Mathematics 414, Spring 2008

Solutions to assignment 6

Problem 11.1.3: Verify that $x(t)$ is a solution of the m th order o.d.e. $x^{(m)}(t)=$ $G\left(t, x(t), \ldots, x^{(m-1)}(t)\right)$ if and only if $\left(x_{0}, x_{1}, \ldots, x_{m-1}\right)=\left(x, x^{\prime}, \ldots, x^{(m-1)}\right)$ is a solution of the first-order system

$$
\begin{aligned}
x_{m-1}^{\prime}(t) & =G\left(t, x_{0}(t), \ldots, x_{m-1}(t)\right), \\
x_{k}^{\prime}(t) & =x_{k+1}(t) k=0,1, \ldots, m-2 .
\end{aligned}
$$

Also verify that $x(t)$ satisfies the Cauchy initial conditions $x^{(k)}\left(t_{0}\right)=a^{(k)}$ for $k=0, \ldots, m-1$ if and only if $\left(x_{0}, \ldots, x_{m-1}\right)$ satisfies the Cauchy initial conditions $\left(x_{0}\left(t_{0}\right), \ldots, x_{m-1}\left(t_{0}\right)\right)=$ $\left(a^{(0)}, \ldots, a^{(m-1)}\right)$.
Solution. If $x(t)$ is a solution of the m th order o.d.e. $x^{(m)}(t)=G\left(t, x(t), \ldots, x^{(m-1)}(t)\right)$, then set $x_{k}(t)=x^{(k)}(t)$ for $k=0,1, \ldots, m-1$. This gives directly

$$
x_{m-1}^{\prime}(t)=x^{(m)}(t)=G\left(t, x(t), \ldots, x^{(m-1)}(t)\right)=G\left(t, x_{0}(t), \ldots, x_{m-1}(t)\right)
$$

and $x_{k}^{\prime}(t)=x^{(k+1)}(t)=x_{k+1}(t)$, for all $k=0,1, \ldots, m-2$. Hence $\left(x_{0}, x_{1}, \ldots, x_{m-1}\right)=$ $\left(x, x^{\prime}, \ldots, x^{(m-1)}\right)$ is a solution of the first-order system.

Conversely, if $\left(x_{0}, x_{1}, \ldots, x_{m-1}\right)$ is a solution of the first-order system, then set $x_{0}(t)=$ $x(t)$. Since $x_{k}^{\prime}(t)=x_{k+1}(t)$ for $k=0,1, \ldots, m-2$ we get $\left(x_{0}, x_{1}, \ldots, x_{m-1}\right)=\left(x, x^{\prime}, \ldots, x^{(m-1)}\right)$, in particular $x^{(m)}(t)=x_{m-1}^{\prime}(t)=G\left(t, x(t), \ldots, x^{(m-1)}(t)\right)$. Thus $x(t)$ is a solution of the m th order o.d.e.

If $x^{(k)}\left(t_{0}\right)=a^{(k)}$ for $k=0, \ldots, m-1$ then $\left(x_{0}\left(t_{0}\right), \ldots, x_{m-1}\left(t_{0}\right)\right)=\left(a^{(0)}, \ldots, a^{(m-1)}\right)$, by simple substitutions. The converse is also immediate.

Problem 11.1.4: Show that all solutions of $x^{\prime \prime}(t)=-x(t)$ are of the form $x(t)=A \cos (t)+$ $B \sin (t)$. Using this, decide for which values of t_{1} and t_{2} the o.d.e. $x^{\prime \prime}(t)=-x(t)$ with boundary conditions $x\left(t_{1}\right)=a_{1}, x\left(t_{2}\right)=a_{2}$ has a unique solution on $\left[t_{1}, t_{2}\right]$, for any choice of a_{1}, a_{2}.
Solution. Let $m=2$ and $G(t, x)=-x$. Then by the previous problem, $x(t)$ is a solution of $x^{\prime \prime}(t)=-x(t)$ if and only if $\left(x_{0}(t), x_{1}(t)\right)=\left(x(t), x^{\prime}(t)\right)$ is a solution to the first-order linear system

$$
\binom{x_{0}(t)}{x_{1}(t)}^{\prime}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{x_{0}(t)}{x_{1}(t)} .
$$

Let I be some interval and $t_{0} \in I$. By specifying $x_{0}\left(t_{0}\right)$ and $x_{1}\left(t_{0}\right)$, then by Corollary 11.1.1 this solution to the linear system is unique on I. Thus $x(t)$ is unique if we specify $x\left(t_{0}\right)$ and $x^{\prime}\left(t_{0}\right)$. It is easy to check that $x(t)=A \cos (t)+B \sin (t)$ is a solution to $x^{\prime \prime}(t)=-x(t)$. We determine A and B uniquely from the values of $x\left(t_{0}\right)$ and $x^{\prime}\left(t_{0}\right)$. Therefore all solutions to $x^{\prime \prime}(t)=-x(t)$ are of the form $x(t)=A \cos (t)+B \sin (t)$, for some constants A and B.

Consider now $x^{\prime \prime}(t)=-x(t)$ on $\left[t_{1}, t_{2}\right]$, with boundary conditions $x\left(t_{1}\right)=a_{1}, x\left(t_{2}\right)=a_{2}$. The solution is $x(t)=A \cos (t)+B \sin (t)$, where A and B verify the system

$$
\begin{aligned}
A \cos t_{1}+B \sin t_{1} & =a_{1} \\
A \cos t_{2}+B \sin t_{2} & =a_{2}
\end{aligned}
$$

This system has a unique solution (A, B) if the determinant of the associated matrix is nonzero, i.e. $\cos t_{1} \sin t_{2}-\cos t_{2} \sin t_{1}=\sin \left(t_{1}-t_{2}\right) \neq 0$. Notice that $\sin \left(t_{1}-t_{2}\right) \neq 0$ if and only if $\left(t_{1}-t_{2}\right)$ is not a multiple of π. In conclusion, the equation $x^{\prime \prime}(t)=-x(t)$ on $\left[t_{1}, t_{2}\right]$, with boundary conditions $x\left(t_{1}\right)=a_{1}, x\left(t_{2}\right)=a_{2}$ has a unique solution if and only if $\left(t_{1}-t_{2}\right)$ is not a multiple of π.

Problem 12.1.2: Show that it is impossible to have $\sin x=\sum_{k=2}^{\infty} a_{k} \sin k x$ on $0 \leq x \leq \pi$ with the series converging uniformly, for any choice of the a_{k}, even though there are an infinite number of parameters in the problem. (Hint: multiply by $\sin x$ and integrate.)
Solution. Suppose that the sum $\sum_{k=2}^{\infty} a_{k} \sin k x$ converges uniformly to $\sin x$ on $[0, \pi]$. Then $\sum_{k=2}^{\infty} a_{k} \sin x \sin k x$ converges uniformly to $\sin ^{2} x$ on $[0, \pi]$ and we can write

$$
\int_{0}^{\pi} \sin ^{2} x=\int_{0}^{\pi} \sum_{k=2}^{\infty} a_{k} \sin x \sin k x=\sum_{k=2}^{\infty} a_{k} \int_{0}^{\pi} \sin x \sin k x .
$$

Since $k \geq 2, \int_{0}^{\pi} \sin x \sin k x=\left.\frac{\cos x \sin k x-k \cos k x \sin x}{k^{2}-1}\right|_{0} ^{\pi}=0$, and this does not depend on a_{k}. We then get

$$
\int_{0}^{\pi} \sin ^{2} x=\left.\frac{x-\sin x \cos x}{2}\right|_{0} ^{\pi}=\frac{\pi}{2}=0
$$

contradiction. Hence it is impossible to have $\sin x=\sum_{k=2}^{\infty} a_{k} \sin k x$ on $[0, \pi]$, with the series converging uniformly.

