
An introduction to locally finitely presentable
categories
MARU SARAZOLA

A document born out of my attempt to understand the notion of lo-
cally finitely presentable category, and my annoyance at constantly finding
different definitions.

When working with sets, the structure of a set X is completely determined
by its elements. Since we can think about elements of X as maps {∗} → X, we
get that mapping out of {∗} allows us to completely understand the objects of
Set.

However, even when dealing with categories that have a terminal object,
this is not usually the case. Consider for example the category of non-directed
graphs (where loops are allowed, but no multiple edges). In this case, the
terminal object T is the graph with only one vertex and one loop, so if X is a
discrete graph, we won’t even have any maps T → X.

To get rid of this issue, we might try to delete the loop and instead consider
the graph •, but maps • → X don’t yield enough information, since they only
involve the vertices of X and there can be many graphs with the same set of
vertices. A similar thing happens if we only look at maps (• − •) → X, since
these don’t see discrete vertices. But if we keep in mind both of these graphs,
along with the incidence relations between them (which say that the point • lies
in the edge • − • in two ways), then we can determine the graph X.

In this case, instead of a “test object”, we have a “test category”, namely,

•⇒ (• − •)

We would like to do this with other categories, that is, find a suitable subcat-
egory G ⊂ C such that the objects of G are “nice” and that maps out of them
(together with the incidence maps in G) determine the objects of C.

Building up to the definition

What should we take “nice” to mean? Well, one possible criterion would be
to ask for the objects of G to be finite in some sense, since we’re usually better
at understanding finite things. Let’s introduce some concepts that will allow us
to see what the natural condition for finiteness is in some concrete categories.

Definition 1. A filtered category is a category C in which every finite diagram
has a cocone. This is the categorification of directed sets: in addition to having
an upper bound for pairs of objects (meaning, for every pair of objects X1, X2,
another object Y with maps Xi → Y ), there must also be an upper bound for
pairs of parallel morphisms (i.e., given X ⇒ Y , a map Y → Z such that the
two compositions X ⇒ Y → Z are equal).

Definition 2. A filtered colimit is a colimit of a functor D : I → C where I is
a filtered category.
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Example 3. When C = Set, a finite object is just a finite set. Is there a
“categorical” way to characterize these objects?

Proposition 4. A set X is finite if and only if the functor Hom(X,−) : Set→
Set preserves filtered colimits.

Proof. Every set is the filtered colimit of its finite subsets Xi ⊂ X and inclusions
between them. Thus, the condition that Hom(X,−) preserves filtered colimits
implies that the canonical comparison map

colim Hom(X,Xi)→ Hom(X,X)

is a bijection, and some element in the colimit represented by f : X → Xi gets
mapped to 1X , i.e., i ◦ f = 1X for some inclusion i : Xi ↪→ X. This implies i is
a bijection, so X is a finite set.

For the converse, the functor Hom({∗},−) is the identity functor, so it pre-
serves colimits. Furthermore, any set X with n elements can be written as
X '

∐
n{∗}, so

Hom(X,−) ' Hom(
∐
n

{∗},−) ' lim
n

Hom({∗},−)

and then Hom(X,−) preserves filtered colimits, since limits and filtered colimits
commute in Set.

Example 5. When C = Vectk, a finite object is a finite-dimensional vector space.

Proposition 6. A vector space V is finite-dimensional if and only if the functor
Hom(V,−) : Vectk → Set preserves filtered colimits.

Proof. Every vector space V is the filtered colimit of its finite-dimensional sub-
spaces Vi ⊆ V , so, much as in the previous example, if Hom(V,−) : Vectk → Set
preserves filtered colimits, then V must be finite-dimensional.

In the converse direction, we know that for any finite dimensional V we
have an adjunction (− ⊗k V ) a (− ⊗ V ∗), which in turn yields an adjunction
Hom(V,−) a Hom(V ∗,−). Then, as a left adjoint, Hom(V,−) preserves all
colimits (and in particular filtered colimits).

Example 7. Let R be a ring. We could argue that there are two natural notions
for what a “finite” R-module should be: a finitely generated module, or a finitely
presented one. The second one is stronger (since it requires finitely many genera-
tors with finitely many relations between them), and one can show that a module
M is finitely presented if and only if the functor Hom(M,−) : R-Mod → Set
preserves filtered colimits.

Taking the cue from the previous examples, we define the following notion.

Definition 8. An object X in C is finitely presented (or compact) if the functor
Hom(X,−) : C → Set preserves filtered colimits. This is the same as saying
that if D : I → C is a diagram where I is a filtered category, then any morphism
X → colimDi factors (essentially uniquely) through some X → Di.

For a category C, let Cfp denote the full subcategory of finitely presented
objects.
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Example 9. Finitely presented graphs are those with finitely many vertices and
edges.

Example 10. The categorical notion of finite presentability for groups coincides
with the algebraic one; that is, for a group G, Hom(G,−) preserves filtered
colimits if and only if G has finitely many generators with finitely many relations
among them.

In fact, this case, together with examples 5 and 7, are particular cases of a
larger fact: in the category of algebras for any algebraic theory, the categorical
and algebraic notions of finite presentability agree ([AR94, Thm. 3.12]).

The proof of proposition 4 can be generalized to show the following.

Proposition 11. A finite colimit of finitely presentable objects is again finitely
presentable.

The definition(s)

Now that we know what our “nice” objects look like, we need to decide
which categories we want to consider. Let’s remember our initial goal: we want
a category C such that the objects of C are determined by maps from objects
in Cfp, and incidence maps within Cfp. Given that we need certain colimits to
exist in order to talk about finitely presented objects in C, it makes sense to
require C to be cocomplete. Also, since we will be probing with objects in Cfp,
it seems reasonable to limit the size of Cfp: we will ask for it to be skeletally
small. That leads us to the following.

Definition 12. A locally small category C is locally finitely presentable if it has
all small colimits, Cfp is skeletally small, and the functor F : C → [Cfp,Set]
defined by F (X)(A) = Hom(A,X) (a restriction of the Yoneda embedding) is
faithful and conservative.

Recall that a functor is called conservative if it reflects isomorphisms; this
implies that looking at C(−, X) : Cfp → Set actually determines the object X
up to isomorphism. In fact, if the category C has equalizers, we can show that
this is all we really need to ask of the functor F .

Proposition 13. Let F : C → D be a conservative functor. If C has equalizers
and F preserves them, then F is faithful.

Proof. Let f, g : X ⇒ Y be a pair of parallel arrows, and consider the equalizer

E X Ye
f

g

Since F preserves equalizers, we know that

FE FX FYFe
Ff

Fg

will also be an equalizer. Now suppose Ff = Fg; that’s the same as saying
that the equalizer of Ff and Fg is 1FX : FX → FX, and so there exists
an isomorphism ϕ : FE → FX such that Fe = 1FXϕ. But then Fe is an
isomorphism, and since F is conservative, that means e is an isomorphism.
Thus, from fe = ge, we get that f = fee−1 = gee−1 = g.
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In our case, note that the functor F : C → [Cfp,Set] preserves limits (and
in particular, equalizers), since limits in [Cfp,Set] are computed pointwise and
each C(A,−) preserves limits.

This seems to work very nicely, but what if we go a different way? We have
a subcategory Cfp of finitely presented objects, the “suitably finite” objects in
C. What if we ask that all objects of C are built from these in a reasonable
manner?

Definition 14. A locally small category C is locally finitely presentable if it
has all small colimits, Cfp is skeletally small, and any object in C is the filtered
colimit of a diagram in Cfp.

In other words, we should be able to obtain any object by adequately “glu-
ing” together finitely presented objects, taking into account the incidence rela-
tions between them. Our algebraic intuition indicates that this is a reasonable
thing to attempt, since in algebra we decompose objects into colimits of smaller,
simpler objects all the time.

Indeed, if X is the colimit of a diagram in Cfp, we will have certain maps
from some objects of Cfp to X (the legs of the colimit cocone), but how does this
relate to our initial goal of having X be determined by all maps from objects in
Cfp to X?

Proposition 15. An object X in C can be written as a filtered colimit of objects
in Cfp if and only if X is the colimit of the diagram UX : Cfp ↓ X → C, where
UX is the forgetful functor.

Proof. If we assume that X is the colimit of the diagram UX : Cfp ↓ X → C,
then all we need to show is that the category Cfp ↓ X is filtered.

There’s an upper bound for every pair of objects: given two objects A1 →
X,A2 → X, we want another object B → X with maps (Ai → X)→ (B → X)
in Cfp ↓ X, i.e. maps Ai → B in C such that the diagram commutes

Ai B

X

It’s easy to show that B = A1

∐
A2 is finitely presented, and the universal

property of the coproduct gives us all the maps we need.
There’s an upper bound for every parallel pair of maps: consider a diagram

(A→ X) ⇒ (B → X)

in Cfp ↓ X, or equivalently, the commutative diagram

A B

X

in C. We want an object (C → X) in Cfp ↓ X and a map (B → X)→ (C → X)
such that the two compositions

(A→ X) ⇒ (B → X)→ (C → X)
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are equal, or equivalently, such that the compositions A ⇒ B → C are the
same in C. Due to the previous commutative triangle, we achieve this by letting
(C → X) = (B → X).

Now, suppose that X is the colimit of some diagram D : I → Cfp ↪→ C
where I is filtered. The maps Di → colimDi = X are some of the objects
considered in Cfp ↓ X; we need to show that they somehow determine the
colimit of UX : Cfp ↓ X → C.

First of all, let’s show that colimDi forms a cocone. For each object A →
X = colimDi in Cfp ↓ X, there exists a map (itself) UX(A→ colimDi) = A→
colimDi. Clearly, since a map (A → X) → (B → X) in Cfp ↓ X is given by a
commutative diagram

A B

X

all the legs of the cocone commute.

Given another cocone nadirH with maps {UX(A→ X) = A H}A→X ,
hA→X

we can restrict it to the cocone {Di H}
hDi→X

to get a mapX = colimDi → H

that commutes with the cocone legs involving the Di’s. Given any A → X =
colimDi, the fact that colimDi is a filtered colimit implies that map must factor
through some Di → colimDi. Thus, we have the diagrams

A X = colimDi

H
hA→X

=

A Di X = colimDi

H

hA→X

hDi→X

where, if we focus on the diagram on the right, the right triangle commutes
from the construction of the map colimDi → H, and the left triangle on the
left commutes because H is a cocone. That means the diagram on the left
commutes, which proves that every other cocone factors through colimDi, and
therefore colimDi is the colimit of UX : Cfp ↓ X → C.

This shows we have two reasonable candidates for our definition of locally
finitely presentable category. Let’s see how they relate to each other.

Theorem 16. Let C be a cocomplete, locally small category. Then every object
X of C is the colimit of the diagram UX : Cfp ↓ X → C if and only if the functor
F : C → [Cfp,Set] defined by F (X)(A) = Hom(A,X) is fully faithful.

Proof. F being fully faithful means there exists a bijection

C(X,Y ) ' Nat(C(−, X), C(−, Y ))

for every X,Y in C, where the hom-sets on the right are restricted to Cfp. Now,
there is a bijective correspondence

Nat(UX ,∆Y ) ' Nat(C(−, X), C(−, Y ))

since an element on the left is a natural transformation τ : UX → ∆Y , so, for
each A→ X in Cfp ↓ X, we have a map τA→X : A→ Y , and an element on the
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right is a natural transformation τ̂ : C(−, X) → C(−, Y ), meaning, for each for
A in Cfp, it takes a map A→ X to a map τ̂A(A→ X) : A→ Y .

Finally, given an object X in C, there exists a bijection

C(X,Y ) ' Nat(UX ,∆Y )

for every Y in C if and only if X represents the functor Nat(UX ,∆−), which is
precisely the definition of X being the colimit of the diagram UX .

Theorem 17. Definitions 12 and 14 of a locally finitely presentable category
agree. That is, if C is a cocomplete category and Cfp is skeletally small, then
the functor F : C → [Cfp,Set] defined by F (X)(A) = Hom(A,X) is faithful and
conservative if and only if any object in C is the filtered colimit of a diagram in
Cfp.

Proof. If every object in C is the filtered colimit of a diagram in Cfp, then
proposition 15, along with theorem 16 and the fact that fully faithful functors
are conservative, gives us our result.

For the converse, recall that X together with all maps {A → X} form a
cocone for UX (as shown in the proof of prop. 15), so we have a map ϕ :
colimUX → X. We will show that ϕ is an isomorphism.

To prove it’s a monomorphism, suppose g, h : Y → colimUX are two maps
such that ϕg = ϕh. The category Cfp ↓ X is filtered, so g and h can be factored
as

Y colimUX

UX(A→ X)

g

g′ fA→X

,

Y colimUX

UX(B → X)

h

h′
fB→X

Again, since Cfp ↓ X is filtered, there exists an object C Xc and maps
A→ C, B → C such that the diagrams

A C

X

B C

X

commute. Thus, we can factor g and h through the same object C → X, getting

Y colimUX

C

g

ḡ fC→X

,

Y colimUX

C

h

h̄ fC→X

Given that the functor F is faithful, showing that g = h is equivalent to proving
that the natural transformations Fg, Fh : C(−, Y )⇒ C(−, colimUX) are equal;
that is, for any finitely presented A and α : A→ Y , we have gα = hα.

Consider the coequalizer

A C K
ḡα

h̄α

k
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Both A and C are in Cfp, so by prop. 11, so is K.
Now, if we record all our information in the diagram

C

A Y colimUX X

fC→X
c

α
g

h

ḡ

h̄

ϕ

we see that cḡα = ch̄α, so there exists a map K → X that makes the following
diagram commute

A C K

X

ḡα

h̄α

k

c

Since K is finitely presented, the map K → X is an object of Cfp ↓ X, and
the triangle in the previous diagram exhibits k as a map from (C → X) to
(K → X). Therefore, we have the following situation

C K

A Y colimUX

fC→X

k

fK→X

α
g

h

ḡ

h̄

and if we recall that K is the coequalizer of ḡα and h̄α, we see that gα = hα as
we wanted.

Note that in order to show that ϕ is an isomorphism, it suffices to prove
that Fϕ = ϕ ◦ − : C(−, colimUX) ⇒ C(−, X) is an epimorphism, i.e. that
ϕ ◦ − : C(A, colimUX) → C(A,X) is a surjection for every finitely presentable
A. Indeed, we already know that ϕ is a monomorphism, so Fϕ is a mono as well
(since F clearly preserves monomorphisms). Therefore, showing Fϕ is an epi
would imply that it’s an isomorphism, hence reaching our conclusion because F
is conservative.

Finally, ϕ ◦ − : C(A, colimUX) → C(A,X) is a surjection since we can
exhibit a right inverse, taking a map A → X to its corresponding colimit leg

A colimUX
fA→X

.

Polishing the definition

Sometimes, considering the whole subcategory Cfp might be an overkill. Going
back to the case of graphs, example 9 tells us that the finitely presented graphs
are those with finitely many vertices and edges. However, in the introduction
we mentioned that we really just need to consider the subcategory

•⇒ • − •

if we want to determine an object. This suggests the following reformulation.
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Definition 18. A locally small category C is locally finitely presentable if it has
all small colimits, and there exists a set S of objects of Cfp such that any object
in C is the filtered colimit of a diagram with objects in S.

Clearly, definition 14 implies definition 18, by taking S to be a set of repre-
sentatives of the isomorphism classes of finitely presented objects. To see that
they are equivalent, we need to show that definition 18 implies that Cfp is skele-
tally small, which is not readily apparent. We proceed as suggested in [AR94,
Excercise 1.d(2)].

First of all, we show that C is well-powered (i.e. every object has a set’s worth
of subobjects, up to isomorphism). Let S denote the small full subcategory of
C whose set of objects is S. Since the restriction of the Yoneda embedding
FS : C → [S,Set] preserves monomorphisms, it suffices to show that [S,Set] is
well-powered.

Let F : S → Set be a functor, and let G : S → Set be a subobject of
F , meaning, there exists a monomorpism τ : G ⇒ F . For each X ∈ S there
is an injection τX : GX → FX, so GX is a subobject of FX. Now, FX is
a set, so clearly it has a set’s worth of subobjects (up to isomorphism); let

{ZXj FX}j∈IX
fX
j

be a set of representatives. That means there exists

some i ∈ IX and an isomorphism ϕX : GX → ZXi such that τX = ϕXf
X
i .

We want to define a functor G′ : S → Set such that G′ is a subobject of F

and G ' G′. Since we already have suitable maps GX ZXi FX
ϕX fX

i ,

it makes sense to define G′X = ZXi . For a map g : X → Y , we can see from the
commutative diagram

GX ZXi = G′X FX

GY ZYi = G′Y FY

ϕX

Gg

fX
i

Fg

ϕY fY
i

that defining G′g = ϕYGgϕ
−1
X makes ϕ− : G ⇒ G′ and f−i : G′ ⇒ F into

natural transformations, with τ = ϕ− ◦ f−i .
Finally, note that we only have a set’s worth of subobjects of the form

f−i : G′ ⇒ F , since each f−i is an element of the set
∏
X∈S IX . This shows that

C is well-powered.
Now, let A be a finitely presented object, and let D : I → S ↪→ C be a

diagram such that A = colimDi, with I filtered. Then, as any map to a filtered
colimit, 1A : A→ A factors through some Di as

A A = colimDi

Di

1A

which means A is a subobject of Di. We have proved that any finitely presented
object is a subobject of an object in S, so the fact that S is a set, together with
C being well-powered, implies that Cfp must be skeletally small.

Similarly, we could alter definition 12 in the following manner.
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Definition 19. A locally small category C is locally finitely presentable if it
has all small colimits, and there exists a small subcategory S ⊂ Cfp such that
the functor F : C → [S,Set] defined by F (X)(A) = Hom(A,X) is faithful and
conservative.

To show that definitions 18 and 19 are equivalent we can consider S̄, the
closure of S under finite colimits (noting that it will be skeletally small) and
proceed as in theorem 17, substituting Cfp by S̄.

Some examples, and yet another characterization

Example 20. The category Set is l.f.p., with Setfp = {finite sets}.
Example 21. The category of graphs is l.f.p., for example, with S = {•, • − •}.
Example 22. The category of small categories, Cat, is l.f.p., for example with
S = {• → •}.
Example 23. The category Top is not l.f.p. (I have to think about this).

Example 24. The category of algebras for any algebraic theory is l.f.p., and we
can take S = {free algebra on one generator}.

Actually, a generalization of this last example gives us the only class of
examples that we can find.

Theorem 25. [Kel82, Thm. 9.8] A category C is l.f.p. if and only if it is
the category of algebras for a finitary essentially algebraic theory (which is then
T = Copfp ).

Definition 26. A finitary essentially algebraic theory T is a small category
that has all finite limits. A model (or algebra) of a theory T is a left exact
functor M : T → C.

Remark 27. Recall that left exact functors are precisely those that preserve
small limits.

These generalize finitary algebraic theories (aka Lawvere theories) where
instead of finite limits we only consider finite products.

Morally (from the nLab), “a mathematical structure is essentially algebraic
if its definition involves partially defined operations satisfying equational laws,
where the domain of any given operation is a subset where various other opera-
tions happen to be equal. An actual algebraic theory is one where all operations
are total functions.”

Some examples, aside from Lawvere theories themselves, are categories,
where composition is only defined for certain pairs of morphisms.

Summing up

Recapitulating, a locally small, cocomplete category is locally finitely presentable
if any of the following equivalent conditions are satisfied:

1. Cfp is skeletally small, and any object in C is the filtered colimit of a
diagram in Cfp.
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2. There exists a set S of objects of Cfp such that any object in C is the
filtered colimit of a diagram with objects in S.

3. Cfp is skeletally small, and the functor F : C → [Cfp,Set] defined by
F (X)(A) = Hom(A,X) is fully faithful.

4. Cfp is skeletally small, and the functor F : C → [Cfp,Set] defined by
F (X)(A) = Hom(A,X) is faithful and conservative.

5. There exists a small subcategory S ⊂ Cfp such that the functor F : C →
[S,Set] defined by F (X)(A) = Hom(A,X) is faithful and conservative.

6. C is the category of algebras for a finitary essentially algebraic theory.

If, in addition, C has equalizers, the adjective “faithful” can be dropped from
conditions 4 and 5.
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