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The characters — Chemical reaction networks

Things that look like  2H, + Oy 5 2H50



The characters — Chemical reaction networks

Things that look like  2H, + Oy 5 2H50

More formally:

Defn. A chemical reaction networkis R = (S, T, s, t,r) where

e S is a finite set of species

* T is a finite set of transitions

e functions s, t: T — N° indicating source and target of transitions
* afunctionr: T — (0, ) indicating the rate of transitions



The characters — Chemical reaction networks

Instead of equation-style notation
2Hy + Oy — 2H50

we will use a graph-like notation
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The characters — Chemical reaction networks

Our reactions have input and output “hoses” that allow us to
manipulate the concentration of some species.
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Important features — “Composition”

Can “connect” different containers by gluing along input/output hoses.
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Important features — Associated dynamical system

The “rate equation”: describes the change in the concentrations of the
species through time.

For c: R = R time-dependent concentrations,

del(t .
) 3 (@) Hr) - (el
o 7T
or for short
de(t)

e vii(c(t))  for v R — R®.



Important features — Associated dynamical system
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Important features — Associated dynamical system
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Important features — Associated dynamical system

/®\M |-

7

ﬁ@)//

CABre) + 1+ 12 B o Blr(a) - (1)

4] _
dt dt
P — ABIr(0) + 1 22— (cr(8) - On



The model — Preliminaries

Defn. A category consists of
e a collection of objects
e 3 collection of morphisms

such that

e each morphism has a source and a target

e we cancompose: f: X »>Yand g:Y - Zw gf: X > 7
e composition is associative

e identity morphisms are units for the composition



The model — Preliminaries

Defn. A functor F: C — D between two categories consists of:
e for each object X € C, an object F(X) € D

e for each morphism f: X - Y € C, a morphism F(f): F(X) - F(Y) € D

such that

i F(idX) — idF(X)
* F(gf) = F(@)F(f)



The model — Preliminaries

Defn. A natural transformation 7: F = G between functors F,G: C - D
consists of a morphism

Ty: F(X) - G(X) foreveryX € C

such that, given f: X - X’

F(X) —— G(X)
F()| |e)
F(X') = G(X)



The model — Cospans

GOAL: assemble chemical reaction networks into a category.

TOOL: cospans.



The model — Cospans

GOAL: assemble chemical reaction networks into a category.
TOOL: cospans.

Defn. A cospan is a diagram
S
X Y

where X, Y, S are finite sets and i, o are functions.



The model — Cospans

IDEA: S is the set of species in the reaction, i and o mark the input/output
hoses.
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The model — Cospans

FEATURES RECOVERED: Cospans compose

S S’
VNI
X Y Z

letS Uy S'=SUS"/~ wheres ~ s"ifo(y) =sandi'(y) = s’ for
somey €Y.



The model — Cospans
FEATURES RECOVERED: Cospans compose

Su}fo

S S’
PN
X Y A

letS Uy S"'=SUS'/~ wheres ~s"ifo(y) =sandi’(y) =s'for
somey €Y.

In reaction-land, this identifies a species of S with one of S* whenever
both are connected to the same hose.



The model — Cospans

WHY COSPANS ARE GOOQOD: It's known that there exists a category,

Cospan, whose objects are finite sets and whose morphisms from X to
Y are cospans with X and Y as foots.

X/Y \Y

However...



The model — Cospans

FEATURES NOT RECOVERED: We have no record of transitions!

To fix that, we will “decorate” cospans: append the information of the
reaction.



The model — Cespans Decorated cospans

These look like

/ \ = (S,T,s,t,r)



The model — Cespans Decorated cospans

These look like

/ \ = (S,T,s,t,r)

PROBLEM: Not obvious that these compose.



The model — Cespans Decorated cospans

SOLUTION:

<

~

hm. [Fong]: If the decorations can be given through a functor
F:FinSet — Set,

then we can form a category whose objects are finite sets and whose
morphisms are cospans decorated by an element in the image under F
of its apex.

.
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The model — Cespans Decorated cospans

SOLUTION:

~

Thm. [Fong]: If the decorations can be given through a functor
F:FinSet — Set,

then we can form a category whose objects are finite sets and whose

morphisms are cospans decorated by an element in the image under F
of its apex.

. /

In this case: F(S) is the set {(S,T, s, t,r)} of all possible reaction
networks using the speciesin S.

Claim: we can define F on morphisms so that everything works.




The model — Cespans Decorated cospans

Then, we get a category RxNet with

* objects: finite sets
* morphisms X — Y: decorated cospans

/ \ = (5,T,s,t,7)

that captures the same information as chemical reaction networks.



(Open) dynamical systems as decorated cospans

These look like

[ 5
/ \ . v: R 5 R
\ X Y

IDEA: S is the set of variables, v is the “intrinsic” vector field, and i and o
mark the variables where we admit inflows/outflows.



(Open) dynamical systems as decorated cospans

Explicitly: Given
e aninflow I: R —» RX
e an outflow 0: R —» RY

e gvectorc:R -» R®

we let de(t)

ek vic(t)) + i (I(t)) — 0. (O(1))

where i, (I):R =R is i, (I)(t)(s)= » I(t)(x)



Important features — Associated dynamical system
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Here I = (I}, I3,1p) and i.(I) = (I} +I3,1p,0,0)



(Open) dynamical systems as decorated cospans

-

Thm. [Fong]: If the decorations can be given through a functor
F:FinSet — Set,

then we can form a category whose objects are finite sets and whose
morphisms are cospans decorated by an element in the image under F

KOf its apex.

~

/

In this case: D(S) is the set { v:IR® —» R> } of all possible algebraic
vector fields.

Claim: we can define D on morphisms so that everything works.



(Open) dynamical systems as decorated cospans

Then, we get a category Dynam with

* objects: finite sets
* morphisms X — Y: decorated cospans

\

/ \ e

that captures the information of (open) dynamical systems.




From reactions to dynamical systems

GOAL: Get afunctor Sys: RxNet — Dynam taking a reaction network
to its associated dynamical system.



From reactions to dynamical systems

GOAL: Getafunctor Sys:RxNet —» Dynam taking a reaction network
to its associated dynamical system.

-

.

Thm. [Fong]: A natural transformation between the functors giving the
decorations yields a functor between the decorated cospan categories.

J

In this case, for each finite set S,
95' : F(S) — D(S)
{:’]S(R — (Sv T, S,t,?")) — FUH



From reactions to dynamical systems

So 8 induces a functor Sys: RxNet — Dynam such that

* Sys is identity on objects
* On morphisms,

S

S
f = / \ , (S, T,s,tr) wy  SYS(f) = / \ , pSTst)
X Y

X Y



Steady states

Defn. Given an open dynamical system (X ANy Y, v) together with
an inflow I € R% and an outflow O € RY, a steady state with inflows [
and outflows O is an element ¢ € R® such that

v(c) +1x(1) —04(0) =0



Steady states

Defn. Given an open dynamical system (X KNy Y, v) together with
an inflow I € RX and an outflow O € R*, a steady state with inflows I
and outflows O is an element ¢ € R® such that

v(c) +1x(1) —04(0) =0

Want to study the relation between input concentrations, inflows,
output concentrations and outflows in steady state (the “externally
observable steady state behavior”)

{(coi,I,c00,0):v(c)+ix(I)—0,(0) =0} CR* ®R* @ R" & R"



Steady states

GOAL: Find a functor St: Dynam — ? that

* on objects: St(S) =7?
* on morphisms:

[ S {(coi,I,c00,0):
/ \ v: R® — R” -
|y . v(c) + (1) — 0,(0) = 0}
C R*oR*aR" @R




Steady states

GOAL: Find a functor St: Dynam — ? that

* on objects: St(S) = R°> ¢ R>
* on morphisms:

[ S {(coi,I,c00,0):
/ \ v: R® — R” -
|y . v(c) + (1) — 0,(0) = 0}
C R*oR*aR" @R




Steady states

? is the category Rel, whose
* objects: “based” vector space R> ¢ R forafinite set S

e morphisms R @ R* — RY @& RY are linear subspaces

V C RXepRX@RY ¢ RY



Steady states

? is the category Rel, whose
* objects: “based” vector space R> ¢ R forafinite set S

e morphisms R @ R* — RY @& RY are linear subspaces
V C RYoRYaRY @RY

Composition? Given V C (R*)? @ (RY)? and W C (RY)? @ (R?)?
a pair (x,z) € (R*)? @ (R?)? belongs to the composition W o V if
there exists y € (R")? such that (x,y) €V and (y,z) € W.



Steady states

PROBLEM: Rel is not a decorated cospan category, so we can’t

use our magic theorems to prove St: Dynam — Rel is a functor.

SOLUTION: We can prove it by hand (some work involved).



Recap

* We built a category RxNet encoding all the information of chemical
reaction networks.

* We built a category Dynam of (open) dynamical systems

* \We have functors
Sys:RxNet —» Dynam
taking a chemical reaction to its associated open dynamical system, and

St: Dynam — Rel

taking an open dyn. System to the space of all possible externally
observable steady state behaviors.



What is this good for?

Interpreting the facts:

The correspondence that associates to an open chemical reaction the
set of all its externally observable steady state behaviors is functorial,
given by

Sy. St
RxNet =25 Dynam — Rel

That means it respects composition.

Then, we can find the steady states of a big, complex system by
composing the steady states of its smaller parts, which in theory should
be much easier to study.



What is this good for?

Connections between areas:

With some imagination: this “decorated cospan” formalism can be
applied to any sort of “open network”.

Other examples of these are open electrical circuits, or open Markov
processes.

THE HOPE: one can transfer intuition from one setting to the other and
be able to make new connections.



Thanks for your time!
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