
Mathematics 414, Spring 2008

Solutions to assignment 2

Problem 9.1.4: Prove that ||x||sup = lim
p→∞

||x||p on Rn.

Solution. Let x ∈ Rn, x = (x1, x2, . . . , xn). Recall that ||x||sup = max
1≤j≤n

(|xj|) and that

||x||p = (
n∑

j=1

|xj|p)
1
p . Then ||x||p ≥ (|xj|p)

1
p = |xj| for all 1 ≤ j ≤ n. Taking the sup over all

such j we have that ||x||p ≥ ||x||sup and passing to the limit lim
p→∞

||x||p ≥ ||x||sup. To see the

reverse inequality note that |xj| ≤ ||x||sup for all j = 1, n. Hence (
n∑

j=1

|xj|p)
1
p ≤ n

1
p ||x||sup ⇒

||x||p ≤ n
1
p ||x||sup. Letting p →∞ we get lim

p→∞
||x||p ≤ ||x||sup and in fact equality. ¤

Problem 9.1.9: Prove that if ||x|| is any norm on Rn, then there exists a positive constant
M such that ||x|| ≤ M |x| for all x in Rn where |x| is the Euclidean norm. (Hint: M =

(
n∑

j=1

||ej||2)1/2 will do.)

Solution. Let x, y ∈ Rn, x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The Cauchy-

Schwarz inequality can be rewritten as
n∑

j=1

xjyj ≤ (
n∑

j=1

x2
j)

1
2 (

n∑
j=1

y2
j )

1
2 . Let {e1, e2, . . . , en}

be the standard basis of Rn. Then x =
n∑

j=1

xjej and using the norm properties we get

||x|| ≤
n∑

j=1

|xj|||ej|| ≤ (
n∑

j=1

|xj|2) 1
2 (

n∑
j=1

||ej||2) 1
2 = |x|M , where |x| is the Euclidean norm of x

and M = (
n∑

j=1

||ej||2)1/2 is a positive constant.

¤

Problem 9.1.10: Prove that the norm ||x||1 on Rn for n > 1 is not associated with an
inner product. (Hint: violate the parallelogram law.) Do the same for ||x||sup.

Solution. Let x ∈ Rn, x = (x1, x2, . . . , xn). Recall that ||x||1 =
n∑

i=1

|xi|. If this norm is

associated with an inner product, then it satisfies the parallelogram law

||x + y||21 + ||x− y||21 = 2(||x||21 + ||y||21), ∀x, y ∈ Rn.

Let x = (1, 0, . . . , 0) and y = (0, 2, 0, . . . , 0). Then ||x||1 = 1, ||y||1 = 2, ||x+ y||1 = 3 and
||x− y||1 = 3. In this case, the parallelogram law becomes 9 + 9 = 2(1 + 4); contradiction.

Similarly, ||x||sup = 1, ||y||sup = 2, ||x + y||sup = 2 and ||x − y||sup = 2. In this case, the
parallelogram law becomes 4 + 4 = 2(1 + 4); contradiction. Thus in both cases the norm is
not associated with an inner product. ¤
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Problem 9.1.15: Verify that d(x, y) = |x−y|
1+|x−y| defines a metric on Rn, but this metric is

not induced by any norm. (Hint: homogeneity fails.)

Solution. Note that d(x, y) = d(y, x), d(x, y) ≥ 0 for all x, y ∈ Rn, with d(x, y) = 0 iff
x = y. To show that d is a metric on Rn, it is sufficient to prove the triangle inequality. Let
x, y, z ∈ Rn and set η(x, y) = |x − y|. Clearly η is a metric on Rn and d(x, y) = η(x,y)

1+η(x,y)
.

Then

d(x, z) ≤ d(x, y) + d(y, z) ⇔ η(x, z)

1 + η(x, z)
≤ η(x, y)

1 + η(x, y)
+

η(y, z)

1 + η(y, z)
.

Set for simplicity a = η(x, z), b = η(x, y) and c = η(y, z). Then a, b, c ≥ 0 and a ≤ b + c,
since η is a metric. The inequality above reduces to

b

1 + b
+

c

1 + c
≥ a

1 + a
⇔ b(1 + a)(1 + c) + c(1 + a)(1 + b)− a(1 + b)(1 + c) ≥ 0.

Rearranging the terms, this is equivalent to

(b + c− a) + 2bc + abc ≥ 0,

which is always true as a, b, c ≥ 0 and b + c ≥ a. This shows that d is indeed a metric.
Suppose d is induced by the norm ||·||. Then d(x, y) = ||x−y|| and d(αx, αy) = |α|d(x, y),

for all real α. Let for simplicity α = 2, x = 1, and y = 0 ⇒ d(2, 0) = 2d(1, 0) ⇔ 2
3

= 21
2

= 1;
contradiction. Hence d is not induced by any norm. ¤

Problem 9.2.3: Prove that the metric d(f, g) =
∫ b

a
|f(x) − g(x)|dx on C([a, b]) is not

complete. (Hint: consider the example of a sequence of continuous functions converging
pointwise to a discontinuous function.)

Solution. Let a < b and define fn : [a, b] 7→ R

fn(x) =

{
n(x− a) , x ∈ [a, a + 1

n
)

1 , x ∈ [a + 1
n
, b].

(fn)n≥1 is a sequence of continuous functions that converges pointwise to the discontinuous
function

f(x) =

{
0 , x = a
1 , x ∈ (a, b].

We claim that (fn)n≥1 is Cauchy with respect to the given metric. Indeed, for m > n

d(fn, fm) = (m− n)

∫ a+ 1
m

a

(x− a)dx +

∫ a+ 1
n

a+ 1
m

(1− n(x− a))dx =
1

2n
− 1

2m
.

Since ( 1
2n

)n≥1 is Cauchy ⇒ (fn)n≥1 is Cauchy too. Suppose C([a, b]) is complete. Then
fn → f pointwise and f ∈ C([a, b]); contradiction, since f is discontinuous at x = 0. Hence
C([a, b]) is not complete in the given metric. ¤
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Problem 9.2.4: Prove that the space of bounded sequences with metric d({xn}, {yn}) =
supn |xn − yn| is complete, and the same is true on the subspace of sequences converging to
zero.

Solution. Let (ym)m≥1 be a Cauchy sequence of bounded sequences, i.e. ym = (x
(m)
n )n≥1

are bounded sequences for all m ≥ 1. Let ε > 0. By definition, there exists a positive integer
N such that ∀m, k ≥ N ,

d(ym, yk) = sup
n
|x(m)

n − x(k)
n | < ε.

For all n ≥ 1 this gives

|x(m)
n − x(k)

n | ≤ sup
n
|x(m)

n − x(k)
n | < ε, ∀m, k ≥ N.

Thus the sequence (x
(m)
n )m≥1 is Cauchy in R, hence convergent since R is complete. Let its

limit be zn. We obtain a new sequence (zn)n≥1 and we prove that this is the limit of (ym)m≥1.
Letting k →∞ in the equation above we get that for all n ≥ 1

|x(m)
n − zn| ≤ sup

n
|x(m)

n − zn| < ε, ∀m ≥ N.

Then for some m ≥ N

|zn| ≤ |x(m)
n − zn|+ |x(m)

n | ≤ sup
n
|x(m)

n − zn|+ sup
n
|x(m)

n | < ε + sup
n
|x(m)

n |, ∀n ≥ 1.

However, the sequence (x
(m)
n )n≥1 is bounded, i.e. supn |x(m)

n | < ∞, so (zn)n≥1 is bounded. To
see that z = (zn)n≥1 is the limit of (ym)m≥1 it is sufficient to note that

d(ym, z) = sup
n
|x(m)

n − zn| < ε, ∀m ≥ N.

Therefore (ym)m≥1 is convergent and so the space of all bounded sequences is complete in
the metric d. The same is true for the subspace of sequences converging to zero. We have
to modify the proof above for sequences (x

(m)
n )n≥1 converging to 0 as n →∞. It is sufficient

to prove that zn → 0 as n → 0.
Fix m > N . Since lim

n→∞
x

(m)
n = 0 then, using the same ε as before, there is N1 such that

|x(m)
n | < ε, ∀n ≥ N1.

We then have

|zn| ≤ |x(m)
n − zn|+ |x(m)

n | ≤ sup
n
|x(m)

n − zn|+ |x(m)
n | < 2ε, ∀n ≥ N1,

which shows that (zn)n≥1 converges to 0, and the conclusion follows. ¤

Problem 9.2.7: Prove that a metric space is compact if and only if it is bounded, complete,
and given any 1

m
there exists a finite subset x1, . . . , xn such that every point x in the space

is within 1
m

of one of them (d(x, xk) ≤ 1
m

for some k, 1 ≤ k ≤ n).
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Solution. Let M be a metric space. Suppose first that M is compact. Then any Cauchy
sequence (xn)n≥1 has a limit point in M . Since we are in a metric space, this limit point is
actually a limit (see Problem 9.2.5) ⇒ M is complete.

Let m ≥ 1. Note that B = {B(x, 1
m

) | x ∈ M} is an open covering of M , where B(x, 1
m

)
denotes the open ball of radius 1

m
centered at x, i.e. B(x, 1

m
) = {y ∈ M | d(x, y) < 1

m
}. By

the Heine-Borel Theorem, there is a finite subcovering of B that covers M , i.e. there exist

x1, x2, . . . , xk ∈ M such that M ⊂
k⋃

i=1

B(xi,
1
m

). This also shows that M is bounded.

Conversely, suppose M is complete and bounded and given any m ≥ 1 there exist

x1, x2, . . . , xk ∈ M such that M ⊂
k⋃

i=1

B(xi,
1
m

). Let (yn)n≥1 be a sequence in M . We

prove that it has a Cauchy subsequence.
Let m = 1. Then there are finitely many balls B(x

(1)
i , 1), x

(1)
i ∈ M , that cover M ⇒

wlog B(x
(1)
1 , 1) contains infinitely many terms of the sequence, i.e. there is a subsequence

(yn)n∈I1 of (yn)n≥1 contained in B(x
(1)
1 , 1). By I1 we mean a subset of N. For m = 2, we can

find finitely many balls B(x
(2)
i , 1

2
), x

(2)
i ∈ M , that cover M ∩ B(x

(1)
1 , 1) ⇒ wlog there is a

subsequence (yn)n∈I2 of (yn)n∈I1 contained in B(x
(2)
1 , 1

2
), where I2 ⊂ I1. In general, for m ≥ 2,

we can find finitely many balls B(x
(m)
i , 1

m
), x

(m)
i ∈ M , that cover M∩B(x

(m−1)
1 , 1

m−1
) ⇒ wlog

there is a subsequence (yn)n∈Im of (yn)n∈Im−1 contained in B(x
(m)
1 , 1

m
), where Im ⊂ Im−1.

Choose i1 ∈ I1 arbitrary and for m ≥ 2 choose im ∈ Im, with im−1 < im. This is possible
since all Im are infinite. Set zm = yim . Then this is a Cauchy subsequence of (yn)n≥1. To

verify it, let m > 1. Notice that zk ∈ B(x
(2m)
1 , 1

2m
) for all k ≥ 2m ⇒ d(zk, x

(2m)
1 ) < 1

2m
, for

all k ≥ 2m. Then d(zk, zp) ≤ d(zk, x
(2m)
1 ) + d(zp, x

(2m)
1 ) < 1

m
, for all k, p ≥ 2m and so (zn)n≥1

is Cauchy.
Since M is complete, (zn)n≥1 converges to a point in M . Therefore M is compact. ¤
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