Mathematics 414, Spring 2008

Solutions to assignment 8

Problem 13.2.5: For each point $(\tilde{x}, \tilde{y}, \tilde{z})$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$ and each vector $v=\left(v_{1}, v_{2}, v_{3}\right)$ in the tangent space of the sphere at $(\tilde{x}, \tilde{y}, \tilde{z})$, construct a \mathcal{C}^{1} curve lying in the sphere whose tangent vector at the point $(\tilde{x}, \tilde{y}, \tilde{z})$ is $\left(v_{1}, v_{2}, v_{3}\right)$.
Solution. Let $P=(\tilde{x}, \tilde{y}, \tilde{z})$ be a point on the unit sphere. The equation of the tangent plane at this point is $x \tilde{x}+y \tilde{y}+z \tilde{z}=0$, so if $\left(v_{1}, v_{2}, v_{3}\right)$ is a tangent vector at P then $v_{1} \tilde{x}+v_{2} \tilde{y}+v_{3} \tilde{z}=0$. Let $f:(-\epsilon, \epsilon) \mapsto \mathbb{R}^{3}$ be a continuous function,

$$
\begin{aligned}
f(t) & =\cos (|v| t) P+\sin (|v| t) \frac{v}{|v|} \\
& =\left(\cos (|v| t) \tilde{x}+\sin (|v| t) \frac{v_{1}}{|v|}, \cos (|v| t) \tilde{y}+\sin (|v| t) \frac{v_{2}}{|v|}, \cos (|v| t) \tilde{z}+\sin (|v| t) \frac{v_{3}}{|v|}\right),
\end{aligned}
$$

where $|v|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$. Then the image of f is a \mathcal{C}^{1} curve on the unit sphere. To see that it is well defined, write

$$
\begin{aligned}
|f(t)|^{2} & =\sum\left(\cos (|v| t) \tilde{x}+\sin (|v| t) \frac{v_{1}}{|v|}\right)^{2} \\
& =\cos (|v| t)^{2}+\sin (|v| t)^{2}+2 \cos (|v| t) \sin (|v| t) \frac{v_{1} \tilde{x}+v_{2} \tilde{y}+v_{3} \tilde{z}}{|v|}=1
\end{aligned}
$$

We have used the fact that $\tilde{x}^{2}+\tilde{y}^{2}+\tilde{z}^{2}=1$ and that $v_{1} \tilde{x}+v_{2} \tilde{y}+v_{3} \tilde{z}=0$, from above. Then $f(0)=(\tilde{x}, \tilde{y}, \tilde{z})$ and the tangent vector at $f(0)$ is $f^{\prime}(0)=-|v| \sin (0) P+\cos (0) \frac{v|v|}{|v|}=v$.

Problem 13.2.7: Let M_{2} be any \mathcal{C}^{1} two-dimensional surface in \mathbb{R}^{3} that is compact. Show that for every two-dimensional vector space V of \mathbb{R}^{3}, there exists a point x on M_{2} whose tangent vector space equals V. (Hint: if u is a vector perpendicular to V, what happens at points on M_{2} where $x \cdot u$ achieves a maximum or a minimum?)
Solution. Let M_{2} be a compact \mathcal{C}^{1} two-dimensional surface in \mathbb{R}^{3} and let V be a twodimensional vector space of \mathbb{R}^{3}. Since V is only two-dimensional, there exist $u \neq 0$ a vector in \mathbb{R}^{3} which is perpendicular to V. Define $f: M_{2} \mapsto \mathbb{R}, f(x)=x \cdot u$. Then f is a continuous function on a compact space, hence it attains its maximum at a point x_{0} in M_{2}.

As M_{2} is a \mathcal{C}^{1} surface, we can take $g: U \mapsto M_{2} \cap V_{0}$, the embedding that defines M in a neighborhood V_{0} of x_{0}, where U is an open subset of \mathbb{R}^{2}. Since g is one-to-one, there is a unique $y_{0} \in U$ such that $g\left(y_{0}\right)=x_{0}$. Then y_{0} is also a maximum for the function $y \mapsto g(y) \cdot u$. Hence the derivative of this function vanishes at y_{0}, i.e. $d g\left(y_{0}\right) u=0$. However, g is an embedding so $d g\left(y_{0}\right)$ is a 2×3 matrix of rank 2 . If we denote v_{1} and v_{2} to be the rows of $d g\left(y_{0}\right)$, then v_{1} and v_{2} are linearly independent and $v_{1} \cdot u=v_{2} \cdot u=0$. Let W be the space spanned by v_{1} and v_{2}. Then W has dimension two and is orthogonal to u. Since u was orthogonal to V, it follows that $V=W$ and is the tangent space of M_{2} at the point $g\left(y_{0}\right)=x_{0}$.

Problem 13.2.8: Let M_{2} be the surface of revolution in \mathbb{R}^{3} obtained by rotating a circle in the x - z-plane, that does not intersect the z-axis, about the z-axis. Show that M_{2} is a \mathcal{C}^{1} two-dimensional surface, and compute its tangent space at any point. (Note: this surface is called a torus.)
Solution. Suppose C is the circle in the x - z-plane we wish to rotate around the z-axis. Let r be the radius of C and R be the distance from its center to the origin. Then $R>r$ as C does not intersect the z-axis. Assume also wlog that C has center on the x-axis. Let P and Q be the two points on C at height z, where clearly $-r \leq z \leq r$. Then the x coordinate of P and Q are $R-\sqrt{r^{2}-z^{2}}$ and $R+\sqrt{r^{2}-z^{2}}$ respectively. We now rotate C as described and obtain M_{2}. Point P describes a circle of radius $R-\sqrt{r^{2}-z^{2}}$, while point Q describes a circle of radius $R+\sqrt{r^{2}-z^{2}}$. The equations describing these circles in \mathbb{R}^{3} are $x^{2}+y^{2}=\left(R \pm \sqrt{r^{2}-z^{2}}\right)^{2}$. As $R>r$ we are left with $\sqrt{x^{2}+y^{2}}=R \pm \sqrt{r^{2}-z^{2}}$, hence with $\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}$, which is the equation describing M_{2}.

Set $F(x, y, z)=\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}-r^{2}$. Then M_{2} is described by $F(x, y, z)=0$ and

$$
d F(x, y, z)=\left(\begin{array}{lll}
2 x \frac{\sqrt{x^{2}+y^{2}}-R}{\sqrt{x^{2}+y^{2}}} & 2 y \frac{\sqrt{x^{2}+y^{2}}-R}{\sqrt{x^{2}+y^{2}}} & 2 z
\end{array}\right) .
$$

Clearly x, y and z cannot vanish simultaneously because $(0,0,0) \notin M_{2}$. If $x^{2}+y^{2}=R^{2}$ then $z= \pm r \neq 0$ and so $d F$ has rank 1 everywhere. It follows that M_{2} is a two-dimensional \mathcal{C}^{1} surface. Let $v=\left(v_{1}, v_{2}, v_{3}\right)$ be a point in the tangent space at $(x, y, z) \in M_{2}$. Then

$$
2 x v_{1} \frac{\sqrt{x^{2}+y^{2}}-R}{\sqrt{x^{2}+y^{2}}}+2 y v_{2} \frac{\sqrt{x^{2}+y^{2}}-R}{\sqrt{x^{2}+y^{2}}}+2 z v_{3}=0 .
$$

Thus the equation of the tangent space at (x, y, z) is given by

$$
v_{1} x\left(\sqrt{x^{2}+y^{2}}-R\right)+v_{2} y\left(\sqrt{x^{2}+y^{2}}-R\right)+v_{3} z \sqrt{x^{2}+y^{2}}=0 .
$$

or equivalently by

$$
\sqrt{x^{2}+y^{2}}\left(x v_{1}+y v_{2}+z v_{3}\right)=R\left(x v_{1}+y v_{2}\right)
$$

Problem 13.3.4b: Use the method of Lagrange multipliers to locate possible maxima and minima of the function f subject to the conditions $G=0$ in the following:
b. $f(x, y, z)=z x+2 y, G_{1}(x, y, z)=x^{2}+y^{2}+2 z^{2}-1, G_{2}(z, y, z)=x^{2}+y+z$. (Set up the equations to be solved.)

Solution. Let $G(x, y, z)=\left(G_{1}(x, y, z), G_{2}(x, y, z)\right)$ and let (x, y, z) be a point where $G(x, y, z)=0$. We first need to check that $d G(x, y, z)$ has rank 2 , where

$$
d G(x, y, z)=\left(\begin{array}{ccc}
2 x & 2 y & 4 z \\
2 x & 1 & 1
\end{array}\right)
$$

It is clear that the matrix above does not have rank 2 only when $(x, y, z)=\left(0, t, \frac{t}{2}\right), t \in \mathbb{R}$. But then $G_{2}(x, y, z)=0$ so $t=0$ is the only possibility, which does not satisfy $G_{1}(x, y, z)=0$. Hence $d G$ has rank 2 whenever $G(x, y, z)=0$. Define

$$
H\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=x z+2 y+\lambda_{1}\left(x^{2}+y^{2}+2 z^{2}-1\right)+\lambda_{2}\left(x^{2}+y+z\right)
$$

If $f(x, y, z)$ is a point of maximum or minimum subject to $G(x, y, z)=0$, then $\left(x, y, z, \lambda_{1}, \lambda_{2}\right)$ are solutions to the system

$$
\left\{\begin{array}{l}
\frac{\partial H}{\partial x}=2\left(\lambda_{1}+\lambda_{2}\right) x+z=0 \\
\frac{\partial H}{\partial y}=2 \lambda_{1} y+\lambda_{2}+2=0 \\
\frac{\partial H}{\partial z}=4 \lambda_{1} z+\lambda_{2}+x=0 \\
\frac{\partial H}{\partial \lambda}=x^{2}+y^{2}+2 z^{2}-1=0 \\
\frac{\partial H}{\partial \lambda_{2}}=x^{2}+y+z=0
\end{array}\right.
$$

If $\lambda_{1}=0$ then $\lambda_{2}=-2$ and so $x=2$. From the first equation we find $z=8$. However, substituting in the fourth equation gives $4+y^{2}+127=0$, which is impossible. Hence $\lambda_{1} \neq 0$. Then the second equation gives $y=-\frac{2+\lambda_{2}}{2 \lambda_{1}}$. The third equation gives $z=-\frac{x+\lambda_{2}}{4 \lambda_{1}}$ and plugging in the first equation we get $2\left(\lambda_{1}+\lambda_{2}\right) x=\frac{x+\lambda_{2}}{4 \lambda_{1}}$ or $\left(8 \lambda_{1}^{2}+8 \lambda_{1} \lambda_{2}-1\right) x=\lambda_{2}$. The discussion continues until all cases are exhausted.

