Mathematics 414, Spring 2008

Solutions to assignment 9

Problem 14.1.3: Prove that the intersection of all σ-fields containing a field \mathcal{F} is a σ-field and that it is the smallest σ-field containing \mathcal{F}.
Solution. Let \mathcal{F}^{\prime} be the intersection of all σ-fields containing a field \mathcal{F}, i.e.

$$
\mathcal{F}^{\prime}=\bigcap_{\mathcal{F} \subset \mathcal{G}} \mathcal{G} .
$$

Clearly the empty set is in \mathcal{F}^{\prime}. If A is in \mathcal{F}^{\prime}, then A is in \mathcal{G}, for every σ-field \mathcal{G} containing \mathcal{F}. Since \mathcal{G} is a σ-field, it also contains A^{c}. Hence A^{c} is in \mathcal{F}^{\prime}. If A_{1}, A_{2}, \ldots are in \mathcal{F}^{\prime}, then they are in \mathcal{G}, for every σ-field \mathcal{G} containing \mathcal{F}. Since \mathcal{G} is a σ-field, it also contains $\bigcup_{j=1}^{\infty} A_{j}$. Hence $\bigcup_{j=1}^{\infty} A_{j}$ is in \mathcal{F}^{\prime}, which in consequence is a σ-field. If $\mathcal{F}^{\prime \prime}$ is the smallest σ-field containing \mathcal{F}, then

$$
\bigcap_{\mathcal{F} \subset \mathcal{G}} \mathcal{G} \subset \mathcal{F}^{\prime \prime}
$$

so $\mathcal{F}^{\prime} \subseteq \mathcal{F}^{\prime \prime}$. Since \mathcal{F}^{\prime} is a σ-field, it follows that $\mathcal{F}^{\prime}=\mathcal{F}^{\prime \prime}$ and \mathcal{F}^{\prime} is indeed the smallest σ-field containing \mathcal{F}.

Problem 14.1.4: Prove that if $A=\bigcup_{j=1}^{n} I_{j}$, a disjoint union of intervals, then $\sum_{j=1}^{n}\left|I_{j}\right|$ is independent of the particular decomposition. Show that if we define $|A|=\sum_{j=1}^{n}\left|I_{j}\right|$, then all the axioms for a measure are satisfied on the field of finite unions of intervals, where σ-additivity means $\left|\bigcup_{j=1}^{\infty} A_{j}\right|=\sum_{j=1}^{\infty}\left|A_{j}\right|$ if A_{1}, A_{2}, \ldots, and $\bigcup_{j=1}^{\infty} A_{j}$ are all in the field. (Hint: use the σ-additivity of the intervals proved in the text.) Why doesn't this argument establish the existence of Lebesgue measure?
Solution. Let $A=\bigcup_{j=1}^{n} I_{j}=\bigcup_{k=1}^{m} J_{k}$ be two decompositions of A as disjoint unions of intervals. Then $J_{k} \subset A$ and $J_{k}=J_{k} \cap \bigcup_{j=1}^{n} I_{j}=\bigcup_{j=1}^{n}\left(I_{j} \cap J_{k}\right)$ is a decomposition of J_{k} as disjoint union of intervals, some of them possibly empty. By Lemma 14.1.1 we have

$$
\left|J_{k}\right|=\sum_{j=1}^{n}\left|I_{j} \cap J_{k}\right|, \text { so } \quad \sum_{k=1}^{m}\left|J_{k}\right|=\sum_{k=1}^{m} \sum_{j=1}^{n}\left|I_{j} \cap J_{k}\right|=\sum_{j=1}^{n} \sum_{k=1}^{m}\left|J_{k} \cap I_{j}\right|=\sum_{j=1}^{n}\left|I_{j}\right| .
$$

The last equality follows from the fact that $I_{j}=I_{j} \cap \bigcup_{k=1}^{m} J_{k}=\bigcup_{k=1}^{m}\left(J_{k} \cap I_{j}\right)$ is a decomposition of I_{j} as disjoint union of intervals. Therefore $\sum_{j=1}^{n}\left|I_{j}\right|=\sum_{k=1}^{m}\left|J_{k}\right|$ is independent of the particular decomposition of A. Define $|A|=\sum_{j=1}^{n}\left|\bar{I}_{j}\right|$.

Let $\left\{A_{n}\right\}_{n}$ be a sequence of disjoint sets such that $A_{n}=\bigcup_{j=1}^{m_{n}} I_{n j}$ are all finite union of disjoint intervals and $A=\bigcup_{n=1}^{\infty} A_{n}$ is a finite union of disjoint intervals. Since A_{n} are all disjoint, then $I_{n j}$ are all disjoint intervals, for all n and $1 \leq j \leq m_{n}$. Notice that $A=\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{m_{n}} I_{n j}$, but A is a finite union of disjoint intervals. Thus we can write

$$
A=\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{m_{n}} I_{n j}=\bigcup_{k=1}^{m} J_{k},
$$

as a finite union of are disjoint intervals J_{k}. Assume without loss of generality that each interval $I_{n j}$ is contained in one of the intervals J_{k}. Then let $I_{n j}^{(k)}$ denote those intervals that are contained in J_{k}. Then the disjoint union $\bigcup_{n, j} I_{n j}^{(k)}=J_{k}$, and in view of Lemma 14.1.1, $\left|J_{k}\right|=\sum_{n, j}\left|I_{n j}^{(k)}\right|$. It follows that

$$
|A|=\sum_{k=1}^{m}\left|J_{k}\right|=\sum_{k=1}^{m} \sum_{n, j}\left|I_{n j}^{(k)}\right|=\sum_{n=1}^{\infty} \sum_{j=1}^{m_{n}}\left|I_{n j}\right|=\sum_{n=1}^{\infty}\left|A_{n}\right|,
$$

which shows σ-additivity. Hence $|A|$, as defined above, is a measure. This argument does not establish the existence of Lebesgue measure because it is defined only on a field of finite unions of intervals, while Lebesgue measure is defined on a σ-field, thus also for countable union of intervals.

Problem 14.1.5: Prove that the Cantor set (delete middle thirds) has Lebesgue measure zero.

Solution. Consider the interval $I=[0,1]$. At step 1 , we split I into three equal intervals and delete the middle one, say J_{01}. It has length $\frac{1}{3}$. We are left with two intervals I_{11} and I_{12} of length $\frac{1}{3}$. At step 2 , split I_{11} into three equal parts and remove the middle interval, J_{11}, of length $\frac{1}{9}$. We do the same with I_{12} and remove J_{12}, of length $\frac{1}{9}$. We are left with 4 intervals $I_{21}, I_{22}, I_{23}, I_{24}$, each of length $\frac{1}{9}$. We continue this process inductively and at step n, we remove intervals $J_{(n-1) 1}, J_{(n-1) 2}, \ldots, J_{(n-1) 2^{n-1}}$, each of length $\frac{1}{3^{n}}$, and remain with intervals $I_{n 1}, I_{n 2}, \ldots, I_{n 2^{n}}$, each of length $\frac{1}{3^{n}}$. The standard Cantor set is $C=\bigcap_{n=0}^{\infty} \bigcap_{j=1}^{2^{n}} I_{n j}$, while its complement is $I \backslash C=\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2 n-1} J_{(n-1) j}$. Then the Lebesgue measure of $I \backslash C$ is

$$
|I \backslash C|=\sum_{n=1}^{\infty} \sum_{j=1}^{2^{n-1}}\left|J_{(n-1) j}\right|=\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{n}}=\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=1
$$

Hence the Lebesgue measure of the Cantor set C is zero.

