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Solutions to assignment 6

Problem 11.1.3:  Verify that xz(t) is a solution of the mth order o.d.e. z(™(t) =
G(t,x(t),..., ™= D(#)) if and only if (zo,1,...,Tm_1) = (z,2,..., 2™ V) is a solution
of the first-order system

(1) = Gt xo(t), ..., xm1(1)),
. (t) = xpa(t) k=0,1,...,m—2.

Also verify that z(t) satisfies the Cauchy initial conditions *)(t5) = a®) for k = 0,...,m—
if and only if (zo,...,%,—1) satisfies the Cauchy initial conditions (zo(to),. .., Tm— 1( 0)
(@®, ... atmDy.

SOLUTION. If z(t) is a solution of the mth order o.d.e. ™ (t) = G(t,z(t),..., 2™ V(t)),
then set x4(t) = ) (t) for K =0,1,...,m — 1. This gives directly

IIr—

)

() =2™() =Gt x(t),..., 2" V@) = Gt, xo(t), . . ., w1 (1)),

m—1
and 2, (t) = a*TV(t) = 241(t), for all k = 0,1,...,m — 2. Hence (20,21, .., Tpm_1) =
(z,2,...,20m"V) is a solution of the first-order system.
Conversely, if (zg,z1,...,Zm-1) is a solution of the first-order system, then set xy(t) =
x(t). Since ) (t) = Tg41(1) for k=0,1,...,m—2weget (zo,71,...,Tpm_1) = (z,2', ..., 20"V,

in particular 2™ (t) = 2! (t) = G(t,z(t),..., 2™V (t)). Thus z(t) is a solution of the mth
order o.d.e.

If 2™ (ty) = a® for k =0,...,m — 1 then (2o(to), ..., 2m-_1(t0)) = (@@, ..., a™ V), by
simple substitutions. The converse is also immediate. O

Problem 11.1.4: Show that all solutions of #”(t) = —x(t) are of the form z(t) = Acos(t)+
Bsin(t). Using this, decide for which values of ¢; and ¢ the o.d.e. 2z”(t) = —x(t) with
boundary conditions x(t1) = aq, x(t2) = ay has a unique solution on [t1, ts], for any choice of
ay,ds.

SOLUTION. Let m =2 and G(t,z) = —x. Then by the previous problem, z(t) is a solution
of 2”(t) = —x(t) if and only if (zo(t),z1(t)) = (x(t),2'(t)) is a solution to the first-order

linear system /
(20 ) - (20) (50)

Let I be some interval and tg € I. By specifying xq(to) and z1(tg), then by Corollary 11.1.1
this solution to the linear system is unique on /. Thus z(¢) is unique if we specify z() and
@' (to). It is easy to check that x(t) = Acos(t) + Bsin(t) is a solution to z”(t) = —z(t). We
determine A and B uniquely from the values of x(ty) and 2’(ty). Therefore all solutions to
x"(t) = —x(t) are of the form z(t) = Acos(t) + Bsin(t), for some constants A and B.



Consider now z”(t) = —x(t) on [t1, ts], with boundary conditions x(t;) = ay, z(t2) = as.
The solution is #(t) = Acos(t) + Bsin(t), where A and B verify the system

Acost; + Bsinty = a;
Acosty + Bsinty, = as.

This system has a unique solution (A, B) if the determinant of the associated matrix is
nonzero, i.e. cost;sinty — costysint; = sin(t; — to) # 0. Notice that sin(t; — t2) # 0 if and

only if (t; — t2) is not a multiple of 7. In conclusion, the equation z”(t) = —x(t) on [t1, ts],
with boundary conditions x(¢;) = a1, x(t2) = as has a unique solution if and only if (¢; — o)
is not a multiple of 7. O

o

Problem 12.1.2: Show that it is impossible to have sinz = Y axsinkx on 0 < x < 7 with
k=2

the series converging uniformly, for any choice of the aj, even though there are an infinite

number of parameters in the problem. (Hint: multiply by sinz and integrate.)

o
SOLUTION. Suppose that the sum ) ag sin kz converges uniformly to sinz on [0, 7]. Then

k=2
00

3" ay sin wsin kz converges uniformly to sin® x on [0, 7] and we can write
k=2

T T 00 00 T
/ sin®x = / E ar Sin x sin kx = E ag / sin x sin kx.
0 0

0 k=2 k=2

Since k > 2, foﬂ sin  sin kg = <s2sin k”;;;ffos krsing }g = 0, and this does not depend on a;. We
then get

T r—sinzrcosx » T
sin x:—|0:—:0;
0 2 2

oo

contradiction. Hence it is impossible to have sinz = Y agsinkx on [0, 7], with the series
k=2

converging uniformly. 0



