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Things that look like 



The characters – Chemical reaction networks

Things that look like 

More formally:

Defn.  A chemical reaction network is 𝑅 = (𝑆, 𝑇, 𝑠, 𝑡, 𝑟) where

• 𝑆 is a finite set of species

• 𝑇 is a finite set of transitions

• functions 𝑠, 𝑡: 𝑇 → ℕ𝑆 indicating source and target of transitions

• a function 𝑟: 𝑇 → (0, ∞) indicating the rate of transitions



The characters – Chemical reaction networks

Instead of equation-style notation

we will use a graph-like notation



The characters – Chemical reaction networks

Our reactions have input and output “hoses” that allow us to 
manipulate the concentration of some species.



Important features – “Composition”

Can “connect” different containers by gluing along input/output hoses.



Important features – Associated dynamical system

The “rate equation”:  describes the change in the concentrations of the 
species through time.

For 𝑐: ℝ → ℝ𝑆 time-dependent concentrations,

or for short



Important features – Associated dynamical system



Important features – Associated dynamical system



Important features – Associated dynamical system



The model – Preliminaries

Defn.  A category consists of

• a collection of objects

• a collection of morphisms

such that

• each morphism has a source and a target 

• we can compose: 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 ⇝  𝑔𝑓: 𝑋 → 𝑍

• composition is associative

• identity morphisms are units for the composition



The model – Preliminaries

Defn.  A functor 𝐹: 𝐶 → 𝐷 between two categories consists of:

• for each object 𝑋 ∈ 𝐶, an object 𝐹 𝑋 ∈ 𝐷

• for each morphism 𝑓: 𝑋 → 𝑌 ∈ 𝐶, a morphism 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 ∈ 𝐷

such that

• 𝐹 𝑖𝑑𝑋 = 𝑖𝑑𝐹 𝑋

• 𝐹 𝑔𝑓 = 𝐹 𝑔 𝐹(𝑓)



The model – Preliminaries

Defn.  A natural transformation 𝜏: 𝐹 ⇒ 𝐺 between functors 𝐹, 𝐺: 𝐶 → 𝐷
consists of a morphism 

𝜏𝑋: 𝐹 𝑋 → 𝐺 𝑋 for every 𝑋 ∈ 𝐶

such that, given 𝑓: 𝑋 → 𝑋′



The model – Cospans

GOAL:  assemble chemical reaction networks into a category.

TOOL: cospans.



The model – Cospans

GOAL:  assemble chemical reaction networks into a category.

TOOL: cospans.

Defn.  A cospan is a diagram 

where 𝑋, 𝑌, 𝑆 are finite sets and 𝑖, 𝑜 are functions.



The model – Cospans

IDEA: 𝑆 is the set of species in the reaction, 𝑖 and 𝑜 mark the input/output 
hoses.



The model – Cospans

FEATURES RECOVERED:  Cospans compose

Let 𝑆 ⊔𝑌 𝑆′ = 𝑆 ⊔ 𝑆′/∼ where 𝑠 ∼ 𝑠′ if 𝑜 𝑦 = 𝑠 and i′ 𝑦 = 𝑠′ for 
some 𝑦 ∈ 𝑌.



The model – Cospans
FEATURES RECOVERED:  Cospans compose

Let 𝑆 ⊔𝑌 𝑆′ = 𝑆 ⊔ 𝑆′/∼ where 𝑠 ∼ 𝑠′ if 𝑜 𝑦 = 𝑠 and 𝑖′ 𝑦 = 𝑠′ for 
some 𝑦 ∈ 𝑌.

In reaction-land, this identifies a species of 𝑆 with one of 𝑆′ whenever

both are connected to the same hose. 



The model – Cospans

WHY COSPANS ARE GOOD: It’s known that there exists a category, 

𝐶𝑜𝑠𝑝𝑎𝑛, whose objects are finite sets and whose morphisms from 𝑋 to 

𝑌 are cospans with 𝑋 and 𝑌 as foots.

However…



The model – Cospans

FEATURES NOT RECOVERED:  We have no record of transitions!

To fix that, we will “decorate” cospans: append the information of the 
reaction. 



The model – Cospans Decorated cospans

These look like 



The model – Cospans Decorated cospans

These look like 

PROBLEM:  Not obvious that these compose.



The model – Cospans Decorated cospans

SOLUTION: 

Thm. [Fong]: If the decorations can be given through a functor

𝐹: 𝐹𝑖𝑛𝑆𝑒𝑡 → 𝑆𝑒𝑡,

then we can form a category whose objects are finite sets and whose 
morphisms are cospans decorated by an element in the image under 𝐹
of its apex.



The model – Cospans Decorated cospans

SOLUTION: 

Thm. [Fong]: If the decorations can be given through a functor

𝐹: 𝐹𝑖𝑛𝑆𝑒𝑡 → 𝑆𝑒𝑡,

then we can form a category whose objects are finite sets and whose 
morphisms are cospans decorated by an element in the image under 𝐹
of its apex.

In this case: 𝐹(𝑆) is the set { 𝑆, 𝑇, 𝑠, 𝑡, 𝑟 } of all possible reaction 
networks using the species in 𝑆.

Claim: we can define 𝐹 on morphisms so that everything works.



The model – Cospans Decorated cospans

Then, we get a category 𝑅𝑥𝑁𝑒𝑡 with

• objects: finite sets

• morphisms 𝑋 → 𝑌: decorated cospans

that captures the same information as chemical reaction networks.



(Open) dynamical systems as decorated cospans

These look like 

IDEA: 𝑆 is the set of variables, 𝑣 is the “intrinsic” vector field, and 𝑖 and 𝑜
mark the variables where we admit inflows/outflows.



(Open) dynamical systems as decorated cospans

Explicitly:  Given

• an inflow 𝐼: ℝ → ℝ𝑋

• an outflow 𝑂: ℝ → ℝ𝑌

• a vector 𝑐: ℝ → ℝ𝑆

we let

where 



Important features – Associated dynamical system

Here



(Open) dynamical systems as decorated cospans

Thm. [Fong]: If the decorations can be given through a functor

𝐹: 𝐹𝑖𝑛𝑆𝑒𝑡 → 𝑆𝑒𝑡,

then we can form a category whose objects are finite sets and whose 
morphisms are cospans decorated by an element in the image under 𝐹
of its apex.

In this case: D(𝑆) is the set { v: ℝ𝑆 → ℝ𝑆 } of all possible algebraic 
vector fields.

Claim: we can define 𝐷 on morphisms so that everything works.



(Open) dynamical systems as decorated cospans

Then, we get a category Dynam with

• objects: finite sets

• morphisms 𝑋 → 𝑌: decorated cospans

that captures the information of (open) dynamical systems.



From reactions to dynamical systems

GOAL:  Get a functor Sys: 𝑅𝑥𝑁𝑒𝑡 → 𝐷𝑦𝑛𝑎𝑚 taking a reaction network

to its associated dynamical system.



From reactions to dynamical systems

GOAL:  Get a functor 𝑆𝑦𝑠: 𝑅𝑥𝑁𝑒𝑡 → 𝐷𝑦𝑛𝑎𝑚 taking a reaction network

to its associated dynamical system.

Thm. [Fong]:  A natural transformation between the functors giving the 
decorations yields a functor between the decorated cospan categories.

In this case, for each finite set 𝑆,



From reactions to dynamical systems

So 𝜃 induces a functor 𝑆𝑦𝑠: 𝑅𝑥𝑁𝑒𝑡 → 𝐷𝑦𝑛𝑎𝑚 such that

• 𝑆𝑦𝑠 is identity on objects

• On morphisms,

⇝



Steady states

Defn. Given an open dynamical system                                 together with 

an inflow 𝐼 ∈ ℝ𝑋 and an outflow 𝑂 ∈ ℝ𝑌, a steady state with inflows 𝐼

and outflows 𝑂 is an element 𝑐 ∈ ℝ𝑆 such that



Steady states

Defn. Given an open dynamical system                                 together with 

an inflow 𝐼 ∈ ℝ𝑋 and an outflow 𝑂 ∈ ℝ𝑌, a steady state with inflows 𝐼

and outflows 𝑂 is an element 𝑐 ∈ ℝ𝑆 such that

Want to study the relation between input concentrations, inflows, 
output concentrations and outflows in steady state (the “externally 
observable steady state behavior”)



Steady states

GOAL:  Find a functor 𝑆𝑡: 𝐷𝑦𝑛𝑎𝑚 → ? that

• on objects: 𝑆𝑡 𝑆 = ?

• on morphisms:

• ⇝



Steady states

GOAL:  Find a functor 𝑆𝑡: 𝐷𝑦𝑛𝑎𝑚 → ? that

• on objects: 𝑆𝑡 𝑆 = ?

• on morphisms:

• ⇝



Steady states

? is the category 𝑅𝑒𝑙, whose

• objects: “based” vector spaces                    for a finite set 𝑆

• morphisms                                               are linear subspaces



Steady states

? is the category 𝑅𝑒𝑙, whose

• objects: “based” vector spaces                    for a finite set 𝑆

• morphisms                                               are linear subspaces

Composition?  Given                                         and 

a pair 𝑥, 𝑧 ∈ belongs to the composition 𝑊 ∘ 𝑉 if 

there exists 𝑦 ∈ such that 𝑥, 𝑦 ∈ 𝑉 and 𝑦, 𝑧 ∈ 𝑊.



Steady states

PROBLEM: 𝑅𝑒𝑙 is not a decorated cospan category, so we can’t 

use our magic theorems to prove 𝑆𝑡: 𝐷𝑦𝑛𝑎𝑚 → 𝑅𝑒𝑙 is a functor.

SOLUTION: We can prove it by hand (some work involved).             



Recap

• We built a category 𝑅𝑥𝑁𝑒𝑡 encoding all the information of chemical 
reaction networks.

• We built a category 𝐷𝑦𝑛𝑎𝑚 of (open) dynamical systems

• We have functors

𝑆𝑦𝑠: 𝑅𝑥𝑁𝑒𝑡 → 𝐷𝑦𝑛𝑎𝑚

taking a chemical reaction to its associated open dynamical system, and

𝑆𝑡: 𝐷𝑦𝑛𝑎𝑚 → 𝑅𝑒𝑙

taking an open dyn. System to the space of all possible externally 
observable steady state behaviors.



What is this good for?

Interpreting the facts:  

The correspondence that associates to an open chemical reaction the 
set of all its externally observable steady state behaviors is  functorial, 
given by  

That means it respects composition.

Then, we can find the steady states of a big, complex system by 
composing the steady states of its smaller parts, which in theory should 
be much easier to study.



What is this good for?

Connections between areas:

With some imagination: this “decorated cospan” formalism can be

applied to any sort of “open network”. 

Other examples of these are open electrical circuits, or open Markov 
processes. 

THE HOPE: one can transfer intuition from one setting to the other and 

be able to make new connections.



Thanks for your time!
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