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Appendix A contains results on the support recovery of T∗ for both known
A and unknown A. Appendix B contains the data analysis of the IMDB
data set while its supplementary results are collected in Appendix C. Sim-
ulation results on estimation of T∗ and Π∗ are presented in Appendix D
while semi-synthetic simulations to compare document-distance estimation
rates are stated in Appendix E. All the proofs are collected in Appendices
F – I. Appendix J contains the algorithm used for estimating the word-topic
matrix A. Appendix K states guarantees on estimation of A based on some
existing results. Finally, discussion on the `2 convergence rate of estimating
T∗ is stated in Appendix L.

APPENDIX A: RECOVERY OF THE SUPPORT OF T∗

A.1. Support recovery when A is known. We discuss the consistent support recovery
of the estimator T̂mle, and introduce another simple consistent estimator of S∗ = supp(T∗) in
the presence of anchor words.

In light of Theorem 5, establishing consistent support recovery for T̂mle also requires the
other direction, supp(T∗)⊆ supp(T̂mle), for which we provide a simple sufficient condition
below in the presence of anchor words.

PROPOSITION A.1 (Consistent support recovery of T̂mle). Suppose there exists at least
one anchor word jk for each topic k ∈ S∗ such that Π∗jk ≥ 2εjk with εjk defined in (7). Then,
with probability 1− 2p−1,

supp(T∗)⊆ supp(T̂mle).

Furthermore, if additionally (24) holds, then, with probability 1− 2p−1 − 6s−1 − 2K−1,

supp(T∗) = supp(T̂mle).

Proposition A.1 imposes a signal condition on the frequency of the anchor words corre-
sponding to the non-zero topics. Recall εjk from (7) that the signal condition simply requires

Π∗jk &
log(p)

N
, for one anchor word jk of topic k ∈ S∗.

In addition to the above signal condition, if Assumption 1 holds (or equivalently, there
exists at least one anchor word for each of the zero topics, that is, the topic k ∈ Sc∗), then the
following simple estimator

(A.1) Ŝ := {k ∈ [K] : ∃Xj > 0 corresponding to anchor word j of topic k}
consistently estimates S∗, as stated in the following proposition.
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PROPOSITION A.2. Under Assumption 1, we have Ŝ ⊆ S∗ with probability one. Further-
more, if additionally there exists at least one anchor word jk for each topic k ∈ S∗ such that
Π∗jk ≥ 2εjk with εjk defined in (7). Then,

P{Ŝ = S∗} ≥ 1− 2p−1.

PROOF. To show Ŝ ⊆ S∗, if k ∈ Ŝ, then we must have k ∈ S∗. This is because if k 6∈ S∗,
with probability one, we couldn’t have observed any anchor word Xj > 0 of topic k as
Π∗j = AjkT∗k = 0. Conversely, to show S∗ ⊆ Ŝ, if k ∈ S∗ and there exists a Π∗jk > 2εjk ,
then on the event E , Xjk ≥Π∗jk − |Xjk −Π∗jk |> εjk > 0, that is, k ∈ Ŝ. This completes the
proof.

The estimator Ŝ simply collects the topics for which we have observed anchor words.
Proposition A.1 ensures that we always have Ŝ ⊆ S∗ under Assumption 1. In practice, this
property is helpful to check whether Esupp holds. Specifically, if Assumption 1 holds and we
find supp(T̂mle)⊆ Ŝ, then we necessarily have supp(T̂mle)⊆ supp(T∗).

A.2. Support recovery when A is unknown. Regarding the consistent support recov-
ery of T̂ , we remark that the results in Section A.1 continue to hold provided that the anchor
words can be consistently estimated. Consistent estimation of the anchor words has been fully
established in Bing, Bunea and Wegkamp (2020a). Also, see, Bittorf et al. (2012); Arora et al.
(2013) for other procedures of estimating anchor words.

APPENDIX B: APPLICATION: IMDB MOVIE REVIEWS

In this section we demonstrate our proposed approach of estimating topic proportions for
use in document distance estimation. Using a popular movie-review dataset (Maas et al.,
2011), we perform the following steps:

1. Estimate the word-topic matrix A using the method in Bing, Bunea and Wegkamp
(2020b). For the reader’s convenience, we restate the procedure in Appendix J. Use anchor
words defined via Â to give an initial interpretation of each topic.

2. Estimate the topic distributions T̂ (i) from Â and X(i), for each document i ∈ [n], by
solving (29). Use these estimates, in the context of the corpus, to adjust and refine the
initial topic interpretation.

3. Calculate document distances (51) – (53), along with other candidate distances, and com-
pare their ability to capture similarity between the documents.

Data and preprocessing. We use a collection of 50K IMDB movie reviews designed
for unsupervised learning from the Large Movie Review Dataset (Maas et al., 2011). We
preprocess the data by removing stop words and words that have document frequency of less
than 1%. Among the remaining 1685 words, we keep only the 500 most common (by term
frequency), for ease of interpretation of the topics (we found qualitatively similar results and
reached the same conclusions when including all 1685 words). We also only keep documents
with greater than 50 words. After preprocessing, we end up with a p× n word-count matrix
X , where p= 500, n= 20,605.

REMARK B.1.

(1) We recall from Section 1.1 that one motivation of our theoretical analysis of the esti-
mation of T (i)

∗ is to address the case when Π
(i)
∗j = 0 for a document i and word j. After
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TABLE 1
Excerpts from documents that are estimated to be exclusively generated from Topics 3 and 5 (formally,

documents with T̂ (i)
k = 1 for each topic k). The third column gives the ID number in the original dataset (Maas
et al., 2011). See Table 6 in Appendix C for further excerpts for all 6 topics.

Topic Interpretation Movie ID Document excerpt

Topic 3 Video Games
23,753 This game really is worth the ridiculous prices out there. . .
12,261 I remember playing this game at a friend. . .

Topic 5 TV Shows
32,315 I used to watch this show when I was a little girl. . .
10,454 I’ve watched the TV show Hex twice over and I still can not get enough

of it. The show is excellent. . .

preprocessing, the total number of distinct words in each review in this dataset is 63 on
average, much less than the vocabulary size p= 500. Thus, for each document i there are
typically many words j with X(i)

j = 0. For at least some of these words, it is possible that

Π
(i)
∗j = 0. For example, we find reviews of films in genres such as horror and comedy that

have no relation to ‘war’, one of the 500 words in the vocabulary: for these reviews, it is
reasonable to expect the word ‘war’ to have cell probability Π

(i)
∗j = 0. These observations

provide a real-data example further motivating the need for a theoretical analysis allowing
for this case.

(2) We also emphasize that our discrete mixture probability estimates allow us to construct
non-zero estimates of non-zero Π

(i)
∗j , even when X(i)

j = 0. In fact, we find that the average
number of non-zero entries in the estimator Π̃(i), over all documents i ∈ [n], is 490, much
larger than the average number of non-zero entries of X(i) (which we recall was 68). In
most cases, we found zero entries of Π̃(i) correspond to anchor words for topics that are
not present in document i. This demonstrates that Π̃(i) is able to produce zero estimates for
words that we expect to have no chance of occurring in document i, while still producing
non-zero estimates corresponding to words that could occur in that document, but were
not observed in that particular sample.

B.1. Estimating topic distributions for a refined understanding of the topics covered
by a document corpus. We run the method in Bing, Bunea and Wegkamp (2020b) on X

to estimate A for this dataset, with tuning parameter C1 = 4, and denote the output Â. The
number of topics is estimated to be K̂ = 6. In Table 4 in Appendix C, we show the anchor
words for each of the 6 topics, from which we can give an initial interpretation to the topics
(shown in the third column of the table). In particular, the only anchor words for Topics 3
and 5 are ‘game’ and ‘episode’ respectively, despite this dataset nominally being composed
of reviews of full-length movies.

To further interpret the topics (in particular Topics 3 and 5), we compute the estimated
topic proportions T̂ (i) from Â and X(i) for each document i ∈ [n] using (29). Table 6 in
Appendix C shows, for each k ∈ [K̂], examples of documents such that T̂k = 1; namely,
documents that are generated entirely from topic k. This table demonstrates the usefulness
of estimating the topic proportions T̂ (i): inspecting these topic-specific documents provides
detailed information on what each topic captures. For space limitations, we only give an
excerpt of Table 6 here in Table 1, featuring Topic 3 and 5. We find that the documents
displayed for Topics 3 and 5 are in fact not movie reviews, but reviews of video games and
TV shows, respectively.

Besides these non-movie reviews, we confirm that the examples from Topics 1, 4, and 6
are indeed book adaptations, horror films, and films related to war and history, respectively.
We see that Topic 2 is indeed related to sentiment in these examples, with both reviews being
very negative. All details can be found in Table 6 in Appendix C.
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In summary, we have demonstrated that the estimated topic proportions T̂ are useful tools
for topic interpretation, and a needed companion to the estimation ofA, on the basis of which
one gives the initial definition of the topics.

B.2. Estimating the 1-Wasserstein distance between documents. We recall that, by
abuse of terminology, but for clarity of exposition, we refer to distances between probabilistic
representations of documents as distances between documents.

We now compare a set of candidate document distance measures, including our proposed
methods. We select several representative documents among the documents kept from the
IMDB dataset after preprocessing, and compute the distance between them. We recall that
in order to compute the 1-Wasserstein distance between two documents represented via their
respective topic-distributions, we need to first calculate the distance between elements on
their supports, the topics, which in turn are probability distributions on words, estimated by
the columns of Â. Therefore, with K̂ = 6, we first compute (52) and (53), which we repeat
here for clarity:

(B.1) D̂topic
W (k, l) =W1(Â·k, Â·l;D

word), D̂topic
TV (k, l) =

1

2
‖Â·k − Â·l‖1,

for all k, l ∈ {1, . . . ,6}. To compute Dword, we use open-source word embeddings from
Google1 that come pre-trained using the word2vec model (Mikolov et al., 2013) on a Google
News corpus of around 100 billion words. These word embeddings contain a word vector xi
for each the 500 words in our dictionary, except one item in the vocabulary (the number ‘10’,
common in movie ratings out of 10), for which we remove the corresponding row from Â

(then re-normalize to have unit column sums) when computing D̂topic
W . We follow standard

practice of normalizing all word-embeddings to unit length. The distanceDword(i, j) between
words i and j is then computed as Dword(i, j) = ‖xi − xj‖2/maxi,j ‖xi − xj‖2. We divide
by the normalizing factor maxi,j ‖xi − xj‖2 so that the elements of Dword are in the range
[0,1]. This results in D̂topic

W also being in the range [0,1], and so on the same scale as D̂topic
TV .

See Table 2 for details on each document, including the estimated topic proportions, and
Table 3 for the computed distances. We make several remarks based on the results in Table 3.

1. Consider the distance between documents D1 and D2, which have T̂ (1) = T̂ (2) and are
both entirely generated from the Horror topic. Since T̂ (1) = T̂ (2), all distances between
the topic proportions (panels (a), (b), and (e)) are equal to zero. Since T̂ (1) = T̂ (2) implies
Π̃(1) = Π̃(2), the distance based on the latter estimators is also zero (Table 3, panel (d)).
The only distance that does not capture this underlying topical similarity is the Word
Mover’s Distance (WMD), which has a value of 0.56 between D1 and D2.

2. Compare the distances between D4 (a video game review) and each other document (all
movie reviews) to the distances between pairs of movie reviews. For the two Wasserstein
distances between the topic proportions, as well as the distance based on Π̃ (Table 3,
panels (a), (b), and (d), respectively), the distance between the video game review D4

and any other review is much greater than the distance between any two movie reviews.
(The one exception is that the distance between D4 and D6 is not large, since D6 has
substantial weight on the Video game topic). Thus, these methods are able to detect the
difference between video game and movie reviews. We similarly find that these methods
detect documents from the TV show topic as outliers from full-length movie reviews, but
don’t include this in Table 3 for simplicity of presentation.

1https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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In contrast, the WMD in panel (c) computes the distances between all pairs of distinct
documents to be all relatively close together. In fact, based on the WMD, the Horror
film review D1 is the same distance to the Video game review D4 as the War & History
film review D3; we note that this is perhaps unsurprising, given that the WMD is not
designed to capture similarity based on topics. On the other hand, the TV distance in
panel (e) computes the distance between any two documents with disjoint topics to be the
maximum value of 1, not distinguishing between topics that are more or less similar.

3. The Wasserstein distance based on D̂topic
TV (panel (a) of Table 3) gives qualitatively similar

results to the other two model-based Wasserstein distances (panels (b) and (d)), while ob-
viating the need for the pre-trained word embeddings used to compute Dword and D̂topic

W ,
and the calculation of any p-dimensional Wasserstein distances, which are computation-
ally expensive.

In summary, the three Wasserstein-based distances defined with the estimated parameters
of the topic model (panels (a), (b), (d) in Table 3) are the most successful in capturing topic-
based document similarity, and the distance based on D̂topic

TV (panel (a)) has the further benefit
of not requiring the use of pre-trained word embeddings or p-dimensional optimization.

TABLE 2
For each document in Table 3, we give the document ID from the original IMDB dataset, the topic proportions

(estimated using (29)), and the interpretations of each topic in the document.

Document ID Topic proportions Topic interpretations
D1 29,114 T̂ = (0,0,0,1,0,0) Horror
D2 3,448 T̂ = (0,0,0,1,0,0) Horror
D3 26,918 T̂ = (0,0,0,0,0,1) War & History
D4 23,753 T̂ = (0,0,1,0,0,0) Video games
D5 4,058 T̂ = (0,0,0,0.5,0,0.5) Horror + War & History
D6 5,977 T̂ = (0,0,0.5,0.5,0,0) Horror + Video games

APPENDIX C: SUPPLEMENTARY RESULTS ON IMDB DATA

In this section we present further details of our analysis in Section B of the IMDB movie
review dataset. We first give Table 4, which gives an initial interpretation to each estimated
topic based on its anchor words.

TABLE 4
Anchor words for each topic in the IMDB dataset, along with an initial interpretation of each topic.

Topic Anchor words Initial interpretation
1 book, read, version Book adaptations
2 crap, talent Sentiment
3 game Game-related
4 blood, dark, dead, evil, fans, flick, genre, gore, horror, house,

killer, sequel, strange
Horror films

5 episode TV Shows
6 history, war History & war films

Table 5 gives the computed values of the two topic-distance matrices (B.1) and shows that
these distances qualitatively capture the same similarity relationships between the topics. This
is despite the fact that D̂topic

W incorporates word similarity from pre-trained word embeddings,
whereas D̂topic

TV depends only parameters estimated directly from the IMDB corpus.
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TABLE 3
Distances between documents using various metrics.

(a) W1(T̂ (i), T̂ (j), D̂
topic
TV )

D1 D2 D3 D4 D5 D6
D1 0 0 0.14 0.21 0.07 0.10
D2 · 0 0.14 0.21 0.07 0.10
D3 · · 0 0.23 0.07 0.18
D4 · · · 0 0.22 0.10
D5 · · · · 0 0.11
D6 · · · · · 0

(b) W1(T̂ (i), T̂ (j), D̂
topic
W )

D1 D2 D3 D4 D5 D6
D1 0 0 0.10 0.16 0.05 0.08
D2 · 0 0.10 0.16 0.05 0.08
D3 · · 0 0.17 0.05 0.13
D4 · · · 0 0.16 0.08
D5 · · · · 0 0.09
D6 · · · · · 0

(c) W1(Π̂(i), Π̂(j),Dword) (WMD)

D1 D2 D3 D4 D5 D6
D1 0 0.56 0.62 0.62 0.56 0.60
D2 · 0 0.66 0.68 0.63 0.64
D3 · · 0 0.71 0.61 0.67
D4 · · · 0 0.65 0.63
D5 · · · · 0 0.59
D6 · · · · · 0

(d) W1(Π̃(i), Π̃(j),Dword)

D1 D2 D3 D4 D5 D6
D1 0 0 0.10 0.16 0.05 0.08
D2 · 0 0.10 0.16 0.05 0.08
D3 · · 0 0.17 0.05 0.12
D4 · · · 0 0.16 0.08
D5 · · · · 0 0.09
D6 · · · · · 0

(e) TV (T̂ (i), T̂ (j))

D1 D2 D3 D4 D5 D6
D1 0 0 1 1 0.50 0.50
D2 · 0 1 1 0.50 0.50
D3 · · 0 1 0.50 1
D4 · · · 0 1 0.50
D5 · · · · 0 0.50
D6 · · · · · 0

Finally, we give Table 6, which gives excerpts of two documents for each topic that are
estimated to be exclusively generated from that topic. These excerpts allow for further inter-
pretation of the topics.

APPENDIX D: SIMULATIONS ON THE ESTIMATION OF T∗ AND Π∗

In this section we present a simulation study of the estimation of topic proportions T∗ and
word-distribution Π∗ to accompany our theoretical analysis in Section 2.

We perform simulations to study the performance of the MLE in (4) (known A) and the
estimator in (29) (unknownA) for estimating T∗, and compare to the Restricted Least Squares
(RLS) estimator,

(D.1) T̂rls := min
T∈∆K

‖X − ÂT‖22,

as well as the iterative weighted restricted least squares (IWRLS) estimator, both mentioned
in Remark 5. To compute the IWRLS estimator for known A, we use the following steps (for
unknown A, we just replace A by Â estimated using the Sparse-TOP method of Bing, Bunea
and Wegkamp (2020b)). We use the parameter ε= 10−8 to avoid division by zero, δ = 10−4

as a stopping criterion, and mit = 1000 as the maximum number of iterations.

1. Compute T̂rls from (D.1) and set T̂ = T̂rls.
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TABLE 5
The two K̂ × K̂ matrices of distances between topics.

(a) D̂topic
TV

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
Topic 1 0 0.14 0.22 0.13 0.20 0.14
Topic 2 0.14 0 0.22 0.14 0.22 0.17
Topic 3 0.21 0.22 0 0.21 0.22 0.23
Topic 4 0.13 0.14 0.21 0 0.21 0.14
Topic 5 0.20 0.22 0.22 0.21 0 0.22
Topic 6 0.14 0.17 0.23 0.14 0.22 0

(b) D̂topic
W

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
Topic 1 0 0.10 0.16 0.10 0.15 0.10
Topic 2 0.10 0 0.17 0.10 0.16 0.12
Topic 3 0.16 0.17 0 0.16 0.17 0.17
Topic 4 0.10 0.10 0.16 0 0.16 0.10
Topic 5 0.15 0.16 0.17 0.16 0 0.17
Topic 6 0.10 0.12 0.17 0.10 0.17 0

2. Let

D̂ = diag(d1, . . . , dp), with dj =
1√

(AT̂ )j ∨ ε
.

3. Update T̂ as

T̂ ← arg min
T∈∆K

‖D̂(X −AT )‖22.

4. Repeat Steps 2 and 3 until either the `1 distance between T̂ from the current step and the
previous step is less than δ, or a maximum of mit iterations have been completed, then
take T̂iwrls = T̂ as the final estimator.

We then compare model-based estimators of Π∗ based on estimates of T∗ to the empirical
estimate of Π∗. In terms of notation, recall that N is the number of words in a document, n
is the number of documents in the corpus, K is the number of topics, and p is the dictionary
size.

Data generating mechanism. For fixed anchor word sets I1, . . . , IK ⊂ [p], we generate
the p×K matrix A as follows. We set Aik =K/p for all i ∈ Ik and k ∈ [K]. Draw all entries
of non-anchor words from Uniform(0,1), then normalize each sub-column AIck to have sum
1 −

∑
i∈Ik Aik where Ic = [p] \ (∪kIk). We choose balanced anchor word sets such that

|Ik|=manc for all k ∈ [K]. We choose manc = 5, K = 20, and p= 1500 for all experiments
in this section.

For fixed support size s, we generate T (1)
∗ , . . . , T

(n)
∗ identically and independently as fol-

lows. For each T (i)
∗ , select a subset S ⊂ [K] with |S| = s by drawing elements from [K]

uniformly at random without replacement. Set [T
(i)
∗ ]Sc = 0 and generate each entry of [T

(i)
∗ ]S

independently from Uniform(0,1). Finally, normalize T (i)
∗ so its entries sum to 1. The result

is that T (i)
∗ has support s for all i ∈ [n].
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TABLE 6
Excerpts from documents that are estimated to be exclusively generated from Topics 3 and 5 (formally,

documents with T̂ (i)
k = 1 for each topic k). Excerpts from two separate documents with this property are given

for each topic. The third column gives the ID number in the original dataset (Maas et al., 2011) for reference.
We find that the “movie reviews" corresponding to Topics 3 and 5 are in fact reviews of video games and TV

shows, respectively.

Topic Interpretation Movie ID Document excerpt

Topic 1
Book Adaptations 37,123 This was an OK movie, at best, outside the context of the book. But hav-

ing read and enjoyed the book quite a bit it was a real disappointment
in comparison. . .

15,709 This has always been one of my favourite books. I was thrilled when I
saw that the book had been made into a movie, for the first time since it
was written, over 50 years before. . .

Topic 2
Negative reviews 12,445 This was the most disappointing films I have ever seen recently. And I

really hardly believe that people say goods things about this very bottom
film!. . .

32,442 Acting was awful. Photography was awful. Dialogue was awful. Plot
was awful. (I’m not being mean here...It really was this bad.). . .

Topic 3
Video Games 23,753 This game really is worth the ridiculous prices out there. The graph-

ics really are great for the SNES, though the magic spells don’t look
particularly great. . .

12,261 I remember playing this game at a friend. Watched him play a bit solo
until we decided to try play 2 and 2, which we found out how to do. . .

Topic 4
Horror 29,114 After watching such teen horror movies as Cherry Falls and I know what

you did last summer, I expected this to be similar. . .
3,448 Being a HUGE fan of the horror genre, I have come to expect and ap-

preciate cheesey acted, plot-holes galore, bad scripts. . .

Topic 5
TV Shows 32,315 I used to watch this show when I was a little girl. . .

10,454 I’v watched the TV show Hex twice over and I still can not get enough
of it. The show is excellent. . .

Topic 6
War & History 6,709 Carlo Levi, an Italian who fought against the arrival of Fascism in his

native Torino, was arrested for his activities. . .
26,918 As directed masterfully by Clint Eastwood, “Flags of Our Fathers"

plays both as a war film and a sensitive human drama. . .

For each choice of A and T
(1)
∗ , . . . , T

(n)
∗ , we then set Π

(i)
∗ = AT

(i)
∗ for 1 ≤ i ≤ n and

generate NX(i) ∼Multinomialp(N,Π
(i)
∗ ). We report the `1 error of the estimation of T∗ by

each method averaged over all 100 repetitions of the simulation.

Estimation of T∗ with known A. We first compare the MLE in (4), RLS, and IWRLS
when A is known. In this case we can take n = 1 and drop the superscript on T∗, X , and
Π∗. To see the impact of sparsity in these methods, we also include a baseline estimator for
each method that corresponds to the support of T∗ being exactly known. To be precise, let
S∗ be the support of T∗, and A·S∗ the p× |S∗| submatrix of A with columns restricted to the
support of T∗. The baseline estimators are computed by estimating TS∗ using the MLE, RLS,
or IWRLS with A·S∗ and X as input, and estimating TSc

∗
by zeroes. We plot the `1 error of

estimation of T∗ as a function of N and s= |S∗| in Figure 1.

Results. In the left panel Figure 1 we see how the `1 error of all estimators decays as the
document length increases. On the other hand, we see in the right panel that the error in-
creases as the support size of T∗ increases. We observe in both panels the remarkable feature
that the MLE with unknown support has nearly identical risk to the MLE with exactly known
support, empirically illustrating Theorem 5. In contrast, the RLS with unknown support per-
forms substantially worse than with known support, illustrating that the RLS does not enjoy
the same support recovery properties as the MLE. Comparing the MLE and RLS, both with
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unknown support, we also observe that the risk of the MLE is uniformly lower than that of
the RLS. This gives support to the MLE being a clearly superior estimator of T∗.

For the simulation parameters in Figure 1, IWRLS has approximately equal risk to that
of the MLE. This in line with the fact the IWRLS is asymptotically (as N →∞) equivalent
to the MLE; see, for instance, Bishop, Fienberg and Holland (2007) and Agresti (2012).
However, in Figure 2, we plot the error of the MLE and IWRLS for smaller values of N ,
where the asymptotic equivalence of these two methods breaks down. We see that the MLE
has lower error for small N , a regime of practical interest corresponding to short documents.
Furthermore, from Table 7, we observe that in the worst case, the IWRLS has a computation
time of around two orders of magnitude more than that of the MLE (while the RLS has the
lowest computation time of all). Lastly, from Table 8 we see that for small N , the IWLS
did not converge within 1000 iterations for a large proportion of runs (we found similar
results, with even longer run times, when increasing the maximum allowed iterations for the
IWRLS). The increased computation time of the IWRLS relative to the MLE, along with our
observation that the error is either equal (for large N ) or greater (for small N ), give strong
support for the MLE being preferred as an estimator of T∗.

600 800 1000 1200 1400 1600 1800 2000
N

0.10

0.15

0.20

0.25

0.30

Es
tim

at
io

n 
er

ro
r o

f T

p = 1500, K = 20, n_sim = 100, s = 5, A_true
IWRLS
IWRLS sup known
MLE
MLE sup known
RLS
RLS sup known

2 4 6 8 10 12 14
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Es

tim
at

io
n 

er
ro

r o
f T

N = 800, p = 1500 K= 20, n_sim = 100, A_true

IWRLS
IWRLS sup known
MLE
MLE sup known
RLS
RLS sup known

Fig 1: `1 error of the estimation of T∗ for the MLE, RLS, and IWRLS, as a function of docu-
ment length N (left) and support size s (right), when A is known. Dashed lines correspond to
the predictors when the true support of T∗ is known. The error for the MLE and IWRLS are
approximately equal for these simulation settings, for both known and unknonwn support.
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Fig 2: `1 error of the estimation of T∗ for the MLE and IWRLS, for small values of N , when
A is known. Dashed lines correspond to the predictors when the true support of T∗ is known.
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Method N = 30 N = 50 N = 100 N = 200 N = 300

MLE 0.68 0.64 0.60 0.57 0.54
RLS 0.08 0.08 0.08 0.08 0.08

IWRLS 61.87 43.31 31.19 9.63 3.44
TABLE 7

Average computation time for each method (in seconds) from the simulation in Figure 2.

N = 30 N = 50 N = 100 N = 200 N = 300

40% 31% 23% 5% 0%
TABLE 8

Percentage of IWRLS runs from the simulation in Figure 2 that reached the maximum number of iterations
(1000) and did not converge.

Estimation of T∗ with unknown A. We next compare the estimator in (29), RLS, and
IWRLS when A is unknown and estimated by Â from the Sparse-TOP method Bing, Bunea
and Wegkamp (2020b). For all values of n, we choose the first document T (1)

∗ to estimate
(this choice is arbitrary, as T (i)

∗ is drawn from an identical distribution for all i ∈ [n]). In
Figure 3, we plot the average `1 error of estimating T (1)

∗ as a function of N and s. We also
include the MLE in (4) with known A for comparison. We refer to the estimator (29) as
MLE-A-hat in the plot.

Results. Similarly to the case with known A, we see in Figure 3 that the estimator (29)
uniformly outperforms the RLS, and for the (large) values of N in the plot, the IWLS has
approximately equal risk to estimator (29). Comparing the MLE with known and unknown
A, we observe in the left panel that the impact of not knowing A decreases as the document
length increases, which is expected as longer documents improve the estimate Â. We also
observe in the right panel that not knowing A has less impact for T∗ that are more sparse.
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Fig 3: `1 error of the estimation of T∗ for the MLE, RLS, and IWRLS, as a function of
document length N (left) and support size s (right). Solid lines correspond to estimators
using Â, and the dashed line corresponds to the MLE with known A. The error for the MLE
and IWRLS (both for unknown A) are approximately equal in these plots.

Estimation of Π∗. We compare the three estimators of Π∗ presented in Section 2.3: the
empirical estimate Π̂, and the model-based estimators Π̃A = AT̂mle and Π̂Â = ÂT̂ . Setting
n = 1000, we repeat the simulation 100 times and plot the average `1 error in estimating
the first document Π

(1)
∗ as a function of document length N in the top left panel of Figure
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4. Note that Π̂(1) is a function only of the first document vector X(1), and ignores the other
n−1 documents in the corpus. In contrast, the model-based estimator with unknownA, Π̃

(1)

Â
,

uses all n documents in the corpus via the estimation of Â. We drop the superscript 1 in the
remainder of this discussion for ease of notation.

Recall the definitions J̄ := {j : Π∗j > 0} and J := {j :Xj > 0} from Section 2.3. As dis-
cussed in that section, a particular advantage of the model-based estimators Π̃A and Π̃Â over
the empirical estimate Π̂ is their ability to non-trivially estimate non-zero cell probabilities
with zero counts (Π∗j with j ∈ J̄ \J ), while still estimating the zero cell probabilities j ∈ J̄c

nearly as well as Π̂. We here conduct a simulation to empirically study the ability of each
method to estimate these two classes of cell probabilities. In each simulation run, we com-
pute for each estimator Πest among Π̂, Π̃A, and Π̃Â the quantities

∑
j∈J̄\J |Πest

j −Π∗j | and∑
j∈J̄c |Πest

j −Π∗j |; we plot their average values over 100 runs as a function of N in the top
right and bottom panels of Figure 4, respectively.

600 800 1000 1200 1400 1600 1800 2000
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
n = 1000, K = 20, p = 1500, s = 5, n_sim = 100

Pi-emp
Pi-tilde-A-hat
Pi-tilde-A

600 800 1000 1200 1400 1600 1800 2000
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
n = 1000, K = 20, p = 1500, s = 5, n_sim = 100

Pi-emp
Pi-tilde-A-hat
Pi-tilde-A

600 800 1000 1200 1400 1600 1800 2000
N

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
n = 1000, K = 20, s = 5, p = 1500, n_sim = 100

Pi-emp
Pi-tilde-A
Pi-tilde-A-hat

Fig 4: Top left: `1 error of the estimation of Π∗ as a function of document lengthN . Top right:
Error in estimating the cell probabilities Π∗j with j ∈ J̄ \J . Bottom: Error in estimating Π∗j
with j ∈ J̄c. Error bars are present in top plots but too small to observe.

Results. We observe from the left panel of Figure 4 that while the error of all three estima-
tors decays with N , the error of the empirical estimator is substantially larger than that of the
model-based estimator Π̃Â, which is in turn larger than the error of model-based estimator
with known A, Π̃A, while being very close to it. This demonstrates the basic motivation of
the model-based estimation approach: by borrowing statistical strength from across the full
corpus, Π̃A and Π̃Â provide a far superior estimate of the frequencies for an individual docu-
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ment. The difference between Π̃A and Π̃Â on the other hand reflects the effect of estimating
A.

In the top right panel of Figure 4, we verify that the two model-based estimators are able
to estimate the non-zero cell probabilities with zero counts (Π∗j with j ∈ J̄ \ J ) much better
than the trivial estimate of Π̂j = 0. We note for clarity that for Πest = Π̂,

∑
j∈J̄\J |Πest

j −Π∗j |
reduces to

∑
j: Π∗j>0, Xj=0 Π∗j . While we see that this quantity decreases with N from the

red line in the top right panel of Figure 4, this is simply due to the fact that |{j : Xj = 0}|
decreases with N .

Lastly, in the bottom panel of Figure 4, we see that while for small N (N ≤ 1500 for Π̃Â)
the error in estimating the zero cell probabilities by the model-based estimators is non-zero,
it is several orders of magnitude smaller than the overall `1 error in the top left panel, and
in any case quickly decays to zero as N increases. As expected, Π̂j = 0 for all j ∈ J̄ , so the
error for Π̂ is exactly zero in this bottom panel.

In summary, by borrowing statistical strength across the corpus of n documents, the two
model-based estimators Π̃A and Π̃Â perform substantially better than the empirical estimator
at estimating Π∗ in `1 error and estimating non-zero cell probabilities with zero counts, while
still having nearly the same performance as the empirical estimator at estimating the zero cell
probabilities.

APPENDIX E: SEMI-SYNTHETIC SIMULATIONS TO COMPARE
DOCUMENT-DISTANCE ESTIMATION RATES

We perform semi-synthetic simulations to empirically study the rate of estimation of the
topic-based document distance (48) for the choice (50) of Dtopic, by the estimator (53). We
also ran the same simulations for the choice (49) of Dtopic with the estimator (52) and found
similar results, which we do not report here due to space limitations.

Data and preprocessing. We work with the NIPS bag-of-words dataset (Dua and Graff,
2017). We preprocess the data by removing stop words, removing documents with less than
150 words, and removing words that appear in less than 150 documents. We are left with
1490 documents and dictionary size p= 1270. From this data we estimate a loading matrix
A0 using the Sparse-TOP algorithm (Bing, Bunea and Wegkamp, 2020b) and find K = 21
topics. We then treat this estimated A0 as our ground truth for semi-synthetic experiments.

Semi-synthetic data generation. We generate topic distributions T
(1)
∗ , . . . , T

(n)
∗ with

K = 21 exactly following the procedure in Section D. In particular, T (1)
∗ , . . . , T

(n)
∗ all have

the same support size, which we denote as s. We choose n = 2000 for all simulations. For
each i ∈ [n], we set Π

(i)
∗ =A0T

(i)
∗ and draw X(i) ∼Mutlinomialp(N,Π(i)).

For each simulation, we form the estimate Â using Sparse-TOP Bing, Bunea and
Wegkamp (2020b), and form estimates T̂ (1), T̂ (2) of the topic distributions of the first two
documents using the MLE (29). From Â, we compute the estimated topic-distance metric

D̂topic
TV (k, l) =

1

2
‖Â·k − Â·l‖1 ∀k, l ∈ {1,2, . . . ,21},

and its population counterpart with Â replaced by A0. We then compute the error

(E.1) |W1(T̂ (1), T̂ (2); D̂topic
TV )−W1(T

(1)
∗ , T

(2)
∗ ;Dtopic

TV )|.

We repeat this simulation nsim = 50 times for different values of N and s, and plot the
average error in Figure 5.
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Results. We see from Figure 5 that the error (E.1) grows significantly as the support size s
of T (1)

∗ and T (2)
∗ increases. This is can be understood by the fact that the error in estimating

T
(1)
∗ and T (2)

∗ also increases with s; recall Figure 3 for an empirical demonstration of this.
For all values of s, we observe the error decaying as N increases.
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n = 2000, K = 21, p = 1270, n_sim = 50
s = 15
s = 10
s = 5
s = 1

Fig 5: Error (E.1) as a function of N , for different values of support size s of the synthetically
generated topic distributions T (1)

∗ and T (2)
∗ .

APPENDIX F: PROOFS FOR SECTION 2.1: ESTIMATION WITH KNOWN A

Throughout the proofs, we will suppress the subscript ∗ for notational simplicity. Corre-
spondingly, we write ST = S∗ to denote its dependency on T .

F.1. Proof of Theorem 1: The general finite sample bounds of the `1 norm conver-
gence rate of the MLE. Recall εj is defined in (7). Define the event

(F.1) E :=

p⋂
j=1

{|Xj −Πj | ≤ εj}

which, according to Lemma I.1 in Appendix I, holds with probability at least 1− 2p−1. On
the event E , we have

J ⊆ J ⊆ J.

Indeed, J ⊆ J follows by noting that, for any j ∈ J , Xj ≥ Πj − |Xj −Πj |> εj . The other
direction J ⊆ J holds trivially since Πj = 0 implies Xj = 0 for all j ∈ [p]. We work on the
event E for the remainder of the proof.

For notational simplicity, we write T̂ = T̂mle. Recall that

T̂ := arg max
T∈∆K

N
∑
j∈J

Xj log
(
A>j·T

)
.

From the KKT conditions of this optimization problem we have

N
∑
j∈J

Xj
Aj·

A>j·T̂
+ λ+ µ1K = 0,(F.2)

λk ≥ 0, λkT̂k = 0, ∀k ∈ [K], 1>K T̂ = 1.(F.3)
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After taking the inner-product with T̂ on both sides of (F.2), we get

µ=−N
∑
j∈J

Xj =−N.

Plugging this into (F.2) gives the expression

N
∑
j∈J

Xj
Aj·

A>j·T̂
+ λ=N 1K .

Next, we take the inner-product on both sides with ∆ := T̂ −T and use the fact that 1>K∆ = 0
to obtain

N
∑
j∈J

Xj

A>j·∆

A>j·T̂
+ λ>∆ = 0.

By adding and subtracting terms, we have

0 =N
∑
j∈J

Xj

(
A>j·∆

A>j·T̂
−
A>j·∆

A>j·T

)
+N

∑
j∈J

Xj

A>j·T
A>j·∆ + λ>∆

=N
∑
j∈J

Xj

(
A>j·∆

A>j·T̂
−
A>j·∆

A>j·T

)
+N

∑
j∈J

Xj

A>j·T
A>j·∆ + λ>∆

=N
∑
j∈J

Xj

(
A>j·∆

A>j·T̂
−
A>j·∆

A>j·T

)
+N

∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

+N
∑
j∈J

A>j·∆ + λ>∆.

In the second equality, we used Πj =A>j·T > 0 for j ∈ J and Xj = 0 for j ∈ J \ J . Since

A>j·∆

A>j·T̂
−
A>j·∆

A>j·T
=−

(A>j·∆)2

A>j·T̂ ·A>j·T
,

we conclude

N
∑
j∈J

Xj

A>j·T

(A>j·∆)2

A>j·T̂
=N

∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

+N
∑
j∈J

A>j·∆ + λ>∆

≤N
∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

+N
∑
j∈J

A>j·∆(F.4)

by using λ>∆ = −λ>T ≤ 0 from (F.3) in the last step. For the left hand side in (F.4), use
J ⊆ J to obtain∑

j∈J

Xj

A>j·T

(A>j·∆)2

A>j·T̂
≥
∑
j∈J

Xj

A>j·T

(A>j·∆)2

A>j·T̂
≥min

j∈J

Xj

A>j·T

∑
j∈J

(A>j·∆)2

A>j·T̂
.

Since
∑p

j=1A
>
j·T̂ = 1, we further observe that

∑
j∈J

(A>j·∆)2

A>j·T̂
=
∑
j∈J

(A>j·∆)2

A>j·T̂

∑
j∈J

A>j·T̂ +
∑
j∈Jc

A>j·T̂


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≥
∑
j∈J

(A>j·∆)2

A>j·T̂

∑
j∈J

A>j·T̂

≥

∑
j∈J
|A>j·∆|

2

≥ κ2(AJ , s)‖∆‖21.

Here we use the Cauchy-Schwarz inequality in the third line and the definition (9) of the `1→
`1 condition number κ(AJ , s) together with ∆ ∈ C(ST ) in the last line. From the inequality

Xj

A>j·T
≥ Πj − |Xj −Πj |

Πj
≥ 1− εj

Πj
≥ 1

2
∀j ∈ J,

we can now conclude ∑
j∈J

Xj

A>j·T

(A>j·∆)2

A>j·T̂
≥ 1

2
κ2(AJ , s)‖∆‖21.

It remains to bound from above the right-hand side

N
∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

+N
∑
j∈J

A>j·∆

of (F.4). The identity
∑p

j=1A
>
j·∆ = 1>K∆ = 0 implies∑

j∈J

A>j·∆ =−
∑
j 6∈J

A>j·∆≤
∑
j 6∈J

A>j·T =
∑
j 6∈J

Πj = 0.(F.5)

The last equality uses the definition of J . The inequality u>v ≤ ‖u‖1‖v‖∞ gives

∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

≤ ‖∆‖1 max
k∈[K]

∣∣∣∣∣∣
∑
j∈J

(
Xj −A>j·T

) Ajk

A>j·T

∣∣∣∣∣∣ .
By invoking Lemma I.2 in Appendix I with a union bound over k ∈ [K] to bound the above
term, we conclude that, for any t > 0,

1

2
κ2(AJ , s)‖∆‖1 ≤

√
2ρ log(K/t)

N
+

2ρ log(K/t)

3N

with probability 1− 2t. The proof is complete.

F.2. Proof of Theorem 2: Fast rates of the MLE. To prove Theorem 2, we first work
on the event under which Theorem 1 holds, that is,

‖T̂mle − T‖1 ≤
2

κ2(AJ , s)

{√
2ρ log(K/ε)

N
+

2ρ log(K/ε)

N

}
.

We write T̂ = T̂mle for notational ease for the remainder of the proof. Condition (19) together
with ρ≤ (1∨ ξ)/Tmin then ensures that

max
j∈J

|A>j·(T̂ − T )|
A>j·T

≤ ρ‖T̂mle − T‖1 ≤ c
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for some sufficiently small constant c > 0. As a result, we can deduce

(F.6) (1− c)A>j·T ≤ A>j·T̂ ≤ (1 + c)A>j·T, ∀j ∈ J.
Recall from (F.4) that∑

j∈J

Xj

A>j·T

(A>j·∆)2

A>j·T̂
≤
∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

+
∑
j∈J

A>j·∆.

By (F.6), A>j·T̂ ≥ (1− c)Πj > 0 for all j ∈ J \ J . Together with Xj = 0 for all j ∈ J \ J , the
above display implies∑

j∈J

Xj

A>j·T

(A>j·∆)2

A>j·T̂
≤
∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

+
∑
j∈J

A>j·∆,

which, by (F.6) again, further implies

1

1 + c

∑
j∈J

Xj

(A>j·T )2
(A>j·∆)2 ≤

∑
j∈J

(
Xj −A>j·T

) A>j·∆
A>j·T

.

Define

(F.7) H =
∑
j∈J

1

Πj
Aj·A

>
j·, Ĥ =

∑
j∈J

Xj

Π2
j

Aj·A
>
j·.

Notice that, for any v ∈RK ,

v>Hv =
∑
j∈J

(A>j·v)2

Πj
=
∑
j∈J

(A>j·v)2

Πj

∑
j∈J

Πj ≥ ‖AJv‖
2
1 ≥ κ2(AJ ,K)‖v‖21.(F.8)

The first inequality uses the Cauchy-Schwarz inequality. Condition (19) implies κ(AJ ,K)>
0, hence H is invertible. We thus have

∆>Ĥ∆

1 + c
≤

∥∥∥∥∥∥
∑
j∈J

(
Xj −A>j·T

)H−1/2Aj·

A>j·T

∥∥∥∥∥∥
2

‖H1/2∆‖2.

By invoking Lemma I.3 with t= 4K log(5) and Lemma I.4 in Appendix I concludes

‖H1/2∆‖22 . ‖H1/2∆‖2

(√
K

N
+

(1∨ ξ)
3κ(AJ ,K)Tmin

· K
N

)

. ‖H1/2∆‖2

√
K

N
by (19)(F.9)

with probability 1− 2K−1 − 2e−K . Since (F.8) also implies

(F.10) ‖H1/2∆‖2 ≥ κ(AJ , s)‖∆‖1,
by using ∆ ∈ C(ST ), the result follows. The proof is complete.

F.3. Proof of Corollary 4: Fast rates of the MLE when it is sparse. On the event
Esupp, for any T ∈ T (s) with |ST |= s, we observe

[T̂mle]ST
= arg max

T∈∆s

N
∑
j∈J

Xj log
(
A>jST

TST

)
, [T̂mle]Sc

T
= 0.

Since ‖T̂mle−T‖1 = ‖[T̂mle−T ]ST
‖1, the result follows immediately from Corollary 3 with

K = s. If we take log(s ∨ n) instead of log(s) in (21) and take s log(1/ε) instead of log(s)
in the bound, the resulting probability tail becomes 1− 2p−1 − 4(s∨ n)−1 − 2εs.
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F.4. Proof of Theorem 5: One-sided sparsity recovery of the MLE. For any T with
supp(T ) = ST , our proof of supp(T̂mle)⊆ supp(T ) consists of two parts:

(i) we show that there exists an optimal solution T̃ to (4) such that supp(T̃ )⊆ supp(T );
(ii) we show that if there exists any optimal solution T̄ to (4) that is different from T̃ , then

supp(T̄ )⊆ supp(T ).

Proof of step (i). Our proof of step (i) uses the primal-dual witness approach by first con-
structing an oracle estimator T̃ with supp(T̃ ) ⊆ supp(T ), and then proving that T̃ is an
optimal solution.

Towards this end, we first notice that any pair (T̂ , λ,µ) is an optimal solution to (4) if and
only if it satisfies the KKT condition in (F.2) – (F.3). Having this in mind, we define T̃Sc

T
= 0

and

(F.11) T̃ST
= arg max

β∈∆s

N
∑
j∈J

Xj log
(
A>jST

β
)
.

The KKT condition corresponding to (F.11) states

N
∑
j∈J

Xj
AjST

A>jST
T̃ST

+ λ̃ST
+ µ̃1s = 0;(F.12)

λ̃k ≥ 0, λ̃kT̃k = 0, ∀k ∈ ST , T̃>ST
1s = 1.(F.13)

Note that (F.12) and (F.13) together imply µ̃ = −N by multiplying both sides of (F.12) by
T̃ST

. We thus define

µ̃=−N, λ̃k =N

1−
∑
j∈J

Xj
Ajk

A>jST
T̃ST

 , k ∈ [K].

Clearly, supp(T̃ )⊆ supp(T ) by definition. It remains to verify (T̃ , λ̃, µ̃) satisfies (F.2) – (F.3)
in lieu of (T̂ , λ,µ). By construction, we only need to prove

(F.14) λ̃k > 0, 2 ∀k ∈ ScT .

Pick any k ∈ ScT . Adding and subtracting terms yields∑
j∈J

Xj
Ajk

A>jST
T̃ST

=
∑
j∈J

Xj

(
Ajk

A>jST
T̃ST

−
Ajk

A>jST
TST

)
+
∑
j∈J

Xj
Ajk

A>jST
TST

=
∑
j∈J

Xj

AjkA
>
jST

(TST
− T̃ST

)

A>jST
T̃ST

A>jST
TST

+
∑
j∈J

Xj
Ajk

A>jST
TST

=
∑
j∈J

Xj

AjkA
>
jST

(TST
− T̃ST

)

A>jST
T̃ST

A>jST
TST

+
∑
j∈J

(
Xj −A>jST

TST

) Ajk

A>jST
TST

+
∑
j∈J

Ajk

:= R1,k +R2,k +
∑
j∈J

Ajk,

2We in fact only need a non-strict inequality for proving (i). The strict inequality is used to prove (ii).
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where in the second step we used Πj = A>jST
TST

> 0 for j ∈ J and Xj = 0 for j ∈ J \ J .
Since

∑p
j=1Ajk = 1, it suffices to show

|R1,k|+ |R2,k| ≤
∑
j∈Jc

Ajk, ∀k ∈ ScT .

To bound R1,k, by writing ∆ = T̃ST
− TST

for simplicity, we observe

|R1,k|=

∣∣∣∣∣∣
∑
j∈J

Xj

AjkA
>
jST

∆

A>jST
T̃ST

A>jST
TST

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
a∈ST

∆a

∑
j∈J

Xj
AjkAja

A>jST
T̃ST

A>jST
TST

∣∣∣∣∣∣
≤ ‖∆‖1 max

a∈ST

∑
j∈J

Xj
AjkAja

A>jST
T̃ST

A>jST
TST

≤ ‖∆‖1 max
j∈J

Ajk

A>jST
TST

max
a∈ST

∑
j∈J

Xj
Aja

A>jST
T̃ST

.

From the KKT conditions (F.12) – (F.13), we deduce that

max
a∈ST

∑
j∈J

Xj
Aja

A>jST
T̃ST

≤ 1.

Also by A>jST
TST

= Πj , we conclude

max
k∈Sc

T

|R1,k| ≤ ‖∆‖1 max
k∈Sc

T

max
j∈J

Ajk
Πj

(13)
= ‖∆‖1ρSc

T
.

Regarding R2,k, invoking Lemma I.2 with an union bound over k ∈ ScT yields

max
k∈Sc

T

|R2,k| ≤
√

2ρSc
T

log((K − s)/t)
N

+
2ρSc

T
log((K − s)/t)

3N

with probability 1− 2p−1 − 2t. The desired result follows, provided that

min
k∈Sc

T

∑
j∈Jc

Ajk > ρSc
T
‖∆‖1 +

√
2ρSc

T
log((K − s)/t)

N
+

2ρSc
T

log((K − s)/t)
3N

,

which is ensured by (24) in Theorem 5 coupled with the rate of ‖∆‖1 in Corollary 4 and the
bound ρSc

T
≤ ξ/Tmin from (13) of Remark 2.

Proof of step (ii). Suppose there exists T̄ 6= T̃ such that T̄ is also an optimal solution to (4).
Then, the fact that both T̄ and T̃ are optimal solutions implies

f(T̃ ) = f(T̄ ), with f(T ) =N
∑
j∈J

Xj log(A>j·T ).

Let ∇f(T̃ ) denote the gradient of f(T ) at T̃ . By adding and subtracting terms, we obtain

f(T̃ )− f(T̄ ) + 〈∇f(T̃ ), T̄ − T̃ 〉= 〈∇f(T̃ ), T̄ − T̃ 〉.
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The concavity of f(T ) ensures that the left hand side of the above equality is positive. We
thus have

〈∇f(T̃ ), T̃ − T̄ 〉 ≤ 0.

Since T̃ satisfies the KKT condition in (F.2), 1>K(T̃ − T̄ ) = 0 and λ̃>T̃ = 0 from the restric-
tions (F.3), we further deduce that

0 = 〈∇f(T̃ ) + λ̃+ µ̃1K , T̃ − T̄ 〉

= 〈∇f(T̃ ), T̃ − T̄ 〉+ 〈λ̃, T̃ − T̄ 〉+ 〈µ̃1K , T̃ − T̄ 〉

= 〈∇f(T̃ ), T̃ − T̄ 〉+ 〈λ̃, T̃ − T̄ 〉

≤ 〈λ̃, T̃ − T̄ 〉

=−λ̃>T̄
≤ 0,

that is, λ̃>T̄ = 0. We conclude that since (F.14) holds, that is, λ̃Sc
T
� 0, then we must have

T̄Sc
T

= 0. This shows that supp(T̄ )⊆ supp(T ) = ST and completes our proof.

F.5. Proof of Theorem 7: Minimax lower bounds of estimating T∗ in `1 norm. We
start by constructing the hypotheses. Pick any 1< s≤K . We choose

T (0) =
1

s
(1>s ,0

>)>.

For now, suppose s is even. Let M = {0,1}s/2. Following Tsybakov (2008, Lemma 2.9),
there exists w(j) ∈M for j = 1, . . . , |M| such that w(0) = 0, log(|M|)≥ s log(2)/16 and

‖w(j) −w(i)‖1 ≥
s

16
, ∀i 6= j.

For all 1≤ j ≤ |M|, let w̃(j) = ([w(j)]>,−[w(j)]>,0>)> and

T (j) = T (0) + γ w̃(j)

with γ =
√
c0/(sN) for some constant c0 > 0. It is easy to see that T (j) ∈ T ′(s) for all

0≤ j ≤ |M|, under s≤ cN for sufficiently small c > 0. We aim to invoke Tsybakov (2008,
Theorem 2.5) by proving the following:

(a) KL(PT (j) ,PT (0))≤ log(|M|)/16, for all 1≤ j ≤ |M|;
(b) ‖T (j) − T (i)‖1 ≥ c′

√
s/n for all 1≤ i 6= j ≤ |M|.

Write Π(j) = AT (j) for 0≤ j ≤ |M| and J (0)
= {i : Π

(0)
i > 0} for simplicity. To prove (a),

since

max
i∈J(0)

|Π(j)
i −Π

(0)
i |

Π
(0)
i

= γ max
i∈J(0)

|A>i· w̃(j)|
A>i·T

(0)
≤ sγ < 1,

and Π
(j)
i > 0 for all i ∈ J (0), invoke Bing, Bunea and Wegkamp (2020b, Lemma 12) with

n= 1 to obtain

KL(PT (j) ,PT (0))≤ (1 + c′′)γ2 N
∑
i∈J(0)

[A>i· w̃
(j)]2

A>i·T
(0)

≤ (1 + c′′)γ2Nσ1(G0)‖w̃(j)‖22

≤ (1 + c′′)c0 σ1(G0) by ‖w̃(j)‖22 ≤ s
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where σ1(G0) denotes the largest eigenvalue of G0 with

G0 =
∑
i∈J(0)

1

A>i·T
(0)
AiS0

A>iS0
.

Here we write S0 = supp(T (0)). The result of part (a) then follows by showing σ1(G0)≤ s.
To this end, by using the inequality σ1(M)≤ ‖M‖∞,1 for any symmetric matrixM , we have

σ1(G0)≤max
k∈S0

∑
a∈S0

∑
i∈J(0)

AiaAik

A>i·T
(0)

= smax
k∈S0

∑
i∈J(0)

Aik by A>i·T
(0) =

‖AiS0
‖1

s

≤ s by
p∑
i=1

Aik = 1.

We proceed to prove (b) by noting that

‖T (j) − T (i)‖1 ≥ γ
s

16
=

√
c0

162

√
s

n
, ∀i 6= j.

This concludes the proof when s is even. When s is odd and s≥ 3, the same arguments hold
by definingM′ = {0,1}(s−1)/2.

APPENDIX G: PROOFS FOR SECTION 2.2: ESTIMATION WITH UNKNOWN A

G.1. Proof of Theorem 8: The general bound of the `1-norm convergence rate of T̂ .
We work on the intersection of events defined in (30) and (31), and defined in (F.1). Without
loss of generality, we assume (30) and (31) hold for the permutation P = IK . First, we recall
that

(G.1)
1

2
Πj ≤Πj − |(Âj· −Aj·)>T | ≤ Â>j·T ≤ Πj + |(Âj· −Aj·)>T | ≤

3

2
Πj ,

for all j ∈ J , see (32). The proof resembles the proof of Theorem 1. The KKT conditions are
now

N
∑
j∈J

Xj
Âj·

Â>j·T̂
+ λ+ µ1K = 0;(G.2)

λk ≥ 0, λkT̂k = 0, ∀k ∈ [K], T̂>1K = 1.(G.3)

Using the same reasoning in the proof of Theorem 1, we arrive at

N
∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂
=N

∑
j∈J

Xj

Â>j·∆

Â>j·T
+ λ>∆

(G.4)

≤ 2N
∑
j∈J

Xj

Â>j·∆

Πj

= 2N
∑
j∈J

(Xj −Πj)
A>j·∆

Πj
+ 2N

∑
j∈J

A>j·∆ + 2N
∑
j∈J

Xj
(Âj· −Aj·)>∆

Πj
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with ∆ := T̂ − T . For the left hand side of (G.4), use J ⊆ J to obtain∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂
≥
∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂
≥min

j∈J

Xj

Â>j·T

∑
j∈J

(Â>j·∆)2

Â>j·T̂
.

We argue as before in the proof of Theorem 1 to obtain∑
j∈J

(Â>j·∆)2

Â>j·T̂
≥ κ2(ÂJ , s)

and use (33) to prove κ(ÂJ , s)≥ 1
2κ(AJ , s), cf. (34). Since the inequality

Xj

Â>j·T

(G.1)

≥ 2Xj

3Πj
≥ 2

3
· Πj − |Xj −Πj |

Πj
≥ 2

3

(
1− εj

Πj

)
≥ 1

3

holds for all j ∈ J , we conclude∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂
≥ 1

3
κ2(AJ , s)‖∆‖21.(G.5)

Next, for the right hand side of (G.4), we have shown in the proof of Theorem 1 that

(G.6)

∣∣∣∣∣∣
∑
j∈J

(Xj −Πj)
A>j·∆

Πj

∣∣∣∣∣∣≤ ‖∆‖1
{√

2ρ log(K/t)

N
+

2ρ log(K/t)

3N

}
with probability 1− 2t, for any t≥ 0. Furthermore, invoking the event E defined in (F.1) and
using the expression of εj in (7) gives∣∣∣∣∣∣
∑
j∈J

Xj
(Âj· −Aj·)>∆

Πj

∣∣∣∣∣∣≤ ‖∆‖1 max
1≤k≤K

∑
j∈J

(
1 +

εj
Πj

)
|Ajk − Âjk|

≤ ‖∆‖1 max
1≤k≤K

∑
j∈J

|Ajk − Âjk|

(
1 + 2

√
log(p)

ΠjN
+

4 log(p)

3ΠjN

)
.

Recall that J ⊆ J and Πj ≥ 8 log(p)/(3N) for all j ∈ J . We have, for any k ∈ [K],∑
j∈J

|Âjk −Ajk|

(
1 + 2

√
log(p)

ΠjN
+

4 log(p)

3ΠjN

)

≤

∑
j∈J
|Âjk −Ajk|+

∑
j∈J\J

|Âjk −Ajk|

(2 +
7 log(p)

3ΠjN

)

≤ 3
∑
j∈J

|Âjk −Ajk|+
∑
j∈J\J

|Âjk −Ajk|
7 log(p)

3ΠjN
,

implying

∣∣∣∣∣∣
∑
j∈J

Xj
(Âj· −Aj·)>∆

Πj

∣∣∣∣∣∣≤ ‖∆‖1
3‖ÂJ −AJ‖1,∞ +

∑
j∈J\J

‖Âj· −Aj·‖∞
Πj

7 log(p)

3N

 .

(G.7)
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Finally, by collecting terms (G.5), (G.6) and (G.7) and using
∑

j∈J A
>
j·∆≤ 0 from (F.5), we

conclude

1

3
κ2(AJ , s)‖∆‖1 ≤ 2

3‖ÂJ −AJ‖1,∞ +
∑
j∈J\J

‖Âj· −Aj·‖∞
Πj

7 log(p)

3N


+ 2

√
2ρ log(K/t)

N
+

4ρ log(K/t)

3N

with probability 1− 2t, for any t≥ 0. Take t= p−1 to complete the proof.

G.2. Proof of Theorem 9: Fast rates of T̂ . We work on the intersection of the events,
defined in (30) and (36), and the event E in (F.1), so we can assume that the conclusion of
Theorem 8 holds for P = IK without loss of generality, that is,

‖T̂ − T‖1 ≤
6

κ2(AJ , s)

{√
2ρ log(p)

N
+

2ρ log(p)

3N
+ 3
∥∥ÂJ −AJ∥∥1,∞

+
7

3

∑
j∈J\J

‖Âj· −Aj·‖∞
Πj

log(p)

N


.

1

κ2(AJ , s)

{√
ρ log(p)

N
+
ρ log(p)

N
+
∥∥ÂJ −AJ∥∥1,∞

}
.

The last step also uses (30) and |J \ J | ≤ C ′ to collect terms. Similar to the arguments of
proving Theorem 2, we notice that (30), (35) and (36) guarantee that

(G.8) (1− c)Πj ≤A>j·T̂ ≤ (1 + c)Πj , ∀ j ∈ J ⊆ J.

From (G.4) and (F.5), we have

N
∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂
≤ 2N

∑
j∈J

(Xj −Πj)
A>j·∆

Πj
+ 2N

∑
j∈J

Xj
(Âj· −Aj·)>∆

Πj
.

By the arguments in the proof of Theorem 2, one can deduce that∣∣∣∣∣∣
∑
j∈J

(Xj −Πj)
A>j·∆

Πj

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∑
j∈J

(Xj −Πj)
A>j·H

−1/2H1/2∆

Πj

∣∣∣∣∣∣
≤ ‖H1/2∆‖2

∥∥∥∥∥∥
∑
j∈J

Xj −Πj

Πj
H−1/2Aj·

∥∥∥∥∥∥
2

. ‖H1/2∆‖2

√
K log(p)

N

with probability 1−2p−1. With the same probability, by using (G.7) together with (F.10), we
conclude

∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂

(G.9)



SUPPLEMENT TO “LIKELIHOOD ESTIMATION OF SPARSE TOPIC DISTRIBUTIONS” 23

. ‖H1/2∆‖2

√
K log(p)

N
+
‖H1/2∆‖2
κ(AJ , s)

‖ÂJ −AJ‖1,∞ +
∑
j∈J\J

‖Âj· −Aj·‖∞
Πj

log(p)

N

 .

We proceed to bound from below the left hand side. Since (36) together with (G.8) implies

(1/2− c)Πj ≤A>j·T̂ − ‖Âj· −Aj·‖∞‖T̂‖1

≤ Â>j·T̂

≤A>j·T̂ + ‖Âj· −Aj·‖∞‖T̂‖1 ≤ (3/2 + c)Πj(G.10)

and

(G.11) Πj/2≤ Â>j·T ≤ 3Πj/2,

for all j ∈ J ⊆ J . We have∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂
=
∑
j∈J

Xj

Â>j·T

(Â>j·∆)2

Â>j·T̂
& ∆>H̃∆

where we write

H̃ =
∑
j∈J

Xj

Π2
j

Âj·Â
>
j·.

Recall the definition of Ĥ from (F.7). It follows that

∆>H̃∆≥∆>Ĥ∆−
∑
j∈J

Xj

|Â>j·∆|
Πj

|(Âj· −Aj·)>∆|
Πj

−
∑
j∈J

Xj

|A>j·∆|
Πj

|(Âj· −Aj·)>∆|
Πj

.

By using

max
j∈J

‖Âj·‖∞
Πj

≤ ρ+ max
j∈J

‖Âj· −Aj·‖∞
Πj

≤ ρ+
1

2
≤ 2ρ,

we first have ∑
j∈J

Xj

|Â>j·∆|
Πj

|(Âj· −Aj·)>∆|
Πj

≤ 2ρ‖∆‖21 max
k∈[K]

∑
j∈J

Xj

Πj
|Âjk −Ajk|

≤ 2ρ‖∆‖21 max
k∈[K]

∑
j∈J

(
1 +
|Xj −Πj |

Πj

)
|Âjk −Ajk|

≤ 4ρ‖∆‖21 max
k∈[K]

∑
j∈J

(
1 +

7 log(p)

3ΠjN

)
|Âjk −Ajk|

. ρ‖∆‖21

‖ÂJ −AJ‖1,∞ +
∑
j∈J\J

‖Âj· −Aj·‖∞
Πj

log(p)

N


.

ρ

κ(AJ , s)

(
‖ÂJ −AJ‖1,∞ +

log(p)

N

)
‖H1/2∆‖22
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where the last line uses (F.10) and |J \J | ≤C ′. A similar argument also gives the same upper
bound for ∑

j∈J

Xj

|A>j·∆|
Πj

|(Âj· −Aj·)>∆|
Πj

.

Under condition (35) and (36), and also by invoking Lemma I.4, we readily have

P
{

∆>H̃∆ & ‖H1/2∆‖22
}
≥ 1− 2K−1,

which together with (G.9) gives

‖H1/2∆‖2 .
√
K log(p)

N
+

1

κ(AJ , s)

‖ÂJ −AJ‖1,∞ +
∑
j∈J\J

‖Âj· −Aj·‖∞
Πj

log(p)

N

 .

Invoke (F.10) and use (35) and |J \ J | ≤C ′ to simplify the expression to complete the proof.

G.3. Proof of Theorem 10: One-sided sparsity recovery of T̂ . The arguments resem-
ble the proof of Theorem 5. The proof of step (ii) follows exactly from the same argument by
replacing Aj· by Âj·. We therefore only prove step (i): there exists an optimal solution T̃ to
(29) such that supp(T̃ )⊆ supp(T ). Similarly, we define T̃Sc

T
= 0 and

(G.12) T̃ST
= arg max

β∈∆s

N
∑
j∈J

Xj log
(
Â>jST

β
)
.

The KKT condition corresponding to (G.12) states

N
∑
j∈J

Xj
ÂjST

Â>jST
T̃ST

+ λ̃ST
+ µ̃1s = 0;(G.13)

λ̃k ≥ 0, λ̃kT̃k = 0, ∀k ∈ ST , T̃>ST
1s = 1.(G.14)

By similar reasoning as the proof of Theorem 5, we define

µ̃=−N, λ̃k =N

1−
∑
j∈J

Xj
Âjk

Â>jST
T̃ST

 , ∀k ∈ [K].

The verification that (T̃ , λ̃, µ̃) satisfies (G.2) – (G.3) in lieu of (T̂ , λ,µ) boils down to show

(G.15) λ̃k > 0, ∀k ∈ ScT .
We show this on the event defined in Theorem 10. Notice that conditions in Theorem 10
imply that both (G.10) and (G.11) hold.

Pick any k ∈ ScT . Adding and subtracting terms yields∑
j∈J

Xj
Âjk

Â>jST
T̃ST

=
∑
j∈J

Xj
Âjk −Ajk
Â>jST

T̃ST

+
∑
j∈J

Xj

AjkÂ
>
jST

(TST
− T̃ST

)

Â>jST
T̃ST

Â>jST
TST

+
∑
j∈J

Xj
Ajk(AjST

− ÂjST
)>TST

Â>jST
TST

A>jST
TST

+
∑
j∈J

(Xj −Πj)
Ajk
Πj

+
∑
j∈J

Ajk

=R1,k +R2,k +R3,k +R4,k +
∑
j∈J

Ajk.
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We bound each term separately. For R1,k, using (G.10), J ⊆ J and the proof of Theorem 9
gives, on the event E in (F.1),

|R1,k|.
∑
j∈J

Xj

Πj
|Âjk −Ajk|

. ‖ÂJ −AJ‖1,∞ +
∑
j∈J\J

‖Âj· −Aj·‖∞
Πj

log(p)

N

. ‖ÂJ −AJ‖1,∞ +
log(p)

N
by |J \ J | ≤C ′.(G.16)

To bound R2,k, by writing ∆ = T̃ST
− TST

for simplicity and using similar arguments in the
proof of Theorem 5, we have

|R2,k|=

∣∣∣∣∣∣
∑
j∈J

Xj

AjkÂ
>
jST

∆

Â>jST
T̃ST

Â>jST
TST

∣∣∣∣∣∣≤ ‖∆‖1 max
j∈J

Ajk

Â>jST
TST

max
a∈ST

∑
j∈J

Xj
Âja

Â>jST
T̃ST

.

From (G.13) – (G.14), we deduce that

max
a∈ST

∑
j∈J

Xj
Âja

Â>jST
T̃ST

≤ 1.

Also, by using (G.11) together with

‖∆‖1 .
√
s log(p)

N
+ ‖ÂJ −AJ‖1,∞

deduced from Theorem 9 with K = s and κ−1(AJ , s)≤C ′′, we conclude that

(G.17) |R2,k|. ρSc
T

(√
s log(p)

N
+ ‖ÂJ −AJ‖1,∞

)
.

holds with probability at least 1− 8p−1. For R3,k, by the arguments of bounding R1,k and
R2,k, it is easy to see that

|R3,k| ≤ ρSc
T

max
a∈ST

∑
j∈J

Xj

Πj
|Âja −Aja|. ρSc

T

(
‖ÂJ −AJ‖1,∞ +

log(p)

N

)
.(G.18)

Regarding R4,k, invoking Lemma I.2 with t = 1/p and taking a union bounds over k ∈ ScT
yields

max
k∈Sc

T

|R4,k| ≤
√

2ρSc
T

log(p)

N
+

2ρSc
T

log(p)

3N
(G.19)

with probability 1− 2p−1. Finally, since

1−
∑
j∈J

Ajk ≥
∑
j∈Jc

Ajk,

by collecting terms in (G.16), (G.17), (G.18) and (G.19), the desired result follows provided
that

min
k∈Sc

T

∑
j∈Jc

Ajk & ρSc
T

√
s log(p)

N
+

√
ρSc

T
log(p)

N
+ (1 + ρSc

T
)‖ÂJ −AJ‖1,∞ +

log(p)

N

which is ensured by the condition in Theorem 10 coupled with the fact ρSc
T
≤ ξ/Tmin. The

proof is then complete.
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G.4. Proof of Corollary 11. The result follows from Theorem 9 and Theorem 10 after
we verify its conditions (30), (35), (36) and (37). Condition (35) simplifies to (40). The
rate on ‖Âj· − (AP )j·‖∞ in (39), condition (41) and the inequality maxj∈J ‖Aj·‖∞/Π∗j ≤
ρ ≤ (1 ∨ ξ)/Tmin . 1/Tmin imply (30). The rate on ‖Â− AP‖1,∞ in (38) and the bounds
κ−1(AJ ,K) = O(1) and ξ = O(1) together with conditions (41) and (42) imply (36) and
(37).

APPENDIX H: PROOF OF PROPOSITION 12 IN SECTION 3.2

We prove (54) and (55) – (56) separately in this section. We collect technical lemmas that
are used in the proofs at the end of this section.

Proof of (54). Using the triangle inequality for W1 (Lemma H.2 below),

W1(Π̃(i), Π̃(j);Dword)≤W1(Π̃(i),Π
(i)
∗ ;Dword)+W1(Π

(i)
∗ ,Π

(j)
∗ ;Dword)+W1(Π

(j)
∗ , Π̃

(j);Dword),

and thus

W1(Π̃(i), Π̃(j);Dword)−W1(Π
(i)
∗ ,Π

(j)
∗ ;Dword)≤

∑
k∈{i,j}

W1(Π̃(k),Π
(k)
∗ ;Dword).

Combining this with a second application of the triangle inequality with the roles of Π̃(k) and
Π(k) switched for k ∈ {i, j}, we find∣∣∣W1(Π̃(i), Π̃(j);Dword)−W1(Π

(i)
∗ ,Π

(j)
∗ ;Dw)

∣∣∣≤ ∑
k∈{i,j}

W1(Π̃(k),Π
(k)
∗ ;Dword)

≤ ‖Dword‖∞
1

2

∑
k∈{i,j}

‖Π̃(k) −Π
(k)
∗ ‖1,(H.1)

where the second step follows from Lemma H.2 below. For k ∈ {i, j}, we find

‖Π̃(k) −Π
(k)
∗ ‖1 = ‖ÂT̂ (k) −AT (k)

∗ ‖1

= ‖ÂT̂ (k) −AT̂ (k) +AT̂ (k) −AT (k)
∗ ‖1

≤ ‖(Â−A)T̂ (k)‖1 + ‖A(T̂ (k) − T (k)
∗ )‖1

≤max
l∈[K]

‖Â·l −A·l‖1‖T̂ (k)‖1 + max
l∈[K]

‖A·l‖1‖T̂ (k) − T (k)
∗ ‖1(H.2)

= max
l∈[K]

‖Â·l −A·l‖1 + ‖T̂ (k) − T (k)
∗ ‖1,

where (H.2) follows from the fact that for any v ∈RK ,

‖Av‖1 =

p∑
i=1

∣∣∣∣∣
K∑
k=1

Aikvk

∣∣∣∣∣≤
K∑
k=1

|vk|
p∑
i=1

|Aik| ≤max
l∈[K]

‖A·l‖‖v‖1,

and in the final step we use that A·l ∈∆p for all l ∈ [K] and T̂ (k) ∈∆K . Plugging this into
(H.1) we find∣∣∣W1(Π̃(i), Π̃(j);Dword)−W1(Π

(i)
∗ ,Π

(j)
∗ ;Dw)

∣∣∣
≤ ‖Dword‖∞

max
l∈[K]

‖(Â−A)el‖1 +
1

2

∑
k∈{i,j}

‖T̂ (k) − T (k)
∗ ‖1

 .(H.3)



SUPPLEMENT TO “LIKELIHOOD ESTIMATION OF SPARSE TOPIC DISTRIBUTIONS” 27

Finally, note that for any P ∈HK , PP> = IK , so for k ∈ {i, j},

Π
(k)
∗ =AT

(k)
∗ =APP>T

(k)
∗ .

Furthermore, AP ∈∆p and P>T (k)
∗ ∈∆K . Thus, (H.3) holds when A and T (k)

∗ are replaced
by AP and P>T (k)

∗ , respectively, for any P ∈ HK . We can thus take the maximum over
P ∈HK , which completes the proof of (54).

Proof of (55) and (56). We will prove the bound∣∣∣W1(T̂ (i), T̂ (j); D̂topic)−W1(T
(i)
∗ , T

(j)
∗ ;Dtopic)

∣∣∣
≤ 2 max

k∈[K]
d(Â·k,A·k) + ‖Dtopic‖∞

1

2

∑
k∈{i,j}

‖T̂ (k) − T (k)
∗ ‖1,(H.4)

where d is any metric on ∆p, and

(H.5) D̂topic(k, l) := d(Â·k, Â·l), Dtopic(k, l) := d(A·k,A·l) ∀k, l ∈ [K].

Combining this with Lemma H.1 below, (H.4) yields∣∣∣W1(T̂ (i), T̂ (j); D̂topic)−W1(T
(i)
∗ , T

(j)
∗ ;Dtopic)

∣∣∣
≤ max
P∈HK

2 max
k∈[K]

d(Â·k, (AP )·k) + ‖Dtopic‖∞
1

2

∑
k∈{i,j}

‖T̂ (k) − P>T (k)
∗ ‖1

 .(H.6)

Equation (56) follows immediately from (H.6) using d(a, b) = 1
2‖a − b‖1 for a, b ∈ ∆p,

and noting that for this choice of d, ‖Dtopic‖∞ ≤ 1. To prove (55), choose d(a, b) =
W1(a, b;Dword) for a, b ∈∆p, and note that by Lemma H.2,

(H.7) W1(Â·k, (AP )·k;D
word)≤ ‖Dword‖∞

1

2
‖Â·k − (AP )·k‖ ∀k ∈ [K],

and for this choice of d,

(H.8) ‖Dtopic‖∞ = max
k,l∈[K]

W1(A·k,A·l;D
word)≤ ‖Dword‖ max

k,l∈[K]
‖A·k −A·l‖ ≤ ‖Dword‖.

Combining (H.7) and (H.8) with (H.6) proves (55).

Proof of (H.4). We first find

W1(T̂ (i), T̂ (j); D̂topic) = inf
w∈Γ(T̂ (i),T̂ (j))

tr(wD̂topic)

= inf
w∈Γ(T̂ (i),T̂ (j))

{
tr(wDtopic) + tr(w[D̂topic −Dtopic])

}
= inf
w∈Γ(T̂ (i),T̂ (j))

tr(wDtopic) + ‖D̂topic −Dtopic‖∞(H.9)

= ‖D̂topic −Dtopic‖∞ +W1(T̂ (i), T̂ (j);Dtopic),(H.10)

where in (H.9) we use that for any w ∈ Γ(T̂ (i), T̂ (j)),

tr(w[D̂topic −Dtopic]) =

K∑
t,l=1

wtl(D̂
topic
lt −Dtopic

lt )



28

≤ ‖D̂topic −Dtopic‖∞ ·
K∑

t,l=1

wtl since wlt ≥ 0 for t, l ∈ [K]

= ‖D̂topic −Dtopic‖∞.(H.11)

Using the triangle inequality for W1 (Lemma H.2), we find

W1(T̂ (i), T̂ (j);Dtopic)≤W1(T̂ (i), T
(i)
∗ ;Dtopic) +W1(T

(i)
∗ , T

(j)
∗ ;Dtopic) +W1(T̂ (j), T

(j)
∗ ;Dtopic).

Plugging this into (H.10) we find

W1(T̂ (i), T̂ (j); D̂topic)−W1(T
(i)
∗ , T

(j)
∗ ;Dtopic)

≤ ‖D̂topic −Dtopic‖∞ +
∑

k∈{i,j}

W1(T̂ (k), T
(k)
∗ ;Dtopic).(H.12)

Using the triangle inequality again,

W1(T
(i)
∗ , T

(j)
∗ ;Dtopic)≤W1(T̂ (i), T̂ (j);Dtopic) +

∑
k∈{i,j}

W1(T̂ (k), T
(k)
∗ ;Dtopic)

≤ ‖D̂topic −Dtopic‖∞ +W1(T̂i, T̂j ; D̂
topic) +

∑
k∈{i,j}

W1(T̂k, Tk;D
topic),

where in the second line we used the same argument as in (H.10) with the roles of D̂topic and
Dtopic reversed. Combining this with (H.12), we find∣∣∣W1(T̂ (i), T̂ (j); D̂topic)−W1(T

(i)
∗ , T

(j)
∗ ;Dtopic)

∣∣∣
≤ ‖D̂topic −Dtopic‖∞ +

∑
k∈{i,j}

W1(T̂k, Tk;D
topic)

≤ ‖D̂topic −Dtopic‖∞ + ‖Dtopic‖∞
1

2

∑
k∈{i,j}

‖T̂ (k)
∗ − T

(k)
∗ ‖1,(H.13)

where we use Lemma H.2 in the last line.
Next, we find by the triangle inequality and (H.5) that

D̂topic
tl ≤ d(Â·t,A·t) + d(A·t,A·l) + d(A·l, Â·l),

and

Dtopic
tl ≤ d(A·t, Â·t) + d(Â·t, Â·l) + d(Â·l,A·l),

which together give

‖D̂topic −Dtopic‖∞ ≤ 2 max
t∈[K]

d(A·t, Â·t).

Plugging this into (H.13) completes the proof of (H.4).

We use the following simple lemma in the proof of (55) and (56).

LEMMA H.1. For any metric d : ∆p × ∆p → R, T,T ′ ∈ ∆K , and A ∈ Rp×K with
columns in ∆p, and any P ∈HK ,

inf
w∈Γ(T,T ′)

K∑
k,l=1

wkld(A·k,A·l) = inf
w∈Γ(P>T,P>T ′)

K∑
k,l=1

wkld((AP )·k, (AP )·l).
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PROOF. Fix P ∈ HK and let π : [K]→ [K] be the associated bijection, so Pkl = 1[k =
π(l)] for all k, l ∈ [K]. From this it follows that

(H.14) (P>T )k = Tπ(k), (P>T ′)k = T ′π(k), (AP )·k =A·π(k).

Let w ∈ Γ(T,T ′), and define wπ by wπkl =wπ(k)π(l). Then for l ∈ [K],

K∑
k=1

wπkl =

K∑
k=1

wπ(k)π(l)

= T ′π(l) since w ∈ Γ(T,T ′)

= (P>T ′)l. by (H.14)

A similar calculation shows
∑

lw
π
kl = (P>T )k, and we thus conclude thatwπ ∈ Γ(P>T,P>T ′).

Next note that
K∑

k,l=1

wkld(A·k,A·l) =

K∑
k,l=1

wπ(k)π(l)d(A·π(k),A·π(l)) since π is a bijection

=

K∑
k,l=1

wπkld((AP )·k, (AP )·l) by (H.14)

≥ inf
w∈Γ(P>T,P>T ′)

K∑
k,l=1

wkld((AP )·k, (AP )·l). since wπ ∈ Γ(P>T,P>T ′)

Since this holds for all w ∈ Γ(T,T ′), we find

(H.15) inf
w∈Γ(T,T ′)

K∑
k,l=1

wkld(A·k,A·l)≥ inf
w∈Γ(P>T,P>T ′)

K∑
k,l=1

wkld((AP )·k, (AP )·l).

Applying (H.15) with P , T , T ′ and A replaced by P>, P>T , P>T ′, and AP , respectively,
gives the opposite inequality. Combined with (H.15), this completes the proof.

We also use the following standard results on the 1-Wasserstein distance in the proofs in
this section (see, for example, (Gibbs and Su, 2002; Villani, 2003)).

LEMMA H.2. Let D be a metric on a finite, non-empty, set X . Then,

1. W1(·, ·;D) is a metric on ∆|X |.
2. For any a, b ∈∆|X |,

W1(a, b;D)≤ max
x,y∈X

D(x, y) · 1
2
‖a− b‖1.

APPENDIX I: TECHNICAL LEMMAS

LEMMA I.1. For any t≥ 0, with probability 1− 2pe−t/2,

|Xj −Πj | ≤
√

Πjt

N
+

2t

3N
, uniformly over 1≤ j ≤ p.

PROOF. The proof follows by a simple application of the Bernstein’s inequality for
bounded random variables (see, for instance, the proof of Lemma 15 in Bing, Bunea and
Wegkamp (2020a)).
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LEMMA I.2. Pick any k ∈ [K]. For any t≥ 0, with probability 1− 2e−t/2,∣∣∣∣∣∣
∑
j∈J

Xj −Πj

Πj
Ajk

∣∣∣∣∣∣≤
√
ρkt

N
+

2ρkt

3N
,

with ρk = maxj∈J Ajk/Πj .

PROOF. For any j ∈ J , notice that

Xj −Πj =
1

N

N∑
i=1

(Bij −Πj)

where Bij ∼ Bernoulli(Πj) and (Bi1, . . . ,Bip)
> ∼Multinomial(1,Πj) for i ∈ [N ]. Let

∑
j∈J

Xj −Πj

Πj
Ajk =

1

N

N∑
i=1

Zi

with

Zi =
∑
j∈J

(Bij −Πj)
Ajk
Πj

such that E[Zi] = 0, |Zi| ≤ 2 maxj∈J Ajk/Πj = 2ρk and

E[Z2
i ] = Var

∑
j∈J

Ajk
Πj

Bij

≤∑
j∈J

A2
jk

Πj
≤ ρk

∑
j∈J

Ajk ≤ ρk.

Then an application of Bernstein’s inequality gives

P

{
1

N

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣≥
√
ρkt

N
+

2ρkt

3N

}
≤ 2e−t/2, ∀t≥ 0,

which completes the proof.

Recall that

H =
∑
j∈J

Aj·A
>
j·

Πj
.

LEMMA I.3. For any t≥ 0, with probability 1− 2e−t/2+K log 5,∥∥∥∥∥∥
∑
j∈J

Xj −Πj

Πj
H−1/2Aj·

∥∥∥∥∥∥
2

≤ 2

√
t

N
+

2(1∨ ξ)
3κ(AJ ,K)Tmin

· t
N
.

PROOF. First note that∥∥∥∥∥∥
∑
j∈J

Xj −Πj

Πj
H−1/2Aj·

∥∥∥∥∥∥
2

= sup
v:‖v‖2=1

∣∣∣∣∣∣
∑
j∈J

Xj −Πj

Πj
A>j·H

−1/2v

∣∣∣∣∣∣ .
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LetN be a minimal (1/2)-net of {v : ‖v‖2 = 1}. By definition and the property of (1/2)-net,
we have ∥∥∥∥∥∥

∑
j∈J

Xj −Πj

Πj
H−1/2Aj·

∥∥∥∥∥∥
2

≤ 2 sup
v∈N

∣∣∣∣∣∣
∑
j∈J

Xj −Πj

Πj
A>j·H

−1/2v

∣∣∣∣∣∣ .
Pick any v ∈N . By similar reasoning as in the proof of Lemma I.2, we have∑

j∈J

Xj −Πj

Πj
A>j·H

−1/2v =
1

N

N∑
i=1

Zi

with

Zi =
∑
j∈J

Bij −Πj

Πj
A>j·H

−1/2v.

Note that E[Zi] = 0 and

|Zi| ≤max

max
j∈J

|A>j·H−1/2v|
Πj

,

∣∣∣∣∣∣
∑
j∈J

A>j·H
−1/2v

∣∣∣∣∣∣


≤max

max
j∈J

|A>j·H−1/2v|
Πj

, max
j∈J

∣∣∣∣∣A>j·H−1/2v

Πj

∣∣∣∣∣∑
j∈J

Πj


≤max

j∈J

‖Aj·‖∞‖H−1/2v‖1
Πj

≤ ρ ‖H−1/2v‖1.

Since, for any u ∈RK , one has

u>Hu=
∑
j∈J

(A>j·u)2

Πj

=
∑
j∈J

(A>j·u)2

Πj

∑
j∈J

Πj by
∑
j∈J

Πj = 1

≥

∑
j∈J

|A>j·u|

2

≥ κ2(AJ ,K)‖u‖21, by (9)

from which, we deduce that

(I.1) ‖H−1/2u‖1 ≤ κ−1(AJ ,K)‖u‖2, ∀u ∈RK .

We thus conclude |Zi| ≤ ρκ−1(AJ ,K). Furthermore, observe that

E[Z2
i ] = Var

∑
j∈J

Bij
Πj

A>j·H
−1/2v

≤ v>H−1/2
∑
j∈J

Aj·A
>
j·

Πj
H−1/2v = 1.
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An application of the Bernstein’s inequality gives

P

{
1

N

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣≥
√

t

N
+

ρt

3κ(AJ ,K)N

}
≤ 2e−t/2, ∀t≥ 0.

The proof follows immediately by using ρ ≤ (1 ∨ ξ)/Tmin and taking a union bound over
v ∈N together with |N | ≤ 5K .

Recall that

Ĥ =
∑
j∈J

Xj

Π2
j

Aj·A
>
j·.

The following lemma provides a concentration inequality of H−1/2(Ĥ −H)H−1/2 via an
application of the Matrix Bernstein inequality (Tropp, 2015).

LEMMA I.4. For any t≥ 0, one has

P

{∥∥∥H−1/2(Ĥ −H)H−1/2
∥∥∥

op
≤
√

2Bt

N
+
Bt

3N

}
≥ 1− 2Ke−t/2,

with

B =
1∨ ξ

κ2(AJ ,K)T 2
min

(
1 + ξ

√
K − s

)
.

Moreover, if

N ≥CB logK

for some sufficiently large constant C > 0, then, with probability 1− 2K−1, one has

λmin(Ĥ)≥ cλmin(H)

for some constant c > 0.

PROOF. By similar arguments in the proof of Lemma I.2, we have

H−1/2(Ĥ −H)H−1/2 =
1

N

N∑
i=1

Zi

with

Zi =
∑
j∈J

Bij −Πj

Π2
j

H−1/2Aj·A
>
j·H

−1/2.

Notice E[Zi] = 0. To apply the Matrix Bernstein inequality, we first find the bound for ‖Zi‖op

as

‖Zi‖op ≤max

max
j∈J

∥∥∥∥∥H−1/2Aj·A
>
j·H

−1/2

Π2
j

∥∥∥∥∥
op

,

∥∥∥∥∥∥
∑
j∈J

H−1/2Aj·A
>
j·H

−1/2

Πj

∥∥∥∥∥∥
op


≤max

{
max
j∈J

A>j·H
−1Aj·

Π2
j

, 1

}
.
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Since

A>j·H
−1Aj· ≤ ‖Aj·‖∞‖H−1/2‖1,∞‖H−1/2Aj·‖1,

by using (I.1), we obtain

A>j·H
−1Aj· ≤ ‖Aj·‖∞‖Aj·‖2κ−2(AJ ,K).

Since Πj ≥ Tmin‖AjST
‖1, we conclude

max
j∈J

A>j·H
−1Aj·

Π2
j

≤ ρκ−2(AJ ,K) max
j∈J

‖Aj·‖2
Πj

≤ ρ

κ2(AJ ,K)Tmin
max
j∈J

(
‖AjST

‖2
‖AjST

‖1
+
‖AjSc

T
‖2

‖AjST
‖1

)
≤ ρ

κ2(AJ ,K)Tmin

(
1 + ξ

√
|ST |c

)
≤ 1∨ ξ
κ2(AJ ,K)T 2

min

(
1 + ξ

√
K − s

)
=B.(I.2)

We used the definition (14) in the penultimate step and used ρ≤ (1∨ ξ)/Tmin in the last step.
Thus, ‖Zi‖op ≤B. For the second moment of Zi, we have

E[ZiZ
>
i ] = E

∑
j∈J

Bij −Πj

Π2
j

H−1/2Aj·A
>
j·H

−1/2
∑
j∈J

Bij −Πj

Π2
j

H−1/2Aj·A
>
j·H

−1/2


= E

∑
j∈J

Bij
Π2
j

H−1/2Aj·A
>
j·H

−1/2
∑
j∈J

Bij
Π2
j

H−1/2Aj·A
>
j·H

−1/2


+E

∑
j∈J

1

Πj
H−1/2Aj·A

>
j·H

−1/2
∑
j∈J

1

Πj
H−1/2Aj·A

>
j·H

−1/2


� E

∑
j∈J

Bij
Π2
j

H−1/2Aj·A
>
j·H

−1/2

max
j∈J

H−1/2Aj·A
>
j·H

−1/2

Π2
j

+ IK

= IK max
j∈J

H−1/2Aj·A
>
j·H

−1/2

Π2
j

+ IK .

Since

max
j∈J

H−1/2Aj·A
>
j·H

−1/2

Π2
j

= max
j∈J

A>j·H
−1Aj·

Π2
j

,

by (I.2), we conclude ∥∥∥E[ZiZ
>
i ]
∥∥∥

op
=
∥∥∥E[Z>i Zi]

∥∥∥
op
≤ 1 +B ≤ 2B.

The first result then follows from an application of the Matrix Bernstein inequality. The
second result follows immediately by using the first result with t= 2 logK and noting that

λmin(Ĥ)≥ λmin(H)λmin(H−1/2ĤH−1/2)≥ λmin(H)
(

1− ‖H−1/2(Ĥ −H)H−1/2‖op

)
.

We use Weyl’s inequality in the second step.
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APPENDIX J: ALGORITHM OF ESTIMATING THE WORD-TOPIC MATRIX A

We recommend the following procedure for estimating the word-topic matrix A under
Assumption 1. It consists of two parts: (a) estimation of the partition of anchor words, and (b)
estimation of the word-topic matrix A. Step (a) uses the procedure proposed in Bing, Bunea
and Wegkamp (2020a), stated in Algorithm 1 while step (b) uses the procedure proposed in
Bing, Bunea and Wegkamp (2020b), summarized in Algorithm 2.

Recall that X = (X(1), . . . ,X(n)) with Ni denoting the length of document i. Define

(J.1) Θ̂ =
1

n

n∑
i=1

[
Ni

Ni − 1
X(i)X(i)> − 1

Ni − 1
diag(X(i))

]
and

(J.2) R̂=D−1
X Θ̂D−1

X

with DX = n−1diag(X1n).

J.1. Estimation of the index set of the anchor words, its partition and the number of
topics. We write the set of anchor words as I = ∪k∈[K]Ik and its partition I = {I1, . . . , IK}
where

Ik = {j ∈ [p] :Ajk > 0, A`k = 0, ∀ ` 6= j}.

Algorithm 1 estimates the index set I , its partition I and the number of topics K from the
input matrix R̂. The choice C1 = 1.1 is recommended and is empirically verified to be robust
in Bing, Bunea and Wegkamp (2020a). A data-driven choice of δj` is specified in Bing, Bunea
and Wegkamp (2020a) as
(J.3)

δ̂j` =
n2

‖Xj·‖1‖X`·‖1

η̂j` + 2Θ̂j`

√
logM

n

 n

‖Xj·‖1

(
1

n

n∑
i=1

Xji

Ni

)1

2

+
n

‖X`·‖1

(
1

n

n∑
i=1

X`i

Ni

)1

2


with M = n∨ p∨maxiNi and

η̂j` = 3
√

6
(
‖Xj·‖

1

2
∞ + ‖X`·‖

1

2∞
)√ logM

n

(
1

n

n∑
i=1

XjiX`i

Ni

) 1

2

+

(J.4)

+
2 logM

n
(‖Xj·‖∞ + ‖X`·‖∞)

1

n

n∑
i=1

1

Ni
+ 31

√
(logM)4

n

(
1

n

n∑
i=1

Xji +X`i

N3
i

)1

2

J.2. Estimation of the word-topic matrix A with a given partition of anchor words.
Given the estimated partition of anchor words Î = {Î1, . . . , ÎK̂} and its index set Î =

∪k∈[K̂]Îk, Algorithm 2 below estimates the matrix A.

Bing, Bunea and Wegkamp (2020b) recommends to set λ = 0 whenever M̂ is invertible
and otherwise choose λ large enough such that M̂ + λIK is invertible. Specifically, Bing,
Bunea and Wegkamp (2020b) recommends to choose λ as

(J.5) λ(t∗) = 0.01 · t∗ ·K

(
K log(n∨ p)

[mini∈Î(DX)ii]n
· 1

n

n∑
i=1

1

Ni

)1/2

.
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Algorithm 1 Estimate the partition of the anchor words I by Î
Require: matrix R̂ ∈Rp×p, C1 and Q ∈Rp×p such that Q[j, `] :=C1δj`

1: procedure FINDANCHORWORDS(R̂, Q)
2: initialize Î = ∅
3: for i ∈ [p] do
4: âi = arg max1≤j≤p R̂ij
5: set Î(i) = {` ∈ [p] : R̂iâi − R̂il ≤Q[i, âi] +Q[i, `]} and ANCHOR(i) = TRUE

6: for j ∈ Î(i) do
7: âj = arg max1≤k≤p R̂jk
8: if

∣∣∣R̂ij − R̂jâj ∣∣∣>Q[i, j] +Q[j, âj ] then
9: ANCHOR(i) = FALSE

10: break
11: if ANCHOR(i) then
12: Î = MERGE(Î(i), Î)
13: return Î = {Î1, Î2, . . . , ÎK̂}

14: procedure MERGE(Î(i), Î)
15: for G ∈ Î do
16: if G∩ Î(i) 6= ∅ then
17: replace G in Î by G∩ Î(i)

18: return Î
19: Î(i) ∈ Î
20: return Î

where

t∗ = arg min
{
t ∈ {0,1,2, . . .} : M̂ + λ(t)IK is invertible

}
.

Algorithm 2 Sparse Topic Model solver (STM)

Require: frequency data matrix X ∈ Rp×n with document lengths N1, . . . ,Nn; the partition of anchor words
{I1, . . . , ÎK̂} and its index set Î = ∪

k∈[K̂]
Îk , the tuning parameter λ≥ 0

1: procedure
2: compute DX = n−1diag(X1n), Θ̂ from (J.1) and R̂ from (J.2)
3: compute B̂

Î· by B̂i· = ek for each i ∈ Îk and k ∈ [K̂]

4: compute M̂ = B̂+

Î·
R̂
Î Î
B̂+>
Î·

and Ĥ = B̂+

Î·
R̂
Î Îc

with B̂+

Î·
= (B̂>

Î·B̂Î·)
−1B̂>

Î· and Îc = [p] \ Î

5: solve B̂
Îc· from

B̂j· = 0, if (DX )jj ≤
7 log(n∨ p)

n

 1

n

n∑
i=1

1

Ni

 ,

B̂j· = arg min
β≥0, ‖β‖1=1

β>(M̂ + λIK)β − 2β>ĥ(j), otherwise,

for each j ∈ Îc, with ĥ(j) being the corresponding column of Ĥ .
6: compute Â by normalizing DX B̂ to unit column sums
7: return Â
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APPENDIX K: SOME EXISTING RESULTS ON ESTIMATION OF A

For completeness, we state the upper bounds of the estimator Â of A proposed in Bing,
Bunea and Wegkamp (2020a) as well as the conditions under which Â is optimal in the
minimax sense, up to a logarithmic factor.

Let N = Ni for all i ∈ [n] for simplicity and write M = n ∨ p ∨N . Under Assumption
1, recall that I denotes the index set of anchor words and Ic = [p] \ I . From Corollary 8
of Bing, Bunea and Wegkamp (2020a), under the conditions stated in Appendix K.1, the
following holds with probability at least 1− 8M−1,

min
P∈PK

‖Â−AP‖1,∞ .

√
(|I|+K|Ic|) logM

nN
,(K.1)

min
P∈PK

‖Â−AP‖1 .K

√
(|I|+K|Ic|) logM

nN
,(K.2)

On the other hand, the minimax lower bounds in Theorem 6 of Bing, Bunea and Wegkamp
(2020a) further imply that the rates in (K.1) – (K.2) are minimax optimal, up to the log(M)
factor.

K.1. Conditions under which (K.1) – (K.2) hold. Let T := T∗ and Π := Π∗. Define

ν := nζiζj

[
ζi
ζj
∧ ζj
ζi
− cos(∠(Ti·,Ti·))

]
with ζi = ‖Ti·‖2/‖Ti·‖1. This quantity quantifies the incoherence between rows of T .

(1) The matrix A satisfies
a) the anchor word assumption in Assumption 1,
b) the balancing condition maxi∈I ‖Ai·‖∞ �mini∈I ‖Ai·‖∞ and

1

|Ic|
∑
j∈Ic

‖Aj·‖∞
maxi∈I ‖Ai·‖∞

. 1,

c) the separation condition between anchor and non-anchor words

min
i∈I,j∈Ic

‖Ãi· − Ãj·‖1 ≥ 8δ/ν

whereA=D−1
Π ADT withDΠ = diag(Π1n) andDT = diag(T1n) and the expression

of δ is stated below.
(2) The matrix T := T∗ satisfies

a) rank(T ) =K ,
b) the incoherence condition ν > 4δ,
c) the balancing condition maxk∈[K]

∑n
i=1 Tki �mink∈[K]

∑n
i=1 Tki,

d) the weak dependency condition
∑

k′ 6=k
√
Ckk′ .

√
Ckk for all k ∈ [K] with C =

n−1TT>;
(3) The matrix Π := Π∗ satisfies

min
j∈[p]

1

n

n∑
i=1

Πji ≥
2 logM

3N
, min

j∈[p]
max

1≤i≤n
Πji ≥

(3 logM)2

N
.

For detailed interpretation and justification of the above conditions, we refer the reader to
Remarks 2, 3, 9, 10 & 11 of Bing, Bunea and Wegkamp (2020a). The quantity δ mentioned
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above represents the noise level in the context of estimating A, defined as δ = maxj,`∈[p] δj`,
where

(K.3) δj` :=
p2ηj`
µjµ`

+
p2Θj`

µjµ`

(√
p

µj
+

√
p

µ`

)√
logM

nN
.

with

ηj` =

√
Θj` logM

nN

√
mj +m`

p
∨ log2M

N
+

2(mj +m`)

p

logM

nN

+

√
log4M

nN3

√
µj + µ`

p
∨ logM

N
.(K.4)

Here, Θ = n−1ΠΠ>,

mj

p
= max

1≤i≤n
Πji,

µj
p

=
1

n

n∑
i=1

Πji, ∀ j ∈ [p].

Let Â be the estimator obtained the procedure proposed in Bing, Bunea and Wegkamp
(2020a). Write |Imax|= maxk∈[K] |Ik| and recall that M = n∨ p∨N .

THEOREM K.1. Under conditions in (1) – (3) stated in Appendix K.1, assume

(K.5) (|Imax|+K|Ic|) log(M)≤ cnN

for some absolute constant c ∈ (0,1). Then there exists some permutation matrix P ∈ PK
such that, with probability 1− 8M−1, we have

‖(ÂP )j· −Aj·‖∞ .

√
‖Aj·‖∞

K log(M)

nN

(
1∨
√
p‖Aj·‖∞

)
, ∀ j ∈ [p].

PROOF. The proof repeatedly uses the results and proofs in the supplement of Bing, Bunea
and Wegkamp (2020a). We only go through the major steps here and refer the reader to Bing,
Bunea and Wegkamp (2020a) for detailed notation and formal statements.

We work on the event E := E1 ∩ E2 ∩ E2 defined in page 8 of the supplement of Bing,
Bunea and Wegkamp (2020a). Recall that Â= T−1

∑T
i=1 Â

i. It suffices to prove the desired
result for any i ∈ [T ]. We follow the arguments in the proof of Theorem 7 of Bing, Bunea
and Wegkamp (2020a) and write Â= Âi for simplicity.

We first recall from Theorem 7 of Bing, Bunea and Wegkamp (2020a) that, by assuming
the identity permutation without loss of generality, K̂ =K and Îk = Ik for all k ∈ [K] hold
on E . As a result, we have L̂= L with L= {i1, . . . , iK} and ik ∈ Ik for each k ∈ [K]. From
page 28 of the supplement of Bing, Bunea and Wegkamp (2020a), we have, for any j ∈ [p]
and k ∈ [K],

|Âjk −Ajk| ≤

∣∣∣‖B̂·k‖1 − ‖B·k‖1∣∣∣
‖B·k‖1

Âjk +
|B̂jk −Bjk|
‖B·k‖1

≤ ‖B̂·k −B·k‖1
‖B·k‖1

(
Ajk + |Âjk −Ajk|

)
+
|B̂jk −Bjk|
‖B·k‖1
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and ‖B·k‖1 = p/αik , where, following Bing, Bunea and Wegkamp (2020a), we define

(K.6) αj := p max
1≤k≤K

Ajk, γk :=
K

n

n∑
i=1

Wki, for each j ∈ [p], k ∈ [K].

Since Corollary 8 of Bing, Bunea and Wegkamp (2020a) ensures that

max
k∈[K]

‖B̂·k −B·k‖1
‖B·k‖1

.

√
(|Imax|+K|Ic|) log(M)

nN

with |Imax|= maxk |Ik|, condition (K.5) implies

(1− c)|Âjk −Ajk| ≤Ajk

√
(|Imax|+K|Ic|) log(M)

nN
+
αik
p
|B̂jk −Bjk|,

hence

(K.7) ‖Âj· −Aj·‖∞ . ‖Aj·‖∞

√
(|Imax|+K|Ic|) log(M)

nN
+ max

k

αik
p
|B̂jk −Bjk|,

It thus remains to bound the second term. We distinguish two cases:
(i) If j ∈ Ik for some k ∈ [K], then by using the fact that |B̂jk − Bjk| = ‖B̂Ik − BIk‖1

whenever |Ik|= 1, invoking the bound of ‖B̂Ik−BIk‖1 in display (58) of the supplement of
Bing, Bunea and Wegkamp (2020a) with Ik = {j} yields

|B̂jk −Bjk| .
αj

αik
√
αIγk

√
pK log(M)

nN

where

αI = min
i∈I

αi, αI = max
i∈I

αi.

As a result, by using γk � 1 which is implied by condition (2) c) in Appendix K.1, we have

max
k

αik
p
|B̂jk −Bjk| .

αj√
αIγk

√
K log(M)

npN
= ‖Aj·‖∞

√
pK log(M)

nN

where we also use αI � αj for j ∈ I from condition (1) b).
(ii) If j ∈ Ic, then following the arguments in page 27 of the supplement of Bing, Bunea

and Wegkamp (2020a), one can deduce

|B̂jk −Bjk| ≤ ‖ω̂k‖1‖Θ̂jL −ΘjL‖∞ + ‖Bj·‖∞
(
‖Θ̂LLω̂k − ek‖1 + ‖ω̂k‖1‖Θ̂LL −ΘLL‖∞,1

)
≤C0‖ωk‖1 max

i∈L
ηij + 2‖Bj·‖∞‖ωk‖1λ

.
p2

αikαI
‖C−1‖∞,1

max
i∈L

ηij +
p

αI
‖Aj·‖∞max

i∈L

∑
j∈L

ηij


.

p2K

αikαI

max
i∈L

ηij +
p

αI
‖Aj·‖∞

√
α3
Iγ logM

Knp3N


with γ = maxk γk, where in the penultimate step we have used ‖C−1‖∞,1 .K and the bound
for maxi∈L

∑
j∈L ηij in the proof of Corollary 8 of Bing, Bunea and Wegkamp (2020a). Then
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by maxk γk � 1, αI � αI , we obtain

max
k

αik
p
|B̂jk −Bjk| .

pK

αI
max
i∈L

ηij + ‖Aj·‖∞

√
pK logM

αInN
.

Finally, to bound maxi∈L ηij , recalling from display (57) of the supplement of Bing, Bunea
and Wegkamp (2020a), we have, for any i ∈ Ia and a ∈ [K],

ηij .

√
1

n
〈Ta·,Πj·〉

√
αi(αi + αj) logM

np2N
+

(αi + αj) logM

npN
+

√
(αi + αj)(logM)4

npN3
.

Since

〈Ta·,Πj·〉=A>j·
1

n
TTa· ≤ ‖Aj·‖∞

1

n

n∑
t=1

Tat = ‖Aj·‖∞
γa
K

.
‖Aj·‖∞
K

,

we have

pK

αI
max
i∈L

ηij .

√
‖Aj·‖∞

(
1 +

αj
αI

)√
K log(M)

nN
+

(
1 +

αj
αI

)
K log(M)

nN

+

√
αI + αj
α2
I

√
pK2 log4(M)

nN3
.

By using the same arguments in the proof of Lemma 13 of Bing, Bunea and Wegkamp
(2020a), one can show the last two terms are smaller in order than the first term under condi-
tion (3) in the Appendix K.1. Therefore, we conclude

pK

αI
max
i∈L

ηij .

√
‖Aj·‖∞

(
1 +

αj
αI

)√
K log(M)

nN
. ‖Aj·‖∞

√
pK log(M)

(αj ∧ αI)nN
.

Since condition (2) b) implies

1≤ 1

p

p∑
i=1

αi .
1

p
(|Ic|+ |I|)αI = αI

and ‖Aj·‖∞ = αj/p, we conclude

max
k

αik
p
|B̂jk −Bjk| . max

{
‖Aj·‖∞

√
pK log(M)

nN
,

√
‖Aj·‖∞

K log(M)

nN

}
for any j ∈ Ic, which together with case (i), display (K.7) and the fact that |Imax|+K|Ic| ≤
pK completes the proof.

APPENDIX L: ERROR BOUNDS FOR T̂mle − T∗ IN `2 NORM

In this section we state the results on ‖T̂mle − T∗‖2 with T̂mle defined in (4) for known A.
Assume the conditions in Theorem 2. The display (F.9) in the proof of Theorem 2 yields

the following `2 norm convergence rate of Tmin − T ∗:

(L.1) ‖Tmin − T ∗‖2 =OP

(
σ−1(I, s)

√
K

N

)
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where

σ2(I, s) = min
S⊆[K],|S|≤s

sup
v∈C(S)

v>Iv

‖v‖22
, with I =

∑
j∈J

Aj·A
>
j·

Πj
.

On the event Esupp, (L.1) could be improved to

(L.2) ‖Tmin − T ∗‖2 =OP

(
σ−1(I, s)

√
s

N

)
When σ−1(I, s) = O(1/

√
s), the rate in (L.2) is minimax optimal according to Theorem

7. Indeed, since T̂ − T∗ ∈ C(s) for any T∗ ∈ T ′(s) and T̂ ∈ ∆K , we have ‖T̂ − T∗‖1 ≤
2‖[T̂ −T∗]S∗‖1 ≤ 2

√
s‖T̂ −T∗‖2 with S∗ = supp(T∗) and |S∗|= s. Consequently, Theorem

7 implies

inf
T̂

sup
T∗∈T ′(s)

P

{
‖T̂ − T∗‖2 ≥ c0

√
1

N

}
≥ c1.

REMARK L.1 (Discussion on σ(I, s)). To understand the magunitude of σ(I, s), it is
helpful to consider s=K , in which case σ2(I,K) is simply the smallest eigenvalue of I . We
then have

σ2(I,K)≤min
k

∑
j∈J

A2
jk

Πj
≤min

k

∑
j∈J

A2
jk

AjkTk
≤max

k

1

Tk
≤K,

where the last step uses maxk Tk ≥ 1/K . We also note that this upper bound is attainable
(in terms of rates), for instance, when all words are anchor words and the numbers of anchor
words of all topics are the same order. Immediately, when σ(I,K)�

√
K , (L.1) yields

‖T̂mle − T ∗‖2 =OP

(√
1/N

)
.

Next, we connect σ(I, s) to a quantity that is only related with A and s. By (F.8), we have

σ(I, s)≥ κ2(AJ , s)

where

κ2(AJ , s) = min
S⊆[K],|S|≤s

sup
v∈C(S)

‖AJv‖1
‖v‖2

.

Since
κ2(AJ , s)√

s
≤ κ(AJ , s)≤ κ2(AJ , s),

the ideal case is κ2(AJ , s)�
√
s κ(AJ , s), whence

‖T̂mle − T ∗‖2 =OP

(
κ−1(AJ , s)

√
1/N

)
.
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