Mathematics 414, Spring 2008

Solutions to assignment 8

Problem 13.2.5: For each point (Z,%,Z) on the unit sphere 2% 4+ y? + 2% = 1 and each
vector v = (vy,ve,v3) in the tangent space of the sphere at (Z,7, Z), construct a C' curve
lying in the sphere whose tangent vector at the point (Z, 7, 2) is (vq, va, v3).

SOLUTION. Let P = (Z,7,2) be a point on the unit sphere. The equation of the tangent
plane at this point is x& + yg + 22 = 0, so if (vy,vq,v3) is a tangent vector at P then
0T + vef +v3Z = 0. Let f: (—¢,€) — R3 be a continuous function,
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where |v| = \/v? + v3 + vZ. Then the image of f is a C! curve on the unit sphere. To see
that it is well defined, write
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We have used the fact that 22 + 32 + 22 = 1 and that v,Z + v + v3Z = 0, from above. Then
f(0) = (&,7, 2) and the tangent vector at f(0) is f'(0) = —|v|sin(0)P + (:OS(O)”||T”|| =v. O
Problem 13.2.7: Let M, be any C! two-dimensional surface in R? that is compact. Show
that for every two-dimensional vector space V of R3, there exists a point # on M, whose
tangent vector space equals V. (Hint: if u is a vector perpendicular to V', what happens at
points on My where z - u achieves a maximum or a minimum?)

SOLUTION. Let M, be a compact C' two-dimensional surface in R3 and let V be a two-
dimensional vector space of R3. Since V is only two-dimensional, there exist u # 0 a vector
in R? which is perpendicular to V. Define f : My — R, f(x) = x-u. Then f is a continuous
function on a compact space, hence it attains its maximum at a point xy in Ms.

As My is a C! surface, we can take g : U — M, N Vj, the embedding that defines M
in a neighborhood V; of zy, where U is an open subset of R2. Since ¢ is one-to-one, there
is a unique yo € U such that g(yo) = zo. Then g, is also a maximum for the function
y — g(y) - u. Hence the derivative of this function vanishes at yo, i.e. dg(yo)u = 0. However,
g is an embedding so dg(yo) is a 2 X 3 matrix of rank 2. If we denote v; and vy to be the
rows of dg(yo), then v; and vy are linearly independent and vy - u = vy - u = 0. Let W be
the space spanned by v; and vo. Then W has dimension two and is orthogonal to u. Since
u was orthogonal to V, it follows that V' = W and is the tangent space of M; at the point

9(v0) = 0. O



Problem 13.2.8: Let M, be the surface of revolution in R? obtained by rotating a circle
in the z-z-plane, that does not intersect the z-axis, about the z-axis. Show that M, is a C!
two-dimensional surface, and compute its tangent space at any point. (Note: this surface is
called a torus.)

SOLUTION. Suppose C' is the circle in the z-z-plane we wish to rotate around the z-axis.
Let r be the radius of C' and R be the distance from its center to the origin. Then R > r
as C' does not intersect the z-axis. Assume also wlog that C' has center on the z-axis. Let
P and @ be the two points on C' at height z, where clearly —r < z < r. Then the z-
coordinate of P and @ are R — /72 — 22 and R + /1?2 — 22 respectively. We now rotate C
as described and obtain M,. Point P describes a circle of radius R — v/r? — 22, while point
Q describes a circle of radius R + v/r2 — z2. The equations describing these circles in R? are
?+y? = (R+Vr? — 22)%. As R > r we are left with /22 + y? = R+ /12 — 22, hence with
(/22 + y2 — R)* + 22 = r?, which is the equation describing My.

Set F(z,y,2) = (\/22 + 42 — R)?> + 22 — r%. Then M, is described by F(z,y,2) = 0 and

B /22 +y?—R /2242 R
dF(x,y,z)—(2x T 2y S 22 ).

Clearly x, y and z cannot vanish simultaneously because (0,0,0) & M,. If 2* +y* = R? then
2z = &r # 0 and so dF has rank 1 everywhere. It follows that M, is a two-dimensional C!
surface. Let v = (v1,v2,v3) be a point in the tangent space at (z,y, z) € Ms. Then

¢FIT—R+ Vai+y - R

Thus the equation of the tangent space at (x,y, z) is given by

viz(v/ 2?2+ 9?2 — R) + vy(v/22 + y?> — R) + vgz /22 + 4> = 0.

or equivalently by

+ 2zv3 = 0.
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Problem 13.3.4b: Use the method of Lagrange multipliers to locate possible maxima and
minima of the function f subject to the conditions G' = 0 in the following:

b. flz,y,2) = 20+ 2y, Gi(z,y,2) = 2®> + y? + 222 — 1, Ga(2,y,2) = 2> + y + 2. (Set up
the equations to be solved.)

SOLUTION. Let G(z,y,2) = (Gi(x,y,2),Ga(x,y,2)) and let (z,y,z) be a point where
G(z,y,z) = 0. We first need to check that dG(x,y, z) has rank 2, where
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G = (50 3 T )

2



It is clear that the matrix above does not have rank 2 only when (z,y,2) = (0,¢,%), t € R.
But then Go(x,y, z) = 0sot = 0 is the only possibility, which does not satisfy G1(z,y, z) = 0.
Hence dG has rank 2 whenever G(z,y, z) = 0. Define

H(x,y,2, M, \e) = 22 4+ 2y + M (2% + 12 + 222 — 1) + Mo(2? +y + 2).

If f(x,y, z) is a point of maximum or minimum subject to G(z,y, z) = 0, then (x,y, z, A1, \2)
are solutions to the system

9H — 2\ + N)x +2=0
%—ﬁ:2)\1y+/\2+2:0
9l —dhz+ X +2=0
§TH:x2+y2+222—1:0
ot

— 2 _
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If Ay =0 then \y = —2 and so x = 2. From the first equation we find z = 8. However,
substituting in the fourth equation gives 4 + y? + 127 = 0, which is impossible. Hence

A1 # 0. Then the second equation gives y = —%. The third equation gives z = —%
and plugging in the first equation we get 2(A; + \o)x = ””j—;‘l? or (8\% + 8\ Ay — 1)z = Ao.
The discussion continues until all cases are exhausted. O



