Mathematics 414, Spring 2008

Solutions to assignment 1

Problem 8.1.5: Show that $f^{\prime}=\lambda f$ for a real constant λ has only $c e^{\lambda x}$ as solutions.
Solution. Multiplying the relation with $e^{-\lambda x}$ we get $f^{\prime}(x) e^{-\lambda x}-\lambda f(x) e^{-\lambda x}=\left(f(x) e^{-\lambda x}\right)^{\prime}=$ 0 . Thus $f(x) e^{-\lambda x}=c$, for some real constant c, and so $f(x)=c e^{\lambda x}$.

Problem 8.1.7: For which values of a is the improper integral

$$
\int_{2}^{\infty} \frac{1}{x|\log x|^{a}} d x
$$

finite?
Solution. We make the change of variable $y=\log x$ and the integral becomes:

$$
\int_{\log 2}^{\infty} y^{-a} d y=\lim _{y \rightarrow \infty} \frac{y^{1-a}}{1-a}-\frac{(\log 2)^{1-a}}{1-a}, \text { if } a \neq 1
$$

If $a=1$, then the integral is $\lim _{y \rightarrow \infty} \log y-\log (\log 2)=\infty$. Evaluating the limit above we get that the integral is finite iff $a>1$.

Problem 8.1.11: Show that there is a \mathcal{C}^{∞} function on (a, b) having prescribed derivatives of all orders on any sequence of distinct points x_{1}, x_{2}, \ldots with no limit point in (a, b).

Solution. Since the sequence $\left(x_{n}\right)_{n \geq 1}$ does not have a limit point in (a, b), for every $i \geq 1$ there exists a neighborhood $U_{i}=\left(x_{i}-\epsilon_{i}, x_{i}+\epsilon_{i}\right)$ of x_{i}, for some small enough $\epsilon_{i}>0$, such that $x_{j} \notin U_{i}$ for all $j \neq i$. Otherwise, we could find infinitely many $x_{j}^{\prime} s$ arbitrarily close to x_{i}, and then x_{i} would be a limit point; contradiction.

Using Theorem 8.1.7 (Borel), there is a \mathcal{C}^{∞} function f_{i} vanishing outside U_{i} and having prescribed derivatives of all orders at x_{i}. Let then $f:(a, b) \mapsto \mathbb{R}, f(x)=f_{i}(x)$ for $x \in U_{i}$, for all $i \geq 1$, and $f(x)=0$ otherwise. This is well defined since U_{i} are all disjoint with $\bigcup_{i=1}^{\infty} U_{i} \subset(a, b)$, and $f^{(k)}\left(x_{i}\right)=f_{i}^{(k)}\left(x_{i}\right)$, for all $i \geq 1$ and $k \geq 0$.
Problem 8.2.4: Verify the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ by rearranging the power series expansions.

Solution. Recall that $\sin \theta=\sum_{k=0}^{\infty}(-1)^{k} \frac{\theta^{2 k+1}}{(2 k+1)!}$ and $\cos \theta=\sum_{k=0}^{\infty}(-1)^{k} \frac{\theta^{2 k}}{(2 k)!}$. Then $\sin ^{2} \theta=$ $\sum_{k=0}^{\infty} \sum_{i+j=k}(-1)^{i+j} \frac{\theta^{2(i+j+1)}}{(2 i+1)!(2 j+1)!}=\sum_{k=0}^{\infty} \sum_{i=0}^{k}(-1)^{k} \frac{\theta^{2(k+1)}}{(2 i+1)!(2 k-2 i+1)!}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\theta^{2 k+2}}{(2 k+2)!} \sum_{i=0}^{k}\binom{2 k+2}{2 i+1}$.

From the binomial theorem we have that $\sum_{i=0}^{n}\binom{n}{2 i+1}=\sum_{i=0}^{n}\binom{n}{2 i}=2^{n-1}$, for all $n \geq 1$. Thus $\sin ^{2} \theta=\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1} \theta^{2 k+2}}{(2 k+2)!}$.

In a similar way, $\cos ^{2} \theta=\sum_{k=0}^{\infty} \sum_{i+j=k}(-1)^{i+j} \frac{\theta^{2(i+j)}}{(2 i)!(2 j)!}=\sum_{k=0}^{\infty} \sum_{i=0}^{k}(-1)^{k} \frac{\theta^{2 k}}{(2 i)!(2 k-2 i)!}=$ $=\sum_{k=0}^{\infty}(-1)^{k} \frac{\theta^{2 k}}{(2 k)!} \sum_{i=0}^{k}\binom{2 k}{2 i}=1+\sum_{k=1}^{\infty}(-1)^{k} \frac{2^{2 k-1} \theta^{2 k}}{(2 k)!}=1-\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k+1} \theta^{2 k+2}}{(2 k+2)!}$. From this, it follows that $\cos ^{2} \theta=1-\sin ^{2} \theta$.

Problem 8.2.7: Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be convergent in $|z|<R$, and suppose the coefficients a_{n} are all real. Show that $f(\bar{z})=\overline{f(z)}$.
Solution. Recall that $\bar{z}^{n}=\overline{z^{n}}$ and $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$ for any complex numbers z, z_{1}, z_{2}. Note that $|z|=|\bar{z}|$ so $f(z)$ is convergent in $|z|<R$ iff so is $f(\bar{z})$. We have $f(\bar{z})=\sum_{n=0}^{\infty} a_{n} \bar{z}^{n}=$ $\sum_{n=0}^{\infty} a_{n} \overline{z^{n}}=\sum_{n=0}^{\infty} \overline{a_{n} z^{n}}=\overline{\sum_{n=0}^{\infty} a_{n} z^{n}}=\overline{f(z)}$. The middle equality follows from the fact that all a_{n} are real, so that $a_{n}=\overline{a_{n}}$.

Problem 8.2.11: Show $\exp (z)$ assumes every complex value except zero and that $\exp \left(z_{1}\right)=$ $\exp \left(z_{2}\right)$ if and only if $z_{1}-z_{2}=2 \pi k i$ for some integer k.
Solution. Let $z \in \mathbb{C}, z \neq 0$. Then, in polar coordinates $z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$, for some real $r=|z|>0$ and $\theta \in[0,2 \pi)$. Since $r>0$ we can write $r=e^{\log r}$ and so $z=e^{\log r+i \theta}$. This shows that e^{z} assumes every nonzero complex value.

Let $z_{1}=x_{1}+i y_{1}$ and $z_{1}=x_{2}+i y_{2}$, where $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$, such that $e^{z_{1}}=e^{z_{2}}$. Then $e^{z_{1}}=e^{x_{1}}\left(\cos \left(y_{1}\right)+i \sin \left(y_{1}\right)\right)$ and $e^{z_{2}}=e^{x_{2}}\left(\cos \left(y_{2}\right)+i \sin \left(y_{2}\right)\right)$, and also $\left|e^{z_{1}}\right|=e^{x_{1}}=\left|e^{z_{2}}\right|=$ $e^{x_{2}} \Rightarrow x_{1}=x_{2}$. Thus $\cos \left(y_{1}\right)+i \sin \left(y_{1}\right)=\cos \left(y_{2}\right)+i \sin \left(y_{2}\right) \Rightarrow \cos \left(y_{1}\right)=\cos \left(y_{2}\right)$, so there exists an integer k such that $y_{1}=y_{2}+2 \pi k$. It follows that $z_{1}-z_{2}=2 \pi k i$, as claimed.

