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1 Background

For the sake of completeness, we include a brief background in modern algebra. Anyone
comfortable with groups, rings, and fields can safely skip all of this: there are some interesting
number-theoretic trivia thrown in, but nothing that would be missed.

A group is a 2-tuple (G, ·), where G is a set, · is a binary operation, and they satisfy the
following four properties:

· For all x, y 2 G, x · y 2 G (closure);

· There exists an element in G, often denoted by 1 (or e), such that for all x 2 G,

1 · x = x · 1 = x

(identity);

· For all x 2 G, there exists y 2 G with

x · y = y · x = 1

(inverses);

· For all x, y, z 2 G,
(x · y) · z = x · (y · z)

(associativity).

One property we have omitted in the list of four above is commutativity; for all x, y 2 G,
x · y = y ·x. There are many interesting examples of noncommutative groups (matrices with
multiplication, most prominently), so a group need not be commutative unless otherwise
specified. For our purposes, though, groups will always be commutative, since our groups
will all arise from working with Z, where addition and multiplication are both commuta-
tive. A commutative group is called abelian (for Niels Henrik Abel, the founder of group
theory).
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It is easy to show that 1 2 G is unique, and for any x 2 G, the y such that x · y = y ·x = 1 is
unique as well. Usually the operation in a group is most easily thought of as multiplication;
occasionally it is useful to think of it as addition, and we write 0 instead of 1 for the identity
and + instead of · for the operation. When the group is multiplicative, we generally write
xy in place of x · y to save space. When the operation is understood, it is often said that G
itself is a group, although this is not strictly correct.

If G is finite, we can speak of the order of an element g; this is the smallest exponent d > 0
such that gd = 1. Note that such a d necessarily exists; write out g0, g1, g2, · · · , g|G|. There is
one more element here than there is elements in the group, so by the pigeonhole principle two
of them must be the same: g

a = g

b. Now g

|a�b| = 1. Actually, it is a theorem of Lagrange
that the order of an element is always a divisor of |G|; in particular, g|G| = 1 always.

A ring is a 3-tuple (R,+, ·) where R is a set and +, · are binary operations satisfying the
following properties:

· (R,+) is an abelian group with identity 0;

· For all a, b, c 2 R,
(ab)c = a(bc)

(associativity);

· For all a, b, c 2 R,
a(b+ c) = ab+ ac

(b+ c)a = ba+ ca

(distributivity).

Note again that we do not ask for the multiplication to be commutative (at least, not in
the definition); but for our purposes it will be. Such a ring is called, to no one’s surprise,
commutative.

A field is a ring such that (R \ {0}, ·) is an abelian group with identity 1, and 1 6= 0. (This
just rules out the “field” of size 1, which tends to behave poorly.)

The multiplicative group or group of units of a ring R, denoted by R

⇤, is the set of elements
of R with multiplicative inverses, together with multiplication. A field is therefore a ring for
which the multiplicative group is as large as possible. The focus of our concern here is the
multiplicative group of the ring Z/nZ, often written succinctly as (Z/nZ)⇤.

Theorem 1.0.1. (Z/nZ)⇤ contains precisely the numbers between 1 and n that are coprime
to n.

Lemma 1 (Bézout). Let a, b, c 2 Z. Then the equation

ax+ by = c
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has a solution (x, y) 2 Z2 i↵ (a, b) | c. (Here (·, ·) denote the greatest common divisor
function, and | is read as “divides”).

Proof. The only if direction is clear; (a, b) divides the LHS, so it must divide the RHS. For
the if direction, it’s su�cient to find a solution for c = (a, b), since then we can just scale that
solution up by any desired factor to get the rest of them. The extended euclidean algorithm
provides a method for determining x and y in this case, so we’re done.

Proof of Theorem. Clearly this set of numbers is closed under multiplication, has associative
multiplication, and contains 1, so it remains to show that these are precisely the invertible
elements. Suppose we want to solve ax ⌘ 1 (mod n) (to invert a); this is equivalent to
solving

ax+ ny = 1

in integers. By Lemma 1, we can do this i↵ a and n are coprime.

Remark. The Euler totient function is defined as '(n) ··= |(Z/nZ)⇤|. It satisfies

'(pm) = p

m�1(p� 1)

which follows from Theorem 1.0.1. It is also what’s known as multiplicative:

'(ab) = '(a)'(b)

whenever (a, b) = 1.1 This can be shown as a consequence of the Chinese remainder theorem,
which we will meet soon.

A group G is called cyclic if there exists an element g 2 G where, for all x 2 G, x = g

n for
some n 2 Z. Equivalently, there is an element of order |G|. Such an element is called a gener-
ator. (In the number theoretic special case we’re dealing with it is also known as a primitive
root, but we won’t use that language.) Cyclic groups are the easiest groups to understand; all
finite groups can be described by giving a small generating set, the orders of the elements in
that set, and the relations between the elements in that set (how they multiply together). A
cyclic group has a generating set of size only 1, so there are no tricky relations to worry about.

The cyclic groups one thinks about most often are Z and Z/nZ (both with addition); 1 serves
as a generator in either case, though there may be others. All cyclic groups are isomorphic
to one of these groups. (One simply maps the generator of the group onto 1.) We concern
ourselves with when (Z/nZ)⇤ is cyclic because it allows us to turn multiplication, which is
complicated, into addition (of exponents), which is easy.

1This sounds stupid: clearly we should call a function f multiplicative if f(ab) = f(a)f(b) always,
none of this coprime stu↵. Functions like that are called totally multiplicative; they turn out to be a lot less
interesting than multiplicative functions, which is why they get the longer name. ' is one of many interesting
number-theoretic functions that is multiplicative, but not totally multiplicative.
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2 The Chinese Remainder Theorem

This is a powerful theorem for breaking up arbitrary commutative rings into smaller rings;
here we present it in just enough generality to serve our purposes.

Theorem 2.0.1. Let n = p

e1
1 p

e2
2 · · · pekk be a prime factorization. Then

Z/nZ ⇠= Z/pe11 Z⇥ Z/pe22 Z⇥ · · ·⇥ Z/pekk Z

as rings.

Remark. The ⇥ just means you do computations in the rings on the RHS one coordinate at
a time.

Proof. The map (from left to right) is given by applying the appropriate modulus to each
coordinate: if we start with a on the left, the first coordinate is a modulo p

e1
1 , the second is

a modulo p

e2
2 , and so on. It should be clear that this map respects the operations; it remains

to show that it is bijective. There are n elements on the left and p

e1
1 p

e2
2 · · · pekk = n elements

on the right, so it’s enough to show the map is injective.

Take a, b in Z/nZ that are mapped to the same k-tuple on the right; then a�b ⌘ 0 (mod p

ei
i )

for all i. Since the peii are coprime, this means that a� b ⌘ 0 (mod lcm{peii }), i.e. a� b ⌘ 0
(mod n), i.e. a = b. This completes the proof.

Corollary 2.0.2. Since the above rings are isomorphic, so are their multiplicative groups.
Observe that the multiplicative group of a direct product is the direct product of the multi-
plicative groups.

3 The Proof

3.1 Ruling Out Most Cases; Problems for p = 2

It turns out that for most possible prime factorizations of n we can immediately rule out
that (Z/nZ)⇤ is cyclic. This is by way of a helpful lemma.

Definition 3.1.1. The exponent of a group G is the smallest f such that gf ⌘ 1 for all g 2 G.

Remark. If G is cyclic, its exponent is |G| (of course). The converse is not true, though; S3

has exponent |S3| = 6 but is not cyclic (or even abelian). The contrapositive, though, is
quite helpful: if the exponent of G is less than |G|, then G is not cyclic.
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Lemma 2. Let Cn denote the cyclic group on n elements (another name for (Z/nZ,+)).
Let

C

··= Ci1 ⇥ Ci2 ⇥ · · ·⇥ Cik

Then C is cyclic if and only if the ij are pairwise coprime; in particular, the exponent of C
is lcm(i1, i2, · · · , ik).

Proof. Suppose the ij are not pairwise coprime, so that ` ··= lcm(i1, i2, · · · , ik) < |C|. The
exponent of C certainly divides `, so C can have no element of order |C|. In the reverse
direction, if the ij are pairwise coprime, then ` = |C| and the element (1, 1, · · · , 1) has order
`, so C is cyclic.

Claim. Suppose p, q are distinct odd primes dividing n. Then (Z/nZ)⇤ is not cyclic.

Proof. The Chinese remainder theorem gives us that (Z/nZ)⇤ is isomorphic to a direct prod-
uct of groups, one of which is (Z/pepZ)⇤ and another of which is (Z/qeqZ)⇤ for appropriate
values of ep and eq. But these multiplicative groups have orders '(pep) and '(qeq) (respec-
tively), which are multiples of p� 1 and q� 1 (respectively), and therefore even. Now we’re
done by Lemma 2.

Claim. Suppose p is an odd prime dividing n and 4 | n. Then (Z/nZ)⇤ is not cyclic.

Proof. The proof is the same as for the last claim; now (Z/nZ)⇤ is isomorphic to a direct
product of groups including (Z/pepZ)⇤ and (Z/2e2Z)⇤, with e2 � 2. Again, both groups have
even order, and so the direct product can’t be cyclic.

This already rules out all cases except numbers of the form 2m, pm, or 2pm for p an odd
prime and k � 0. Note that, most unfortunately,

1 ⌘ 12 ⌘ 32 ⌘ 52 ⌘ 72 (mod 8)

So (Z/8Z)⇤ isn’t cyclic; it’s the darn Klein 4-group instead. Now (Z/2mZ)⇤ can’t be cyclic
for any m � 3; after all, if all of the possible remainders modulo, say, 16 appeared as powers
of some number k, then all of the possible remainders modulo 8 would as well. We’re now
left with only the following possible values of n:

n 2 {1, 2, 4, pm, 2pm}

These actually all work. (1, 2, and 4 are easy to check, of course.)

It is not unusual for a theorem to begin “let p be an odd prime:” 2 is often left out of clubs
that all the other primes get to join. There are a number of deep reasons “why” there are no
generators modulo 8; at any rate, they’re deeper than “I just checked, see? All the elements
had order 2.” An equine reason is explored later; I may explore more reasons in a future
talk.
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3.2 A Taste of What’s to Come

The proof that (Z/pmZ)⇤ is cyclic proceeds in three parts: first the case m = 1, then m = 2,
and then allm > 2. Suppose we had done extensive numerical analysis on such multiplicative
groups and found they always seemed to be cyclic; why might we look for a proof that broke
into these three stages? The answer is actually quite natural.

The proof is by its nature inductive, so having a base case m = 1 is only fair. It is easiest
to tackle first for a number of reasons: Z/pZ is actually a field, unlike when m > 1, which
gives us some nice additional structure to work with. Indeed, both proofs we give for m = 1
rely on this fact. This is also the simplest case, since we have the fewest elements to deal
with, and often a good way to get a handle on a new problem is to prove it for the simplest
cases first.

But why the weird stumble at m = 2—can’t a regular inductive proof work? The reasons
for the other joints in how the proof is put together are a little more subtle. Suppose for a
moment that Z/pmZ is always cyclic. Note that generators modulo p

m necessarily generate
modulo pm�1; if the powers of g give all possible remainders modulo p

m, they’d better also do
so modulo pm�1. The question is really whether a generator g modulo pm�1 lifts to generators
modulo p

m. That is, how many of the p di↵erent numbers modulo p

m that are congruent to
g modulo p

m�1, are themselves generators modulo p

m?

The group Z/pmZ has order '(pm) = p

m�1(p� 1). As we’ll see later, a cyclic group of order
n has '(n) generators: if g is one generator, all of the powers of g with exponent coprime to
n are as well. Therefore there are

'('(pm)) = '(pm�1(p� 1)) = '(pm�1)'(p� 1) = p

m�2(p� 1)'(p� 1)

many generators modulo p

m for m � 2. What this means is that the number of generators
usually increases by a factor of p when we change m to m + 1, so it must be that all of
the di↵erent lifts of generators modulo p

m also generate modulo p

m+1, and the proof merely
consists of showing that fact. However, for m = 1,

'('(p)) = '(p� 1)

and for m = 2,
'('(p2)) = '(p(p� 1)) = (p� 1)'(p� 1)

Here, even though the group is p times as large, it has only p� 1 times as many generators,
so occasionally lifting a generator will fail to yield a generator of the bigger group. (As we’ll
see, there is precisely one “bad” lift per generator; there aren’t any generators whose lifts are
all good, which then get cancelled out by having some generators with multiple bad lifts.)
In other words, once we’ve found a generator modulo p we’ll have to be careful about how
we lift it to modulo p

2. This is what causes the kink in the proof.
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3.3 The case m = 1

Theorem 3.3.1 (Gauss). The group G = (Z/pZ)⇤ is cyclic.

Proof 1. We prove a superficially stronger claim. Let Sd denote the number of elements of
G with order d. Then we claim that |Sd| = '(d); in particular, there are '(p�1) generators.

This proof is entirely elementary, and proceeds in two parts. First, we show that |Sd| 2
{0,'(d)}; second, we show that the 0 case can’t happen. We’ll need two lemmas.

Lemma 3. Let G be a group and let a 2 G have order d. Then a

k has order d
(d,k) .

Proof. Suppose (ak)
`
= a

k` = 1; then d | k`, so the minimal ` that works is d
(d,k) .

Corollary 3.3.2. A cyclic group on n elements has '(n) generators. (This was promised
in Section 3.2.)

Lemma 4. X

d|n

'(d) = n

Proof. We use a double-counting argument; specifically, both sides count the number of
fractions in the list 1

n ,
2
n , · · · ,

n
n . The LHS does so by putting each fraction in simplest

form and counting the number of times each denominator appears; how the RHS does so is
obvious.

Suppose |Sd| = 0; then we’re done. Otherwise, take a 2 Sd, and consider the polyno-
mial equation x

d � 1 = 0 in G (viewed as a field). This has at most d roots2; but aha!
1, a, a2, · · · , ad�1 are all roots of this polynomial, and distinct, so this must be all of them.
We just have to examine which of them genuinely have order d (as opposed to a divisor
thereof). By Lemma 3, this is true precisely for the '(d) powers of a with exponent coprime
to d.

Since the Sd partition G, we now have

X

d|p�1

'(d) = p� 1 =
X

d|p�1

|Sd|

But each term in the RHS sum is  to the corresponding term in the LHS sum, so it must
be that we have equality, and the proof is complete.

2But that’s the fundamental theorem of algebra—we haven’t proven that for arbitrary fields! Yes, you’re
right. But in a field we can use the polynomial long division algorithm, just like with R, to “pull out” roots
one at a time and decrease the degree by 1. Since a linear equation has only one root, induction shows that
my claim is true.
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Proof 2. We actually prove the stronger statement that the multiplicative group of any field
is cyclic.3

Lemma 5. Let G be a finite abelian group, and let the exponent of G be the smallest number
f such that af = 1 for all a 2 G. Then there exists g 2 G such that the order of g is f .

Proof. We appeal to the structure theorem for finite abelian groups. Write

G

⇠= Zq1 ⇥ Zq2 ⇥ · · ·⇥ Zqk

For the qi prime powers. (The groups on the right are viewed additively, and generated by
1.) Clearly G has exponent dividing lcm(q1, q2, · · · , qk). Also, the element (1, 1, · · · , 1) on
the right has order lcm(q1, q2, · · · , qk). The result is now shown.

Now to prove the theorem it’s enough to show that G has exponent p � 1. By Lagrange,
x

p�1� 1 = 0 is satisfied by all elements x 2 G. Any lower-degree polynomial, however, can’t
have p � 1 distinct nonzero roots in the field Z/pZ, so p � 1 is indeed the exponent of G.
Now Lemma 5 gives us an element of order p� 1, and we’re done.

3.4 The case m = 2

As discussed above, we have reason to believe that most ways of lifting generators modulo p

are good, but some are bad. It’s not too di�cult to make this notion rigorous.

Theorem 3.4.1. Let r be a generator modulo p, and let k be such that p - k. Then either r

or r + kp generates modulo p

2.

Proof. The order of Z/p2Z is '(p2) = p(p � 1), so r, r + kp must have orders dividing this.
But their orders must also be multiples of p� 1; otherwise, they wouldn’t generate modulo
p. (Note that r + kp is just r when taken modulo p.) This leaves only p � 1 and p(p � 1)
for possible orders. If either one has order p(p � 1) then we’re done, so suppose both have
order p� 1. But then

1 ⌘ (r + kp)p�1 ⌘ r

p�1 +

✓
p� 1

1

◆
r

p�2
kp+

✓
p� 1

2

◆
r

p�3
k

2
p

2 + · · · (mod p

2)

On the RHS, the zeroth and first terms are fine, but all subsequent terms have a factor of
p

2 and can therefore be discarded. This leaves us with

1 ⌘ 1 + kp(p� 1)rp�2 (mod p

2)

0 ⌘ kp(p� 1)rp�2 (mod p

2)

3One can be even more zealous: any finite subgroup of the multiplicative group of a field is cyclic. The
proof given here generalizes easily enough.
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p

2 | kp(p� 1)rp�2 (mod p

2)

But try as we might, there is only one factor of p to be found in kp(p � 1)rp�2, so this is a
contradiction.

Corollary 3.4.1. Each generator modulo p has exactly one failed lift modulo p

2.

Proof. Since all the lifts of a given number di↵er from each other by a multiple of p, Theorem
3.4.1 gives us that at most one lift of each generator mod p can fail to generate modulo p

2.
Since we need an average of one failed lift per generator, this proves the corollary.

For those interested only in proving the existence of primitive roots modulo p

2, the theorem
can be stated more compactly:

Theorem 3.4.1. Let r generate modulo p. Then either r or r + p generates modulo p

2.

Note that this is a little weaker than the statement we gave. It does not immediately
imply that each generator modulo p has only one bad lift, but does provide a simpler set of
instructions for finding a generator modulo p

2 once you have one modulo p: try it mod p

2,
and if that fails, just add p to it.

3.5 A Brief Interlude for Horseplay

Theorem 3.5.1. All horses are the same color.

Proof. We proceed by induction. The base case, a set of n = 1 horses, is trivial. For the
inductive step, suppose we know that all sets of n horses are the same color, and consider a
set of n + 1 horses. The first n horses are the same color, as are the last n; since the first
horse is the same color as the middle horses, which are the same color as the last horse, we
conclude that the first and last horse are also the same color, and hence all n + 1 horses
are the same color. The set of horses was arbitrary, so the inductive step is shown, and the
conclusion follows.

What’s going on? The problem is in jumping from n = 1 to n = 2; at this stage, “the initial
one horse” and “the final one horse” are two sets without overlap, and the inductive step
falls apart. The base case n = 1 is true, and if the statement holds for n = 2, it holds for
n = 3, which then means it holds for n = 4, and so on. We’re so close to a real inductive
proof! But mathematical truth doesn’t give partial credit. The proof is garbage.

(Don’t worry about me; I haven’t gone insane yet. To mix metaphors a bit, our horses will
soon come to roost.)
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3.6 Lifting the Generators Modulo p

2

The theorem statement is as we know it must be:

Theorem 3.6.1. Let p be an odd prime and r be a generator modulo p

2. Then r is a gen-
erator modulo p

m for all m > 2.

Lemma 6. Let p be an odd prime and a � 1. Then

(1 + kp)p
a ⌘ 1 + kp

a+1 (mod p

a+2)

Proof. We proceed by induction on a. For the base case a = 1, Observe that

(1 + kp)p = 1 +

✓
p

1

◆
kp+ · · ·

where the omitted terms are all divisible by p

3 or better (once from the binomial coe�cient,
and twice or more from the power of kp).4 This gives

(1 + kp)p = 1 + kp

2 + n1p
3

for some n1, and the base case is shown.

Suppose the statement holds for some a � 1, so

(1 + kp)p
a+1

=
�
(1 + kp)p

a�p
=

�
1 + kp

a+1 + np

a+2
�p

for some n. In a trinomial expansion of the RHS, pa+3 divides most terms, since we get:

· Three “pure” terms, 1p, (kpa+1)p, and (npa+2)p; of these, only 1p is not divisible by
p

a+3.

· Cross terms involving at least one factor of npa+2; we only need one more factor of p.
We’ll certainly find it if we use another factor of npa+2; otherwise, we’re using at least
two distinct factors, which implies that p divides the associated trinomial coe�cient.

· Cross terms involving no factors of npa+2, but at least two factors of kpa+1; these are
also divisible by p

a+3.

· One cross term involving no factors of npa+2 and only one factor of kpa+1, i.e.
✓

p

p� 1, 1, 0

◆
1p�1

�
kp

a+1
�1 �

np

a+2
�0

= kp

a+2

And therefore

(1 + kp)p
a+1

=
�
(1 + kp)p

a�p
=

�
1 + kp

a+1 + np

a+2
�p

= 1 + kp

a+2 + n

0
p

a+2

for some n

0, completing the inductive step, and therefore the proof.
4The explanation here is a little sloppy. Can you see why it fails if, and only if, p = 2?

10



Proof of Theorem. Note that r has order p � 1 modulo p, so the order of r modulo p

m is a
multiple of p � 1 dividing p

m�1(p � 1); i.e. it is of the form p

a(p � 1) for some 0  a < m.
All of these possibilities divide p

m�2(p � 1) except for pm�1(p � 1) (the order we want), so
to show that the order is the latter, it’s enough to show that it does not divide the former,
i.e. that rp

m�2(p�1) 6⌘ 1 (mod p

m).

Since r generates modulo p

2, we have that rp�1 = 1 + kp for p - k. Now by Lemma 6,

r

pm�2(p�1) = (rp�1)
pm�2

= (1 + kp)p
m�2

= 1 + kp

m�1 + np

m

for some n. Since p - k, this is notably not congruent to 1 modulo p

m, from which the result
follows.

Remark. Note that the inductive step of Lemma 6 didn’t depend on p being odd; only the
base case did. Proving that the lemma holds in the base case (with p in the exponent) is
used in the theorem to show that there is a primitive root when m = 3. There are generators
modulo 4, and if there were generators modulo 8, they would generate modulo 16, modulo
32, and so on. Unfortunately, our generators fail to make the hop over from m = 2 to m = 3,
and the whole edifice crashes.

In some sense, then, (Z/2mZ)⇤ is not cyclic (m � 3) for the same reason that not all horses
are the same color (n � 2).

3.7 The 2pm Afterthought

Theorem 3.7.1. Let p be an odd prime and m > 1. Then (Z/(2pm)Z)⇤ is cyclic.

Proof. By the Chinese remainder theorem,

(Z/(2pm)Z)⇤ ⇠= (Z/2Z)⇤ ⇥ (Z/pmZ)⇤

and the first group on the RHS is the trivial group, so

(Z/(2pm)Z)⇤ ⇠= (Z/pmZ)⇤

The group on the right is cyclic, so the one on the left must also be. If r is a generator on
the right, then either r or r + p

m (whichever one is odd) generates on the left.
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