
Mathematics 414, Spring 2008

Solutions to assignment 8

Problem 13.2.5: For each point (x̃, ỹ, z̃) on the unit sphere x2 + y2 + z2 = 1 and each
vector v = (v1, v2, v3) in the tangent space of the sphere at (x̃, ỹ, z̃), construct a C1 curve
lying in the sphere whose tangent vector at the point (x̃, ỹ, z̃) is (v1, v2, v3).

Solution. Let P = (x̃, ỹ, z̃) be a point on the unit sphere. The equation of the tangent
plane at this point is xx̃ + yỹ + zz̃ = 0, so if (v1, v2, v3) is a tangent vector at P then
v1x̃ + v2ỹ + v3z̃ = 0. Let f : (−ε, ε) 7→ R3 be a continuous function,

f(t) = cos(|v|t)P + sin(|v|t) v

|v|
= (cos(|v|t)x̃ + sin(|v|t) v1

|v| , cos(|v|t)ỹ + sin(|v|t) v2

|v| , cos(|v|t)z̃ + sin(|v|t) v3

|v|),

where |v| =
√

v2
1 + v2

2 + v2
3. Then the image of f is a C1 curve on the unit sphere. To see

that it is well defined, write

|f(t)|2 =
∑

(cos(|v|t)x̃ + sin(|v|t) v1

|v|)
2

= cos(|v|t)2 + sin(|v|t)2 + 2 cos(|v|t) sin(|v|t)v1x̃ + v2ỹ + v3z̃

|v| = 1.

We have used the fact that x̃2 + ỹ2 + z̃2 = 1 and that v1x̃+ v2ỹ + v3z̃ = 0, from above. Then
f(0) = (x̃, ỹ, z̃) and the tangent vector at f(0) is f ′(0) = −|v| sin(0)P + cos(0)v|v|

|v| = v. ¤

Problem 13.2.7: Let M2 be any C1 two-dimensional surface in R3 that is compact. Show
that for every two-dimensional vector space V of R3, there exists a point x on M2 whose
tangent vector space equals V . (Hint: if u is a vector perpendicular to V , what happens at
points on M2 where x · u achieves a maximum or a minimum?)

Solution. Let M2 be a compact C1 two-dimensional surface in R3 and let V be a two-
dimensional vector space of R3. Since V is only two-dimensional, there exist u 6= 0 a vector
in R3 which is perpendicular to V . Define f : M2 7→ R, f(x) = x · u. Then f is a continuous
function on a compact space, hence it attains its maximum at a point x0 in M2.

As M2 is a C1 surface, we can take g : U 7→ M2 ∩ V0, the embedding that defines M
in a neighborhood V0 of x0, where U is an open subset of R2. Since g is one-to-one, there
is a unique y0 ∈ U such that g(y0) = x0. Then y0 is also a maximum for the function
y 7→ g(y) ·u. Hence the derivative of this function vanishes at y0, i.e. dg(y0)u = 0. However,
g is an embedding so dg(y0) is a 2 × 3 matrix of rank 2. If we denote v1 and v2 to be the
rows of dg(y0), then v1 and v2 are linearly independent and v1 · u = v2 · u = 0. Let W be
the space spanned by v1 and v2. Then W has dimension two and is orthogonal to u. Since
u was orthogonal to V , it follows that V = W and is the tangent space of M2 at the point
g(y0) = x0. ¤
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Problem 13.2.8: Let M2 be the surface of revolution in R3 obtained by rotating a circle
in the x-z-plane, that does not intersect the z-axis, about the z-axis. Show that M2 is a C1

two-dimensional surface, and compute its tangent space at any point. (Note: this surface is
called a torus.)

Solution. Suppose C is the circle in the x-z-plane we wish to rotate around the z-axis.
Let r be the radius of C and R be the distance from its center to the origin. Then R > r
as C does not intersect the z-axis. Assume also wlog that C has center on the x-axis. Let
P and Q be the two points on C at height z, where clearly −r ≤ z ≤ r. Then the x-
coordinate of P and Q are R −√r2 − z2 and R +

√
r2 − z2 respectively. We now rotate C

as described and obtain M2. Point P describes a circle of radius R −√r2 − z2, while point
Q describes a circle of radius R +

√
r2 − z2. The equations describing these circles in R3 are

x2 + y2 = (R±√r2 − z2)2. As R > r we are left with
√

x2 + y2 = R±√r2 − z2, hence with

(
√

x2 + y2 −R)2 + z2 = r2, which is the equation describing M2.

Set F (x, y, z) = (
√

x2 + y2 −R)2 + z2 − r2. Then M2 is described by F (x, y, z) = 0 and

dF (x, y, z) =

(
2x

√
x2+y2−R√

x2+y2
2y

√
x2+y2−R√

x2+y2
2z

)
.

Clearly x, y and z cannot vanish simultaneously because (0, 0, 0) /∈ M2. If x2 +y2 = R2 then
z = ±r 6= 0 and so dF has rank 1 everywhere. It follows that M2 is a two-dimensional C1

surface. Let v = (v1, v2, v3) be a point in the tangent space at (x, y, z) ∈ M2. Then

2xv1

√
x2 + y2 −R√

x2 + y2
+ 2yv2

√
x2 + y2 −R√

x2 + y2
+ 2zv3 = 0.

Thus the equation of the tangent space at (x, y, z) is given by

v1x(
√

x2 + y2 −R) + v2y(
√

x2 + y2 −R) + v3z
√

x2 + y2 = 0.

or equivalently by √
x2 + y2(xv1 + yv2 + zv3) = R(xv1 + yv2).

¤

Problem 13.3.4b: Use the method of Lagrange multipliers to locate possible maxima and
minima of the function f subject to the conditions G = 0 in the following:

b. f(x, y, z) = zx + 2y, G1(x, y, z) = x2 + y2 + 2z2 − 1, G2(z, y, z) = x2 + y + z. (Set up
the equations to be solved.)

Solution. Let G(x, y, z) = (G1(x, y, z), G2(x, y, z)) and let (x, y, z) be a point where
G(x, y, z) = 0. We first need to check that dG(x, y, z) has rank 2, where

dG(x, y, z) =

(
2x 2y 4z
2x 1 1

)
.
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It is clear that the matrix above does not have rank 2 only when (x, y, z) = (0, t, t
2
), t ∈ R.

But then G2(x, y, z) = 0 so t = 0 is the only possibility, which does not satisfy G1(x, y, z) = 0.
Hence dG has rank 2 whenever G(x, y, z) = 0. Define

H(x, y, z, λ1, λ2) = xz + 2y + λ1(x
2 + y2 + 2z2 − 1) + λ2(x

2 + y + z).

If f(x, y, z) is a point of maximum or minimum subject to G(x, y, z) = 0, then (x, y, z, λ1, λ2)
are solutions to the system





∂H
∂x

= 2(λ1 + λ2)x + z = 0
∂H
∂y

= 2λ1y + λ2 + 2 = 0
∂H
∂z

= 4λ1z + λ2 + x = 0
∂H
∂λ1

= x2 + y2 + 2z2 − 1 = 0
∂H
∂λ2

= x2 + y + z = 0

If λ1 = 0 then λ2 = −2 and so x = 2. From the first equation we find z = 8. However,
substituting in the fourth equation gives 4 + y2 + 127 = 0, which is impossible. Hence
λ1 6= 0. Then the second equation gives y = −2+λ2

2λ1
. The third equation gives z = −x+λ2

4λ1

and plugging in the first equation we get 2(λ1 + λ2)x = x+λ2

4λ1
or (8λ2

1 + 8λ1λ2 − 1)x = λ2.
The discussion continues until all cases are exhausted. ¤
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