(1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x|y|}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f is not differentiable at $(0,0)$.
(2) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that $|f(x)| \leq|x|^{2}$. Show that f is differentiable at 0 .

