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Solutions to assignment 6

Problem 11.1.3: Verify that x(t) is a solution of the mth order o.d.e. x(m)(t) =
G(t, x(t), . . . , x(m−1)(t)) if and only if (x0, x1, . . . , xm−1) = (x, x′, . . . , x(m−1)) is a solution
of the first-order system

x′m−1(t) = G(t, x0(t), . . . , xm−1(t)),

x′k(t) = xk+1(t) k = 0, 1, . . . , m− 2.

Also verify that x(t) satisfies the Cauchy initial conditions x(k)(t0) = a(k) for k = 0, . . . ,m−1
if and only if (x0, . . . , xm−1) satisfies the Cauchy initial conditions (x0(t0), . . . , xm−1(t0)) =
(a(0), . . . , a(m−1)).

Solution. If x(t) is a solution of the mth order o.d.e. x(m)(t) = G(t, x(t), . . . , x(m−1)(t)),
then set xk(t) = x(k)(t) for k = 0, 1, . . . , m− 1. This gives directly

x′m−1(t) = x(m)(t) = G(t, x(t), . . . , x(m−1)(t)) = G(t, x0(t), . . . , xm−1(t)),

and x′k(t) = x(k+1)(t) = xk+1(t), for all k = 0, 1, . . . , m − 2. Hence (x0, x1, . . . , xm−1) =
(x, x′, . . . , x(m−1)) is a solution of the first-order system.

Conversely, if (x0, x1, . . . , xm−1) is a solution of the first-order system, then set x0(t) =
x(t). Since x′k(t) = xk+1(t) for k = 0, 1, . . . , m−2 we get (x0, x1, . . . , xm−1) = (x, x′, . . . , x(m−1)),
in particular x(m)(t) = x′m−1(t) = G(t, x(t), . . . , x(m−1)(t)). Thus x(t) is a solution of the mth
order o.d.e.

If x(k)(t0) = a(k) for k = 0, . . . , m − 1 then (x0(t0), . . . , xm−1(t0)) = (a(0), . . . , a(m−1)), by
simple substitutions. The converse is also immediate. ¤

Problem 11.1.4: Show that all solutions of x′′(t) = −x(t) are of the form x(t) = A cos(t)+
B sin(t). Using this, decide for which values of t1 and t2 the o.d.e. x′′(t) = −x(t) with
boundary conditions x(t1) = a1, x(t2) = a2 has a unique solution on [t1, t2], for any choice of
a1, a2.

Solution. Let m = 2 and G(t, x) = −x. Then by the previous problem, x(t) is a solution
of x′′(t) = −x(t) if and only if (x0(t), x1(t)) = (x(t), x′(t)) is a solution to the first-order
linear system (

x0(t)
x1(t)

)′
=

(
0 1

−1 0

)(
x0(t)
x1(t)

)
.

Let I be some interval and t0 ∈ I. By specifying x0(t0) and x1(t0), then by Corollary 11.1.1
this solution to the linear system is unique on I. Thus x(t) is unique if we specify x(t0) and
x′(t0). It is easy to check that x(t) = A cos(t) + B sin(t) is a solution to x′′(t) = −x(t). We
determine A and B uniquely from the values of x(t0) and x′(t0). Therefore all solutions to
x′′(t) = −x(t) are of the form x(t) = A cos(t) + B sin(t), for some constants A and B.
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Consider now x′′(t) = −x(t) on [t1, t2], with boundary conditions x(t1) = a1, x(t2) = a2.
The solution is x(t) = A cos(t) + B sin(t), where A and B verify the system

A cos t1 + B sin t1 = a1

A cos t2 + B sin t2 = a2.

This system has a unique solution (A,B) if the determinant of the associated matrix is
nonzero, i.e. cos t1 sin t2 − cos t2 sin t1 = sin(t1 − t2) 6= 0. Notice that sin(t1 − t2) 6= 0 if and
only if (t1 − t2) is not a multiple of π. In conclusion, the equation x′′(t) = −x(t) on [t1, t2],
with boundary conditions x(t1) = a1, x(t2) = a2 has a unique solution if and only if (t1− t2)
is not a multiple of π. ¤

Problem 12.1.2: Show that it is impossible to have sin x =
∞∑

k=2

ak sin kx on 0 ≤ x ≤ π with

the series converging uniformly, for any choice of the ak, even though there are an infinite
number of parameters in the problem. (Hint: multiply by sin x and integrate.)

Solution. Suppose that the sum
∞∑

k=2

ak sin kx converges uniformly to sin x on [0, π]. Then

∞∑
k=2

ak sin x sin kx converges uniformly to sin2 x on [0, π] and we can write

∫ π

0

sin2 x =

∫ π

0

∞∑

k=2

ak sin x sin kx =
∞∑

k=2

ak

∫ π

0

sin x sin kx.

Since k ≥ 2,
∫ π

0
sin x sin kx = cos x sin kx−k cos kx sin x

k2−1

∣∣π
0

= 0, and this does not depend on ak. We
then get ∫ π

0

sin2 x =
x− sin x cos x

2

∣∣π
0

=
π

2
= 0;

contradiction. Hence it is impossible to have sin x =
∞∑

k=2

ak sin kx on [0, π], with the series

converging uniformly. ¤
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