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Abstract

The aim of this expository paper is to briefly study possible cardinalities for the
Fatou and Julia sets; namely, we will show that the Julia set of (almost every) holo-
morphic map from the Riemann sphere into itself must always be infinite, and that in
contrast there exist maps with infinite and with empty Fatou sets.

1 Some basic notions

In this short paper, we will be interested in the behaviour of the iterates of holomorphic
maps f : C∞ → C∞, where C∞ denotes the one-dimensional Riemann sphere, i.e. the
compactification of the complex plane. With this in mind, we begin by describing the
structure of such maps.

Proposition 1.1. Every non-constant holomorphic map f : C∞ → C∞ is a rational
function, that is, there exist polynomials P and Q without common factors and unique up
to a multiplicative constant such that

f(z) =
P (z)

Q(z)

Proof. Since f is holomorphic and non-constant, the set f−1(∞) must be a discrete subset
in the compact space C∞, and therefore finite. For the same reason, the set f−1(0) must
also be finite. Let z1, . . . , zh ∈ C be the complex poles of f , and w1, . . . , wk ∈ C the
complex zeroes of f , all listed as many times as their respective multiplicities. Then the
function

g(z) =
(z − z1) . . . (z − zh)

(z − w1) . . . (z − wk)
f(z)

has neither poles nor zeroes in C. If g(∞) ∈ C, then g(C∞) is a bounded subset of C and
by Liouville’s theorem g is a constant map, so f can be written as a rational function with
P (z) = c(z − w1) . . . (z − wk) and Q(z) = (z − z1) . . . (z − zh).

If instead g(∞) = ∞, then 1/g is bounded and hence constant, which implies g is
constant too (note that 1/g is always holomorphic as a map from C∞ to C∞, as long as
g is holomorphic). Thus g = ∞ and therefore f = ∞, contradicting the fact that f is
non-constant.

Finally, the uniqueness statement is immediate from the fact that a polynomial is
determined by its roots up to a multiplicative constant.
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Due to this proposition, from now on we will be concerned with rational maps R :
C∞ → C∞.

Definition 1.2. The degree of a non-constant rational map R =
P

Q
is given by degR =

max{degP,degQ}.

Definition 1.3. A family F of maps from (X1, d1) to (X2, d2) is equicontinuous at x if
for every ε > 0 there exists δ > 0 such that for every f ∈ F and y ∈ X1

d1(x, y) < δ implies d2(f(x), f(y)) < ε

We will make use without proof of the following known result:

Theorem 1.4. Let F be any family of maps from (X1, d1) to (X2, d2). Then there is a
maximal open subset of X1 on which F is equicontinuous. In particular, if f maps a space
(X, d) into itself, there is a maximal open subset of X on which the family of iterates {fn}
is equicontinuous.

Thanks to this result, we can define the Fatou and Julia sets in the following way.

Definition 1.5. Let R be a non-constant rational map. The Fatou set of R is the maximal
open subset of C∞ on which {Rn} is equicontinuous, and the Julia set is its complement
in C∞.

It should be noted that there are various definitions of the Fatou and Julia sets of a
rational map (all of them equivalent); we choose this one simply because it is convenient,
keeping in mind the results we intend to show.

We denote the Fatou set of a rational map R by F (R) or simply F , and the Julia set
by J(R) or J . Note that by definition, F (R) is open and J(R) is compact.

It will also be useful to think about the Fatou and Julia sets in terms of normality, as
follows.

Definition 1.6. A family F of maps from (X1, d1) to (X2, d2) is normal in X1 if every
infinite sequence of functions in F contains a subsequence that converges locally uniformly
on X1.

Recall the following statement of the Arzelá-Ascoli Theorem, which we state without
proof:

Theorem 1.7. Let F be a family of maps from C∞ to C∞. Then F is equicontinuous if
and only if it is a normal family.

This naturally yields the following equivalent definition of the Fatou and Julia sets.

Definition 1.8. Let R be a non-constant rational map. The Fatou set of R is the maximal
open subset of C∞ on which {Rn} is normal, and the Julia set is its complement in C∞.

We conclude this section with a simple fact that will be useful later on.

Remark 1.9. If P is a polynomial of degree at least two, then ∞ is in F (P ). This is easy
if we use the last definition given for the Fatou set, since it is clear that there exists some
neighborhood of ∞ on which Pn →∞ uniformly.
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2 Completely invariant sets

In this section, we introduce the notion of completely invariant sets, and see how they
relate to the Fatou and Julia sets of a rational map.

Definition 2.1. If f is a map from a set X into itself, a subset E of X is:

• forward invariant if f(E) = E,

• backward invariant if f−1(E) = E,

• completely invariant if it is both forward and backward invariant.

Note that for surjective maps (like the rational maps that concern us), the concepts of
backward invariance and complete invariance coincide.

Proposition 2.2. Let R be a rational map of degree at least two, and suppose that a finite
set E is completely invariant under R. Then E has at most two elements.

Proof. Suppose E has k elements. Because E is finite and R maps E into E, R must act
as a permutation of E and so for a suitable integer q, Rq is the identity map from E into
itself. Now suppose that Rq has degree d. It follows that for every w in E, the equation
Rq(z) = w has d solutions, all equal to w, and so applying the Riemann-Hurwitz formula
to Rq, we have

k(d− 1) ≤ 2d− 2

As d ≥ 2, we get k ≤ 2 as required.

For any given elements x, y ∈ X, we define the relation ∼ on X by x ∼ y if and only
if there exist non-negative integers n and m with fn(x) = fm(y). It is clear that ∼ is an
equivalence relation on X, and it is easy to check that the class of any element [x] is the
smallest completely invariant set that contains x.

From this, we see that a set E is completely invariant if and only if it is a union of
equivalence classes [x], and if this is the case, then its complement must also be a union of
equivalence classes and therefore completely invariant. This fact makes it easier to show
the following result.

Theorem 2.3. Let R be any rational map. Then the Fatou and Julia sets of R are
completely invariant.

Proof. From our previous discussions, it suffices to show that F is backwards invariant.
First, take any z0 ∈ R−1(F ) and let w0 = R(z0); thus w0 ∈ F . It follows that given any
positive ε there exists a positive δ such that if d(w,w0) < δ, then d(Rn(w), Rn(w0)) < ε.
By continuity, there is also a positive ρ such that if d(z, z0) < ρ, then d(R(z), w0) < δ,
and hence d(Rn+1(z), Rn+1(z0)) < ε. This shows that {Rn+1 : n ≥ 1} is equicontinuous
at z0; thus, {Rn : n ≥ 1} is equicontinuous at z0 and hence on R−1(F ). Since R−1(F ) is
open, we deduce that R−1(F ) ⊂ F .

For the other inclusion, take any z0 ∈ F and let w0 = R(z0). Because z0 is in
F , given any positive ε there is a positive δ such that for all n, if d(z, z0) < δ then
d(Rn+1(z), Rn+1(z0)) < ε. The set of points satisfying d(z, z0) < δ is an open neighborhood
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U of z0, and so R(U) is an open neighborhood of w0. If w ∈ R(U), then w = R(z) for
some z ∈ U and so

d(Rn(w), Rn(w0)) = d(Rn+1(z), Rn+1(z0)) < ε

This shows that w0 ∈ F , so F ⊂ R−1(F ).

Definition 2.4. A point z is said to be exceptional for R when [z] is finite, and the set
of all such points is denoted by E(R).

The following theorem justifies the terminology, showing that such points are indeed
exceptional, and that they always belong to the Fatou set.

Theorem 2.5. A rational map R of degree at least two has at most two exceptional points,
both of which lie in F (R).

Proof. Clearly E(R) is completely invariant under R, and so by Proposition 2.2, R has at
most two exceptional points. Thus, there are four possibilities to consider, namely:

1. E(R) = ∅,

2. E(R) = {ζ} = [ζ],

3. E(R) = {ζ1, ζ2}, [ζ1] = {ζ1}, [ζ2] = {ζ2},

4. E(R) = {ζ1, ζ2} = [ζ1] = [ζ2].

We can conjugate R by a Moebius transformation in a suitable way, such that in the
previous cases ζ corresponds to ∞, ζ1 corresponds to 0 and ζ2 corresponds to ∞. Then,
if S = hRh−1, the possibilities for E(S) are

1. E(S) = ∅,

2. E(S) = {∞} = [∞],

3. E(S) = {0,∞}, [0] = {0}, [∞] = {∞},

4. E(S) = {0,∞} = [0] = [∞].

There is nothing to say about case 1. If 2 holds, then S has a pole at ∞ and nowhere
else, so S must be a polynomial. Thus, by Remark 1.9 we have that ∞ ∈ F (S). If 3
holds, then for the same reason S must be a polynomial, but since S(0) = 0 it must be
S(z) = azd for some positive integer d. Similarly, if 4 holds then S(0) = ∞, S(∞) = 0
and S has all its zeros and poles in {0,∞}, so it must be of the form S(z) = azd for some
negative integer d. For both of these possible S’s, it is clear that {0,∞} ⊂ F (S).

To conclude the proof, it suffices to show that F (S) = h(F (R)). But this comes
from the fact that h satisfies a Lipschitz condition with respect to the metric on C∞, and
therefore the family {hRk} will be equicontinuous wherever {Rk} is. Then, if z ∈ F (R),
Sk(h(z)) = hRk(z) and so h(F (R)) ⊂ F (S). Applying the same reasoning to h−1, we get
h−1(F (S)) ⊂ F (R), and so F (S) = h(F (R)).
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3 The interesting stuff

As advertised, we proceed to show some results on the cardinality of the Julia and Fatou
sets of a rational map. We begin with the study of J(R).

Our aim is to show that the Julia set of any rational map with degree at least two must
have infinitely many elements. This is not hard to prove, making use of all the results we
established in the previous section.

Proposition 3.1. If degR ≥ 2, then J(R) is not empty.

Proof. If J is empty, then the family {Rn} is normal on the entire complex sphere, so
there is some subsequence {Rnk} that converges uniformly on the complex sphere to a
map Q. Then Q must also be a rational map (since it will be holomorphic), and so for
all k � 0 we have degRnk = degQ. But degRnk = (degR)nk , which implies degR = 1,
contrary to our assumption.

Theorem 3.2. If degR ≥ 2, then J(R) is infinite.

Proof. We know J is not empty, so it contains some point z0. Now J is completely
invariant from Theorem 2.3, so if J is finite, then z0 must be an exceptional point. This
is not possible though, since all exceptional points lie in F due to Theorem 2.5; thus J is
infinite.

With some additional work, one can prove that in fact J(R) is a perfect set (if deg(R) ≥
2), and therefore J(R) must be uncountable.

Finally, we turn our attention to the Fatou set of a rational map. As we will show,
not only does F (R) not need to be an infinite set, but it can even be empty. The first
example of a rational map with empty Fatou set was given by Lattès in 1918; in [Lat18],
he showed that the Julia set for the map

z 7→ (z2 + 1)2

4z(z2 − 1)

consists of the whole complex sphere. We now give a characterization for when such a
thing can occur.

Theorem 3.3. Let R be a rational map. Then J(R) = C∞ if and only if there is some z
whose forward orbit {Rn(z)} is dense in the complex sphere.

Proof. Let {Bn} be a countable base for the topology on C∞, and let D be the set of all
z such that the forward orbit O+(z) is dense in C∞; thus z is in D if and only if for all k
there exists some n with Rn(z) ∈ Bk, and this implies that

D =
⋂
k≥1

⋃
n≥1

R−n(Bk)
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Suppose now that D = ∅. We write Ak = C∞ −Bk and

Ek =
⋂
n≥1

R−n(Ak)

Then, as D = ∅, we have

C∞ =
⋃
k≥1

Ek

Now, by Baire’s Theorem, C∞ can’t be a countable union of nowhere dense sets; thus,
for some k, the closure of Ek has a non-empty interior, say W . However, Ek is closed, so
W is a non-empty open subset of Ek. This means that for all n, Rn(W ) ⊂ Ak; thus the
functions Rn do not take values in Bk when applied to W , and so W ⊂ F (R). This shows
that if J(R) = C∞, then D 6= ∅ so there is some z whose forward orbit is dense in C∞.

For the converse, suppose that J(R) is not the entire sphere, so F (R) 6= ∅, and also
that there exists some z whose forward orbit is dense in the sphere. Note that z 6∈ J(R),
for if it were, then O+(z) ⊂ J(R) and since J(R) is closed we would have J(R) = C∞.
It follows that z lies in some component Ω of the Fatou set F (R), so we can consider the
components

Ω, R(Ω), R2(Ω), . . .

of F (R). As O+(z) is dense in C∞, there must be some N such that RN (Ω) meets (and
so is) Ω, and we can assume that N is the minimal such integer. Then the decomposition
into components is

F (R) = Ω ∪R(Ω) ∪R2(Ω) ∪ · · · ∪RN−1(Ω)

It follows that Ω is completely invariant under RN , and that the set {RkN (z) : k ≥ 1} is
dense in Ω.

To show that this situation is not possible, we recall the following classification of
forward invariant components of a Fatou set, the proof of which can be found in [Bea91,
Chapter 7].

A forward invariant component Ω of the Fatou set F (R) is of one of the following
types:

(a) an attracting component, if it contains an attracting fixed point w of R,

(b) a super-attracting component, if it contains a super-attracting fixed point w of R,

(c) a parabolic component, if there is a rationally indifferent fixed point w of R on the
boundary of Ω, and Rn → w on Ω,

(d) a Siegel disc, if R : Ω→ Ω is analytically conjugate to an Euclidean rotation of the
unit disc onto itself,

(e) a Herman ring, if R : Ω → Ω is analytically conjugate to an Euclidean rotation of
some annulus onto itself.

Now, since {RkN (z) : k ≥ 1} is dense in Ω, clearly R cannot have an attracting point,
nor converge to a point in Ω, so cases (a), (b) and (c) are not possible. If Φ is a rotation
as in cases (d) or (e) and R = h−1Φh, then RkN = h−1ΦkNh and so

|hRkN (z)| = |ΦkNh(z)| = |h(z)| = r
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is constant. Then, for every k, RkN (z) belongs to the preimage of a circle h−1(Cr), which
cannot be dense. Therefore, none of the five cases are possible, which is a contradiction
and concludes our proof.

We end this paper with an example of a rational map whose Fatou set is infinite.

Consider the polynomial P : C∞ → C∞, P (z) = z2 − 1. Then P 2(z) = z2(z2 − 2), so
one can see that 0, −1 and ∞ are all attracting fixed points of P 2. This clearly implies
that F (P ) has at least three components, but it is possible to show (see [Bea91, Theorem
5.6.2]) that the Fatou set of a rational map can have either 0, 1, 2, or infinitely many
components, so in this case F (P ) has infinitely many (non-empty) components, making
F (P ) an infinite set.
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