## Mathematics 414, Spring 2008

## Solutions to assignment 10

Problem 14.1.14: Prove the following inner regularity for Lebesgue measure: $|B|=$ $\sup \{|F|: F \subseteq B$ is closed $\}$, for all Borel sets $B$. (Hint: if $B$ is contained in $(-N, N)$ use the outer regularity for $(-N, N) \backslash B$.)
Solution. Let $B$ be a Borel set and define $M=\sup \{|F|: F \subseteq B$ is closed $\}$. Then $M \leq|B|$ and so it remains to show $M \geq|B|$. If $B$ is bounded then $B \subset(-N, N)$ for some $N$. Let $B^{\prime}=(-N, N) \backslash B$. By additivity we get $\left|B^{\prime}\right|=2 N-|B|$. By outer regularity we have,

$$
\left|B^{\prime}\right|=\inf \left\{|U|: B^{\prime} \subseteq U, U \text { open }\right\}
$$

Let $\epsilon>0$. There is an open set $U$ such that $B^{\prime} \subseteq U$ and $|U| \leq\left|B^{\prime}\right|+\epsilon=2 N-|B|+\epsilon$. Consider $F=(-N, N) \backslash U \subseteq B$. Also, since $U$ is open, $F$ is closed and $|F|=2 N-|U| \geq$ $2 N-(2 N-|B|+\epsilon)=|B|-\epsilon$. Thus $|B|-\epsilon \leq|F| \leq M$. Since $\epsilon$ was arbitrary we get $M \geq|B|$ and in fact equality holds.

If $B$ is not bounded the define $B_{N}=B \cap(-N, N)$ and $B_{N}^{\prime}=(-N, N) \backslash B_{N}$. Then $B=\bigcup_{N=1}^{\infty} B_{N}$. Notice that $B_{N}$ are Borel sets and they form an increasing sequence, i.e. $B_{1} \subset B_{2} \subset \ldots$, so $|B|=\lim _{N \rightarrow \infty}\left|B_{N}\right|$. Apply the above result to get $|M| \geq\left|B_{N}\right|+\epsilon$ for every $N$ and $\epsilon>0$. This gives $|M| \geq \lim _{N \rightarrow \infty}\left|B_{N}\right|-\epsilon=|B|-\epsilon$. Hence $M \geq B$ also in this case.

Problem 14.1.15: Prove that for compact sets $A$, the Lebesgue measure can be computed using only finite coverings,

$$
|A|=\inf \left\{\sum_{j=1}^{N}\left|I_{j}\right|: A \subseteq \bigcup_{j=1}^{N} I_{j}\right\} .
$$

Solution. By definition, for general sets $A$,

$$
|A|=\inf \left\{\sum_{j=1}^{\infty}\left|I_{j}\right|: A \subseteq \bigcup_{j=1}^{\infty} I_{j}\right\}
$$

Let $\epsilon>0$. Then there are intervals $I_{j}$ such that $A \subseteq \bigcup_{j=1}^{\infty} I_{j}$ and $|A|<\sum_{j=1}^{\infty}\left|I_{j}\right|+\frac{\epsilon}{2}$. Slightly enlarge the $I_{j}$ 's by modifying the endpoints with $\epsilon 2^{-j-2}$. Let the new intervals be $I_{j}^{\prime}$, with $\left|I_{j}^{\prime}\right|=\left|I_{j}\right|+\epsilon 2^{-j-1}$. Since $A$ is compact, by the Heine-Borel Theorem, there is $N$ such that, after a possible re-indexing of the $I_{j}^{\prime}$ 's, we have $A \subseteq \bigcup_{j=1}^{N} I_{j}^{\prime}$. Clearly $\sum_{j=1}^{N}\left|I_{j}^{\prime}\right| \leq \sum_{j=1}^{\infty}\left|I_{j}^{\prime}\right|=$ $\sum_{j=1}^{\infty}\left|I_{j}\right|+\sum_{j=1}^{\infty} \epsilon 2^{-j-1}<|A|+\epsilon$. Since $\epsilon$ was arbitrary, it follows that indeed

$$
|A|=\inf \left\{\sum_{j=1}^{N}\left|I_{j}^{\prime}\right|: A \subseteq \bigcup_{j=1}^{N} I_{j}^{\prime}\right\}
$$

Problem 14.3.2: Prove that if $f: X \mapsto \mathbb{R}$ and $g: X \mapsto \mathbb{R}$ are measurable, then $\max (f, g)$ is measurable.

Solution. Set $F_{a}=\{x: f(x)>a\}, G_{a}=\{x: g(x)>a\}$ and $H_{a}=\{x: h(x)>a\}$, where $h=\max (f, g)$. Notice that $F_{a}=f^{-1}(a, \infty)$ and similar for $G_{a}$ and $H_{a}$. It is easy to check by double inclusion that $H_{a}=F_{a} \cup G_{a}$. Since $F_{a}$ and $G_{a}$ are measurable, it follows that $H_{a}$ is measurable. Hence $h$ is measurable.

Problem 14.3.4: Prove that if $\sum_{k=1}^{N} a_{k} \chi_{A_{k}}=\sum_{j=1}^{M} b_{j} \chi_{B_{j}}$ for every $x$, then $\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right)=$ $\sum_{j=1}^{M} b_{j} \mu\left(B_{j}\right)$.
Solution. Let $f=\sum_{k=1}^{N} a_{k} \chi_{A_{k}}$ and $g=\sum_{j=1}^{M} b_{j} \chi_{B_{j}}$. Assume w.l.o.g that $A_{k}$ 's are disjoint and $B_{j}$ 's are also disjoint. Then $A_{k} \cap B_{j}$ are disjoint for all $k$ and $j$. Moreover $A_{k}=\bigcup_{j=1}^{M} A_{k} \cap B_{j}$ and $B_{j}=\bigcup_{k=1}^{N} B_{j} \cap A_{k}$, so

$$
f=\sum_{k=1}^{N} \sum_{j=1}^{M} a_{k} \chi_{A_{k} \cap B_{j}}=\sum_{j=1}^{M} \sum_{k=1}^{N} b_{j} \chi_{B_{j} \cap A_{k}}=g .
$$

Evaluating $f$ and $g$ at a point $x \in A_{k} \cap B_{j}$, whenever this is nonempty gives $a_{k}=b_{j}$ and so $a_{k} \mu\left(A_{k} \cap B_{j}\right)=b_{j} \mu\left(B_{j} \cap A_{k}\right)$. Thus we get

$$
\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right)=\sum_{k=1}^{N} \sum_{j=1}^{M} a_{k} \mu\left(A_{k} \cap B_{j}\right)=\sum_{j=1}^{M} \sum_{k=1}^{N} b_{j} \mu\left(B_{j} \cap A_{k}\right)=\sum_{j=1}^{M} b_{j} \mu\left(B_{j}\right),
$$

which proves the claim.

