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1 Background

1

The Riemann zeta function is a map defined (for Re s > 1) by

⇣(s) ··=
1X

n=1

1

ns

The zeta function has all sorts of applications in complex analysis and number theory, and
surrounds some of the deepest open questions in those fields. Euler’s first claim to fame was
in 1734, when he solved the Basel problem—the task of evaluating this function at s = 2; he
showed it was equal to ⇡

2

6

. This was before Riemann’s work, so the question was not phrased
in quite that way.

Euler eventually extended his method to calculate these values at even integers all the way
up to s = 26, though he did not have a closed form. (A closed form for even positive integers
is now known; the values at the odd positive integers remain an open problem.) We apply
an example in quantum mechanics to give a method for calculating these values.

In classical mechanics, a particle has definite position and momentum at all times; its motion
is governed by the di↵erential equation F = ma. In principle, if one knows to infinite
precision all the positions and momenta of the various particles in consideration and can
exactly solve their F = ma equations, one knows the state of the system for all time.

The story in quantum mechanics is not altogether di↵erent. The particle is described by a
C-valued wave function  (x, t). The evolution of its state is still governed by a di↵erential
equation, the (time-dependent) Schrödinger equation:

i~@ 
@t

= � ~2
2m

@2 

@x2

+ V (x) 

1
A more thorough introduction to quantum mechanics around the level seen here can be found in Gri�ths’

Introduction to Quantum Mechanics.

1



Here V is analogous to a classical potential; a higher potential means it’s harder for a particle
to get to a specific place. ~ is just a constant. The probability of finding the particle inside
the interval [a, b] is Z

b

a

| (x, t)|2 dx

with a normality condition imposed by ordinary probability:
Z 1

�1
| (x, t)|2 dx = 1

This is sort of a boring equation; really, we’re just insisting that our  be L2. Enforcing that
the integral be 1 is just bookkeeping with constants and units (observe that wave functions
in one dimension now have units of L�1/2).

For moderately good reasons we often don’t care about the time evolution of the wave
function, so we write  (x, 0) =  (x) and mainly work with  . For extra confusion, it’s
typical to also call  “the wave function”.

Unfortunately, solving PDEs of mixed degree in multiple variables seems kind of hard. It
would be much simpler if we assumed that  (x, t) factored as  (x)g(t). Then2

i~ dg

dt
= � ~2

2m

d2 2

dx2

g + V  g

Now we can do a trick:

i~
dg

dt

g
=

� ~2
2m

d2 2

dx2

 
+ V

What does dividing through by  g accomplish? Well, the LHS is purely a function of time,
and the RHS is purely a function of space, so they must both be constant. There aren’t
that many letters of the alphabet, so let’s call that constant E.3 The LHS gives us the fairly
uninteresting fact that the time-dependent part looks like

g(t) = e�iEt/~

and the time-independent piece satisfies the time-independent Schrödinger equation:

� ~2
2m

d2 

dx2

+ V  = E 

This is also traditionally called “the Schrödinger equation”. Both equations can be thought
of as eigenvalue equations for the operator applied to  on the left, conventionally called Ĥ
(for Hamilton).

2
This seems kind of extreme, but bear with me.

3
Maybe we’ll get lucky and it’ll be the particle’s energy, right? Who knows?
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Wave functions lead to all sorts of weird and counter-intuitive results, some of which you
may be familiar with. For instance, suppose we have two orthogonal4 wave functions  

1

, 
2

where  
1

(x, 0) = i for 0 < x < 1

2

and  
2

(x, 0) = �i for 0 < x < 1

2

. In each of these wave
functions there’s a probability of

|±i|2
✓
1

2
� 0

◆
=

1

2

Of finding the particle within [0, 1
2

]. And yet if we take the quantum superposition5

 (x) ··=
1p
2
( 

1

(x) +  
2

(x))

Then the probability of finding a particle with wave function  within this interval is 0, not
1! This sort of e↵ect gets called as “quantum interference”. We humans like to focus on
the probability density | |2, but it actually tells us very little about what happens when we
mix wave functions together, because the probabilities aren’t the things that add up. This
occasionally causes confusion.

1.1 Phast Physics Phacts!

Physicists are lucky; their functions are always pretty nice.

Fact. Any  (x, t) satisfying the time-dependent equation satisfies the following:

·  (x, 0) is a linear combination of  (x) that satisfy the time-independent equation;

· ...and  (x, t) is “the same” linear combination of  (x)e�iEt/~.

·  is continuous always, and
d 

dx
is continuous away from points where V jumps from

being finite to infinite (or vice versa).

It’s correct to think about  (x)e�iEt/~ being the basis of solutions to the (time-independent)
Schrödinger equation, and you can determine the coe�cients thereof by doing it for  (x, 0),
where the time-dependencies all go away. We’ve carefully avoided writing down any linear
combinations because the basis might be countable vs. uncountable (discrete vs. continuous),
and we don’t want commit to writing either a sum or an integral prematurely.

4
Wait, what’s the inner product? It’s h 1, 2i =

R1
�1  1 2 dx, as you might have guessed.

5
Read this as “linear combination”; you can check for yourself that  is properly normalized.
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2 The Infinite Square Well

Also called the particle in a box, this has the potential function

V (x) =

(
0, 0  x  a

1, otherwise

Note that in regions where V (x) is infinite, the Schrödinger equation is

� ~2
2m

d2 

dx2

+1 = E 

The RHS is finite (since  is supposed to be C-valued), so to have things make sense we
need  = 0 to make everything be 0.6 Inside the well, the equation is

� ~2
2m

d2 

dx2

= E 

d2 

dx2

= �2mE

~2  

Which we recognize as having solutions

 (x) = sin

 p
2mE

~ x

!
, cos

 p
2mE

~ x

!

But the boundary conditions (remember that  is continuous) force  (0) = 0, so the cosines
are out, and we have (to enforce  (a) = 0)

p
2mE

~ a = n⇡, n 2 Z+

So we can rewrite our solutions as

 (x) = sin
n⇡x

a
, n 2 Z+

We still have to normalize, of course:
Z

a

0

sin2

n⇡x

a
dx = ?

Here’s the physicist’s argument for such things; clearly
Z

a

0

⇣
sin2

n⇡x

a
+ cos2

n⇡x

a

⌘
dx =

Z
a

0

1 dx = a

6
This is an awfully cavalier treatment of multiplying 0 and 1. Putting on the physicist hat tends to

make one cavalier about such things.
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And sin2, cos2 are just ⇡

2

-phase-shifted versions of each other. Since we’re integrating over
an integer number of periods they should contribute equally, and we get

Z
a

0

sin2

n⇡x

a
dx =

a

2

Z
a

0

 r
2

a
sin

n⇡x

a

!
2

dx = 1

Denote this function by  
n

(x). The  
n

form an orthonormal set of functions (you can check
normality yourself); Fourier analysis tells us that they span the space of functions on [0, a],
so they form a basis.

Finally we’ve arrived at the punchline. Write

c
n

··=
Z

a

0

f(x)

 r
2

a
sin

n⇡x

a

!
dx

This is just us dotting f with our (orthonormal) basis vectors, so we can write

f(x) =
1X

n=1

c
n

r
2

a
sin

n⇡x

a

and so Z
a

0

f(x)2 =
1X

n=1

Z
a

0

c2
n

✓
2

a
sin2

n⇡x

a

◆
dx

Suppose we had a function (WLOG real-valued; do you see why?) satisfying c
n

= 1

n

m ; then,
like magic, this would reduce to

Z
a

0

f(x)2 dx =
1X

n=1

1

n2m

= ⇣(2m)

Our job is just to find some f ’s that do this, and hope that we know how to integrate their
squares.

3 The Legwork

As it turns out, polynomials do the job. Let’s write our basis polynomials as
xm

am
p
2a

. Why

bother to do half the bookkeeping of normalization (i.e. units) here, but not the other half?
And what’s with the

p
2? The second question will be answered soon. The basis here isn’t

orthogonal under the inner product, and since we’ll be taking linear combinations of these
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polynomials later, we’ll have to normalize later regardless; there’s no point doing so now.
But we need to standardize the units for each wave function so that we can take R-linear
combinations later, so it doesn’t hurt to get them right.

Let u = n⇡x

a

, so du = n⇡

a

dx. Write y ··= 1

n⇡

. Then
Z

a

0

xm

am
p
2a

r
2

a
sin

n⇡x

a
dx =

1

am+1

⇣ a

n⇡

⌘
m+1

Z
n⇡

0

um sin u du = ym+1

Z
n⇡

0

um sin u du

We can now evaluate the integral at the end via integration by parts:

D I

um sin u

mum�1 � cos u

m2um�2 � sin u

m3um�3 cos u
... sin u

m!u
...

m! ?0

0 ?

By mk we mean the kth falling power (also known as the falling factorial),

mk ··= m(m� 1) · · · (m� k + 1)

This a good friend of combinatorialists. The ? in the table is ± sin or ± cos, the function
depending on the parity of m and its sign depending on the parity of

⌅
m

2

⇧
.

We can do some nice pruning of this integral: since we’re evaluating it over a whole number
of periods, all of the sin terms will drop out, which also takes care of some sign-flipping
issues. For the other terms, observe that for k � 0,

�
mkum�k cos u

� ���
n⇡

0

= mk

�
(�1)nyk�m � �

k,0

�

Since 0k = 0 when k 6= 0 but 00 = 1 (a convention we forced on ourselves when we rewrote
m! as m!u0). If m is odd, then we don’t get a k = 0 term (0 is paired up with a sin). This
means the Kronecker delta will only show up when m is even. Putting this all together gives

ym+1

Z
n⇡

0

um sin u du =

8
>><

>>:

(�1)n+1

P
k<m

k even

(�1)k/2mkyk+1 + (1� (�1)n)(�1)m/2m!ym+1, m ⌘ 0 (mod 2)

(�1)n+1

P
k<m

k even

(�1)k/2mkyk+1, m ⌘ 1 (mod 2)

6



The first few examples are

m = 1 :
x1

a1
p
2a

7! p
1

(y) ··= (�1)n+1y

m = 2 :
x2

a2
p
2a

7! p
2

(y) ··= (�1)n+1y � 2(1� (�1)n)y3

m = 3 :
x3

a3
p
2a

7! p
3

(y) ··= (�1)n+1y � 6(�1)n+1y3

m = 4 :
x4

a4
p
2a

7! p
4

(y) ··= (�1)n+1y � 12(�1)n+1y3 + 24(1� (�1)n)y5

m = 5 :
x5

a5
p
2a

7! p
5

(y) ··= (�1)n+1y � 20(�1)n+1y3 + 120(�1)n+1y5

One could of course choose to write the signs di↵erently; writing �(�1)n+1 might seem silly
compared to (�1)n. However, writing only one of (�1)n+1 and (�1)n is less likely to lead to
sign mistakes when working with these polynomials, and we choose to write (�1)n+1 so that
the signs are alternating and start positive.

Let’s flex our muscles with a few examples.

Example (⇣(2)). Here we just need p
1

. We can write

⇣(2) =
1X

n=1

1

n2

= ⇡2

1X

n=1

✓
(�1)n+1

n⇡

◆
2

= ⇡2

1X

n=1

p
1

(y)2

= ⇡2

Z
a

0

✓
x

a
p
2a

◆
2

dx

= ⇡2

Z
a

0

x2

2a3
dx

= ⇡2

✓
1

6

x3

a3

◆ ���
a

0

=
⇡2

6

This confirms Euler’s famous result.
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Example (⇣(6)). Eyeballing what we wrote above, we see that

p
3

(y)� p
1

(y) = �6(�1)n+1y3

Therefore

⇣(6) =
1X

n=1

1

n6

=
⇡6

36

1X

n=1

✓
�6(�1)n+1

n3⇡3

◆
2

=
⇡6

36

1X

n=1

(p
3

(y)� p
1

(y))2

=
⇡6

36

Z
a

0

✓
x3

a3
p
2a

� x

a
p
2a

◆
2

dx

=
⇡6

72

Z
a

0

✓
x6

a7
+

x2

a3
� 2

x4

a5

◆
dx

=
⇡6

72

✓
1

7
+

1

3
� 2

5

◆

=
⇡6

72

8

105

=
⇡6

945

Let’s push ourselves now!

Example (⇣(10)). We need only p
1

, p
3

, and p
5

; the fact that our basis is triangular in yk is
very helpful here. We can see that

p
5

(y)� 10

3
p
3

(y) +
7

3
p
1

(y) = 120(�1)n+1y5

So

⇣(10) =
1X

n=1

1

n10

=
⇡10

14400

1X

n=1

✓
p
5

(y)� 10

3
p
3

(y) +
7

3
p
1

(y)

◆
2

=
⇡10

28800

Z
a

0

✓
x5

a5
p
a
� 10

3

x3

a3
p
a
+

7

3

x

a
p
a

◆
2

dx

As all schoolchildren know, this integral evaluates to
640

2079
, so

⇣(10) =
⇡10

28800

640

2079
=

⇡10

45(2079)
=

⇡10

93555

8



Aren’t we jumping the gun? We promised ⇣(2m) for all integers m, but so far we’ve skipped
from 2 to 6 to 10. What about the multiples of 4? This method isn’t going to work; some-
thing like its dual is what we need.

Example (⇣(4)). Observe that squaring the m = 3 polynomial gives

�
(�1)n+1y � 6(�1)n+1y3

�
2

= y2 � 12y4 + 36y6

So we can calculate ⇣(4), provided we know ⇣(2) and ⇣(6) (which, fortunately, we do). Now

Z
a

0

✓
x3

a3
p
2a

◆
2

dx =

Z
a

0

x6

2a7
=

1

14

Instead of having the norm-calculating half of our work be hard and the ⇣ half being easy,
the situation is reversed!

We can also write

Z
a

0

✓
x3

a3
p
2a

◆
2

dx =
1X

n=1

�
(�1)n+1y � 6(�1)n+1y3

�
2

=
1X

n=1

�
(�1)n+1y � 6(�1)n+1y3

�
2

=
1X

n=1

1

n2⇡2

� 12
1X

n=1

1

n4⇡4

+ 36
1X

n=1

1

n6⇡6

=
1

⇡2

⇣(2)� 12

⇡4

1X

n=1

1

n4

+
36

⇡6

⇣(6)

=
1

6
� 12

⇡4

⇣(4) +
4

105

Putting this together,
1

14
=

1

6
+

4

105
� 12

⇡4

⇣(4)

15� 35� 8

210
= �12

⇡4

⇣(4)

⇣(4) =
⇡4

12

28

210
=
⇡4

90

Why not use the even values of m—does the (1� (�1)n) factor make them worthless? No,
but it makes things messier. Here’s one example for completeness.
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Example (⇣(6), alternate method). Observe that

x2

a2
p
2a

� x

a
p
2a

7! �2(1� (�1)n)y3

So

Z
a

0

✓
x2

a2
p
2a

� x

a
p
2a

◆
2

dx =
1

2

Z
a

0

✓
x4

a5
+

x2

a3
� 2

x3

a4

◆
dx =

1

2

✓
1

5
+

1

3
� 2

1

4

◆
=

1

60

On the other hand,

Z
a

0

✓
x2

a2
p
2a

� x

a
p
2a

◆
2

dx =
1X

n=1

✓
�2(1� (�1)n)

n3⇡3

◆
2

=
16

⇡6

X

n odd

1

n6

This isn’t the zeta function at all! 1 � (�1)n gives 2 on all the odd n’s and kills the even
ones. Fortunately, there’s a fix; observe that7

�
1� 2�6

�
⇣(6) =

✓
1� 1

26

◆✓
1 +

1

26
+

1

36
+

1

46
+ · · ·

◆

=

✓
1 +

1

26
+

1

36
+

1

46
+ · · ·

◆
�
✓

1

26
+

1

46
+

1

66
+ · · ·

◆

=
X

n odd

1

n6

Putting this all together,
1

60
=

16

⇡6

63

64
⇣(6)

⇣(6) =
4⇡6

63

1

60
=

⇡6

63(15)
=

⇡6

945

which confirms the earlier result.

It’s clear what the algorithm for computing ⇣(2m) is now. First, calculate all the p
i

for
i = 1, 3, 5, · · · , stopping at m or m+ 1 (whichever one is odd). If m is odd we can calculate
⇣(2m) directly via a certain linear combination of these polynomials, which translates into a
(nasty) definite, proper integral. If m is even, we first have to calculate ⇣(2`) for all ` < m,
then calculate ⇣(2m) indirectly via the final calculated p

i

, which has some nasty ⇣ stu↵
involved but corresponds to an easy integral. Like Euler himself, we could now sit down and
calculate the values all the way up to ⇣(26). (Any reader with too much free time is welcome
to attempt this.)

7
Some readers might prefer to do this derivation in reverse by means of a geometric series.
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4 The Quest for the Closed Form

In principle the problem is solved once reduced to computing some integrals of polynomials,
though it would be nice to derive the closed form in terms of the Bernoulli numbers. I will
see about expanding on this when I have some free time.
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