simplicial complex 314
Stark(K) star of the face K in the simplicial complex k 315
(k, ϕ) balanced set simplicial complex 315
∆(P ) reduced order complex of the poset P 474
∆ morphism of monoids sgP → K 477

Relations, posets, graphs, trees

Cn chain of length n in a poset 466
rank(x) rank of x in a graded poset 466
[x, y] interval in a poset 466
(P, λ) set-graded poset 466
S(x, y) set of labels of any saturated chain from x to y in a set-graded poset 467
λ(C) set composition associated to the chain C in a set-graded poset 467
2I Boolean poset on the set I 258
L(I) poset of vector subspaces of kI 468
Grs(I) Grassmannian of s-planes 468
p1 ⊔ p2 union of the posets p1 and p2 444
p|S restriction of the poset p to the subset S 444
H(p) Hasse diagram of the poset p 451
C(p) comparability graph of the poset p 451
g1 ⊔ g2 union of the graphs g1 and g2 450
g|S restriction of the graph g to the subset S 450
L(g) lattice of contractions of the graph g 676
f |S restriction of the rooted forest f to the subset S 453
δ(f) depth-first linear order of f 455

f reverse of the planar rooted forest f 457
W (f, c) planar rooted forest associated to the cut c of f 457
δ(f, c) depth-first composition associated to the cut c of f 457
r|S restriction of the relation r to the subset S 460
r1 ⊔ r2 union of the relations r1 and r2 460
b1 ⊔ b2 union of the Boolean algebras b1 and b2 462
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b|S restriction of the Boolean algebra b to the subset S 462
Ψ(r) subset of RI associated to the relation r on I 463
Φ(R) relation on I associated to the subset R of RI 463
L(t) set of partitions associated to the tree t 677
R(t) set of partitions associated to the tree t 678

Closure operators

c closure operator 477
c1 ⊕ c2 direct sum of the closure operators c1 and c2 478
cA:B minor 478
m matroid 478
g convex geometry 479
t topological closure operator 481
tr closure operator of the preposet r 483
Pg poset of convex sets of the convex geometry g 484
Pc poset of closed sets of the closure operator c 485

Schubert statistic and cocycle

ǫ(S) signature of the subset S 143
ǫ(S, T ) signature of the pair of disjoint subsets S and T 147
Schn(S) set underlying the Schubert statistic 26
schn(S) Schubert statistic 26

schA
n (S, f) weighted additive Schubert statistic 31

schQ
n (S, f) weighted multiplicative Schubert statistic 31

brdA
d,e additive braid coefficient 32

brdQ
d,e multiplicative braid coefficient 32

d(f) sequence of cardinalities of the fibers of f : I → [r] 32
invA

f (σ) additive inversion statistic 33

invQ
f (σ) multiplicative inversion statistic 33

SchS,T (l) set underlying the Schubert cocycle 290
schS,T (l) Schubert cocycle 290

schA
S,T,f (l) weighted additive Schubert cocycle 348

schQ
S,T,f (l) weighted multiplicative Schubert cocycle 348

brdA
S,T,f additive braid coefficient 348

brdQ
S,T,f multiplicative braid coefficient 348

SchS,T (H) set underlying the Schubert cocycle on faces 351
schS,T (H) Schubert cocycle on faces 351
schA

S,T,f (H) weighted additive Schubert cocycle on faces 352

schQ
S,T,f (H) weighted multiplicative Schubert cocycle on faces 352

Fock functors

K, K∨ full Fock functor 520, 523

K, K
∨

bosonic Fock functor 520, 523

K−1, K
∨
−1 fermionic Fock functor 556

Kq, K
∨
q deformed full Fock functors 549

K0, K
∨
0 free Fock functor 550

KV , K∨
V decorated full Fock functor 601

KV,q , K
∨
V,q deformed decorated full Fock functor 625
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KV , K
∨
V decorated bosonic Fock functor 601

KV,−1, K
∨
V,−1 decorated fermionic Fock functor 625

KV,0, K
∨
V,0 decorated free Fock functor 627

KV,v decorated full Fock functor with creation 611
K∨

V,f decorated full Fock functor with annihilation 611

KV,v decorated bosonic Fock functor with creation 615

K
∨
V,f decorated bosonic Fock functor with annihilation 615

KV,q,v deformed decorated full Fock functor with creation 628
K∨

V,q,f deformed decorated full Fock functor with annihilation 628
KV,R, K∨

V,R decorated full Fock functor for a Yang–Baxter operator R 632

K(r) colored full Fock functor 636

(K(r))∨ colored full Fock functor 638
KQ, K∨

Q colored full Fock functor 637, 638

KQ, K
∨
Q colored bosonic-fermionic Fock functor 639

The image functor.

ℑ (co)image of the norm transformation 535
ℑq anyonic Fock functor 558
ℑV (co)image of the decorated norm transformation 606
ℑV,q decorated anyonic Fock functor 626
ℑV,−1 decorated fermionic Fock functor 627
ℑV,0 decorated free Fock functor 627
ℑV,v,f decorated bosonic Fock functor with creation-annihilation 616
ℑV,q,v,f decorated anyonic Fock functor with creation-annihilation 629
ℑV,R decorated anyonic Fock functor for a Yang–Baxter operator R 632
ℑQ colored anyonic Fock functor 644

Structure transformations.

ϕ, ψ lax and colax structure maps of the functor K 520
ψ∨, ϕ∨ lax and colax structure maps of the functor K∨ 523
bϕ and bψ conjugate of ϕ and ψ 537
ϕ, ψq lax and colax structure maps of the functor Kq 548
ψ∨

q , ϕ∨ lax and colax structure maps of the functor K∨
q 549

ϕb(p,r), b(p,r)ϕ conjugate of the lax structure map ϕ 558

ψ
b(p,r)
q , b(p,r)ψq conjugate of the colax structure map ψq 558

ϕ(r), ψ
(r)
Q lax and colax structure maps of the functor K(r) 636, 637

(ψ
(r)

Qt
)∨, (ϕ(r))∨ lax and colax structure maps of the functor (K(r))∨ 638

(ϕ(r))b(P,R), b(P,R)(ϕ(r)) conjugate of the lax structure map ϕ(r) 646

(ψ
(r)
Q )b(P,R), b(P,R)(ψ

(r)
Q ) conjugate of the colax structure map ψ

(r)
Q 646

Morphisms between Fock functors.

κ : K ⇒ K∨ norm transformation 532

κ : K ⇒ K
∨

norm transformation 533
κq : Kq ⇒ K∨

q q-norm transformation 553

κ−1 : K−1 ⇒ K
∨
−1 norm transformation 556

κ : KV ⇒ K∨
V decorated norm transformation 605

κ : KV ⇒ K
∨
V decorated norm transformation 606

κq : KV,q ⇒ K∨
V,q deformed decorated norm transformation 626

κQ : KQ ⇒ K∨
Q colored norm transformation 642

θ : K ⇒ K half-twist transformation 537
θq : K ⇒ K deformed half-twist transformation 559
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θQ : K(r) ⇒ K(r) colored half-twist transformation 648

Fock spaces.

KV (E), K∨
V (E), KV,q(E), K∨

V,q(E) full Fock space 600
ℑV,q(E) anyonic Fock space 600

KV (E), ℑV (E), K
∨
V (E) bosonic Fock space 600

KV,−1(E), ℑV,−1(E), K
∨
V,−1(E) fermionic Fock space 600

KV,0(E), ℑV,0(E), K∨
V,0(E) free Fock space 600

Related functors.

L left adjoint of a Fock functor 588
R right adjoint of a Fock functor 587
Q right adjoint of a Fock functor 591

R right adjoint of a Fock functor 583

Q right adjoint of a Fock functor 591
L∨ right adjoint of a Fock functor 588
R∨ left adjoint of a Fock functor 597
Q∨ left adjoint of a Fock functor 592

R
∨

left adjoint of a Fock functor 597

Q
∨

left adjoint of a Fock functor 596
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of a simplicial complex, 315

pair of, 406

species of, 312

wall of, 312

closed set

of a closure operator, 464, 480

of a convex geometry, 480

of a matroid, 480

of a topology, 481

closure operator, 464, 477

closed set of, 480

cocycle on, 479

coloop in, 478

direct sum of, 478

ground set of, 478

Hopf monoid indexed by, 478

loop in, 478

loopless, 480

matroid as a, 478

minor of, 478

species of, 478

topological, 481

coalgebra of a set, 88, 257

coalgebroid, 186

coboundary map, 52

cochain complex, 52

cohomology of, 54

cocommutative comonoid, 11

alternative description, 12

as a double comonoid, 180

cocycle

descent, 304, 326

low dimensional, 294

multiplicative, 297

on closure operators, 479

Schubert, 291, 301

Schubert (on faces), 351, 417

coderivation, 56, 274

graded, 53

cofree

coalgebra, 48

cocommutative coalgebra, 48

cocommutative comonoid, 378, 396
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cocommutative Hopf monoid on a
positive monoid, 378

comonoid on a positive species, 372
Hopf monoid on a positive monoid,

376

coherence

for a 2-monoidal category, 167
for a monoidal category, 18

coherent exponential species with
restrictions, 262

cohomology
functor, 54, 151, 153

Hochschild (of algebras), 54

of a (co)monoid in species, 242
of a cochain complex, 54

of coalgebras, 55

of linearized comonoids in species, 294
colax monoidal functor, 62

double, see double colax monoidal
functor

operad, 131
triple, 218

colored comonoid, 492

colored Fock functor
anyonic, 644

bosonic-fermionic, 639

free, 639
full, 639

colored monoid, 491

colored species, 488
braidings on, 489

Cauchy product on, 489

component of, 488
connected, 493

Hadamard product on, 497

positive, 494
structures, 488

commutation relation

on anyonic Fock space, 630
on bosonic Fock space, 609

on fermionic Fock space, 610, 629

commutative monoid, 11
alternative description, 12

as a double monoid, 180

commutative operad, 684
homotopy version of, 153

positive, 673

comodule
in species, 242

over a comonoid, 9

comodule-comonoid, 10
comodule-monoid, 10

comonoid

as a colax functor, 76, 263
bicomodule over, 9

cocommutative, see cocommutative
comonoid

cofree, see cofree

colored, 492

comodule over, 9
connected, 266

double, see double comonoid

in a monoidal category, 7
in graded vector spaces, 24

in species, 241
noncounital, 8

opposite, 13

positive, 267
triple, 216

trivial positive, 368
component

of a colored species, 488

of a species, 236
composite

of (co)lax functors, 72
of adjunctions, 103

of bilax functors, 73, 202

of braided lax functors, 75
of double colax functors, 202

of double lax functors, 202
of Hopf lax functors, 96

of operad-lax functors, 132

composition, 306
linear set, see linear set composition

partial order on, 308
quasi-shuffle of, 573

refinement of, 308

set, see set composition
support of, 308

weak, 306, 714
concatenation

of functions, 714

of linear orders, 250
of set compositions, 309

cone, 313, 353, 661
as a preposet, 464

limiting, 661

top-dimensional, 313
as a poset, 464

directed flat as a, 331
in a flat, 313

universal, 661

connected
q-bialgebra, 36

(co, bi)monoid, 266

bimonoid, 248
colored (co, bi)monoid, 493, 494

colored species, 493
species, 265

Connes–Kreimer Hopf algebra, 579

construction
op and cop, 14, 35, 560

contragredient, 107, 203, 230
Grothendieck, 668

lax, colax and strong, 704

contraction, 257
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contragredient

construction, 107, 203, 230
of a 2-monoidal category, 204

of a 3-monoidal category, 231

of a n-monoidal category, 231
of a braided monoidal category, 107

of a functor, 47, 108

of a graded vector space, 24
of a monoidal category, 107

of a monoidal functor, 109

of a natural transformation, 108
of a species, 252

of an adjunction, 109

of the Fock functors, 524, 549, 605,
639

of the free monoid functor, 379

contravariant

(m, m)-functor, 203, 230
2-strong functor, 203

n-strong functor, 230
bilax functor, 107

bistrong functor, 107

strong functor, 107
convex geometry, 479

Hopf monoid indexed by, 479

loopless, 480
species of, 479

convex set, 480

convolution, 10
algebra, 10

comma category, 67, 80

identities, 93, 724
lax monoidal functor, 723

generalizes convolution monoid,
724

monoid, 10
as a convolution comma category,

80

as the image of a lax functor, 80

of natural transformations, 92, 722
unit, 10, 90

cooperad, 239
general definition, 685

nonsymmetric, 695

of graphs, 676
of rooted trees, 677

pointing of, 693

positive, 675
positive associative, 676

positive commutative, 675

preLie, 677
Zinbiel, 676

coradical filtration

of a positive comonoid, 269
of cofree objects, 396

of quasi-symmetric functions, 574

of the Hopf algebra of permutations,
570

of the Hopf monoid of directed faces,
422, 425

of the Hopf monoid of directed flats,
430

of the Hopf monoid of faces, 415, 419

of the Hopf monoid of flats, 427
of the Hopf monoid of pairs of

chambers, 410

coring, 186
counit

of a comonoid, 7
of an adjunction, 659

Coxeter complex, 315
Coxeter group, 305

creation operator
on a graded vector space, 55

on anyonic Fock space, 629, 633
on bosonic Fock space, 608

on full Fock space, 608
crossed complex, 150

cubical construction, 192
cup product, 137, 138, 153

cycle, 371
cyclic group, 371

D
decomposition, 307

degeneracy map, 139
Delannoy path, 50

dendriform
algebra, 120

lax monoidal functor, 121
monoid, 119

operad, 127
derivation, 56, 274

graded, 53
descent

and lattice path, 303
cocycle, 304, 326

enumerator of, 471
global, see global descent

of a pair of chambers, 325
of a pair of faces, 328

of a permutation, 324, 360
descent algebra, 328

diagonal, 13
dialgebra, 337

diassociative operad, 693
differential form, 345

differential graded
(co, bi)algebra, 53, 149

vector space, 52
dimonoid, 335

direct limit, 44
directed face, 330

as a bimodule over faces, 336
as a dimonoid, 336

as a left module over faces, 333
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as a linear set composition, 330

bilinear form on, 357
Hopf monoids indexed by, 419

partial order on, 334

species of, 330
top-dimensional cone of, 331

directed flat, 330, 353
as a bimodule over faces, 336

as a dimonoid, 336

as a left module over faces, 333
as a linear set partition, 330

as a top-dimensional cone, 331
Hopf monoids indexed by, 429

pairing with faces, 437

partial orders on, 334
species of, 330

disposition, 307
into two blocks, 251

distance

between chambers, 320
between faces, 322

gallery, 320
weighted, see weighted distance

Weyl-valued, 321

distributive lattice, 482
Dold–Kan theorem, 151

double colax monoidal functor
⋄-braided, 192

⋆-braided, 193

alternative description, 195
as 1-cells of a 2-category, 191

between 2-monoidal categories, 191
composite of, 202

generalizes braided colax, 192

generalizes double comonoid, 191
morphism between, 191

preserves double comonoid, 191
double comonoid

alternative description, 183

cocommutative, 182
cocommutative comonoid as a, 180

in a 2-monoidal category, 180
double lax monoidal functor

⋄-braided, 192

⋆-braided, 193
alternative description, 195

as 1-cells of a 2-category, 191

between 2-monoidal categories, 190
composite of, 202

generalizes braided lax, 192
generalizes double monoid, 191

morphism between, 191

preserves double monoid, 191
double monoid

alternative description, 183
commutative, 182

commutative monoid as a, 180

in a 2-monoidal category, 179

down operator on species, 272

duality functor
on colored species, 490
on graded vector spaces, 24

on multigraded vector spaces, 40
on species, 252

on vector spaces, 108

E

Eckmann–Hilton argument, 12, 171, 180,
181, 192

Eilenberg–Zilber map, 137–159

Eilenberg–Zilber theorem, 144, 151
endomorphism operad

associated to a functor, 128
associated to an object, 125

enrichment, 7, 706, 708

enumerator
of chains, 470

of descents, 471, 472, 482, 578
of flags, 472
of poset partitions, 482, 577

equivalence
adjoint, 660

in a 2-category, 699
of categories, 660

of monoidal categories, 699
equivalence relation

chain homotopy as, 53

Hopf monoids indexed by, 462
on directed faces, 330

on faces, 319
set partition as, 462
simplicial homotopy as, 141

Euler characteristic, 29, 250
Eulerian q-Hopf algebra, 35, 561, 563

exponential species, 237
and polynomials in one variable, 528
as a Hopf monoid, 250

as a self-dual Hopf monoid, 253
as a species with restrictions, 262

as an operad, 684
colored, 494
decorated, 238, 252, 253, 385, 529,

562, 604
is cofree cocommutative, 251, 378
is free commutative, 251, 371

linearized (bi)comodules over, 261
positive, see positive exponential

species

signed, 287, 385, 494
up-down operators on, 274

exterior algebra, 47, 363, 562, 610

on one generator, 561
exterior power, 287

F

face, 311
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bilinear form on, 358

dimension of, 315
directed, see directed face

distance function on, 322

Hopf monoids indexed by, 414
maximal, see chamber

of a simplicial complex, 314
opposite, 312

pairing with directed flats, 437

species of, 312
star of, 315

support of, 313
face map, 139

factorial, 310

Farkas’ lemma, 464
feasible set, 480

flat, 313
as a closed set of a matroid, 480

as an equivalence relation, 462

Hopf monoids indexed by, 426
module, 43, 44

species of, 313
top-dimensional cone in a, 313

Fock functor, 519

Q-, see Q-Fock functor
q-, see q-Fock functor

adjoint of, 581–598
anyonic, 558

bosonic, 519

colored
anyonic, 644

bosonic-fermionic, 639
free, 639

full, 639

decorated, 601
anyonic, 625

bosonic, 601
deformed full, 625

fermionic, 625

free, 627
evaluated on a Hopf monoid, 526–532

fermionic, 519, 556
free, 550

full, see full Fock functor

Fock space
algebraic, 608

anyonic, 627

bosonic, 608
combinatorial, 610

fermionic, 610
free, 630

full, 608

generalized, 610
formal power series, 23

free
algebra, 48, 589

algebra with divided powers, 48

bialgebra on a coalgebra, 49

bimonoid on a comonoid, 199

commutative algebra, 48
commutative Hopf monoid on a

positive comonoid, 370

commutative monoid on species, 370

commutative twisted algebra, 598
Hopf algebra on a coalgebra, 49

Hopf monoid on a positive comonoid,
368

Lie algebra, 45, 543, 583, 586
Lie monoid on species, 393

module, 44

monoid, 199
as a Hopf monoid, 367

on r generators, 636

on a species, 365, 691
monoid functor, 198, 365

operad, 199

operad module, 689
operad-algebra, 691

operad-monoid, 691
restricted Lie algebra, 542

twisted algebra, 589, 590, 598

Zinbiel algebra, 545
Frobenius monoidal functor, 84

full Fock functor, 519

as a Zinbiel lax monoidal functor, 544
colored, 639

decorated, 601

deformed, 548
half-twist transformation on, 538, 559,

648

norm transformation between, 532,
552, 642

full subcategory, 660
fully nested

composition, 307

partition, 307
functor

2-, see 2-functor

Hom, 66, 69
analytic, 602

between 2-categories, 699
chain complex

monoidal structure on, 146

normalized, 146
unnormalized, 146

cohomology, 54, 151, 153

colimit of, 18, 19, 524, 661, 681
colored signature, 498, 640, 641

divided power, 602

dual linearization, 195
duality, see duality functor

Fock, see Fock functor

free monoid, 198, 365
geometric realization, 141

Hadamard, see Hadamard functor

homology, 54, 151, 153
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image, 114, 117

inclusion, 266, 267, 660, 688, 694
left exact, 541, 542, 591

limit of, 665, 685
linear, 6

linearization, 87, 254
monoidal, see monoidal functor

preserves colimits, 661
primitive element, 394

restriction, 126, 130, 185
right exact, 542

self-dual, 47, 381, 387, 398, 507, 535,
607, 644

signature, 289, 498, 550, 554, 556, 628

singular complex, 141
tensor product, 4, 62, 97, 128

trivialization, 582, 586

G

gallery, 320
connected, 320

distance, 320
metric, 320

minimum, 320
Galois

connection, 464
extension, 43

gate property, 321, 322, 347, 353
generating function, 23

geometric lattice, 485
global ascent, 530

global descent
of a pair of chambers, 325, 411

of a permutation, 325, 531, 542, 543
graded

(co, bi, Hopf) algebra, 24
commutative algebra, 38

Lie algebra, 38
operad-algebra, 127

operad-algebra (signed and unsigned),
127

vector space, see graded vector space

graded vector space, 21
braidings on, 23, 34

connected, 36
contragredient of, 24

dual, 24
monoidal structures on, 22

multi, see multigraded vector space
positively, 37

with creation-annihilation operators,
55

graph, 186
acyclic orientation of, 452

as a 2-monoidal category, 172, 176,
185, 195, 710

as a relation, 461

bipartite, 710

chromatic symmetric function of, 578

comparability, 451
complete, 174

cooperad of, 676
directed, 172

discrete, 174, 451
Hopf algebra structure on, 578

proper coloring of, 451
simple, 450
species (as a Hopf monoid), 450

stable partition of, 451
Grassmann manifold, 30

Grassmannian, 468
Gray monoid, 700

greedoid, 479
Grothendieck construction, 668

group
coinvariants, 42, 663

invariants, 42
simplicial, 139, 153

groupoid, 663

H

Hadamard functor
as a normal bilax functor, 276, 288,

497

colored version, 497
deformed version, 288
self-duality of, 277, 288, 497

up-down version, 627
Hadamard product

internal End for, 279
internal Hom for, 26, 278, 280

of bimonoids in species, 277
on colored species, 497

on formal power series, 23
on graded vector spaces, 22

on matrices, 30
on set species, 255

on species, 238
with up-down operators, 627

on species with restrictions, 281
half-space, 311

supporting hyperplane of, 311
half-twist transformation, 538

colored, 648
deformed, 559

homology
functor, 54, 151, 153

of a chain complex, 53
of a simplicial module, 152

homomorphism, 700
homotopy

category
of chain complexes, 53

of simplicial modules, 141
of simplicial sets, 142

of topological spaces, 141
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chain, 53

commutative monoid, 723
monoid, 716

up to, 709

Hopf algebra, 24
0-, see 0-Hopf algebra

Q-, see Q-Hopf algebra

q-, see q-Hopf algebra
deformation of, see q-Hopf algebra

divided power, 25, 528, 609

q-version, 35, 561
exterior, 47, 363, 562

Faà-di-Bruno, 580

of Connes–Kreimer, 579
of Connes–Kreimer

(noncommutative), 579

of edge-labeled graded posets, 577

of endofunctions, 580
of noncommutative symmetric

functions, 571

of pairs of permutations, 568

of permutations, 530, 562, 568, 577,
579

of permutations (commutative), 580

of planar rooted forests, 579

of polynomials in one variable, 25,
528, 609

of quasi-symmetric functions, 434, 571

of symmetric functions, 575

of symmetric functions in
noncommuting variables, 575

of unlabeled planar binary trees, 579

self-dual, 47, 530, 536, 558

shuffle, 45, 363, 529, 604
symmetric, 45, 363, 529, 604

tensor, 45, 363, 529, 604

Hopf algebroid, 186
Hopf cooperad, 695

positive, 693

Hopf lax functor, 89
antipode of, 89

composite of, 96

generalizes Hopf monoid, 95
preserves Hopf monoid, 96

Hopf monoid

Q-, see Q-Hopf monoid
q-, see q-Hopf monoid

as a Hopf lax functor, 95

in a braided monoidal category, 11
on T0-topologies, 481

on Boolean algebras, 462

on chambers, 403
on closure operators, 443, 478

on convex geometries, 479

on directed faces, 401, 419
on directed flats, 401, 429

on EL posets, 443

on equivalence relations, 462

on faces, 401, 414

on flats, 401, 426, 460

on linear orders, 401, 403

on linear set compositions, 401, 419

on linear set partitions, 401, 429

on matroids, 443, 478

on pairs of chambers, 401, 406

on pairs of linear orders, 401, 406

on planar rooted forests, 443, 454

on posets, 443, 444, 460

on preposets, 443, 450

on relations, 443, 460

on rooted forests, 443, 453

on set compositions, 401, 414

on set partitions, 401, 426, 460, 462,
463

on set-graded posets, 443, 469

on simple graphs, 443, 450, 460

on topologies, 443, 481

self-dual, 253, 277, 381, 536, 555, 558

Hopf operad, 691, 694

linearized operad as, 694

positive, 693

hyperplane, 311

I

image

functor, 114, 117

of the Q-norm, 507, 644

of the q-norm, 558

of the decorated q-norm, 626

of the decorated norm, 606

of the norm, 381, 535

of the signed norm, 387, 556

integration over a gallery, 344

interchange axiom

in a 3-monoidal category, 208

pictorial representation, 210

interchange law

for graded vector spaces, 176, 177

for species, 275

in a 2-monoidal category, 162

middle-four, 163

pictorial representation, 164

internal End

for the Hadamard product, 279

internal Hom, 16

for substitution, 26, 689

for the Cauchy product, 26, 272

for the Hadamard product, 26, 278,
280

interval of a linear order, 676

inversion set, 28, 321, 323

isomorphism-dense subcategory, 660

iterated

coproduct, 36, 372, 439, 446

product, 36, 366
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J

Jacobi identity, 121, 393, 543, 674
join

in a partition lattice, 308

of Coxeter complexes, 315
of simplicial complexes, 315

join map
for linear set compositions, 340
for linear set partitions, 340

for set compositions, 337
for set partitions, 340

K
Kähler manifold, 30

Kan
complex, 142
condition, 142

Kolmogorov topology, 481
Künneth formula, 152

Kuratowski’s axioms, 481

L

labeled
graph, 578

poset (edge), 577
poset (vertex), 577

Lah number, 308

lattice, 176, 485
congruence, 425

distributive , 482
geometric, 485
integer, 26

meet-distributive, 484
of contractions, 676

of flats, 485
partition, 308
supersolvable, 471

lax 2-monoidal category, 163
lax monoid, 701, 716, 717

lax monoidal category, 717
lax monoidal functor, 62

dendriform, 121
double, see double lax monoidal

functor
Lie, 121

operad, see operad-lax functor
triple, 218

Zinbiel, 122
Lazard’s theorem, 44
left regular band, 258, 319, 337, 359

free, 260
length

of a chain, 320, 466
of a permutation, 28, 321

Lie

lax monoidal functor, 121
monoid, 16, 393

operad, 393–395, 674

limiting cone, 661

linear order
concatenation of, 250, 264

deconcatenation of, 254
deshuffle of, 250

Hopf monoids indexed by, 403
ordinal sum of, 250, 673

restriction of, 264
shuffle of, 253
species of, see linear order species

linear order species, 237
as a Hopf monoid, 250, 290, 403, 499

as a species with restrictions, 262
as an operad, 684

colored, 499
is free on one generator, 251, 369

pointing of, 631
up-down operators on, 275, 293

linear set composition, 307
as a directed face, 330

base of, 309
break map on, 340

Hopf monoids indexed by, 419
join map on, 340

partial order on, 308
support of, 309

linear set partition, 307
as a directed flat, 330

base of, 309
break map on, 340

Hopf monoids indexed by, 429
join map on, 340

partial orders on, 308
quasi-shuffle of, 310

restriction of, 310
union of, 310

linearized
bimonoid, 257, 263

comodule, 257
comodule-monoid, 257

comonoid, 256, 263
monoid, 256, 263
operad, 672

species, 254
log-antisymmetric matrix, 30, 40

loop
in a category, 709

in a space, 709
space, 709

looping principle, 708, 709

M

Mac Lane’s
coherence theorem, 18

simplicial category, 713
Mac Lane–Steinitz exchange axiom, 478

Malvenuto-Reutenauer Hopf algebra, see
Hopf algebra of permutations
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map

Alexander–Whitney, 137–159
base, 309, 436

boundary, 52

break, 337
coboundary, 52

degeneracy, 139
descent, 324

Eilenberg–Zilber, 137–159

face, 139
global descent, 324, 411

interchanging of coordinates, 410
join, 337

norm, 43, 46

projection, 320
restriction, 260

simplicial, 315

source, 173
support, 308, 313, 435

switch, 408, 435, 440, 512, 515
symmetrization, 46

target, 173

trace, 43
type, 308, 316

matrix
as a 1-form on a complex, 345

braidings indexed by, 40, 489

Hadamard product on, 30
log-antisymmetric, 30, 40

of Cartan type, 635, 654

matroid, 478
Hopf monoid indexed by, 478

isthmus in, 478
loop in, 478

loopless, 480

species of, 478
split, 478

meet-distributive lattice, 484
middle-four interchange, 163

Milnor and Moore’s formulas, 249

modification, 699
module

flat, 43, 44

free, 42, 365, 686
in species, 242

over a monoid, 9
over an operad, 689

projective, 43

module-comonoid, 10
module-monoid, 10

monic-epi factorization, 113
monoid

as a lax functor, 76, 263

bimodule over, 9
colored, 491

commutative, see commutative
monoid

connected, 266

dendriform, 119

di-, see dimonoid
double, see double monoid

free, see free monoid

homotopy, 716
homotopy commutative, 723

in a monoidal category, 7
in graded vector spaces, 24

in species, 239, 240

in species with restrictions, 261
lax, 716, 717

Lie, 16, 393

module over, 9
nonunital, 8

of type (i, n − i), 222
on set-balanced simplicial complexes,

443, 475
operad, 125

opposite, 13
positive, 267

pseudo, see pseudomonoid

strong, 716
triple, 216

trivial positive, 376

type of, 119
Zinbiel, 120

monoidal 2-category, 200, 228, 230, 700
semistrict, 700

monoidal category, 3

2-, see 2-monoidal category
3-, see 3-monoidal category

n-, see n-monoidal category

(co)monoid in, 7
abelian, 7

adjunction between, 699
as a pseudomonoid, 201, 704

associativity constraint in, 4

braided, see braided monoidal
category

Cartesian product of, 4

coherence for, 18

equivalence of, 699
higher, 220

internal Hom in, 16
lax, 186, 685, 717

linear, 7

nonunital, 8
opposite, 4

pentagon axiom in, 3

self-dual, 110
strict, 4

symmetric, 5
tensor product of, 4

transpose of, 4

triangle axiom in, 4
unit constraint in, 4

unit object of, 4

with duals, 24
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monoidal functor

n-strong, 226
adjunction of, 100
bilax, see bilax monoidal functor

bistrong, 64, 85
braided bilax, 66

braided colax, 65
braided costrong, 85
braided lax, 65

braided strong, 85
colax, see colax monoidal functor

colax-colax, 193
colax-colax-colax, 217
costrong, 64

costrong-costrong, 193
double colax, see double colax

monoidal functor

double lax, see double lax monoidal
functor

Frobenius, 84

lax, see lax monoidal functor
lax-colax, 193
lax-colax-colax, 217

lax-lax, 193
lax-lax-colax, 217

lax-lax-lax, 217
lax-strong, 193
of type (m, n − m), 225

strong, 64
strong-costrong, 193

strong-strong, 193
monoidal objects, 701
monoidales, 701

morphism, 700
multigraded vector space, 39

braiding on, 40
Cauchy product on, 39

N
Nichols algebra, 47, 562, 633

of diagonal type, 40, 633, 653
noncommutative Connes–Kreimer Hopf

algebra, 579

noncommutative symmetric function, 571
complete, 572

ribbon, 572
norm map, 43, 46
norm transformation, 380, 532

q-, see q-norm transformation
colored, 506, 642

decorated, 605
deformed, 386, 552
self-duality of, 381, 506, 534, 553, 642

normalization theorem, 151

O
operad, 239

algebra

graded (signed and unsigned), 127

super, 127
associative, 684

colax monoidal functor, 131
commutative, 684

comonoid, 127
dendriform, 127

diassociative, 693
endomorphism, see endomorphism

operad

general definition, 684
Hadamard product of, 692

Hopf, see Hopf operad
lax functor, see operad-lax functor

Lie, 393–395, 674
linearized, 672

module, 689
monoid, 125
nonsymmetric, 695

of an associative algebra, 674
permutative, 674

pointing of, 693
positive, 670

positive associative, 673
positive commutative, 673

preLie, 677
representation of, 129

right module over, 396
set, 672

symmetric, 695
Zinbiel, 673

operad-lax functor, 129
composite of, 132

generalizes operad-monoid, 131
operad-monoid

as an operad-lax functor, 131
operadic

composition, 670
unit, 670

opposite
2-monoidal category, 164

3-monoidal category, 209, 221
braiding, 5

comonoid, 13
monoid, 13

monoidal category, 4
of a face, 312

order complex, 474
ordered set partition, 307

ordinal sum, 673

P

pair of chambers
descent of, 325

global descent of, 325, 411
Hopf monoids indexed by, 406

pairing between directed flats and faces,
437
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partage, 307

partially defined surjections, 679
partition, 306

into ordered blocks, 307

linear set, see linear set partition
set, see set partition

Pascal’s recursion, 29
pentagon axiom, 3

permutation

as an unordered list of cycles, 371
descent of, 324, 360

global descent of, 325, 531, 542, 543
inversion of, 571

inversion set of, 28, 33, 321

length of, 28, 321
longest, 537, 559, 648

shuffle, 323
weak Bruhat order on, 326, 570

permutative operad, 674

planar rooted forest, 453
cut of, 457

depth-first composition of, 457
depth-first linear order on, 455

left of partial order on, 454

opposite of, 457
species (as a Hopf monoid), 454

underlying rooted forest of, 454
planar rooted tree, 453

underlying rooted tree of, 454

Poincaré polynomial, 29
Poincaré-Birkhoff-Witt theorem, 396

pointed Hopf algebra, 40
pointing

of a positive (co)operad, 693

of a species, 282
of linear order species, 631

Pontrjagin product, 137, 138, 153
poset, 443

as a relation, 461

as a top-dimensional cone, 464
as a topological closure, 483

chain in, 466
comparability graph of, 451

edge-labeled, 577

graded, 466
Hasse diagram of, 444

linear extension of, 447

lower set of, 445
maximal chain in, 466

partition, 448
rank of, 466

reduced order complex of, 474

saturated chain in, 466
set-graded, see set-graded poset

species (as a Hopf monoid), 444
unlabeled, 577

upper set of, 445

vertex-labeled, 577

positive

(co, bi)monoid, 267
associative operad, 673

colored (co, bi)monoid, 494

colored species, 494
commutative operad, 673

cooperad, 675

Hopf cooperad, 693
Hopf operad, 693

operad, 670

part of the coproduct, 267
species, 267

positive exponential species

as a hereditary species, 680
as a positive cooperad, 675

as a positive operad, 673

positive linear order species
as a positive cooperad, 676

as a positive operad, 673

potential difference, 345
preferential arrangement, 307

preorder, 449

preposet, 449
as a cone, 464

as a topological closure, 483

lower set of, 449
species (as a Hopf monoid), 449

presheaf on finite sets, 260

primitive element
functor, 394

of a connected comonoid, 270

of a graded Hopf algebra, 540
of a Hopf algebra, 394

of a Hopf monoid, 394

of a positive comonoid, 269
of cofree objects, 396

of quasi-symmetric functions, 574

of the Hopf algebra of permutations,
530, 531, 570

of the Hopf monoid of directed faces,
422, 425

of the Hopf monoid of directed flats,
430

of the Hopf monoid of faces, 415, 419
of the Hopf monoid of flats, 427

of the Hopf monoid of pairs of
chambers, 410, 411

of the tensor algebra, 45
primitive idempotent, 403

projection map, 320

projective module, 43
pseudomonoid

2-monoidal category as, 201, 704

3-monoidal category as, 229
braided monoidal category as, 230,

705

colax morphism of, 703

in a monoidal 2-category, 701
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lax morphism of, 703
monoidal category as, 201, 704

strong morphism of, 704
symmetric monoidal category as, 230,

705

pull-back diagram, 476

Q

quantum
enveloping algebra, 40, 654
group, 40, 635

linear space, 41, 653
shuffle algebra, 46, 562, 633, 653
symmetric algebra, 633, 653

quasi-shuffle
bialgebra, 50
of compositions, 573

of linear set partitions, 310
of set compositions, 309
of set partitions, 310

quasi-symmetric function, 571
fundamental, 572

monomial, 572

R

rank
closure, 479
of a poset, 466

region under a path, 27
relation, 460

poset as, 461

preposet as, 449
simple graph as, 461

restricted Lie algebra, 542

restriction, 257
functor, 126
of a linear set partition, 310

of a set composition, 309
of a set partition, 310

retraction, 475
rooted forest, 452

cut of, 459

species (as a Hopf monoid), 453
rooted tree, 452, 580, 622

positive species of, 453

S
Schmitt’s

comonoid construction, 261, 281, 450
cooperad construction, 678–680

Schubert cell, 29, 469

Schubert cocycle, 291, 301
on faces, 351, 417

weighted, see weighted Schubert
cocycle

Schubert statistic, 26
as a distance, 346

as an area, 27

as the length of a permutation, 28

weighted, see weighted Schubert
statistic

Schubert symbol, 468, 475

Schur functor, 602, 607

segment, 325
final, 254, 409

initial, 254, 407, 409, 415

self-dual
(m, m)-functor, 231

2-monoidal category, 205

3-monoidal category, 281
n-monoidal category, 231

bilax functor, 110, 205, 277, 288, 497,
550, 555, 556

braided monoidal category, 110, 497
colax-lax adjunction, 110, 280

functor, 47, 381, 387, 398, 507, 535,
607, 644

graded Hopf algebra, 530, 536, 558
Hopf algebra, 47

Hopf monoid, 253, 277, 381, 536, 555,
558

monoidal category, 110
natural transformation, 110, 205, 232,

381, 506, 534, 553, 642

object, 110

semi-simplicial object, 139
semisimple algebra, 403

set composition, 306

blocks (parts) of, 306
break map on, 337

concatenation of, 309

dequasi-shuffle of, 368
Hopf monoids indexed by, 414

join map on, 337

linear, see linear set composition
partial order on, 308

product of, 317

quasi-shuffle of, 309
refinement of, 308

restriction of, 309

shuffle of, 309
support of, 308

type of, 308

set operad, 672
set partition, 238, 306, 313

as a Boolean algebra, 463

as an equivalence relation, 462
blocks (parts) of, 306

break map on, 340

Hopf monoids indexed by, 426
join map on, 340

linear, see linear set partition

partial order on, 308
product of, 319

quasi-shuffle of, 310

refinement of, 308
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restriction of, 310

type of, 308
union of, 310

set species, 236

addition of, 256
categorical coproduct in, 256

categorical product in, 255
monoidal structures on, 255

set-graded poset, 466

Sn EL-labeled, 471
descent enumerator of, 471

EL, 471
flag quasi-symmetric function of, 578

species (as a Hopf monoid), 469

versus graded poset, 466
shifting, 26, 527, 529, 566

shuffle

algebra, 45, 363, 529, 604, 608, 614
of set compositions, 309

shuffle permutation
(s, t)-, 28

T -, 323

signature function, 143
signature functor, 289, 498, 550, 554, 556,

628

colored, 498, 640, 641

simple graph, 450
as a relation, 461

simple Lie algebra, 635
simplex, 314

simplicial

(co, bi)algebra, 139, 149
category, see simplicial category

complex, see simplicial complex
cross product, 144

group, 139, 153

map, 315
module, 139

homology of, 152
tensor product of, 140

object, 139

set, 139, 153
augmented, 715

fibrant, 142

tensor product of, 140
simplicial category

algebraist’s, 713
Mac Lane’s, 713

topologist’s, 713

simplicial complex, 314
balanced, 315, 473

chamber of, 315
colored, 315

face of, 314

join of, 315
labeled, 315

pure, 315

set-balanced, 473

source map, 173

space of decorations, 601
span, 711

species, 236

addition of, 237
braidings on, 239, 283

categorical (co)product in, 237
characteristic of singletons, 237

characteristic of the empty set, 237

colored, see colored species
component of, 236

connected, 265

contragredient of, 252
derivative of, 270

divided set power of, 680
dual, 252

exponential, see exponential species

finite-dimensional, 236
heriditary, 679

higher derivative of, 271

linearized, 254
monoidal structures on, 237

of T0-topologies, 481
of Boolean algebras, 462

of chambers, 312

of closure operators, 478
of cones, 313

of convex geometries, 479

of cycles, 371
of directed faces, 330

of directed flats, 330

of elements, 282, 621, 673, 693
of faces, 312

of finite support, 236
of flats, 313

of linear orders, see linear order
species

of matroids, 478
of permutations, 371

of planar rooted forests, 454

of planar rooted trees, 454
of posets, 444

of preposets, 449
of primitive elements, 269

of relations, 460

of rooted forests, 453
of rooted trees, 453, 580, 622

of set partitions, 463

of set-balanced simplicial complexes,
475

of set-graded posets, 469

of simple graphs, 450
of subsets, see subset species

of top-dimensional cones, 313

of topologies, 481
pointing of, 282

positive, 267

set, see set species



SUBJECT INDEX 783

signed partner of, 289

structures, 236
vector, 236

with balanced operators, 620

with restrictions, 260
with up-down operators, 272

with values in a category, 664

zero, 237
standardization, 26, 527, 529, 566

Stirling number, 307

Stover’s constructions, 526
strong monoid, 716

structures of a species, 236, 488

stuff type, 600
subbimonoid, 471

subcomonoid cogenerated by a subspecies,
471

subset species, 251
and polynomials in two variables, 529

as a Hopf monoid, 251

as the square of the exponential
species, 251

up-down operators on, 621

substitution product

internal Hom for, 26, 689
on formal power series, 23

on graded vector spaces, 22

on set species, 255
on species, 238, 669

super

algebra, 39
commutative algebra, 39

Lie algebra, 39

operad-algebra, 127
vector space, 39

supersolvable lattice, 471

support
map, 308, 313, 435

of a composition, 308

of a face, 313
of a linear composition, 309

of a set composition, 308

Sweedler’s notation, 38, 135, 286
switch map, 408, 435, 440, 512, 515

symmetric algebra, 45, 363, 529, 583, 604,
608

deformed, 47
symmetric function, 575, 586

complete, 361, 576, 586

monomial, 576
noncommutative, 586, see

noncommutative symmetric
function

power sum, 576

quasi, see quasi-symmetric function
ribbon Schur, 361

symmetric group, 305

symmetric monoidal category, 5

as a pseudomonoid, 230, 705

symmetrization map, 46
anti, 47
deformed, 46

symmetry, 5

T
Takeuchi’s formula, 36, 248, 284, 412, 414,

416, 428
target map, 173

tensor algebra, 45, 252, 363, 529, 583, 604,
608, 614

q-, see q-tensor algebra

as a free algebra, 48
deformed, 46, 363, 562
on a coalgebra, 49

tensor objects, 701
tensor product

as a monoidal functor, 97
unbracketed, 17
unordered, 17

topologist’s simplicial category, 713
topology, 481

Hopf monoid indexed by, 481
species of, 481

topos, 117
trace map, 43
transpose

braiding, 5
of a 2-monoidal category, 164

of a 3-monoidal category, 209
of a n-monoidal category, 221
of a monoidal category, 4

triangle axiom, 4
triangulated space, 139

tricategory, 104, 700
trisp, 139
twisted

algebra, 239, 589, 590, 598
Lie algebra, 393, 543

two-fold monoidal category, 163
type

map, 308, 316

of a set composition, 308
of a set partition, 308

U

unbracketed tensor product, 17
unit

constraint, 4

object in a monoidal category, 4
of a monoid, 7

of an adjunction, 659
universal

coefficient theorem, 152

cone, 661
enveloping algebra, 542

quantum, 40, 654
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enveloping monoid, 395
unlabeled

graph, 578
planar binary tree, 579
planar rooted forest, 579

poset, 577
rooted forest, 579
rooted tree, 623

unordered tensor product, 17

up operator on species, 272
up-down operators

on exponential species, 274

on linear order species, 275, 293
on rooted tree species, 623
on species of elements, 621

on subset species, 621

V
Vandermonde’s identity, 70
Varchenko’s formula, 353, 359
vector species, 236

W

wall, 312
weak

2-category, 699

Bruhat order, 326, 570
composition, 306, 714
set composition, 306

weighted distance

additive version, 341
as an integral, 344
between faces, 345

multiplicative version, 342
weighted inversion statistic

additive version, 33

multiplicative version, 33
weighted Schubert cocycle

additive version, 348
as a weighted distance, 348

multiplicative property, 350
multiplicative version, 348
on faces, 352

weighted Schubert statistic
additive version, 31
as a weighted area, 31

multiplicative version, 31

Y
Yang–Baxter operator, 631

Z
Zagier’s formula, 46, 355, 554
Zimmermann’s forest formula, 579

Zinbiel
algebra, 120, 545
lax monoidal functor, 122

full Fock functor as, 544

transforms monoids, 124
monoid, 120
operad, 673
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