Homework 10: Math 6710 Fall 2012

Due in class on Thursday, November 1.

- 1. Prove the conditional dominated convergence theorem: suppose \mathcal{G} is a σ -field, X_n, X are random variables with $X_n \to X$ almost surely, and there is an integrable Z with $|X_n| \leq Z$ a.s. Show that $E[X_n \mid \mathcal{G}] \to E[X \mid \mathcal{G}]$ almost surely and in L^1 .
- 2. Let X, Y be iid integrable random variables. Compute E[X | X + Y]. (As in last week's homework, the answer will be f(X + Y) for some measurable function f; try to find f explicitly. Hint: Think also about E[Y | X + Y].)
- 3. (A very topical question) The Giants and Tigers are playing in the World Series. (This is a 7 game series and the first team to win 4 games wins the series.) Let ξ_n , n = 1, ..., 7 be the winner of the *n*th game (*G* for Giants and *T* for Tigers), and let $\mathcal{F}_n = \sigma(\xi_1, ..., \xi_n)$. Assume that the ξ_n are iid and that the teams are evenly matched,¹ so that $P(\xi_n = G) = P(\xi_n = T) = 1/2$.

Suppose we bet \$1 on the Giants to win the series. Let M_n be the amount of money we have after the nth game, $n \leq 7$. (Thus, $M_n = 1$ on the event that the Giants win 4 of the first n games, $M_n = -1$ if the Tigers do, and $M_n = 0$ if neither team has won 4 games yet, so the series is still going on.) Show that $E[M_n] = 0$ for all n, so this is a "fair" bet. Is $\{M_n\}$ a martingale with respect to the filtration $\{\mathcal{F}_n\}$?

- 4. Durrett Exercise 5.2.6.
- 5. Durrett Exercise 5.2.13.

¹This is an unrealistic assumption. Actually, the Giants are clearly way better than the Tigers. Go Giants!