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Solutions to assignment 1

Problem 8.1.5: Show that f ′ = λf for a real constant λ has only ceλx as solutions.

Solution. Multiplying the relation with e−λx we get f ′(x)e−λx−λf(x)e−λx = (f(x)e−λx)′ =
0. Thus f(x)e−λx = c, for some real constant c, and so f(x) = ceλx. ¤

Problem 8.1.7: For which values of a is the improper integral

∫ ∞

2

1

x| log x|a dx

finite?

Solution. We make the change of variable y = log x and the integral becomes:

∫ ∞

log 2

y−ady = lim
y→∞

y1−a

1− a
− (log 2)1−a

1− a
, if a 6= 1.

If a = 1, then the integral is lim
y→∞

log y − log(log 2) = ∞. Evaluating the limit above we get

that the integral is finite iff a > 1.
¤

Problem 8.1.11: Show that there is a C∞ function on (a, b) having prescribed derivatives
of all orders on any sequence of distinct points x1, x2, . . . with no limit point in (a, b).

Solution. Since the sequence (xn)n≥1 does not have a limit point in (a, b), for every i ≥ 1
there exists a neighborhood Ui = (xi − εi, xi + εi) of xi, for some small enough εi > 0, such
that xj /∈ Ui for all j 6= i. Otherwise, we could find infinitely many x′js arbitrarily close to
xi, and then xi would be a limit point; contradiction.

Using Theorem 8.1.7 (Borel), there is a C∞ function fi vanishing outside Ui and having
prescribed derivatives of all orders at xi. Let then f : (a, b) 7→ R, f(x) = fi(x) for x ∈ Ui,
for all i ≥ 1, and f(x) = 0 otherwise. This is well defined since Ui are all disjoint with
∞⋃
i=1

Ui ⊂ (a, b), and f (k)(xi) = f
(k)
i (xi), for all i ≥ 1 and k ≥ 0. ¤

Problem 8.2.4: Verify the identity sin2 θ + cos2 θ = 1 by rearranging the power series
expansions.

Solution. Recall that sin θ =
∞∑

k=0

(−1)k θ2k+1

(2k+1)!
and cos θ =

∞∑
k=0

(−1)k θ2k

(2k)!
. Then sin2 θ =

∞∑
k=0

∑
i+j=k

(−1)i+j θ2(i+j+1)

(2i+1)!(2j+1)!
=

∞∑
k=0

k∑
i=0

(−1)k θ2(k+1)

(2i+1)!(2k−2i+1)!
=

∞∑
k=0

(−1)k θ2k+2

(2k+2)!

k∑
i=0

(
2k + 2
2i + 1

)
.
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From the binomial theorem we have that
n∑

i=0

(
n

2i + 1

)
=

n∑
i=0

(
n
2i

)
= 2n−1, for all

n ≥ 1. Thus sin2 θ =
∞∑

k=0

(−1)k 22k+1θ2k+2

(2k+2)!
.

In a similar way, cos2 θ =
∞∑

k=0

∑
i+j=k

(−1)i+j θ2(i+j)

(2i)!(2j)!
=

∞∑
k=0

k∑
i=0

(−1)k θ2k

(2i)!(2k−2i)!
=

=
∞∑

k=0

(−1)k θ2k

(2k)!

k∑
i=0

(
2k
2i

)
= 1 +

∞∑
k=1

(−1)k 22k−1θ2k

(2k)!
= 1 −

∞∑
k=0

(−1)k 22k+1θ2k+2

(2k+2)!
. From this, it

follows that cos2 θ = 1− sin2 θ. ¤

Problem 8.2.7: Let f(z) =
∞∑

n=0

anz
n be convergent in |z| < R, and suppose the coefficients

an are all real. Show that f(z) = f(z).

Solution. Recall that zn = zn and z1 + z2 = z1 + z2 for any complex numbers z, z1, z2.

Note that |z| = |z| so f(z) is convergent in |z| < R iff so is f(z). We have f(z) =
∞∑

n=0

anz
n =

∞∑
n=0

anzn =
∞∑

n=0

anzn =
∞∑

n=0

anzn = f(z). The middle equality follows from the fact that all an

are real, so that an = an. ¤

Problem 8.2.11: Show exp(z) assumes every complex value except zero and that exp(z1) =
exp(z2) if and only if z1 − z2 = 2πki for some integer k.

Solution. Let z ∈ C, z 6= 0. Then, in polar coordinates z = r(cos θ + i sin θ) = reiθ, for
some real r = |z| > 0 and θ ∈ [0, 2π). Since r > 0 we can write r = elog r and so z = elog r+iθ.
This shows that ez assumes every nonzero complex value.

Let z1 = x1 + iy1 and z1 = x2 + iy2, where x1, x2, y1, y2 ∈ R, such that ez1 = ez2 . Then
ez1 = ex1(cos(y1) + i sin(y1)) and ez2 = ex2(cos(y2) + i sin(y2)), and also |ez1| = ex1 = |ez2| =
ex2 ⇒ x1 = x2. Thus cos(y1) + i sin(y1) = cos(y2) + i sin(y2) ⇒ cos(y1) = cos(y2), so there
exists an integer k such that y1 = y2 + 2πk. It follows that z1 − z2 = 2πki, as claimed. ¤
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