

In 1911, Toeplitz famously conjectured that any simple closed curve in \mathbb{R}^{2} encloses a square. Over the summer, I didn't prove this but approached the similar problem of whether any two simple closed curves in \mathbb{R}^{2} and in \mathbb{R}^{3} enclose a parallelogram between them. This problem had a surprising connection with a problem I called ring on a string, which essentially asks whether you can pass a ring along a closed string without ever rotating the ring. I will discuss this connection and progress made thus far on both problems.

OCT 1 at 5:15pm Malott 532 * Refreshments

