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ADAPTIVE ESTIMATION OF THE RANK OF THE COEFFICIENT
MATRIX IN HIGH-DIMENSIONAL MULTIVARIATE

RESPONSE REGRESSION MODELS

BY XIN BING AND MARTEN H. WEGKAMP1

Cornell University

We consider the multivariate response regression problem with a regres-
sion coefficient matrix of low, unknown rank. In this setting, we analyze a
new criterion for selecting the optimal reduced rank. This criterion differs
notably from the one proposed in Bunea, She and Wegkamp (Ann. Statist.
39 (2011) 1282–1309) in that it does not require estimation of the unknown
variance of the noise, nor does it depend on a delicate choice of a tuning pa-
rameter. We develop an iterative, fully data-driven procedure, that adapts to
the optimal signal-to-noise ratio. This procedure finds the true rank in a few
steps with overwhelming probability. At each step, our estimate increases,
while at the same time it does not exceed the true rank. Our finite sample
results hold for any sample size and any dimension, even when the number
of responses and of covariates grow much faster than the number of observa-
tions. We perform an extensive simulation study that confirms our theoretical
findings. The new method performs better and is more stable than the pro-
cedure of Bunea, She and Wegkamp (Ann. Statist. 39 (2011) 1282–1309) in
both low- and high-dimensional settings.

1. Introduction.

1.1. Background. We study the multivariate response regression model

Y = XA + E ∈R
n×m

with X ∈ R
n×p of rank(X) = q and A ∈ R

p×m of unknown rank(A) = r . We
assume that the entries Eij of E are i.i.d. N(0, σ 2) distributed with σ 2 < ∞. Sec-
tion 5 discusses extensions to general, heavy tailed distributions of the errors Eij .

Standard least squares estimation is tantamount to regressing each response on
the predictors separately, thus ignoring the multivariate nature of the possibly cor-
related responses. In large dimensional settings (m and p are large relative to the
sample size n), it is desirable to achieve a dimension reduction in the coefficient
matrix A. One popular way of achieving this goal, is to find a common subset of
s ≤ p covariates that are relevant for prediction, using penalized least squares with
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a �1/�2 (group lasso) type penalty on the regression coefficients; see, for instance,
Bühlmann and van de Geer (2011), Bunea, She and Wegkamp (2012), Lounici
et al. (2011), Obozinski, Wainwright and Jordan (2011), Yuan and Lin (2006) to
recover the support of the set of s rows for which A is nonzero.

Reduced rank regression is a different approach to achieve necessary dimension
reduction. The main premise is that A has low rank, so that we can write A = A1A2
for a p × r matrix A1 and a r × m matrix A2. Then only few linear combina-
tions X∗ = XA1 of X are needed to explain the variation of Y . Izenman (1975)
coined the term reduced-rank regression for this class of models, but its history
dates back to Anderson (1951). There are many works on this topic in the classi-
cal setting of fixed dimensions m and p, and sample size n → ∞; see Anderson
(1999), Rao (1978), Robinson (1973, 1974) and more recently, Anderson (2002).
A comprehensive overview on reduced rank regression is given by Reinsel and
Velu (1998). Only recently, the high-dimensional case has been discussed: Bunea,
She and Wegkamp (2011, 2012), Giraud (2011, 2015), Negahban and Wainwright
(2011), Rohde and Tsybakov (2011).

The main topic of this paper is the estimation of the unknown rank. Determi-
nation of the rank of the coefficient matrix is the first key step for the estimation
of A. For known rank r , Anderson (1999) derives the asymptotic distribution of
the reduced rank regression coefficient matrix estimator Âr in the asymptotic set-
ting with m,p fixed and n → ∞. The estimator Âk is the matrix corresponding to
minimizing the squared Frobenius or Hilbert–Schmidt norm ‖Y − XB‖2 over all
p × m matrices B of rank k and has a closed form, due to the Eckart–Young theo-
rem (Eckart and Young (1936), Schmidt (1907)). It is crucial to have the true rank
k = r for obtaining a good fit for both ‖XA − XÂk‖2 and ‖A − Âk‖2. In general,
however, the rank r is unknown a priori. The classical approach to estimate the
rank r uses the likelihood ratio test; see Anderson (1951). An elementary calcula-
tion shows that this statistic coincides with Bartlett’s test statistic as a consequence
of the relation between reduced rank regression and canonical correlation analy-
sis; see Anderson (1951), Rudelson and Vershynin (2010). Our main goal in this
study is to develop a nonasymptotic method to estimate r that is easy to compute,
adaptively from the data, and valid for any values of m, n and p, especially when
the number of predictors p and the number of responses m are large. The resulting
estimator of A can then be used to construct a possibly much smaller number of
new transformed predictors, or the most important canonical variables based on the
original X and Y ; see Izenman ((2008), Chapter 6) for a historical account. Under
weak assumptions on the signal, our estimate of r can be shown to be equal to r

with overwhelming probability, to wit, 1 − exp(−θ1mn) − exp(−θ2(m + q)), for
some positive, finite constants θ1, θ2, so that the selection error is small compared
to the overall error in estimating A.

1.2. Recent developments. Bunea, She and Wegkamp (2011, 2012) proposed

(1.1) min
A

{‖Y − XA‖2 + μ · rank(A)
}
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and recommended the choice μ = C(
√

m + √
q)2σ 2 with constant C > 1 for the

tuning parameter μ. In particular, Bunea, She and Wegkamp (2011) established a
convenient closed form for the rank(Â) = r̂ of the matrix Â that minimizes cri-
terion (1.1). They gave sufficient conditions on the level of the smallest nonzero
singular value of XA to guarantee that r̂ consistently estimates r . The disadvan-
tage of this method is that a value for σ 2, in addition to the tuning parameter C,
is required for μ. Bunea, She and Wegkamp (2011) proposed to use the unbiased
estimator

(1.2) σ̃ 2 := ‖Y − PY‖2

nm − qm

based on the projection PY of Y onto the range space of X. However, this be-
comes problematic when (n − q)m is not large enough, or even infeasible when
n = q . Giraud (2011) introduces another estimation scheme that does not require
estimation of σ 2. Unfortunately, a closed form for the minimizer as in Bunea, She
and Wegkamp (2011) is lacking, and rank consistency in fact fails, as our simula-
tions reveal in Appendix F.2 in the Supplementary Material (Bing and Wegkamp
(2019)). Moreover, the procedures in both Bunea, She and Wegkamp (2011) and
Giraud (2011) are rather sensitive to the choices of their respective tuning param-
eters involved. We emphasize that Giraud (2011) studies the error ‖XÂ − XA‖2

and not the rank of his estimator Â.

1.3. Proposed research. This paper studies a third criterion,

(1.3) σ̂ 2
k := ‖Y − (PY )k‖2

nm − λk
.

Here, (PY )k = ∑k
j=1 dj (PY )ujv

T
j is the truncated singular value decomposition

of PY based on the (decreasing) singular values dj (PY ) of the projection PY and
their corresponding singular vectors uj , vj . The range over which we minimize
(1.3) is {0,1, . . . ,K} with K = Kλ := 	(nm − 1)/λ
 ∧ q ∧ m to avoid a nonpos-
itive denominator. The purpose of this paper is to show that this new criterion
produces a consistent estimator of the rank. It turns out that the choice of the opti-
mal tuning parameter λ involves a delicate trade-off. On the one hand, λ should be
large enough to prevent overfitting, that is, prevent selecting a rank that is larger
than the true rank r . On the other hand, if one takes λ too large, the selected rank
will typically be smaller than r as the procedure will not be able to distinguish the
unknown singular values dj (XA) from the noise for j > s, for some s = s(λ) < r .
To effectively deal with this situation, we refine our initial procedure using our
new criterion (1.3) by an iterative procedure in Section 4 that provenly finds the
optimal value of λ and consequently of the estimate of r . This method does not
require any data-splitting and our simulations show that it is very stable, even for
general, heavy tailed error distributions. To our knowledge, it is a rare feat to have
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a feasible algorithm that finds the optimal tuning parameter in a fully data-driven
way, without data-splitting, and with mathematically proven guarantees.

While our main interest is to provide consistent estimators of the rank, we
briefly address estimation of the mean XA, which is the principal problem in
Bunea, She and Wegkamp (2011, 2012), Giraud (2011). Our selected rank k̂ auto-
matically yields the estimate XÂ := (PY )k̂ . We prove in Theorem 10 in Appendix
D of the Supplementary Material (Bing and Wegkamp (2019)) that on the event
k̂ = r , the inequality ‖XÂ − XA‖2 ≤ 4rd2

1 (PE) holds, for our selected rank k̂.
This provides a direct link between rank consistency and optimal estimation of the
mean, because d2

1 (PE) ≤ 2(m + q)σ 2 with overwhelming probability; see (3.1)
and (3.2) below. (In fact, this bound continues to hold, up to a multiplicative con-
stant, for sub-Gaussian errors, using Theorem 5.39 of Vershynin (2012).) Hence
we can estimate XA at the rate r(m + q), which is proportional to the number of
parameters in the low rank model and minimax optimal (Bunea, She and Wegkamp
(2011, 2012), Giraud (2011)). Simulations in Appendix F.3 of the Supplementary
Material (Bing and Wegkamp (2019)) show that our procedures in fact provide
better estimates of XA than their competitors, even in approximately low-rank
models.

The paper is organized as follows. Section 2 shows that the minimizer of (1.3)
has a closed form. The main results are discussed in Sections 3 and 4. It obtains
rank consistency in case of no signal (XA = 0) and in case of sufficient signal. For
the latter, we develop a key notion of signal-to-noise ratio that is required for rank
consistency. A sufficient, easily interpretable condition will be presented that cor-
responds to a computable value (estimate) of the tuning parameter λ. We develop
in Section 4 an iterative, fully automated procedure, which has a guaranteed re-
covery of the true rank (with overwhelming probability) under increasingly milder
conditions on the signal. The first step uses the potentially suboptimal estimate k̂0
developed in Section 3, but which is less than r , with overwhelming probability.
This value k̂0 is used to update the tuning parameter λ. Then we minimize (1.3)
again, and obtain a new estimate k̂1, which in turn is used to update λ. The pro-
cedure produces each time a smaller λ, thereby selecting a larger rank k than the
previous one, while each time we can guarantee that the selected rank does not ex-
ceed the true rank r . This is a major mathematical challenge and its proof relies on
highly nontrivial monotonicity arguments. The procedure stops when the selected
rank does not change after an iteration. Our results hold with high probability (ex-
ponential in mn and m + q) which translates into extremely accurate estimates
under a weak signal condition.

Section 5 describes several extensions of the developed theory, allowing for
non-Gaussian errors Eij .

A large simulation study is reported in Section 6. It confirms our theoretical
findings, and shows that our method improves upon the methods proposed in
Bunea, She and Wegkamp (2011).

The proofs are deferred to the Supplementary Material (Bing and Wegkamp
(2019)).
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1.4. Notation. For any matrix A, we will use Ak� to denote the k, �th element
of A (i.e., the entry on the kth row and �th column of A), and we write d1(A) ≥
d2(A) ≥ · · · to denote its ordered singular values.

The Frobenius or Hilbert–Schmidt inner product 〈·, ·〉 on the space of matrices is
defined as 〈A,B〉 = tr(AT B) for commensurate matrices A, B . The corresponding
norm is denoted by ‖ · ‖2, and we recall that ‖A‖2 = tr(AT A) = ∑

j d2
j (A) for any

matrix A. Moreover, it is known (Eckart and Young (1936), Schmidt (1907), see
also the review by Stewart (1993)) that minimizing ‖A−B‖2 over B with r(B) ≤ r

is achieved for B = (A)r = UDrV
T based on the singular value decomposition

of A = UDV T where Dr denotes the diagonal matrix with [D]ii = di(A) for
i = 1, . . . , r . Hence, minB:r(B)=r ‖A − B‖2 = ∑

j>r d2
j (A).

For other norms on matrices, we use ‖ · ‖2 to denote the operator norm and
‖ · ‖∗ the nuclear norm (i.e., the sum of singular values). We have the inequalities
〈A,B〉 = tr(AT B) ≤ ‖A‖2‖B‖∗ and ‖A‖∗ ≤ √

rank(A)‖A‖.
For two positive sequences an and bn, we denote by an = O(bn) if there exists

constant C > 0 such that limn→∞ an/bn ≤ C. If limn→∞ an/bn → 0, we write
an = o(bn).

For general m × n matrices A and B , Weyl’s inequality (Weyl (1912)) implies
that di+j−1(A + B) ≤ di(A) + dj (B) for 1 ≤ i, j,≤ q and i + j ≤ q + 1 with
q = min{m,n}.

We denote the projection matrix onto the column space of X by P and we write
q := rank(X) and N := rank(PY ) = q ∧m. We set σ̂ 2

0 := ‖Y‖2/(nm), by defining
(PY )0 := 0 and define σ̂ 2 := ‖E‖2/(nm). Throughout the paper, we use A to
denote the true coefficient matrix and r to denote its true rank.

2. Properties of the minimizer of the new criterion. At first glance, it seems
difficult to describe the minimizer k̂ of k �→ σ̂ 2

k because both the numerator and
denominator in σ̂ 2

k are decreasing in k. However, it turns out that there is a unique
minimizer with a neat explicit formula. First, we characterize the comparison be-
tween σ̂i and σ̂j for i �= j .

PROPOSITION 1. Let i, j ∈ {0,1, . . . ,K} with i < j . Then

(2.1) σ̂ 2
j ≤ σ̂ 2

i ⇐⇒ 1

j − i

j∑
k=i+1

d2
k (PY ) ≥ λσ̂ 2

j .

In particular,

(2.2) σ̂ 2
j ≤ σ̂ 2

j−1 ⇐⇒ d2
j (PY ) ≥ λσ̂ 2

j

and

(2.3) d2
j (PY ) ≤ λσ̂ 2

j ⇐⇒ d2
j (PY ) ≤ λσ̂ 2

j−1.
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This result and the monotonicity of the singular values d1(PY ) ≥ d2(PY ) ≥ · · ·
readily yield the following statement.

PROPOSITION 2. Let k ∈ {1, . . . ,K}. Then
σ̂ 2

k ≤ σ̂ 2
k−1 ⇐⇒ σ̂ 2

k ≤ σ̂ 2
� for all � ≤ k − 1,(2.4)

σ̂ 2
k ≥ σ̂ 2

k−1 ⇐⇒ σ̂ 2
� ≥ σ̂ 2

k−1 for all � > k − 1.(2.5)

It is clear that if σ̂ 2
1 ≥ σ̂ 2

0 , then k = 0 minimizes σ̂ 2
k . Likewise, if σ̂ 2

K ≤ σ̂ 2
K−1,

then k = K minimizes the criterion σ̂ 2
k . After a little reflexion, we see that σ̂ 2

k is
minimized at the last k for which d2

k (PY ) ≥ λσ̂ 2
k holds. That is,

k̂ = max
{
0 ≤ k ≤ K : d2

j (PY ) ≥ λσ̂ 2
j for all j ≤ k and d2

k+1(PY ) < λσ̂ 2
k+1

}
(2.6)

minimizes σ̂ 2
k with the convention that the maximum of the empty set is 0. Prop-

erties (2.4) and (2.5) ensure that d2
j (PY ) ≥ λσ̂ 2

j must hold automatically for all

j ≤ k as well as d2
� (PY ) < λσ̂ 2

� for all � > k. That is, k̂ has an even more conve-
nient closed form

(2.7) k̂ = max
{
0 ≤ k ≤ K : d2

k (PY ) ≥ λσ̂ 2
k

} =
K∑

k=1

1
{
d2
k (PY ) ≥ λσ̂ 2

k

}
.

Summarizing, we have shown the following result.

THEOREM 3. There exists a unique minimizer k̂ of (1.3), given by (2.7), such
that σ̂ 2

k is monotone decreasing for k ≤ k̂, and monotone increasing for k ≥ k̂.

It is interesting to compare the choice k̂ in (2.7) with r̂ in Bunea, She and
Wegkamp (2011). In that paper, it is shown that (1.1) is equivalent with

(2.8) min
k

{∥∥Y − (PY )k
∥∥2 + μk

}
based on the truncated singular value decomposition UDkV

T of the projection
PY = UDV T with Dk = diag(D11, . . . ,Dkk,0, . . . ,0). Furthermore, Bunea, She
and Wegkamp (2011) uses this formulation to derive a closed form for r̂ , to wit,

(2.9) r̂ = ∑
k≥1

1
{
d2
k (PY ) ≥ μ

}
based on the singular values d1(PY ) ≥ d2(PY ) ≥ · · · of the projection PY . The
main difference between (2.7) and (2.9) is that k̂ counts the number of singular
values of PY above a variable threshold, while r̂ counts the number of singular
values of PY above a fixed threshold. Another difference is that the fixed threshold
is proportional to the unknown variance σ 2, while the variable threshold is propor-
tional to σ̂ 2

k , which can be thought of as an estimate of σ 2 only for k close to r .
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FIG. 1. Plot of dk(PY ) and
√

λσ̂k versus k. In this experiment, we used n = 150, m = 30, p = 20,
q = 20, r = 5, η = 0.1, b0 = 0.2 and σ 2 = 1, using the notation and simulation setup of Section 6.3.

To further illustrate the existence and uniqueness of k̂, we perform one exper-
iment to show how the dk(PY ) and σ̂k vary across different k; see Figure 1. The
plot first displays the monotone property of σ̂k for k ≤ k̂ and k ≥ k̂. It also justifies
the definition of k̂ in (2.7) since the rank which minimizes σ̂k is exactly what we
defined.

3. Rank consistency.

3.1. The null case XA = 0. We treat the case XA = 0 separately as the case
XA �= 0 requires a lower bound on the nonzero singular values of XA.

THEOREM 4. Assume XA = 0. Then, on the event {d2
1 (PE) ≤ λσ̂ 2}, we have

k̂ = 0.

We particularize Theorem 4 to the case where the entries of E are independent
N(0, σ 2). In that case, general random matrix theory and Borel’s inequality for
suprema of Gaussian processes, respectively, give

(3.1) E
[
d1(PE)

] ≤ σ(
√

m + √
q)

and

(3.2) P
{
d1(PE) ≥ E

[
d1(PE)

] + σ t
} ≤ exp

(−t2/2
)

for all t > 0;
see Lemma 3 in Bunea, She and Wegkamp (2011). Moreover, (nm)σ̂ 2 has a central
χ2

mn distribution, so that general tail bounds (Johnstone (2001)) yield

P
{
σ̂ 2 ≤ σ 2(1 − ε)

} ≤ exp
(−mnε2/4

)
, 0 ≤ ε < 1,(3.3)

P
{
σ̂ 2 ≥ σ 2(1 + ε)

} ≤ exp
(−3mnε2/16

)
, 0 ≤ ε < 1/2.(3.4)

We immediately obtain the following corollary by using (3.2)–(3.4).



3164 X. BING AND M. H. WEGKAMP

COROLLARY 5. For any λ > (
√

m + √
q)2, we have P{k̂ = 0} → 1 exponen-

tially fast as nm → ∞ and m + q → ∞.

3.2. The general case XA �= 0. The range over which we minimize (1.3) is
{0,1, . . . ,K} depends on λ as the largest possible value is

(3.5) K = Kλ :=
⌊
nm − 1

λ

⌋
∧ m ∧ q

to avoid a nonpositive denominator in criterion (1.3).

THEOREM 6. Assume r ≤ Kλ. On the event

(3.6) d2
1 (PE) ≤ λσ̂ 2

r := ‖Y − (PY )r‖2

(nm/λ) − r
,

we have k̂ ≤ r . If r > Kλ, then trivially k̂ ≤ r holds, with probability one.

The restriction r ≤ Kλ guarantees that λ̂σ 2
r is positive, that is, the event (3.6)

is nonempty. If r > Kλ, then k̂ ≤ r , holds trivially, with probability one, as k̂ is
selected from {0, . . . ,Kλ}.

While the quantity σ̂ 2
r is a natural one in this problem, it depends on the un-

known rank r . It turns out that quantifying σ̂ 2
r is not trivial.

PROPOSITION 7. Assume r ≤ Kλ. On the event

(3.7) 2d2
1 (PE) ≤ λσ̂ 2,

we have

(3.8) σ̂ 2 ≤ σ̂ 2
r ≤ nm

nm − λr
σ̂ 2.

This result combined with Theorem 6 tells us that if λ is chosen large enough,
we can guarantee that k̂ ≤ r . Moreover, this choice is independent of both r and
σ 2. Indeed, for matrices E with independent N(0, σ 2) Gaussian entries, any choice
λ > 2(

√
m + √

q)2 suffices.

THEOREM 8. For λ = C(
√

m + √
q)2 with any numerical constant C > 2,

P{k̂ ≤ r} → 1 as mn → ∞ and m + q → ∞.

The convergence rate in Theorem 8 is exponentially fast in nm and m + q .
Again, if r > Kλ, then P{k̂ ≤ r} = 1 holds trivially.

Consistency of k̂ can be achieved under a suitable signal to noise condition.

THEOREM 9. For 1 ≤ s ≤ r ≤ Kλ, on the event

(3.9) ds(XA) ≥ d1(PE) + √
λσ̂r

intersected with the event (3.6), we further have k̂ ∈ [s, r].
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This theorem, combined with Proposition 7, immediately yields the following
corollary.

COROLLARY 10. For 1 ≤ s ≤ r ≤ Kλ, on the event

{
2d2

1 (PE) ≤ λσ̂ 2} ∩
{
ds(XA) ≥ √

λσ̂

[√
2

2
+

√
nm

nm − λr

]}
,

we have k̂ ∈ [s, r].

The choice of λ impacts the possible values for k̂, the minimizer of criterion
(1.3), and we see that the range {0,1, . . . ,Kλ} increases as λ decreases. If the true
rank is rather large (r > Kλ), then no guarantees for k̂ can be made, except for the
trivial, yet important observation that k̂ ≤ r . On the other hand, if r < Kλ, which is
arguably the more interesting case for low rank regression, then consistency guar-
antees can be made under a suitable condition on the r th singular value dr(XA) of
XA. This condition becomes milder if λ decreases.

Let δ > 0. A slightly stronger restriction for the upper bound on r ,

(3.10) r <
δ

1 + δ

nm

λ
∧ m ∧ q

translates into a bound for the ratio

(3.11)
nm

nm − λr
≤ 1 + δ

appearing in the lower bound for the signal ds(XA). We can further particularize
to the Gaussian setting.

THEOREM 11. Let λ = 2C(
√

m + √
q)2 for some numerical constant C > 1.

Assume further that r and δ satisfy (3.10) and

(3.12) ds(XA) ≥ C′σ(
√

m + √
q)

for some s ≤ r and some numerical constant C′ >
√

C(1 + √
2(1 + δ)). Then

P{s ≤ k̂ ≤ r} → 1 as mn → ∞ and m + q → ∞.
In particular, if (3.12) holds for s = r , then k̂ consistently estimates r .

The convergence rate in Theorem 11 is exponentially fast in nm and m + q .
This shows that the above procedure is highly accurate, which is confirmed in our
simulation study. From the oracle inequality in the Supplementary Material (Bing
and Wegkamp (2019)), the fit ‖XÂk̂ − XA‖2, for s ≤ k̂ ≤ r , differs only within
some constant levels of the noise level d2

1 (PE).
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4. Self-tuning procedure. From Theorem 6 in Section 3, we need to take λ,
or in fact λσ̂ 2

r , as σ̂ 2
r depends on λ, large enough to prevent overfitting, that is, to

avoid selecting a k̂ larger than the true rank r . On the other hand, we would like to
keep λ small to be able to detect a small signal level. Indeed, (3.6) in Theorem 6
states that we need

(4.1) d1(PE) ≤ √
λσ̂r =

√
‖Y − (PY )r‖2

nm/λ − r
.

The term on the right is decreasing in λ, so we should choose λ as small as possible
such that

√
λσ̂r is close to d1(PE). Without any prior knowledge on r , it is difficult

to find the optimal choice for λ. However, Theorem 6 and Proposition 7 tell us that
an initial λ0 satisfying {2d2

1 (PE) ≤ λ0σ̂
2} yields an estimated rank k̂0 with k̂0 ≤ r .

Our idea is to use this lower bound k̂0 for r to reduce our value λ0 to λ1. This, in
turn, will yield a possibly larger estimated rank k̂1, which still obeys k̂1 ≤ r . More
precisely, we propose the following Self-Tuning Rank Selection (STRS) procedure.
Let Z be a q × m matrix with i.i.d. standard Gaussian entries and define Sj =
E[d2

j (Z)] with the convention Sj := 0 for j > N = q ∧ m. Moreover, let K̂t :=
(nm/̂λt ) ∧ N for given λ̂t . For any ε ∈ (0,1), we define

λ̂0 := 2(1 + ε)S1,(4.2)

k̂0 := arg min
0≤k≤K̂0

‖Y − (PY )k‖2

nm − λ̂0k
(4.3)

as starting values, and if k̂0 ≥ 1, for t ≥ 0, we update

λ̂t+1 := nm

(1 − ε)R̂t /Ût + k̂t

,(4.4)

k̂t+1 := arg min
k̂t≤k≤K̂t+1

‖Y − (PY )k‖2

nm − λ̂t+1k
(4.5)

where

(4.6) R̂t := (n − q)m +
N∑

j=2k̂t+1

Sj , Ût := S1 ∨ (S2k̂t+1 + S2k̂t+2).

The procedure stops when k̂t+1 = k̂t . The entire procedure is free of σ 2 and both
R̂t and Ût can be numerically evaluated by Monte Carlo simulations. Alternatively,
we provide an analogous procedure with analytical expressions in the Supplemen-
tary Material (Bing and Wegkamp (2019)), but its performance in our simulations
is actually slightly inferior to the original procedure that utilizes Monte Carlo sim-
ulations.

Regarding the computational complexity, we emphasize that the above STRS
procedure has almost the same level of computational complexity as the methods in
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(1.1) and (1.3). This is due to the fact that the computationally expensive singular
value decomposition only needs to be computed once. Additionally, in order to
find the new rank in step (4.5), we only need to consider values that are larger than
(or equal to) the previously selected rank. This avoids a lot of extra computation.

The following proposition is critical for the feasibility of STRS.

PROPOSITION 12. We have λ̂t > λ̂t+1 and k̂t ≤ k̂t+1, for all t ≥ 0. More im-
portantly, k̂t ≤ r for all t ≥ 0, holds with probability tending to 1 exponentially
fast as (q ∨ m) → ∞ and nm → ∞.

The increasing property of k̂t immediately yields the following theorem.

THEOREM 13. Let numerical constant C > 2. Let k̃ be the minimizer of (1.3)
using λ = C(

√
m + √

q)2 and k̂ be the final selected rank of STRS starting from
the same value λ̂0 = λ. Then

P{k̃ ≤ k̂ ≤ r} → 1,

as nm → ∞ and (q ∨ m) → ∞.

We find that STRS always selects a rank closer to the true rank than the (one
step) Generalized Rank Selection Procedure (GRS) from the previous section that
uses (1.3) as its criterion.

The decreasing property of λ̂t , stated in Proposition 12, implies an increasingly
milder condition on the required signal. Meanwhile, the way of updating λ in step
(4.4) is carefully chosen to maintain k̂t ≤ r . We refer to the proof for more expla-
nations. Thus, if a proper sequence of signal-to-noise condition is met, we expect
that STRS finds the rank consistently. The following theorem confirms this.

THEOREM 14. Let k0 < k1 < · · · < kT = r be a strictly increasing subse-
quence of {1,2, . . . , r} of length T + 1 ≤ r . Define λ0 as (4.2) and λt+1 obtained
from (4.4) by using kt in lieu of k̂t , for t = 0, . . . , T − 1. Assume r and δ satisfy
(3.10) for λ0. Then, on the event

(4.7) dkt (XA) ≥ C′′σ
√

λt , t = 0, . . . , T

for some numerical constant C′′ > 1/
√

2 + √
1 + δ, there exists 0 ≤ T ′ ≤ T such

that k̂T ′ = r , with probability tending to 1, where k̂0 ≤ k̂1 ≤ · · · ≤ k̂T ′ are from
(4.5).

The sequence of {k0, . . . , kT } plays an important role for interpreting the above
theorem. It can be regarded as a underlying sequence bridge starting from 1 and
leading toward the true rank. The ideal case is {k0, . . . , kT } = {r} which leads to
a one-step recovery, but requires a comparatively stronger signal-to-noise condi-
tion (4.7). At the other extreme, it could take r steps to recover the true rank. We
emphasize that the latter case requires the mildest signal-to-noise condition by the
following two observations:
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(1) Proposition 12 guarantees that each time the updated λt is decreasing;
(2) The signal condition (4.7) is becoming milder as λt gets smaller.

From display (3.8) in Proposition 7 and from Corollary 10, it is clear that we
use the string of inequalities σ̂ 2 ≤ σ̂ 2

r ≤ nm/(nm − λr)σ̂ 2 to derive the required
signal-to-noise condition. The second inequality becomes loose for large r such
that nm − λr is small, or equivalently, δ is large from (3.11), which further im-
plies a possible larger decrement of the required signal-to-noise condition by using
STRS. To illustrate this phenomenon concretely, we study to a special case where
r ≥ N/2 and {k0, . . . , kT } = {�N/2�, r}, and show in the theorem below that the
signal condition for recovering r can be relaxed significantly when δ is large.

THEOREM 15. Define λ0 = 2C(
√

m + √
q)2 with C = 8/7. Assume r and δ

satisfy (3.10) for λ0 and

d�N/2�(XA) ≥ C′[1 + √
2(1 + δ)

]
σ(

√
m + √

q),(4.8)

dr(XA) ≥ C′
[
1 +

√
1 + δ

1 + δ/8

]
σ(

√
m + √

q)(4.9)

for some numerical constant C′ > 2
√

2/7. Then either k̂0 = r or k̂1 = r , with
probability tending to 1, as N = q ∧ m → ∞. Here, k̂0 and k̂1 are selected from
(4.3) and (4.5).

The lower bound condition (4.8) is condition (3.12) with s = �N/2� < r . As a
simple numerical illustration, we compare (4.8) (and, therefore, (3.12)) with (4.9)
for δ = 4 and 100. If δ = 4, we obtain

d�N/2�(XA) ≥ 4.17C′(
√

m + √
q)σ, dr(XA) ≥ 2.83C′(

√
m + √

q)σ,

while if δ = 100, we have

d�N/2�(XA) ≥ 15.3C′(
√

m + √
q)σ, dr(XA) ≥ 3.74C′(

√
m + √

q)σ.

As we can see, for small δ, the signal-to-noise condition decreases slightly. How-
ever, for larger δ,

√
1 + δ could be quite large, while

√
(1 + δ)/(1 + δ/8) is always

bounded above by 2
√

2. To further elaborate the implications of small/large δ, we
consider two cases by recalling the rank constraint (3.10):

(1) If nm/λ0 ≥ (1+δ)N/δ, the rank constraint (3.10) reduces to simply r ≤ N .
From (3.11), a smaller value for δ leads to a smaller value for nm/(nm − λ0r),
provided r ≤ N . Therefore, σ̂ 2 ≤ σ̂ 2

r ≤ nm/(nm − λ0r)σ̂
2 should be tight and

we expect a smaller reduction of the signal condition for smaller values of δ. On
the other hand, when nm and λ0N are close, meaning δ is large, we expect a
considerable relaxation of the signal condition for comparatively large r . These
two points are clearly reflected in (4.8) and (4.9).
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(2) If nm/λ0 ≤ (1 + δ)N/δ, it follows that r ≤ {δ/(1 + δ)}(nm/λ0). Then a
smaller δ means a stronger restriction on r which implies σ̂ 2 ≤ σ̂ 2

r ≤ nm/(nm −
λ0r)σ̂

2 becomes tight and we expect a modest relaxation of the signal condition.
If δ is large, then nm − λ0r could be small for a comparatively large r . Thus
nm/(nm − λ0r) would explode and we expect a significant decrease in the lower
bound (4.9) for the signal. Both these observations agree with our results. It is
worth mentioning that when nm is small comparing to λ0N , δ is likely to be large.
For instance, when m = q = n is moderate, taking λ0 = 2(

√
m + √

q)2 yields
nm/λ0 = q/8 which is not quite large already. Imposing a small δ in this case
would further restrict the range of r .

Recall that the range of allowable rank {0, . . . ,Kλ} in (3.5) increases as λ de-
creases. This means that, after a few iterations, the true rank could be selected
even when it was out of the possible range {0, . . . ,Kλ0} at the beginning. This
phenomenon is clearly supported by our simulations in Section 6.5. In addition,
the following proposition proves that Kλ0 can be extended to N = q ∧ m in some
settings even when (3.10) is not met for λ0.

PROPOSITION 16. Let λ0 = 2C(
√

m + √
q)2 with C = 8/7 and assume

nm/λ0 ≥ 3N/4. Suppose the first selected rank from (4.3) by using λ0 satisfies
k̂0 ≥ N/2 and

dr(XA) ≥ C′(1 + 2
√

3)(
√

m + √
q)σ,

for some numerical constant C′ > 2
√

2/7. Then we have P{k̂1 = r} → 1 for any
N/2 ≤ r ≤ N , as N = q ∧ m → ∞.

In order to be able to select among ranks from N/2 to N in the first step, (3.11)
requires nm/λ0 ≥ (1 + δ)N/δ. However, Proposition 16 relaxes this to nm/λ0 ≥
3N/4 from Proposition 16.

5. Extension to heavy tailed error distributions. Most results in this paper
are finite sample results and apply to any matrix E. Only Corollary 5, Theorem 11
and the results in Section 4 require Gaussian errors. They appeal to precise con-
centration inequalities of d1(PE) around

√
m + √

q , making use of the fact that
d1(PE) = d1(
UT E) based on the eigendecomposition of P = U
UT , and the
fact that 
UT E in turn is again Gaussian. In general, if E has independent en-
tries, then the transformations PE or 
UT E no longer have independent entries,
although their columns remain independent. Regardless, our simulations reported
in Sections 6.7 and 6.8 support our conjecture that our iterative method is flexible
and our results continue to hold for general distributions, such as t-distributions
with 6 degrees of freedom, for independent errors Eij . For some important special
cases, we are able to formally allow for errors with finite fourth moments only.
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5.1. Heavy tailed errors distributions with n/q → 1. We first consider the
case n/q → 1, which is likely to occur in high-dimensional settings (p � n). The
following theorem guarantees the rank recovery via the GRS procedure for errors
with heavy tailed distributions.

THEOREM 17. Let λ > 2(
√

m + √
q)2. Assume that the entries of E are i.i.d.

random variables with mean zero and finite fourth moments. Furthermore, assume
n/q → 1, r and δ satisfy (3.10) and

(5.1) ds(XA) ≥ Cσ(
√

m + √
q),

for some s ≤ r and some numerical constant C > 1 + √
2(1 + δ). Then we have

P{s ≤ k̂ ≤ r} → 1 as n ∨ m → ∞, where k̂ is selected from (1.3).
In particular, if (5.1) holds for s = r , then k̂ consistently estimates r .

For a special case, that of skinny matrices XA, that is, m = O(nα) or n =
O(mα) for some 0 ≤ α < 1, we propose the following Simplified Self-Tuning Rank
Selection (SSTRS) procedure. Given any ε ∈ (0,1), we set

(5.2) λ̂0 := 2(1 + ε)(m ∨ q), k̂0 := arg min
0≤k≤K̂0

‖Y − (Y )k‖2

nm − λ̂0k

as starting values, and if k̂0 ≥ 1, for t ≥ 0, we update

(5.3)

λ̂t+1 := nm

(1 − ε)[(m ∧ q)/2 − k̂t ]+ + k̂t

,

k̂t+1 := arg min
k̂t≤k≤K̂t+1

‖Y − (Y )k‖2

nm − λ̂t+1k
,

where [x]+ := max{x,0} and K̂t := (nm/̂λt ) ∧ q ∧ m for t = 0,1, . . . . The proce-
dure stops when k̂t = k̂t+1 and we have the following result.

THEOREM 18. Assume Eij are i.i.d. random variables with mean zero and
finite fourth moments. Suppose that n/q → 1 and eitherm = O(nα) or n = O(mα)

for some α ∈ [0,1). Let {kt }Tt=0 be defined as Theorem 14. Define λ0 as (5.2) and
λt+1 obtained from (5.3) by using kt in lieu of k̂t , for t ≥ 0. Assume r and δ satisfy
(3.10) for λ0.

Then, on the event

(5.4) dkt (A) ≥ Cσ
√

λt , t = 0, . . . , T

for some numerical constant C > 1+√
2(1 + δ), there exists 0 ≤ T ′ ≤ T such that

k̂T ′ = r , with probability tending to 1, as n ∨ m → ∞. Here, k̂0 ≤ k̂1 ≤ · · · ≤ k̂T ′
are given in (5.2) and (5.3).
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REMARK. As mentioned earlier, the entries of PE no longer inherit the in-
dependence from E when the distribution of the independent entries Eij is not
Gaussian. Nevertheless, by exploiting the independence of columns of PE, Theo-
rem 5.39 in Vershynin (2012) shows that d1(PE) ≤ CE

√
q +√

m with high prob-
ability, provided the entries of E are independent sub-Gaussian random variables
with unit variance. The constant CE above unfortunately involves the unknown
sub-Gaussian norm, which differs from σ 2. However, provided q = o(m) and E

has i.i.d. sub-Gaussian entries, we simply have d1(PE) ≤ (1 + o(1))
√

m. Hence,
for this case, it should be clear that our STRS procedure based on (4.2)–(4.5) can
be directly applied with statistical guarantees stated in Section 4.

5.2. A special model: Y = A + E. We emphasize that our procedure can be
applied to the important special model Y = A + E where the entries of E are i.i.d.
random variables with mean zero and finite fourth moments. The following results
guarantee that our procedure can consistently estimate the rank of A. They are
essentially the same statements as Theorems 17 and 18 for the case Y = XA + E,
but this time without the disclaimer n/q → 1.

THEOREM 19. Assume the entries of E ∈ R
n×m are i.i.d. random variables

with mean zero and finite fourth moments. Assume further that r and δ satisfy
(3.10) and

(5.5) ds(A) ≥ Cσ(
√

n + √
m)

for some s ≤ r and some numerical constant C > 1 + √
2(1 + δ). Then P{s ≤

k̂ ≤ r} → 1 as m ∨ n → ∞, where k̂ is selected from (5.2) by using λ̂0 = λ >

2(
√

n + √
m)2.

In particular, if (5.5) holds for s = r , then k̂ consistently estimates r .

In particular, when A is skinny, that is, m = O(nα) or n = O(mα) for some 0 ≤
α < 1, our newly proposed SSTRS in (5.2)–(5.3) maintains the rank consistency
for this model.

THEOREM 20. Let Eij be i.i.d. random variables with mean zero and finite
fourth moments, m = O(nα) or n = O(mα) for some α ∈ [0,1), and assume r and
δ satisfy (3.10) for λ0 given in (5.2). Let {kt }Tt=0 be defined as Theorem 14 and
λt+1 obtained from (5.3) by using kt in lieu of k̂t , for t ≥ 0. Then, on the event

(5.6) dkt (A) ≥ Cσ
√

λt , t = 0, . . . , T

for some numerical constant C > 1+√
2(1 + δ), there exists 0 ≤ T ′ ≤ T such that

k̂T ′ = r , with probability tending to 1, as m ∨ n → ∞. Here, k̂0 ≤ k̂1 ≤ · · · ≤ k̂T ′
are defined in (5.2) and (5.3).
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6. Empirical study. The simulations in Sections 6.4 and 6.5 compare the
methods discussed in this paper with some existing methods. Sections 6.6–6.8 ver-
ify our results for the proposed method. Our conclusions are summarized in Sec-
tion 6.9. In Section 6.10, we perform an additional simulation to check the tight-
ness of signal-to-noise condition in (3.9). In the Supplementary Material (Bing
and Wegkamp (2019)), more simulations compare STRS using Monte Carlo sim-
ulations with STRS using deterministic bounds in Appendix F.1. We also present
an example in Appendix F.2 to show that the method proposed by Giraud (2011)
fails to recover the rank. Finally, simulations in Appendix F.3 compare STRS with
other competing methods in terms of the errors ‖XÂ − XA‖, ‖Â − A‖ and the
selected rank.

6.1. Methods and notation. We first introduce the methods in our simulation.
Bunea, She and Wegkamp (2011) proposed the method in (1.1) to select the opti-
mal rank by using μ = Cd2

1 (Z)σ̃ 2, where Z has q × m i.i.d. N(0,1) entries and
σ̃ 2 in (1.2) is the unbiased estimator of σ 2. The leading constant C > 1 needs to be
specified. A deterministic upper bound which could be used instead is C(m+q)σ̃ 2.
Bunea, She and Wegkamp (2011) suggests to use C = 2 based on its overall perfor-
mance. However, there is no reason for one particular choice of C being globally
optimal, which was confirmed in our simulations. Another option for choosing the
tuning parameter is to use k-fold cross-validation. However, there is no theoretical
guarantee of the feasibility for cross-validation, especially if the rows Xi· of X are
non-i.i.d. In contrast, our proposed procedures (with and without self-tuning) are
completely devoid of choosing a tuning parameter and estimating σ 2.

NOTATION. We use BSW to denote the method proposed in Bunea, She and
Wegkamp (2011). For those methods proposed in this paper, we denote by GRS,
STRS and SSTRS the method without self-tuning in (1.3), the one with self-tuning
from (4.2)–(4.5) and the simpler version also with self-tuning from (5.2)–(5.3),
respectively. We further use BSW-C to denote BSW with specified leading con-
stant C.

6.2. Task description. We divide the simulation study up into five parts. In the
first part, we show that there is no optimal constant C for the BSW-C method which
works for all r . In the second part, we compare the performance of STRS and
BSW-C (for various choices of C). The third part demonstrates the improvement
of STRS over GRS shown in Section 4, in terms of requiring a smaller signal-to-
noise ratio (SNR) and enlarging the range of possible selected ranks. The fourth
part verifies the performance of GRS, STRS and SSTRS for non-Gaussian errors
corresponding to our results and settings of Section 5. The last part extends the
fourth part and supports our conjecture that STRS continues to work for general
heavy tailed distributions under general settings.
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6.3. Simulation setup. In general, we consider three settings. The first setting
is the more favorable one where the sample size n is larger than the number of
covariates p. The other two are high dimensional, n < p, and hence more chal-
lenging, with the last setting focussing on the worst case scenario of n close to q

for a moderate m.
Our experiments are inspired by those of Bunea, She and Wegkamp (2011).

When n ≥ p, the n × p design matrix X is generated by independently drawing
n times p-dimensional Gaussian vectors with mean zero and covariance matrix
specified by �i,j = η|i−j | with η ∈ (0,1), for i, j = 1, . . . , p. When n < p, we let
X = X1X2�

1/2 where X1 ∈ R
n×q and X2 ∈ R

q×p have i.i.d. N(0,1) entries. The
regression coefficient matrix A is given by A = b0Mp×rMr×m where the entries
of M are i.i.d. N(0,1). As before, r denotes the rank of A and satisfies r ≤ q ∧
m. Regarding the error matrix E, each entry is generated from N(0,1) except in
Sections 6.7 and 6.8 where we use tν -distributions with ν degrees of freedom.

The difference with Bunea, She and Wegkamp (2011) lies in the way we vary
the signal-to-noise-ratio (SNR) defined as dr(XA)/E[d1(PE)]. Instead of using
various combinations of η and b0, we vary the SNR by generating A with different
ranks. Specifically, for given η and b0, we first generate X, and then, for each r in
some specified range, we generate A of rank r . For each pair (X,A), we generate
200 error matrices E, calculate the SNR and record the rank recovery rate and the
mean selected rank for various methods in the 200 replications.

6.4. Experiment 1. We compare the rank recovery of BSW-C for C in
{0.7,0.9,1.1,1.3,1.5} with STRS in both low- and high-dimensional settings.
In the low-dimensional case, we consider n = 150, m = 30, p = q = 20, r ∈
{0, . . . ,20} and η = 0.1. For b0, we choose from {0.15,0.20,0.25} to illustrate,
more clearly, the effect of r on the recovery rate. The high-dimensional setting
has n = 100, m = 30, p = 150, q = 20, η = 0.1, b0 = {0.03,0.05,0.07} and
r ∈ {0, . . . ,20}. The rank recovery rate and mean selected ranks for both low-
and high-dimensional cases are shown in Figures 2 and 3, respectively.

RESULT. Both figures demonstrate that BSW-C with a smaller C, say 0.7 or
0.9, performs better when the true rank r is large, in the sense of requiring a smaller
SNR, but tends to overfit for small r . In contrast, BSW-C with a larger C does a
better job in preventing overfitting for small r , but requires a larger SNR. The
performance of BSW-C does not seem to depend on r as we separate the effect
of SNR away from this phenomenon by varying b0. This suggests that there is
no optimal leading constant C for BSW-C to guarantee consistent rank estimation
for all possible r . On the other hand, STRS performs globally better and more
stable than BSW-C in all settings. It prevents overfitting for both small and large r

and requires a smaller SNR than BSW-1.3 and BSW-1.5. Finally, the role of SNR
for the rank recovery is striking. If it is too small (less than 0.8), we completely
fail to recover the rank. This justifies the signal-to-noise condition in (3.9) and is
explained by the (fast) exponential tail bounds in our main results.
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FIG. 2. Comparison of BSW-C and STRS in the low-dimensional setting of Experiment 1. Here, b0
is 0.15 (top), 0.20 (middle) and 0.25 (bottom).
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FIG. 3. Comparison of BSW-C and STRS in the high-dimensional setting of Experiment 1. Here b0
is 0.03 (top), 0.05 (middle) and 0.07 (bottom).
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FIG. 4. Plots of Experiment 2 on rank recovery rate for BSW-1.1, BSW-1.3 and STRS. The plots
from left to right and top to bottom have {143,145,147,149} for q .

6.5. Experiment 2. Based on the results in Section 6.4, we compare BSW-1.1
and BSW-1.3 with STRS. Figures 2 and 3 show the advantage of STRS over BSW-
C in both low- and high-dimensional settings when n is not too small compared
to q . Here, we focus on the worst case scenario of n ≈ q and set n = 150, m = 30,
p = 200, η = 0.1, b0 = 0.011, q ∈ {143,145,147,149} and r ∈ {0, . . . ,22}. The
recovery rates are shown in Figure 4.

RESULT. We see that, for moderate m, BSW-C performs worse as n gets
closer to q . Indeed, estimation of σ 2 is problematic for small values of (n − q)m.
The same problem for choosing different C persists: BSW-1.1 requires a smaller
SNR, but overfits more than BSW-1.3 at small r , while STRS performs perfectly
as long as r lies in the allowable range (its largest recoverable rank is between 11
and 13, depending on the particular choice of q).
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FIG. 5. Rank recovery rate for STRS when n = q in Experiment 2.

In addition, we verify the feasibility of STRS when n = q . In this case, BSW
is infeasible. We consider p = 200, b0 = 0.011, η = 0.1, n = q ∈ {50,100,150},
m ∈ {50,125,200} and r ∈ {0, . . . ,50}. In each setting, the signal is large enough
(SNR > 3) to eliminate the effect of the signal-to-noise ratio on rank recovery.
Figure 5 shows that STRS recovers the rank for all combinations of n and m as
long as r is within the recoverable range (which increases in m).

6.6. Experiment 3. Figure 6 demonstrates the advantages of STRS over GRS,
stated in Theorem 15 and Proposition 16, in three settings. The first setting is the
same low-dimensional scenario considered in Experiment 1 with b0 = 0.25. The
second setting uses the same high-dimensional setting considered in Experiment
1 with b0 = 0.07. The third setting focuses on the case when nm ≤ λ0N , which
incurs the rank constraint (3.10), and we set n = 50, m = 50, p = 300, q = 30,
η = 0.1, b0 = 2 and r ∈ {0, . . . ,30}. In this setup, Kλ0 = 7.

RESULT. The top two figures in Figure 6 indicate that STRS requires a SNR
of about 1, while GRS needs a SNR of about 2 for correct recovery. The bottom
two plots in Figure 6 show that GRS fails to recover the rank r if r > Kλ0 , whereas
STRS perfectly recovers all possible ranks. This confirms that when nm is not too
small compared to (

√
m + √

q)2, STRS can get rid of the rank constraint (3.10).
(The tuning parameter λt in STRS reduces from 198 to 83 and 66 in the first two
cases, respectively, and from 315 to 69 in the third case.) These findings confirm
our theoretical results in Section 4.

6.7. Experiment 4. We verify the results of Section 5 by comparing the perfor-
mance of GRS, STRS and SSTRS for both models Y = XA + E and Y = A + E

with errors Eij generated from a tν -distribution with various degrees of free-
dom ν.
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FIG. 6. Comparison of GRS and STRS in Experiment 3 in the first setting (top left), second setting
(top right) and third setting (bottom).

For model Y = XA+E, we consider the case n/q → 1 with different m. We set
η = 0.1 and r ∈ {0, . . . ,15} for all settings. The first plot in Figure 7 depicts mean
selected ranks of GRS and STRS when we further set n = q = 150, m = 100, p =
250 and b0 = 0.002 and ν = 6 (degrees of freedom of the tν distribution). We also
verify the rank consistency of SSTRS by generating Eij from tν -distributions with
ν ∈ {6,8,10}. The second row in Figure 7 depicts mean selected ranks of SSTRS
and is based on n = 300 ≈ q = 280 � m = 50, p = 400 and b0 = 0.0015. The
third row in Figure 7 shows the same quantities and is based on n = 80, q = 60,
p = 150, m = 400 and b0 = 0.003. We varied the closeness of n and q , but since
the results did not change, we only report for one pair of n and q for each setting.

For model Y = A + E, we present two cases of skinny A when n = O(mα) and
m = O(nα) for some α ∈ (0,1). Specifically, we consider n = 500, m = 80 in the
first setting and n = 80, m = 500 in the second one. We set η = 0.1, b0 = 0.25,
r ∈ {0, . . . ,20} and ν ∈ {6,8,10} in both cases. The mean selected ranks of SSTRS
are plotted in the last row of Figure 7.
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FIG. 7. Plots of mean selected ranks related to Experiment 4. The first plot compares GRS and
STRS in model Y = XA + E. The middle row evaluates SSTRS in model Y = XA + E for various
error distributions with n = 300, q = 280, m = 50 (left) and n = 80, q = 60, m = 400 (right). The
bottom row plots mean selected ranks of SSTRS in model Y = A+E with n = 500, m = 80 (left) and
in m = 80, n = 500 (right).
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RESULT. In both models, all three procedures work perfectly for heavy tailed
errors under very mild SNR, although the rank constraint (3.10) impacts GRS. In
addition, STRS and SSTRS can handle a larger range of r under a milder SNR and
their performance seems very stable under various error distributions.

6.8. Experiment 5. The stable performance of GRS, STRS and SSTRS leads
us to make the following conjecture:

(6.1) E
[
dj (PE)

] ≈ E
[
dj (Z)

]
for all j = 1, . . . , q ∧ m,

where Z ∈ R
q×m has i.i.d. N(0,1), P is the projection matrix based on X with

rank(P ) = q and entries of E ∈ R
n×m are i.i.d. mean zero random variables with

E[E2
ij ] = 1 and E[E4

ij ] < ∞. The result is striking since the projection P destroys
the independence of Eij , hence one would not necessarily expect the Bai–Yin
law (Bai and Yin (1993)) continue to hold for PE which only has independent
columns. Proving (6.1) is beyond the scope of the current paper and we leave it
for future research. Instead, we verify this conjecture in simulations for two cases:
(1) n = 150, p = 250, q = 50, m = 50; (2) n = 50, p = 40, q = 40, m = 150.
In both cases, η ∈ {0.1,0.3,0.5,0.7,0.9} and we generate E from tν -distributions
with degrees of freedom ν ∈ {5,8,12}. For each setting, we generate X and P

for a given η, and we generate 100 pairs of matrices E and Z. Averaged ratios
of dj (PE)/dj (Z) are calculated for each j and Figure 8 shows that the ratios
of dj (PE)/dj (Z) are highly concentrated around 1. We only report the case of
η = 0.9 as the other cases gave essentially the same picture.

In light of this, we further conjecture that our procedures work in general
settings with heavy tailed error distributions. We consider both low- and high-
dimensional settings to verify this claim. The low-dimensional setting considers
n = 150, p = q = m = 30 and b0 = 0.15 and the high-dimensional setting con-
siders n = 100, p = 150, q = m = 30 and b0 = 0.015. We generate E from tν-
distribution with ν ∈ {6,8,10} and we set η = 0.1 and r ∈ {0, . . . ,20} in both

FIG. 8. Panel of E[dj (PE)]/E[dj (Z)] in Experiment 5 with n = 150, p = 250, m = q = 50 (left)
and n = 50, p = q = 40, m = 150 (right).
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FIG. 9. Performance of STRS for heavy tails in Experiment 5 in the low-dimensional (top) and the
high-dimensional setting (bottom).

cases. The plots in Figure 9 show that STRS consistently estimates the rank in
both settings under a very mild SNR ratio and its performance is quite stable for
different heavy tailed t-distributions.

6.9. Conclusions of the simulation studies.

• In general, STRS outperforms BSW-C in both low-dimensional and high-
dimensional settings. The performance of BSW-C is influenced by the true rank
r and there is no globally optimal tuning parameter C for BSW-C. STRS is
stable in general as long as the true rank r lies in its allowable range.

• In the most challenging setting of Experiment 2, when n ≈ q and estimation of
σ 2 is problematic, the advantage of STRS over BSW-1.1 and BSW-1.3 becomes
more prominent. If n = q , BSW-C is no longer feasible, while STRS only fails
in the rare situation when nm is small compared to m + q and r is large. Of
course, reduced rank regression only makes sense for relatively small r .
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• Experiment 3 verifies that STRS has clear advantages over GRS. It requires a
smaller signal-to-noise ratio and allows for larger values of r , which confirms
our theoretical result in Section 4.

• Experiment 4 confirms our results in Section 5, that our procedures (GRS,
STRS, SSTRS) continue to consistently estimate the true rank for heavy tailed
distributions in certain settings, considered in Section 5. Moreover, Experiment
5 confirms our conjecture that STRS works in more general settings, even if the
errors are generated from heavy tailed distributions.

6.10. Tightness check of signal-to-noise condition. Akin to the discussion in
Bunea, She and Wegkamp ((2011), Section 4.2, page 1303), we can empirically
verify the tightness of the signal-to-noise condition in (3.9). Specifically, from
(2.7), we have

(6.2) {k̂ �= r} = {
dr+1(PY ) ≥ √

λσ̂r

} ∪ {
dr(PY ) ≤ √

λσ̂r

}
.

By using identity (6.2) and Weyl’s inequality, we observe that

P{k̂ �= r} ≥ P
{
dr(XA) + d1(PE) ≤ √

λσ̂r

}
.

Hence we conclude that P{dr(XA) ≤ √
λσ̂r − d1(PE)} > 0 implies P{k̂ = r} < 1.

This suggests dr(XA) cannot be smaller than
√

λσ̂r − d1(PE). To empirically
verify this conjecture, we generate different pairs of (X,A) through changing b0,
η, n,m,p, q and r . For each pair of (X,A), we record the r th largest singular
value of XA as dr(XA) and we search along a grid of λ to find the largest λ such
that minimizing (1.3) recovers the true rank (recall that

√
λσ̂r is increasing in λ).

Finally, we plot λσ̂r and
√

λσ̂r −d1(PE) against dr(XA) for all pairs of (X,A) in
Figure 10. This plot collaborates our conjecture that the signal-to-noise condition
in (3.9) is tight.

FIG. 10. Plot of
√

λσ̂r and
√

λσ̂r − d1(PE) versus dr (XA) for each pair of (X,A). The value for
λ is the largest one (on a grid) that correctly found the true rank.
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