
Homework 12: Math 6710 Fall 2012

Due in class on Thursday, November 15.

1. Hat guessing! A countably infinite number of prisoners are forced by an evil warden to play the
following game. Each prisoner will be randomly assigned a hat that is either black or white; he can
see all the other prisoners’ hats but not his own. Then each prisoner must try to guess the color of his
own hat. The prisoners may strategize before the game, but once the hats are assigned they may not
communicate in any way, and they do not get to hear each others’ guesses. If all but finitely many of
the prisoners can guess correctly, all the prisoners will be freed; otherwise they will all be executed.

To express this as a probability problem, let Xn be the hat assigned to prisoner n, 0 for black and 1
for white. Let’s say the warden chooses hats randomly by flipping a fair coin, so let’s say the Xn are
iid with P (Xn = 0) = P (Xn = 1) = 1/2. Let Fn = σ(X1, . . . , Xn) be the information in the first
n hats, and also let Gn = σ(X1, . . . , Xn−1, Xn+1, . . . ) be the information about every hat except the
nth. Let Yn be the nth prisoner’s guess. He can see every hat except his own, so we will require that
Yn is a Gn-measurable random variable. (Note that the guesses Yn need not be independent, since for
instance prisoners 2 and 3 could both base their guesses on the color of prisoner 1’s hat.)

Let An = {Yn = Xn} be the event that prisoner n guesses right, and then A = lim inf An is the event
that all but finitely many prisoners guess right and they are allowed to go free. Show, unfortunately,
that P (A) = 0 using the following outline.

(a) Show An is independent of Gn (even though Yn is not), and that P (An) = 1/2. Conclude that for
n > m, P (An | Fm) = 1/2 a.s.

(b) Show that P (A | Fm) ≤ 1/2 a.s.

(c) Use the Lévy zero-one law to show P (A) = 0.

(d) For a sense of why this is maybe not completely obvious, consider the case where there are only
a finite number N of prisoners. Give an example of a strategy such that, with probability 1/2,
all of them guess correctly. (That is, in our notation, find random variables Yn ∈ Gn such that
P (

⋂N
n=1 An) = 1/2.)

Remark. This problem actually has surprising connections to the foundations of mathematics. As-
suming the axiom of choice, there exist functions fn : {0, 1}N → {0, 1}, n ∈ N such that for every
x = (x(1), x(2), . . . ) ∈ {0, 1}N, we have fn(x(1), . . . , x(n − 1), x(n + 1), . . . ) = x(n) for all but finitely
many n. If these functions fn were measurable, then we could let Yn = f(X1, . . . , Xn−1, Xn+1, . . . )
and have Yn ∈ Gn for which, almost surely, Yn = Xn for all but finitely many n. Using this strategy,
the prisoners always win! So our argument above shows that these functions fn cannot be measurable;
they would have to be pretty nasty, and this strategy must be rather impractical. (If this interests
you, you might like to write out the details.)

This example and its relation to the axiom of choice were originally discovered by Cornell grad stu-
dents Yuval Gubay and Michael O’Connor in 2004. For more on this and other infinite hat puzzles,
see: Hardin, Christopher S.; Taylor, Alan D. An introduction to infinite hat problems. Math. Intelli-
gencer 30 (2008), no. 4, 20–25, also available online at http://www.math.union.edu/∼hardinc/pub/
introinf.pdf.
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2. (Durrett 5.5.2) Let Z1, Z2, . . . be iid integrable random variables with E[Zi] = 0, let θ be an integrable
random variable which is independent of all the Zn, and let Yn = θ+Zn. Show that E[θ|Y1, . . . , Yn] → θ
a.s. and in L1.

Idea: we would like to observe θ but it comes with some noise Zn every time we observe it. However,
our best guess E[θ|Y1, . . . , Yn] will converge to the true value of θ.

3. Consider a random walk where ξ1, ξ2, . . . are iid with some arbitrary, nonconstant, integrable distribu-
tion, and let Sn = ξ1 + · · ·+ ξn. Suppose there exists a number θ > 0 such that E[exp(−θξi)] = 1.

(a) Show this implies E[ξi] > 0, so the process is biased towards increasing.

(b) Let a > 0 and let τ = inf{n : Sn ≤ −a}. Prove that P (τ < ∞) ≤ exp(−aθ). (Hint: Observe that
Xn = exp(−θSn) is a martingale.)

(c) Show that lim infn→∞ Sn > −∞ a.s.

(d) If ξi has a normal distribution N(µ, σ2) with mean µ > 0 and variance σ2, find θ such that
E[exp(−θξi)] = 1. (Hint: Use the normal density, and complete a square.)

(e) An insurance company initially has A0 = 10 million dollars in assets. Its net income (premiums
minus claims) ξi in year i is normally distributed with mean µ = 1 million dollars and standard
deviation σ = 2 million dollars, and independent from year to year. Use the previous parts to
bound the probability that the company ever goes bankrupt (sees its assets drop below 0).

4. (Durrett 6.2.7) Let ξi be iid with a uniform distribution on {1, 2, . . . , N} (i.e. P (ξi = k) = 1/N for
k = 1, . . . , N). Let Xn = |{ξ1, . . . , ξn}| be the number of distinct values observed up to time n. Show
that Xn is a Markov chain (with respect to the filtration Fn = σ(ξ1, . . . , ξn)).

5. (Durrett 6.2.8) Let Sn be symmetric simple random walk (ξi are iid coin flips, Sn = ξ1+· · ·+ξn), and let
Xn = max{Si : 0 ≤ i ≤ n}. Show that Xn is not a Markov chain (with respect to Fn = σ(ξ1, . . . , ξn)).
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