
Category theory in action
MARU SARAZOLA

Category theory has many widely recognized uses: it is a way to abstract
various mathematical disciplines, to show the connections and interplay between
them, and to prove or display existing theorems in a more elegant and succinct
manner. Unfortunately, this can lead us to think that category theory is nothing
but a formal language, an abstract way to rewrite what we already know.

The goal of this talk will be to show a concrete problem where category
theory truly brings something new to the table; an example where abstracting
the concepts helps clear a path towards a solution that was not in sight before,
and where later, tools from category theory are used to find that solution.

The problem

Any time we work with an algebraic structure (groups, vector spaces, rings,
etc), there is a notion of what the “right functions” between them are: we are
interested in the functions that preserve the algebraic structure on hand. For
example, when working with groups, we care about functions

f : G→ H

that preserve the product; that is,

f(xy) = f(x)f(y)

The set of all such functions is denoted by Hom(G,H), short for homomor-
phism. It is then natural to wonder: when is the set Hom(G,H) of all group
homomorphisms between G and H a group itself?

We can try the naive guess and see if it works: define a pointwise product
by (fg)(x) = f(x)g(x). This will be associative, have a unit given by the
constant morphism f(x) = 1G, and every f will have an inverse, given by
f−1(x) = (f(x))−1 since inverses exist in G. But of course, for this to work out,
(fg) needs to be an element of Hom(G,H) too, and we can see that

(fg)(xy) = f(xy)g(xy) = f(x)f(y)g(x)g(y) 6= f(x)g(x)f(y)g(y) = (fg)(x)(fg)(y)

since our groups are not presumed to be abelian.1

So, the obvious guess doesn’t work, but how can we prove that there is no
other approach that will work? And even if we’re crafty enough to show that,
what happens if we want to change from groups to rings? Do we need to come
up with a new clever, ad hoc proof?

We will see that we can define what an algebraic theory is abstractly, and
use category theory to give a systematic way to deal with this question.

A 5 minute intro to category theory

We start by introducing some of the very basics of category theory, naming
only what we will need for the purposes of this talk.
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1One could check that the function f−1 won’t be an element of Hom(G,H) either.



Definition 1. A category consists of

• a collection of objects

• a collection of morphisms

such that

• each morphism has a source and a target given by objects of the category

• given two morphisms f : X → Y and g : Y → Z there exists a composite
morphism gf : X → Z

• this composition is associative

• each object has a special identity morphism that serves as a unit for the
composition

Most of the mathematical structures that we work with every day assemble
into categories.

Example 2. • Set has sets as objects and functions as morphisms.

• Grp has groups as objects and group homomorphisms as morphisms.

• Ab has abelian groups as objects and group homomorphisms as mor-
phisms.

• Vectk has k-vector spaces as objects and k-linear maps as morphisms.

Just like when working with groups, it is evident that the “correct” maps
to consider are group homomorphisms, there is a right notion of maps between
categories which preserves all the relevant structure.

Definition 3. A covariant (contravariant) functor F : C → D between two
categories consists of the following data:

• for each object X ∈ C, an object F (X) ∈ D

• for each morphism f : X → Y in C, a morphism F (f) : F (X) → F (Y )
(F (f) : F (Y )→ F (X)) in D

satisfying the following conditions:

• for each object X ∈ C, F (idX) = idF (X)

• for any pair of composable maps f and g in C, F (gf) = F (g)F (f) (F (gf) =
F (f)F (g))

Example 4. Given a category C and an object Y in C, the contravariant Hom
functor HomC(−, Y ) : C → Set is defined as follows:

• for any object X in C, HomC(X,Y ) is the set of all morphisms in C with
source X and target Y

• given a morphism f : X → X ′ in C, Hom(f, Y ) : HomC(X
′, Y ) →

HomC(X,Y ) precomposes by f ; that is, takes a morphism ϕ : X ′ → Y to
the morphism ϕf : X → Y .
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Of course, one would need to check that the two conditions in the definition of
functor are satisfied.

Finally, there is also a notion of maps between functors.

Definition 5. Let F,G : C → D be two contravariant functors. A natural
transformation τ : F ⇒ G consists of a morphism τX : F (X)→ D(X) in D, for
each object X ∈ C, such that for each morphism f : X → X ′ in C, the following
commutes

F (X ′) G(X ′)

F (X) G(X)

τX′

F (f) G(f)

τX

Example 6. Given a category C and a morphism f : Y → Y ′ in C, we can define
a natural transformation τ : HomC(−, Y )⇒ HomC(−, Y ′) by

τX : HomC(X,Y )⇒ HomC(X,Y
′)

ϕ : X → Y 7→ fϕ : X → Y ′

Indeed, given a morphism g : X → X ′, the following commutes:

HomC(X
′, Y ) HomC(X

′, Y )

HomC(X,Y ) HomC(X,Y )

τX′=f◦−

−◦f −◦f

τX=f◦−

In fact, one of the result in category theory shows that all natural transfor-
mations between Hom functors arise in this way.

Theorem 7 (Yoneda lemma). Let C be a category and Y, Y ′ two objects in C.
Any natural transformation

τ : HomC(−, Y )⇒ HomC(−, Y ′)

is given by postcomposition with some morphism f : Y → Y ′ in C.

Algebraic theories and their algebras

We now introduce the language in which to better express our problem.

Definition 8. An algebraic theory T is a family of operator symbols {fi}, to-
gether with non-negative integers {vi} and equations relating the fi’s, each of
which looks in the equations as if it were a function on vi arguments.

For example, the algebraic theory of groups will be given by operators m of
arity 2, i or arity 1, and e of arity 0, together with equations

m(x,m(y, x)) = m(m(x, y), z) (associativity)

m(x, e) = x = m(e, x) (unit)

m(x, i(x)) = e = m(i(x), x) (inverses)
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We say that A ∈ Set is a T-algebra if each operator fi ∈ T has an interpreta-
tion f̄i :

∏
vi
A→ A such that all equations are true (if so, these interpretations

form the T-algebra structure of A). We will denote by SetT the category of
T-algebras and T-homomorphisms.

In the case when T is the theory of groups, a T-algebra will be a set A
together with functions

m : A×A→ A, e : {∗} → A, i : A→ A

satisfying the previous equations; that is, a group.

Definition 9. A morphism of T-algebras is a function g : A → B such that,
for every operator fi ∈ T, the following diagram commutes∏

A A

∏
B B

fi

∏
g g

fi

Let’s use all this new language to rewrite our main result. We want to study
whether the category SetT of T-algebras is such that HomT(A,B) is a T-algebra,
for any T-algebras A and B. This is equivalent to saying the functor

HomT(−, B) : SetT → Set

is algebra valued for every algebra B ∈ SetT2

Algebra valued Hom functors

Let’s take a look at the (contravariant) hom-set functors HomC(−, B) : C →
Set for a fixed B in a category C. If we set C = Set and let G be a group, we
know that for any set X, the set of functions HomSet(X,G) admits a canonical
(pointwise) group structure, induced by the product in G.

HomC(X,G)×HomC(X,G) ∼= HomC(X,G×G) HomC(X,G)

Actually, there’s nothing particular about groups in this fact, and so we have:

Proposition 10. HomC(−, B) : C → Set is algebra valued if B is a T-algebra.

Just like in the case of groups, the T-algebra structure of HomC(A,B) is
given by

∏
vi

HomC(A,B) ∼= HomC(A,
∏
vi
B) HomC(A,B)

f̄i◦−

2A very attentive reader might notice that this equivalence is not as trivial as it seems:
our original question was whether HomT(A,B) is an algebra or not, but asking the func-
tor HomT(−, B) to be algebra valued also imposes another condition; namely, that any
T-morphism A → A′ induces a T-morphism HomT(A

′, B) → HomT(A,B). However, if
HomT(A,B) is a T-algebra, then it will be a subalgebra of HomSet(A,B) (which is always a
T-algebra with pointwise operations, as we saw before). Then, since any T-morphism A→ A′

induces a T-morphism HomSet(A
′, B) → HomSet(A,B), its restriction to the subalgebra

HomT(A
′, B) must also be a T-morphism, and one can easily check that the image will be a

subset of HomT(A,B).
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where f̄i :
∏
vi
B → B is the interpretation of the operator fi ∈ T determined

by the algebra structure of B.3

Interestingly, the converse of the previous statement is also true!

Proposition 11. If HomC(−, B) : C → Set is algebra valued, then B admits a
canonical T -algebra structure.

To show this less evident converse, fix an operator fi in T; using the T-
algebra structure of HomC(A,B) we have, for every A ∈ C, a map

HomC(A,
∏
B) '

∏
HomC(A,B) HomC(A,B)

f̃i

It’s possible to show that these maps can be put together to form a natural
transformation

HomC(−,
∏

B)⇒ HomC(−, B)

Indeed, this amounts to showing that, for any g : A → A′, the following com-
mutes ∏

HomC(A
′, B) HomC(A

′, B)

∏
HomC(A,B) HomC(A,B)

f̃ ′
i

∏
−◦g −◦g

f̃i

But HomC(−, B) is an algebra valued functor, so HomC(A
′, B)→ HomC(A,B)

must be a homomorphism, which by definition translates into that diagram
being commutative.

Then, by the Yoneda Lemma, that natural transformation must come from
a map ∏

B → B

which we take as the interpretation of fi.

Summing up

The previous result says that T will be a theory such that HomC(−, B) is
algebra valued precisely when every B in C admits a T-algebra structure; that
is, when every B is in CT . Taking C = SetT , we see that T will be a theory such
that HomSetT(−, B) is algebra valued precisely when every B in SetT admits
a T-algebra structure; that is, when every B in SetT is actually a member of
(SetT)T.

But then every T operator must have an interpretation as a map in SetT,
and these are T-algebra homomorphisms, so the theory T must be such that
every T operator is a T homomorphism.

Explicitly: every pair of operators fi, gj ∈ T must satisfy

fi
(
gj(x11, . . . , x1vj ), . . . , gj(xvi1, . . . , xvivj )

)
(1)

=gj
(
fi(x11, . . . , xvi1), . . . , fi(x1vj , . . . , xvivj )

)
,

in other words, all operators in T commute, in the sense of (1).

3All equations of the theory will be preserved, since HomC(A,−) is a product-preserving
functor.
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Applying our theorem

As examples, we can easily see that

(a) R-Mod won’t have hom-sets that are modules unless R is a commuta-
tive ring, since the operations “multiply by r” and “multiply by s” must
commute for every r, s ∈ R.

(b) Grp, our motivating example, won’t either , since the binary operation
doesn’t commute with itself.

(c) We can get around the problem in (b) by considering Ab, which is com-
mutative and therefore has hom-sets that are abelian groups.

(d) Ring is not autonomous since the product operation doesn’t commute
with itself.

(e) Interestingly, if we proceed as in (c) and consider CommRing, it doesn’t
solve the problem: the two constants would commute with each other, so

0 = 0.1 = 1.0 = 1

which would imply there is only one constant.

We’re not saying these results are a novelty; for example, it’s well known
that Grp is not enriched over itself, and that R-Mod will only be so when R is
commutative. However, even though it’s easy to see that the naive approaches
do not work, showing “by hand” that no approach will ever work requires some
ingenuity, and the theorem we presented offers a systematic way to deal with
this question.

A last remark

I want to finish by turning the attention back to the role of category theory
in all of this. Even though this algebraic result is really neat and memorable,
my goal was to highlight the use of category theory in solving this problem.

Note that, at first, there is a rewriting involved in the passage from the
original question about hom-sets, to its interpretation as a question about con-
travariant Hom functors taking values in some category. It then becomes clear
that the next step to take is to study these functors, and try to characterize
the situations in which they will be algebra valued. In doing this, the Yoneda
Lemma, an abstract result in category theory, turns out to be instrumental.
Finally, it is simply a matter of interpreting the abstract, general result that we
get in any particular algebraic category that we might care about to obtain the
answer we were looking for.
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