Mathematics 414, Spring 2008

Solutions to assignment 3

Problem 9.3.7: Prove that if A is an open set in \mathbb{R}^{n}, then A is connected if and only if A is arcwise connected. (Hint: consider the set of points in A that can be joined to a given point x_{0} by a curve.)
Solution. Suppose first that $A \subset \mathbb{R}^{n}$ is connected. Following the hint, for all $x \in A$ define $C_{x}=\{z \in A \mid z$ can be joined to x by a curve contained in $A\}$. We claim that C_{x} is open. If $z \in \mathbb{C}_{x}$ then $z \in A$ and since A is open, there is $r>0$ sufficiently small such that the ball $B(z, r) \subset A$. But the ball $B(z, r)$ is arcwise connected and z can be joined to x by a curve $\Rightarrow B(z, r) \subset C_{x}$, which proves the claim.

If A is not arcwise connected, then it has two points x and y that cannot be joined by a curve contained in A. This means that C_{x} and C_{y} are disjoint. Otherwise, there is $z \in C_{x} \cap C_{y}$ which can be joined to x by a curve γ_{1}, and to y by a curve γ_{2}. Then following the curve γ_{1} in the opposite direction, i.e. from x to z, and then γ_{2} we get a curve γ from x to y; contradiction.

Let $C=\bigcup_{z \in A \backslash C_{x}} C_{z}$. It is open as it is a union of open subsets of A. It is nonempty since $C_{y} \subset C$. Therefore, we can write A as a union of two disjoint non-empty open sets, $A=C_{x} \cup C$; contradiction, since A is connected. It follows that A is arcwise connected.

The converse implication is proved in Theorem 9.3.5, in the book.
Problem 9.3.8: Give an example of a continuous mapping of a disconnected set onto a connected set.
Solution. Consider $f:(-1,0) \cup(0,1) \mapsto(0,1), f(x)=|x|$. It is onto since $f(x)=x$ for all $x \in(0,1)$. Note that $||x|-|y|| \leq|x-y|$, for all $x, y \in \mathbb{R}$. Hence for all converging sequences $x_{n} \in(-1,0) \cup(0,1)$ with $x_{n} \rightarrow x \Rightarrow\left|x_{n}\right| \rightarrow|x|$. This shows that f is continuous.

Problem 9.3.9: Give an example of a continuous mapping of a noncompact set onto a compact set.
Solution. Consider the continuous function $f:[0,2 \pi) \mapsto[-1,1], f(x)=\sin (x)$. Recall that $\sin :\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right] \mapsto[-1,1]$ is bijective, hence f is onto. The interval $[0,2 \pi)$ is not closed in \mathbb{R}, hence it is not compact. The interval $[-1,1]$ is both closed and bounded in \mathbb{R}, hence it is compact.

Problem 9.3.15: Give an example of a continuous mapping of $(0,1)$ onto $(0,1)$ with no fixed points.
Solution. Consider $f:(0,1) \mapsto(0,1), f(x)=x^{2}$. Clearly this map is continuous. It has has no fixed points, since otherwise $f(x)=x \Rightarrow x=0$ or $x=1$, which are not in $(0,1)$. It is onto since for all $y \in(0,1)$ there is $x=\sqrt{y} \in(0,1)$ such that $f(x)=y$.

