Math 2220 Prelim 2 Solutions Fall 2010

Problem 1: Calculate the integral of the function \(f(x, y) = \frac{1}{x} \) over the region bounded by the parabolas \(y = x^2 \) and \(y = 2x - x^2 \).

Solution: We can calculate that the two parabolas intersect at \(x = 0 \) and \(x = 1 \), and in this region \(2x - x^2 \geq x^2 \). So we wish to integrate:

\[
\int_0^1 \int_{x^2}^{2x-x^2} \frac{1}{x} \, dy \, dx
\]

\[
= \int_0^1 \frac{1}{x} \cdot ((2x - x^2) - x^2) \, dx
\]

\[
= \int_0^1 2 - 2x \, dx = (2x - x^2)|_0^1 = 1 - 0 = 1
\]

The integral is improper since \(1/x \) is not defined at the point \((0,0)\) which is on the boundary of the domain, however the above computation shows that the integral converges.

Problem 2: Evaluate the iterated integral

\[
\int_{-1}^1 \int_0^{1-|y|} \frac{y^2 e^x}{(1-x)^3} \, dx \, dy.
\]

Solution: Since the integral of \(\frac{e^x}{(1-x)^3} \, dx \) cannot be written in terms of elementary functions, we must change the order of integration. The domain of the integral looks like a triangle:
So we can change the order of integration:
\[
\int_{-1}^{1} \int_{0}^{1-|y|} \frac{y^2e^x}{(1-x)^3} \, dx \, dy
\]
\[
= \int_{0}^{1} \int_{y}^{1-x} \frac{y^2e^x}{(1-x)^3} \, dy \, dx = \int_{0}^{1} \left[\frac{e^x}{(1-x)^3} \cdot \frac{y^3}{3} \right]_{x-1}^{1-x} \, dx
\]
\[
= \int_{0}^{1} \frac{e^x}{(1-x)^3} \cdot \frac{(x-1)^3 - (1-x)^3}{3} \, dx
\]
\[
= \int_{0}^{1} 2 \frac{e^x}{3} \, dx = \frac{2}{3} e^1 |_{0}^{1} = \frac{2}{3} (e - 1).
\]

Problem 3: Find the volume of the solid consisting of all points which satisfy the inequalities
\[
0 \leq x \leq 1 \quad 0 \leq y \leq 1 \quad 0 \leq z \leq x(y - x).
\]

Solution: Notice that the last inequality automatically that \(x(y - x) \geq 0\), thus we need to strengthen the second inequality to \(x \leq y \leq 1\).

Which makes our volume integral:
\[
\int_{0}^{1} \int_{x}^{1} \frac{1}{2} \, dz \, dy \, dx = \int_{0}^{1} \int_{x}^{1} x(y - x) \, dy \, dx
\]
\[
= \int_{0}^{1} \left[\frac{xy^2}{2} - x^2y \right]_{x}^{1} \, dx = \int_{0}^{1} \left(\frac{x}{2} - x^2 \right) - \left(\frac{x^3}{2} - x^3 \right) \, dx
\]
\[
= \int_{0}^{1} \frac{x^3}{2} - x^2 + \frac{x}{2} \, dx = \frac{x^4}{8} - \frac{x^3}{3} + \frac{x^2}{4} \bigg|_{0}^{1} = \frac{1}{8} - \frac{1}{3} + \frac{1}{4} = \frac{1}{24}
\]

If one untgrates between 0 and 1 for \(y\) the resulting integral is equal to \(-1/12\) which is a sign that something is wrong, since the volume must be non-negative.

We can see that \(y \geq x\) by graphing the region:
Problem 4: Use cylindrical coordinates to find the center of mass (assuming uniform density) of the solid bounded by the paraboloids

\[z = x^2 + y^2 \quad \text{and} \quad z = 3 - 2x^2 - 2y^2. \]

Solution: We will assume uniform density \(\delta = 1 \).

These equalities can be rewritten as \(z = r^2 \) and \(z = 3 - 2r^2 \) respectively, giving us the graph of the constraints and a cross section:

Notice that the region is rotationally symmetric, so its center of mass will be on the \(z \)-axis. It suffices then to only calculate the \(z \)-coordinate of the center of mass, which is given by the formula:

\[
\frac{M_z}{M} = \frac{\iiint_R z \, dV}{\iiint_R \, dV}
\]

\[
M_z = \int_0^{2\pi} \int_0^1 \int_{r^2}^{3-2r^2} rz \, dz \, dr \, d\theta = \int_0^{2\pi} \int_0^1 \frac{r}{2} \left(z^{3-2r^2} \right) \, dr \, d\theta
\]

\[
= \int_0^{2\pi} \frac{1}{2} \left[\frac{9}{2} r^2 - 3r^4 + \frac{1}{2} r^6 \right]_0^1 \, d\theta = \int_0^{2\pi} \frac{9}{4} - \frac{3}{2} + \frac{1}{4} \, d\theta = 2\pi \cdot 1 = 2\pi
\]

\[
M = \int_0^{2\pi} \int_0^1 \int_{r^2}^{3-2r^2} \, dr \, dz \, d\theta = \int_0^{2\pi} \int_0^1 (3 - 2r^2 - r^2) \, dr \, d\theta
\]

\[
= \int_0^{2\pi} \int_0^1 3r - 3r^3 \, dr \, d\theta = \int_0^{2\pi} \frac{3}{2} \left[\frac{1}{2} \right] - \frac{3}{4} \left[\frac{1}{4} \right] \, d\theta = 2\pi \cdot \frac{3}{4}
\]

So,

\[
\frac{M_z}{M} = \frac{2\pi}{2\pi \cdot \frac{3}{4}} = \frac{4}{3}
\]
Problem 5: Find the volume of the part of the ball \(x^2 + y^2 + z^2 \leq 4 \) which lies in the first octant and satisfies the inequality \(z^2 \leq x^2 + y^2 \).

Solution: Here is a picture of the region

We can express the region in spherical coordinates:

\[
0 \leq \rho \leq 2 \quad 0 \leq \theta \leq \frac{\pi}{2} \quad \text{and} \quad \frac{\pi}{4} \leq \phi \leq \frac{\pi}{2},
\]

so we can express the volume of the region as:

\[
\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta = \frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \sin(\phi) \, d\phi \cdot \int_{0}^{2} \rho^2 \, d\rho
\]

\[
= \frac{\pi}{2} \left(-\cos(\phi) \right) \bigg|_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{\rho^3}{3} \right) \bigg|_{0}^{2} = \frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{8}{\sqrt{2}} \cdot \frac{2\sqrt{2}\pi}{3} = \frac{2\sqrt{2}\pi}{3}
\]

Problem 6: Let \(D \) denote the cone bounded by the plane \(z = -1 \) and the conic surface \(z^2 = x^2 + y^2 \). Set up, but DO NOT evaluate, iterated integrals which evaluate \(\iiint_{D} f \, dV \)

- in Cartesian coordinates in the orders \(dx \, dy \, dz \) and \(dz \, dy \, dx \);
- in cylindrical coordinates in the orders \(d\theta \, dr \, dz \) and \(dz \, dr \, d\theta \);
- Evaluate ONLY ONE of the iterated integrals above when \(f \) is the function \(f(x, y, z) = (x^2 + y^2)^{-\frac{1}{2}} \).

Hint: In part c) pick the integral which seems to be the easiest to compute. If you have done everything correctly you will not need any trigonometric substitutions nor integration by parts.

Solution: The constraints define a region in the lower half of the double-cone:
a)
\[\int_{-1}^{0} \int_{z}^{\sqrt{z^2-y^2}} f \, dx \, dy \, dz \]
\[\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-1}^{1} f \, dz \, dy \, dx \]

b)
\[\int_{-1}^{0} \int_{0}^{2\pi} fr \, d\theta \, dr \, dz \]
\[\int_{0}^{2\pi} \int_{0}^{1} \int_{-r}^{r} fr \, dz \, dr \, d\theta \]

c) We will do the last integral. Note that \(f = \frac{1}{r} \).
\[\int_{0}^{2\pi} \int_{0}^{1} \int_{-r}^{r} \frac{1}{r} r \, dz \, dr \, d\theta = 2\pi \int_{0}^{1} (1 - r) \, dr = 2\pi \left(r - \frac{r^2}{2} \right) \bigg|_{0}^{1} = \pi. \]

Problem 7: Evaluate the integral \(\iint_{D} xy \, dA \), where \(D \) is the domain bounded by the curves
\[xy = 1 \quad y = x^2 \quad xy = 27 \quad y = 8x^2. \]

Hint: Find a change of variables which will simplify the domain \(D \).

Solution: Here is a picture of the domain bounded by these curves:
As we can tell by looking at the graph of this region, it would require 3 separate integrals to cover the region, so let us apply the following change of variables: $u = xy, v = yx^{-2}$. Now our region is the nice rectangle: $1 \leq u \leq 27$ and $1 \leq v \leq 8$. Let us calculate the Jacobian of this transformation:

$$\left| \frac{\partial (x, y)}{\partial (u, v)} \right|^{-1} = \left| \det \left(\begin{array}{cc} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{array} \right) \right|^{-1} = \left| \det \left(\begin{array}{cc} y & x \\ -2yx^{-3} & x^{-2} \end{array} \right) \right|^{-1}$$

$$= |3yx^{-2}|^{-1} = \frac{x^2}{3y} = \frac{1}{3v}$$

Alternatively we can express x and y in terms of u and v, i.e., $x = (u/v)^{1/3}$ and $y = (u^2v)^{1/3}$ and then compute the Jacobian directly.

After changing the variables the integral becomes

$$\int_1^{27} \int_1^{8} \frac{1}{3}uv^{-1} \, dv \, du = \frac{1}{3} \int_1^{27} u \, du \cdot \int_1^{8} v^{-1} \, dv$$

$$= \frac{1}{3} \left[\frac{u^2}{2} \right]_1^{27} \quad \left[\ln(v) \right]_1^8 = \frac{1}{3} \left[\frac{127^2}{2} - 1 \right] \left(\ln(8) - 0 \right) = 364 \ln(2)$$