Mathematics 414, Spring 2008

Solutions to assignment 4

Problem 9.3.17: Let $T: \mathcal{C}([0,1]) \mapsto \mathcal{C}([0,1])$ be defined by $T f(x)=x+\int_{0}^{x} t f(t) d t$. Prove that T satisfies the hypothesis of the contractive mapping principle. Show that the fixed point is a solution to the differential equation $f^{\prime}(x)=x f(x)+1$.
Solution. Consider the metric on $\mathcal{C}([0,1])$ to be $d(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$. In order to prove that T is a contraction, we need to show that there is a constant $0<K<1$ such that $d(T f, T g) \leq K d(f, g)$, for all $f, g \in \mathcal{C}([0,1])$. We claim that $K=\frac{1}{2}$ suffices. Indeed,

$$
d(T f, T g)=\sup _{x \in[0,1]}\left|\int_{0}^{x} t(f(t)-g(t)) d t\right| \leq \sup _{x \in[0,1]} \int_{0}^{1} t|f(t)-g(t)| d t
$$

and since $|f(t)-g(t)| \leq \sup _{x \in[0,1]}|f(x)-g(x)|$ we get

$$
d(T f, T g) \leq \sup _{x \in[0,1]}|f(x)-g(x)| \sup _{x \in[0,1]} \int_{0}^{1} t d t \leq \frac{1}{2} \sup _{x \in[0,1]}|f(x)-g(x)|=\frac{1}{2} d(f, g) .
$$

If f is a fixed point of T then $T f=f$ and the equation becomes

$$
f(x)=x+\int_{0}^{x} t f(t) d t \Rightarrow f^{\prime}(x)=1+x f(x)
$$

as claimed.
Problem 10.1.1: If A is a $m \times n$ matrix prove that there exists a constant M such that $|A x| \leq M|x|$ for every x in \mathbb{R}^{n}.

Solution. Recall that the transformation $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}, T(x)=A x$ is a linear transformation. Let $x=\sum_{i=1}^{n} x_{i} e_{i}$ be the representation of x in the standard basis of R^{n}. Then $|A x|=\left|A\left(\sum_{i=1}^{n} x_{i} e_{i}\right)\right|=\left|\sum_{i=1}^{n} x_{i} A e_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|\left|A e_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|A e_{i}\right|\right)^{1 / 2}$. The last inequality follows from the Cauchy-Schwarz inequality. Setting $M=\left(\sum_{i=1}^{n}\left|A e_{i}\right|\right)^{1 / 2}$ we get that $|A x| \leq M|x|$ for every x in \mathbb{R}^{n}, hence the conclusion.

Problem 10.1.2: Prove that $f: D \mapsto R^{m}$ is differentiable at a point if and only if each of the coordinate functions $f_{k}: D \mapsto \mathbb{R}$ is differentiable at that point.
Solution. For the direct implication consider $\pi_{k}: \mathbb{R}^{m} \mapsto R, \pi_{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=x_{k}$, for all $1 \leq k \leq m$. One can easily check that these functions are differentiable at every point of \mathbb{R}^{m}. Let $f: D \mapsto \mathbb{R}^{m}$, $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$. Then $\pi_{k} \circ f=f_{k}$, for all $1 \leq k \leq m$. By
the chain rule, if f is differentiable at $a \in D$ then $\pi_{k} \circ f$ is differentiable at a, since π_{k} is differentiable at $f(a)$.

Conversely, if $f_{k}: D \subset \mathbb{R}^{n} \mapsto \mathbb{R}$ is differentiable at a then

$$
\lim _{h \rightarrow 0} \frac{\left|f_{k}(a+h)-f_{k}(a)-D f_{k}(a) h\right|}{|h|}=0
$$

where $D f_{k}(a)$ is an $1 \times n$ matrix. Let $T(a)=\left(D f_{1}(a), D f_{2}(a), \ldots, D f_{m}(a)\right)^{t}$ be an $m \times n$ matrix. Squaring the equations above and summing over all k gives

$$
\lim _{h \rightarrow 0} \frac{\sum_{k=1}^{m}\left|f_{k}(a+h)-f_{k}(a)-D f_{k}(a) h\right|^{2}}{|h|^{2}}=\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-T(a) h|^{2}}{|h|^{2}}=0,
$$

and so

$$
\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-T(a) h|}{|h|}=0 .
$$

This in fact shows that f is differentiable at $a \in D$.
Problem 10.1.4: Let $f: D \mapsto \mathbb{R}^{m}$ and $g: D \mapsto \mathbb{R}^{m}$ be differentiable at y. Let $f \cdot g: D \mapsto \mathbb{R}$ be defined by the dot product in R^{m}. Prove that $f \cdot g$ is differentiable at y, and find a formula for the differential $d(f \cdot g)(y)$.
Solution. Let $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$, and $g=\left(g_{1}, g_{2}, \ldots, g_{m}\right)$, where $f_{k}, g_{k}: D \mapsto \mathbb{R}$, for all $1 \leq k \leq m$. Then $f \cdot g=\sum_{k=1}^{m} f_{k} g_{k}$. Since f and g are differentiable at y, it follows from the previous problem that f_{k} and g_{k} are all differentiable at y. We claim that $f_{k} g_{k}$ is also differentiable at y with $D f_{k} g_{k}(y)=g_{k}(y) D f_{k}(y)+f_{k}(y) D g_{k}(y)$. Notice that

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{f_{k}(y+h) g_{k}(y+h)-f_{k}(y) g_{k}(y)-g_{k}(y) D f_{k}(y) h-f_{k}(y) D g_{k}(y) h}{|h|}= \\
=g_{k}(y) \lim _{h \rightarrow 0} \frac{f_{k}(y+h)-f_{k}(y)-D f_{k}(y) h}{|h|}+f_{k}(y) \lim _{h \rightarrow 0} \frac{g_{k}(y+h)-g_{k}(y)-D g_{k}(y) h}{|h|}+ \\
+\lim _{h \rightarrow 0} \frac{\left(f_{k}(y+h)-f_{k}(y)\right)\left(g_{k}(y+h)-g_{k}(y)\right)}{|h|}=0 .
\end{gathered}
$$

The last limit reduces to $\lim _{h \rightarrow 0} D f_{k}(y)\left(g_{k}(y+h)-g_{k}(y)\right)=0$, since g_{k} is continuous as well. Hence $f_{k} g_{k}$ is differentiable at y and so $\sum_{k=1}^{m} f_{k} g_{k}=f \cdot g$ is differentiable at y, with

$$
D(f \cdot g)(y)=\sum_{k=1}^{m} D f_{k} g_{k}(y)=\sum_{k=1}^{m} g_{k}(y) D f_{k}(y)+f_{k}(y) D g_{k}(y) .
$$

Extra Problem 1: Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x|y|}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f is not differentiable at $(0,0)$.
Solution. Suppose f is differentiable at $0=(0,0)$ and let $T=D f(0)$. Since f is differentiable, the partial derivatives $\frac{\partial f}{\partial x}(0)$ and $\frac{\partial f}{\partial y}(0)$ exist and we have $T=\left(\frac{\partial f}{\partial x}(0), \frac{\partial f}{\partial y}(0)\right)$. But

$$
\frac{\partial f}{\partial x}(0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=0
$$

and similarly $\frac{\partial f}{\partial y}(0)=0$. Thus $T=0$. Then, by definition, f is differentiable at 0 if the limit

$$
\lim _{(h, k) \rightarrow 0} \frac{|f(h, k)|}{\sqrt{h^{2}+k^{2}}}=0 \Leftrightarrow \lim _{(h, k) \rightarrow 0} \frac{|h k|}{h^{2}+k^{2}}=0 .
$$

This is however not true as

$$
\lim _{(h, h) \rightarrow 0} \frac{\left|h^{2}\right|}{2 h^{2}}=\frac{1}{2} \neq 0 .
$$

Therefore f is not differentiable at 0 .
Extra Problem 2: Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ be a function such that $|f(x)| \leq|x|^{2}$. Show that f is differentiable at 0 .

Solution. Notice first that $|f(0)| \leq 0 \Rightarrow f(0)=0$. Then

$$
\lim _{h \rightarrow 0} \frac{|f(h)-f(0)|}{|h|} \leq \lim _{h \rightarrow 0} \frac{\left|h^{2}\right|}{|h|}=0 .
$$

Thus f is differentiable at 0 with differential $D f(0)=0$.

