A Geometric Transformation Theory for PDE

M. Noonan
Cornell University
Table of Contents

1. Pseudospherical Surfaces
2. Proving Lie’s Theorem
3. Geometric Exterior Differential Systems
4. Future Directions
5. Appendix
A surface in \mathbb{E}^3 is \textbf{pseudospherical} if it has constant Gaussian curvature $K = -1$.

A surface in \mathbb{E}^3 is **pseudospherical** if it has constant Gaussian curvature $K = -1$.

The graph of a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defines a pseudospherical surface if and only if f satisfies the PDE

$$
\left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 - \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} + \left(1 + \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right)^2 = 0
$$
A surface in \mathbb{E}^3 is pseudospherical if it has constant Gaussian curvature $K = -1$.

The graph of a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defines a pseudospherical surface if and only if f satisfies the PDE

$$\left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 - \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} + \left(1 + \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right)^2 = 0$$

Note that this equation fails to be even quasilinear — it can only be classified as “rather unpleasant”.
By looking for solutions with a rotational symmetry, we can derive a new equation for the profile curve of a rotationally symmetric pseudospherical surface. This leads to the classical pseudosphere:
Bianchi’s Theorem

Theorem (Bianchi)

Let \(f, \hat{f} \) parametrize two surfaces in \(\mathbb{R}^3 \), and let \(N, \hat{N} \) be the corresponding normal maps. Suppose further that the four relations

- \(|f - \hat{f}| = 1\)
- \(N \perp \hat{N}\)
- \(N \perp f - \hat{f}\)
- \(\hat{N} \perp f - \hat{f}\)

hold at each point. Then \(f \) and \(\hat{f} \) are both parameterizations of pseudospherical surfaces.
The Bianchi relations are *geometric* in the sense that if $f \sim \hat{f}$ and g is any Euclidean motion, $g \cdot f \sim g \cdot \hat{f}$.

Two surfaces are Bianchi-related at p, \hat{p} exactly when the tangent planes are in the geometric configuration depicted below:

Figure: Two planes related by a 90° unit-distance screw motion.
Bianchi’s theorem describes a relation which can only exist between pseudospherical surfaces. Can we use Bianchi’s theorem as a bridge to build new $K = -1$ surfaces from old ones?
Bianchi’s theorem describes a relation which can only exist between pseudospherical surfaces. Can we use Bianchi’s theorem as a bridge to build new $K = -1$ surfaces from old ones?

Theorem (Lie)

Let f parameterize a pseudospherical surface. Then there exists a pseudospherical surface \hat{f} which is Bianchi-related to f. The transformed surface \hat{f} may be computed from f by solving a series of ordinary differential equations.
Bianchi’s theorem describes a relation which can only exist between pseudospherical surfaces. Can we use Bianchi’s theorem as a bridge to build new $K = -1$ surfaces from old ones?

Theorem (Lie)

Let f parameterize a pseudospherical surface. Then there exists a pseudospherical surface \hat{f} which is Bianchi-related to f. The transformed surface \hat{f} may be computed from f by solving a series of ordinary differential equations.

Translation: Once you have one solution to the $K = -1$ equations, it is “easy” to compute a new one!
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pseudospherical Surfaces</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Proving Lie’s Theorem</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Geometric Exterior Differential Systems</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Future Directions</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Appendix</td>
<td></td>
</tr>
</tbody>
</table>
Let $f : M \rightarrow \mathbb{E}^3$ be a parameterized surface.

Definition

A *Euclidean frame* over f is a map $F : M \rightarrow ASO(3)$ such that

$$F \cdot O = f$$

where O is the origin of \mathbb{E}^3.
Let $f: M \rightarrow \mathbb{E}^3$ be a parameterized surface.

Definition

A **Euclidean frame** over f is a map $F: M \rightarrow ASO(3)$ such that

$$F \cdot O = f$$

where O is the origin of \mathbb{E}^3.

Using the standard representation of $ASO(3)$, F must take the block form

$$F = \begin{bmatrix} 1 & 0 \\ f & R \end{bmatrix}, \quad R \in SO(3)$$
A Euclidean frame \(F = \begin{bmatrix} 1 & 0 \\ f & R \end{bmatrix} \) is adapted if

\[\text{Re}_3 = N \]

where \(N \) is the normal map of \(f \).
A Euclidean frame \(F = \begin{bmatrix} 1 & 0 \\ f & R \end{bmatrix} \) is adapted if

\[R e_3 = N \]

where \(N \) is the normal map of \(f \).

Lemma

A Euclidean frame \(F \) is adapted if and only if \(e^3 (F^{-1} dF) = 0 \).
Let $\beta_\theta \in ASO(3)$ be a 90° unit-displacement screw motion in the $\cos(\theta)e_1 + \sin(\theta)e_2$ direction.

Lemma

If $f, \hat{f} : M \rightarrow \mathbb{E}^3$ are Bianchi-related and F is an adapted frame over f, then there is a unique function $\theta : M \rightarrow S^1$ such that

$$\hat{F} = F \cdot \beta_\theta$$

*is an adapted frame over \hat{f}.***
To find the function θ, we need to know when $F \cdot \beta_\theta$ is adapted. Let

$$F^{-1}dF = \begin{bmatrix}
0 & 0 & 0 & 0 \\
\tau^1 & 0 & \lambda & \nu^1 \\
\tau^2 & -\lambda & 0 & \nu^2 \\
0 & -\nu^1 & -\nu^2 & 0
\end{bmatrix}$$

Then $F \cdot \beta_\theta$ is adapted if and only if

$$0 = e^3(\text{Ad}(\beta^{-1}_\theta)(F^{-1}dF) + \beta^{-1}_\theta d\beta_\theta)
= \lambda + \sin(\theta)\tau^1 - \cos(\theta)\tau^2 - d\theta$$
To find the function θ, we need to know when $F \cdot \beta_\theta$ is adapted. Let

$$ F^{-1}dF = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \tau^1 & 0 & \lambda & \nu^1 \\ \tau^2 & -\lambda & 0 & \nu^2 \\ 0 & -\nu^1 & -\nu^2 & 0 \end{bmatrix} $$

Then $F \cdot \beta_\theta$ is adapted if and only if

$$ 0 = e^3(\text{Ad}(\beta_\theta^{-1})(F^{-1}dF) + \beta_\theta^{-1}d\beta_\theta) $$

$$ = \lambda + \sin(\theta)\tau^1 - \cos(\theta)\tau^2 - d\theta $$

...but why should this equation have any solutions?
We have no reason to expect that a function θ exists which also satisfies

$$0 = \lambda + \sin(\theta)\tau^1 - \cos(\theta)\tau^2 - d\theta$$
We have no reason to expect that a function θ exists which also satisfies

$$0 = \lambda + \sin(\theta)\tau^1 - \cos(\theta)\tau^2 - d\theta$$

But if there were such a θ, differentiating the above equation and using the relation $d(F^{-1}dF) = -F^{-1}dF \wedge F^{-1}dF$ gives

$$0 = d\lambda + \cos(\theta)d\theta \wedge \tau^1 + \sin(\theta)d\tau^1$$
$$+ \sin(\theta)d\theta \wedge \tau^2 - \cos(\theta)d\tau^2$$

$$= \nu^1 \wedge \nu^2 + \tau^1 \wedge \tau^2$$
We have no reason to expect that a function θ exists which also satisfies

$$0 = \lambda + \sin(\theta)\tau^1 - \cos(\theta)\tau^2 - d\theta$$

But if there were such a θ, differentiating the above equation and using the relation $d(F^{-1}dF) = -F^{-1}dF \wedge F^{-1}dF$ gives

$$0 = d\lambda + \cos(\theta)d\theta \wedge \tau^1 + \sin(\theta)d\tau^1$$
$$+ \sin(\theta)d\theta \wedge \tau^2 - \cos(\theta)d\tau^2$$
$$= \nu^1 \wedge \nu^2 + \tau^1 \wedge \tau^2$$

$$= K |df|^2 + |df|^2$$

Note the miracle — all dependence on θ has vanished!
We can interpret the previous calculation as saying that the overdetermined system of PDEs

$$d\theta = \lambda + \sin(\theta)\tau^1 - \cos(\theta)\tau^2$$

is consistent if and only if $K = -1$ on the surface f.
We can interpret the previous calculation as saying that the overdetermined system of PDEs

\[d\theta = \lambda + \sin(\theta)\tau^1 - \cos(\theta)\tau^2 \]

is consistent if and only if \(K = -1 \) on the surface \(f \).

Lemma

A consistent overdetermined system of first-order PDEs can always be solved by a sequence of ordinary integrations.

This proves Lie's theorem: if \(f \) is pseudospherical, then by solving a sequence of ODEs we may find a second Bianchi-related pseudospherical surface \(\hat{f} \).
Application: Transforming the Pseudosphere
Underlying Equations

Using the curvature-line adapted frame F on the pseudosphere:

$$\frac{\partial \theta}{\partial x} = \sin \theta \tanh x, \quad \frac{\partial \theta}{\partial y} = (1 - \cos \theta) \text{sech} x$$
Application: Transforming the Pseudosphere

Underlying Equations

Using the curvature-line adapted frame F on the pseudosphere:

$$\frac{\partial \theta}{\partial x} = \sin \theta \tanh x, \quad \frac{\partial \theta}{\partial y} = (1 - \cos \theta) \text{sech} x$$

Starting with $\theta(0, 0) = \pi$,
Application: Transforming the Pseudosphere

Underlying Equations

Using the curvature-line adapted frame F on the pseudosphere:

$$\frac{\partial \theta}{\partial x} = \sin \theta \tanh x, \quad \frac{\partial \theta}{\partial y} = (1 - \cos \theta) \text{sech} x$$

Starting with $\theta(0, 0) = \pi$, the second equation may be integrated along the curve $x = 0$ to obtain

$$\theta(0, y) = \pi + 2 \tan^{-1}(y)$$
Using the curvature-line adapted frame F on the pseudosphere:

\[
\frac{\partial \theta}{\partial x} = \sin \theta \tanh x, \quad \frac{\partial \theta}{\partial y} = (1 - \cos \theta) \sech x
\]

Starting with $\theta(0, 0) = \pi$, the second equation may be integrated along the curve $x = 0$ to obtain

\[
\theta(0, y) = \pi + 2 \tan^{-1}(y)
\]

Then integrate along each curve $y' = 0$ to get

\[
\theta(x, y) = \pi + 2 \tan^{-1}(y \sech x)
\]
Results

Using the θ constructed above, $\hat{F} = F \cdot \beta_\theta$ is an adapted frame for a new pseudospherical surface \hat{f}.
Application: Transforming the Pseudosphere

Results

Using the θ constructed above, $\hat{F} = F \cdot \beta_{\theta}$ is an adapted frame for a new pseudospherical surface \hat{f}. In this case we obtain Kuen’s Surface, a very nontrivial surface with $K = -1$.
Homogeneous Spaces

Definition (Homogeneous Space)

A **homogeneous space** is a smooth manifold M equipped with a smooth transitive left action of a Lie group G. We call G the **structure group** of M.
Examples of Homogeneous Spaces

1. The round n-sphere S^n is a homogeneous space for the rotation group $SO(n + 1)$.
Examples of Homogeneous Spaces

1. The round \(n \)-sphere \(S^n \) is a homogeneous space for the rotation group \(SO(n + 1) \).

2. Euclidean \(n \)-space \(\mathbb{E}^n \) is a homogeneous space for the Euclidean group \(ASO(n) = \mathbb{R}^n \ltimes SO(n) \).
Examples of Homogeneous Spaces

1. The round n-sphere S^n is a homogeneous space for the rotation group $SO(n + 1)$.

2. Euclidean n-space \mathbb{E}^n is a homogeneous space for the Euclidean group $ASO(n) = \mathbb{R}^n \rtimes SO(n)$.

3. The conformal sphere $\mathbb{C}P^1$ is a homogeneous space for the Möbius group $PSL(2, \mathbb{C})$. Note that this is a distinct space from S^2, even though they are diffeomorphic!
Examples of Homogeneous Spaces

1. The round n-sphere S^n is a homogeneous space for the rotation group $SO(n+1)$.

2. Euclidean n-space \mathbb{E}^n is a homogeneous space for the Euclidean group $ASO(n) = \mathbb{R}^n \rtimes SO(n)$.

3. The conformal sphere $\mathbb{C}P^1$ is a homogeneous space for the Möbius group $PSL(2, \mathbb{C})$. Note that this is a distinct space from S^2, even though they are diffeomorphic!

4. If H is any Lie subgroup of G, then the coset space G/H is a homogeneous space with structure group G.
An invariant relation on a homogeneous space M is a subset of $M \times M$ which is fixed under the diagonal action of G.

Theorem

*The double coset space $\mathcal{R}_M = H \backslash G / H$ is isomorphic to the space of atomic invariant relations on $M = G/H$.**
Invariant Relations

An **invariant relation** on a homogeneous space M is a subset of $M \times M$ which is fixed under the diagonal action of G.

Theorem

The double coset space $\mathcal{R}_M = H \backslash G / H$ is isomorphic to the space of atomic invariant relations on $M = G / H$.

Corollary

Given any point $x \in M$ and atomic invariant relation $r \in \mathcal{R}_M$, there is an H-family of related points $y \sim_r x$.

For U_T^3, $SO(2) \backslash ASO(3) / SO(2)$ is coordinatized by the four relations which appear in Lie’s theorem.
Generalized Bianchi and Lie Theorems

Now we can seek a generalization of Bianchi’s relations and Lie’s theorem to other homogeneous spaces, along the lines of

Theorem (Generalized Bianchi)

Let \(f, \hat{f} : X \rightarrow M \) be two surfaces in the homogeneous space \(M \) and \(r \in \mathcal{R}_M \) a relation such that [??]. If \(f_p \sim_r \hat{f}_p \) for all \(p \in X \), then \(f \) and \(\hat{f} \) satisfy the differential equations \(\Delta, \hat{\Delta} \) respectively.

Theorem (Generalized Lie)

If \(f \) satisfies \(\Delta \) and \(r \in \mathcal{R}_M \) is as above, then there is a surface \(\hat{f} \) such that \(f \sim_r \hat{f} \) and \(\hat{f} \) satisfies \(\hat{\Delta} \). \(\hat{f} \) may be constructed from \(f \) by solving a sequence of ODEs.
Every smooth first-order ODE Δ for one function of one variable is of the form

$$F_\Delta(x, y, y') = 0$$

for some smooth function $F_\Delta : \mathbb{R}^3 \longrightarrow \mathbb{R}$. We may think of formal solutions to Δ as being curves $\gamma : (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^3$ such that $F_\Delta \circ \gamma = 0$.
Every smooth first-order ODE Δ for one function of one variable is of the form

$$F_{\Delta}(x, y, y') = 0$$

for some smooth function $F_{\Delta} : \mathbb{R}^3 \rightarrow \mathbb{R}$. We may think of formal solutions to Δ as being curves $\gamma : (-\epsilon, \epsilon) \rightarrow \mathbb{R}^3$ such that $F_{\Delta} \circ \gamma = 0$.

Giving \mathbb{R}^3 the coordinates x, y, p, a formal solution is an actual solution to Δ exactly when

$$\gamma^*(dy - p \, dx) = 0$$
The same idea works for general differential equations, of any order and in any number of dependent and independent variables.
The same idea works for general differential equations, of any order and in any number of dependent and independent variables.

Lemma

To any PDE Δ there is a manifold M_Δ and a differential ideal $\Theta_\Delta \leq \Omega^\bullet_{M_\Delta}(\mathbb{R})$ such that solutions to Δ are in a natural correspondence with maps $f : U \rightarrow M_\Delta$ satisfying $f^\Theta_\Delta = 0$.*

The pair $(M_\Delta, \Theta_\Delta)$ is called an **exterior differential system**, or EDS.
Exterior Differential Systems
Example of an EDS for a PDE

Let Δ be the Euler-Tricomi equation $\frac{\partial^2 u}{\partial x^2} = x \frac{\partial^2 u}{\partial y^2}$. Then Δ is equivalent to the EDS generated by the 1-forms

$$\alpha = du - p \, dx - q \, dy, \quad \beta = p \, dy + xq \, dx$$

on \mathbb{R}^5 with coordinates x, y, u, p, q.
Exterior Differential Systems
Example of an EDS for a PDE

Let Δ be the Euler-Tricomi equation $\frac{\partial^2 u}{\partial x^2} = x \frac{\partial^2 u}{\partial y^2}$. Then Δ is equivalent to the EDS generated by the 1-forms

$$\alpha = du - p \, dx - q \, dy, \quad \beta = p \, dy + xq \, dx$$

on \mathbb{R}^5 with coordinates x, y, u, p, q.

If $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^5$ satisfies $f^* \Theta = 0$ then from $f^* \alpha = 0$ we get

$$p(x, y) = \frac{\partial u}{\partial x}, \quad q(x, y) = \frac{\partial u}{\partial y}$$
Let Δ be the Euler-Tricomi equation $\frac{\partial^2 u}{\partial x^2} = x \frac{\partial^2 u}{\partial y^2}$. Then Δ is equivalent to the EDS generated by the 1-forms

$$\alpha = du - p\,dx - q\,dy, \quad \beta = p\,dy + xq\,dx$$

on \mathbb{R}^5 with coordinates x, y, u, p, q.

If $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^5$ satisfies $f^*\Theta = 0$ then from $f^*\alpha = 0$ we get

$$p(x, y) = \frac{\partial u}{\partial x}, \quad q(x, y) = \frac{\partial u}{\partial y}$$

Combined with $f^*d\beta = 0$,

$$0 = dp \wedge dy + x\,dq \wedge dx = \left(\frac{\partial^2 u}{\partial x^2} - x \frac{\partial^2 u}{\partial y^2} \right) \, dx \wedge dy$$
Let Θ be an EDS which is differentially generated by a set I of 1-forms. We call Θ integrable (or Frobenius) if

$$dI = 0 \mod I$$

so that Θ is algebraically generated by I as well. Θ is integrable if and only if I^\perp is a Frobenius distribution.
Integrable Extensions of EDSs

Integrability

Let Θ be an EDS which is differentially generated by a set I of 1-forms. We call Θ integrable (or Frobenius) if

$$dI = 0 \mod I$$

so that Θ is algebraically generated by I as well. Θ is integrable if and only if I^\perp is a Frobenius distribution.

Let $\pi : Y \longrightarrow X$ be a submersion, Θ an EDS on X, and $\tilde{\Theta}$ an EDS on Y such that $\pi^*\Theta \subseteq \tilde{\Theta}$.

Definition

If $\tilde{\Theta}$ is generated by $\pi^*\Theta$ and $J \subseteq \Omega^1_Y(\mathbb{R})$ with J a basis of $(\ker d\pi)^*$, then $\tilde{\Theta}$ is called an extension of Θ. If additionally $dJ = 0 \mod J$, $\pi^*\Theta$ then the extension is called integrable.
If $\tilde{\Theta}$ is an extension of Θ then there are solutions to $\tilde{\Theta}$ lifting any solution to Θ. If the extension is integrable, then finding a solution to $\tilde{\Theta}$ over a solution of Θ only involves solving a Frobenius system.

Theorem (Estabrook-Wahlquist)

Let $\tilde{\Theta}$ be an integrable extension of Θ, $f : U \to X$ a solution to Θ, and $q \in \pi^{-1}f(p)$ for some $p \in U$. Then there is a unique lift $\tilde{f} : U \to Y$ of f through q, and \tilde{f} may be constructed by solving a sequence of ordinary differential equations.
Geometric Exterior Differential Systems

Definition

Not every PDE on a manifold M is interesting. In order to narrow our focus, we will define a class of PDEs which only contains equations involving geometric quantities.
Not every PDE on a manifold M is interesting. In order to narrow our focus, we will define a class of PDEs which only contains equations involving geometric quantities.

Definition

Let M be a homogeneous space with structure group G. A **geometric exterior differential system (gEDS)** on M is a differential ideal $\Theta \leq \Omega^\bullet_M(\mathbb{R})$ such that Θ is invariant under the action of G.

A gEDS is only general enough to encode “geometrically meaningful” differential equations.
Let $U\mathbb{TE}^3$ be the unit tangent bundle of Euclidean 3-space, so $U\mathbb{TE}^3 \cong \mathbb{E}^3 \times S^2$. An element (T, R) of the Euclidean group $ASO(3)$ acts on $(p, n) \in \mathbb{E}^3 \times S^2$ by

$$(T, R) \cdot (p, n) = (T + R \cdot p, R \cdot n)$$

This action is clearly transitive, so $U\mathbb{TE}^3$ is a homogeneous space for the Euclidean group.
Geometric Exterior Differential Systems
Example: $U\mathbb{T}\mathbb{E}^3$

Let $U\mathbb{T}\mathbb{E}^3$ be the unit tangent bundle of Euclidean 3-space, so $U\mathbb{T}\mathbb{E}^3 \cong \mathbb{E}^3 \times S^2$. An element (T, R) of the Euclidean group $ASO(3)$ acts on $(p, n) \in \mathbb{E}^3 \times S^2$ by

$$(T, R) \cdot (p, n) = (T + R \cdot p, R \cdot n)$$

This action is clearly transitive, so $U\mathbb{T}\mathbb{E}^3$ is a homogeneous space for the Euclidean group.

Claim: The 1-form $\langle n, dp \rangle$ is invariant.
Let $U_T E^3$ be the unit tangent bundle of Euclidean 3-space, so $U_T E^3 \cong \mathbb{E}^3 \times S^2$. An element (T, R) of the Euclidean group $ASO(3)$ acts on $(p, n) \in \mathbb{E}^3 \times S^2$ by

$$(T, R) \cdot (p, n) = (T + R \cdot p, R \cdot n)$$

This action is clearly transitive, so $U_T E^3$ is a homogeneous space for the Euclidean group.

Claim: The 1-form $\langle n, dp \rangle$ is invariant.

$$L^*_{(T, R)} \langle n, dp \rangle = \langle R \cdot n, d(T + R \cdot p) \rangle = \langle R \cdot n, R \cdot dp \rangle = \langle n, dp \rangle$$
Let Θ be the differential ideal on $U \mathbb{E}^3$ generated by $\langle n, dp \rangle$. Since $\langle n, dp \rangle$ is G-invariant, so is Θ. Therefore, Θ is a gEDS.
Geometric Exterior Differential Systems

Example: $U\mathbb{E}^3$ continued

Let Θ be the differential ideal on $U\mathbb{E}^3$ generated by $\langle n, dp \rangle$. Since $\langle n, dp \rangle$ is G-invariant, so is Θ. Therefore, Θ is a gEDS.

Integral manifolds of Θ are maps $f : U \rightarrow \mathbb{E}^3$, $n : U \rightarrow S^2$ such that n is the normal map of f. In this sense, Θ is a geometric version of a contact ideal.
Let M be a homogeneous space with structure group G, and let $H \leq G$ be the stabilizer of some point $p \in M$.

Theorem (N–, 2008)

There is a one-to-one correspondence between gEDSs on M and $\text{ad}^(\mathfrak{h})$-submodules of $\mathfrak{h}^\perp \subseteq \mathfrak{g}^*$.*

Usage: This theorem allows us to replace gEDS calculations with much simpler computations on \mathfrak{g}^*.
The Exterior Algebra on a Homogeneous Space
The Exterior Derivative

A local frame on $U \subseteq M$ relative to q is a map $\sigma : U \rightarrow G$ such that $\sigma(p) \cdot q = p$.
A local frame on $U \subseteq M$ relative to q is a map $\sigma : U \rightarrow G$ such that $\sigma(p) \cdot q = p$.

Lemma

Let $\delta : \mathfrak{g}^* \rightarrow \bigwedge^2 \mathfrak{g}^*$ be the negative dual of the Lie bracket,

$$(\delta \phi)(x, y) = -\phi([x, y])$$

and σ a local frame. Then if Θ is a gEDS we have

$$\mu_{\sigma^{-1}}^*(\delta \Theta) = d(\mu_{\sigma^{-1}}^* \Theta)$$

where $\mu_g(p) = g \cdot p$ is the action of G on M.

Moral: δ replaces d as the exterior derivative for a gEDS.
Since we have a differential on g^* and a pairing \lrcorner of g^* with g, we can define for any $\xi \in g$ the **Lie derivative** $L_\xi : \bigwedge^k g^* \longrightarrow \bigwedge^k g^*$ by

$$L_\xi \omega = \xi \lrcorner (\delta \omega) + \delta (\xi \lrcorner \omega)$$
Since we have a differential on g^* and a pairing \downarrow of g^* with g, we can define for any $\xi \in g$ the Li derivative $L_\xi : \bigwedge^k g^* \to \bigwedge^k g^*$ by

$$L_\xi \omega = \xi \downarrow (\delta \omega) + \delta (\xi \downarrow \omega)$$

Lemma

Let \mathfrak{h} be a subalgebra of g, and $\Theta \leq \bigwedge \mathfrak{h}^\perp$ an ideal closed under δ. Then Θ is ad$^*(\mathfrak{h})$-invariant (and therefore a gEDS on G/H) if and only if

$$L_\xi \Theta = 0 \mod \Theta$$

for all $\xi \in \mathfrak{h}$.
For each $\xi \in \mathfrak{h}$ there is a special operator $\nabla_\xi : g^* \longrightarrow \bigwedge^2 g^*$, useful in determining which relations lead to Bäcklund transformations. This operator is defined by the equation

$$\nabla_\xi \omega = \xi \lrcorner (\omega \wedge \delta \omega)$$

∇ is used to single out a lift of f which realizes the relation to \hat{f}.
The Main Theorem

Theorem (N--, 2009)

Let $\Theta \subseteq \mathfrak{h} \perp$ generate a gEDS on the homogeneous space $M = G/H$, and let $[\beta] \in H \backslash G/H$ be a geometric relation. Define $\Delta, \hat{\Delta} \in \text{Hom}(\mathfrak{h} \times \Theta, \bigwedge^2 g^*)$ by

$\Delta(\xi, \vartheta) = \nabla_\xi \text{Ad}^*(\beta^{-1})\vartheta$,

$\hat{\Delta}(\xi, \vartheta) = \nabla_\xi \text{Ad}^*(\beta)\vartheta$.

If β is such that for all $\xi \in \mathfrak{h}$ we have $L_\xi \Delta = L_\xi \hat{\Delta} = 0 \mod \Theta$ then:

1. (Generalized Bianchi) If f and \hat{f} are Θ-adapted and $f \sim_{[\beta]} \hat{f}$, then f, \hat{f} satisfy the differential equations $\Delta, \hat{\Delta}$ resp.

2. (Generalized Lie) If f is Θ-adapted and satisfies Δ, then we can construct a \hat{f} which is $[\beta]$-related to f, is Θ-adapted, and which satisfies $\hat{\Delta}$. Furthermore, \hat{f} may be constructed by integrating a series of ODEs.
The Main Theorem

Proof Outline

Define $\Theta_1 = \Theta \cup \Delta$, $\Theta_2 = \Theta \cup \hat{\Delta}$, where Θ is a gEDS generated by 1-forms. The goal is to construct a gEDS which is an integrable extension of both Θ_1 and Θ_2.
Define $\Theta_1 = \Theta \cup \Delta$, $\Theta_2 = \Theta \cup \hat{\Delta}$, where Θ is a gEDS generated by 1-forms. The goal is to construct a gEDS which is an integrable extension of both Θ_1 and Θ_2.

Equip $g \times g$ with the projections

$$
\begin{array}{ccc}
g \times g & \xrightarrow{\pi_1} & g \\
& \text{Ad}(\beta^{-1}) \circ \pi_2 & \xrightarrow{} & g
\end{array}
$$

Denote these projections by π, $\hat{\pi}$ for short.
The Main Theorem
Proof Outline

1. Define a gEDS Ω on $g \times g$ differentially generated by the 2-forms $\pi^* \Delta$, $\hat{\pi}^* \hat{\Delta}$, the 1-forms $\pi^* \Theta$, and

 \[\left\{ \pi^* \phi - \hat{\pi}^* \phi \mid \phi \in g^* \right\} \]

 A map $(F, \hat{F}) : X \longrightarrow G \times G$ is an integral manifold of Ω iff there is an element $g \in G$ such that $g \cdot F \sim_{[\beta]} \hat{F}$.
The Main Theorem

Proof Outline

1. Define a gEDS Ω on $g \times g$ differentially generated by the 2-forms $\pi^* \Delta$, $\hat{\pi}^* \hat{\Delta}$, the 1-forms $\pi^* \Theta$, and

$$\left\{ \pi^* \varphi - \hat{\pi}^* \varphi \mid \varphi \in g^* \right\}$$

A map $(F, \hat{F}) : X \longrightarrow G \times G$ is an integral manifold of Ω iff there is an element $g \in G$ such that $g \cdot F \sim_{[\beta]} \hat{F}$.

2. The 1-forms in Ω fail to give an integrable extension of Θ. The additional curvature is measured by $\Delta = \nabla \text{Ad}^* (\beta^{-1}) \Theta$.

The Main Theorem

Proof Outline

1. Define a gEDS Ω on $g \times g$ differentially generated by the 2-forms $\pi^* \Delta$, $\hat{\pi}^* \hat{\Delta}$, the 1-forms $\pi^* \Theta$, and

$$\left\{ \pi^* \varphi - \hat{\pi}^* \varphi \mid \varphi \in g^* \right\}$$

A map $(F, \hat{F}) : X \rightarrow G \times G$ is an integral manifold of Ω iff there is an element $g \in G$ such that $g \cdot F \sim_{[\beta]} \hat{F}$.

2. The 1-forms in Ω fail to give an integrable extension of Θ. The additional curvature is measured by

$$\Delta = \nabla \text{Ad}^*(\beta^{-1}) \Theta.$$

3. Ω is a gEDS for the diagonal action of \mathfrak{h} only when $L_{\mathfrak{h}} \Omega = 0$. This is automatic, except for $L_{\mathfrak{h}} \Delta = 0$.

As an extended example, let us use the main theorem to find the geometric Bäcklund transformations for surfaces in Euclidean 3-space. A generic relation $[\beta]$ on UTE^3 has a representation of the form

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ X & 1 & 0 & 0 \\ Y & 0 & \cos \varphi & -\sin \varphi \\ Z & 0 & \sin \varphi & \cos \varphi \end{bmatrix} \implies \begin{cases} |\hat{f} - f|^2 &= X^2 + Y^2 + Z^2 \\ \langle n, \hat{n} \rangle &= \cos \varphi \\ \langle n, \hat{f} - f \rangle &= Z \\ \langle \hat{n}, \hat{f} - f \rangle &= Z \cos \varphi - Y \sin \varphi \end{cases}$$
Applying the Main Theorem
Canonical Form of Euclidean Relations

As an extended example, let us use the main theorem to find the geometric Bäcklund transformations for surfaces in Euclidean 3-space. A generic relation $[\beta]$ on $UT^{\mathbb{R}}_3$ has a representation of the form

$$
\begin{bmatrix}
1 & 0 & 0 & 0 \\
X & 1 & 0 & 0 \\
Y & 0 & \cos \varphi & -\sin \varphi \\
Z & 0 & \sin \varphi & \cos \varphi
\end{bmatrix}
\Rightarrow
\begin{cases}
|\hat{f} - f|^2 = X^2 + Y^2 + Z^2 \\
\langle n, \hat{n} \rangle = \cos \varphi \\
\langle n, \hat{f} - f \rangle = Z \\
\langle \hat{n}, \hat{f} - f \rangle = Z \cos \varphi - Y \sin \varphi
\end{cases}
$$

$[\beta]$ is a symmetric relation ($[\beta] = [\beta^{-1}]$) when

$$Y \sin \varphi = Z(1 + \cos \varphi)$$
The contact system Θ on $UT\mathbb{E}^3$ is generated by the single element $e^3 \in \text{asso}(3)^\ast$. Since \mathfrak{h} is generated by e_1^2, we get the lone constraint

$$L_{e_1^2} \nabla_{e_1^2} \text{Ad}^\ast (\beta^{-1}) e^3 = 0 \mod \Theta$$
Applying the Main Theorem
Using the ∇ Operator

The contact system Θ on $UT\mathbb{E}^3$ is generated by the single element $e^3 \in \mathfrak{so}(3)^*$. Since \mathfrak{h} is generated by e_1^2, we get the lone constraint

$$L_{e_1^2} \nabla_{e_1^2} \text{Ad}^* (\beta^{-1}) e^3 = 0 \mod \Theta$$

The Differential Equation

The corresponding differential operator Δ is

$$(\sin^2 \varphi) e^1 \wedge e^2 + (Y \sin \varphi) (e_1^3 \wedge e^2 - e_2^3 \wedge e^1) + (X^2 + Y^2) e_1^3 \wedge e_2^3$$
Applying the Main Theorem
Geometric Bäcklund Transformations in UTE^3

Theorem (Bäcklund Transformations in UTE^3)

Let $[\beta] \in \mathcal{R}_{\text{UTE}^3}$ be a geometric relation of the form

\[
|\hat{f} - f|^2 = X^2 + Z^2 \csc^2(\varphi/2)
\]

\[
\langle n, \hat{n} \rangle = \cos \varphi
\]

\[
\langle n, \hat{f} - f \rangle = Z
\]

\[
\langle \hat{n}, \hat{f} - f \rangle = -Z
\]

Then $[\beta]$ induces a geometric Bäcklund transformation between surfaces satisfying the affine Weingarten equation

\[
sin^2 \varphi + 2H((1 + \cos \varphi)Z) + K(X^2 + Z^2 \cot^2 \frac{\varphi}{2}) = 0
\]
Specialize to surfaces satisfying the affine Weingarten equation

\[2K + 2H + 1 = 0. \]

The unit-radius cylinder is a simple solution to the Weingarten equation \(2K + 2H + 1 = 0 \). Let us parameterize the cylinder by \(f(u, v) = (\cos u, \sin u, v)^T \).
The simplest transform of the cylinder is a surface of revolution satisfying $2K + 2H + 1 = 0$ with profile curve

$$\gamma(t) = \frac{1}{4\pi^2 e^{2t} + 1} \left(\begin{array}{c} 4\pi^2 e^{2t} - 4\pi e^t - 1 \\ 4\pi^2 (t - 1)e^{2t} - 4\pi e^t + t + 1 \end{array} \right)$$
There is actually a 1-parameter family of transformations acting on solutions to $2K + 2H + 1 = 0$. The case just analyzed corresponds to the parameter $-\pi/2$. Here is a solution where the parameter is nearly $-\pi$:
More generally, the cylinder transforms to a solution of \(2K + 2H + 1 = 0\) parameterized by

\[
\hat{f}(u, v) = \frac{1}{e^{2u \cot \varphi} + e^{2v \csc \varphi}}.
\]

\[
\begin{pmatrix}
(2e^u \cot \varphi - v \csc \varphi + e^u \cot \varphi) \sin \varphi \sin u + e^u \cot \varphi \cos \varphi \cos u + \cos(u + \varphi) e^{2v \csc \varphi} \\
(2e^u \cot \varphi - v \csc \varphi + e^u \cot \varphi) \sin \varphi \cos u + e^u \cot \varphi \cos \varphi \sin u + \sin(u + \varphi) e^{2v \csc \varphi} \\
(v - \sin \varphi) e^{2v \csc \varphi} + ve^u \cot \varphi + (2e^u \cot \varphi - v \csc \varphi + e^u \cot \varphi) \sin \varphi
\end{pmatrix}
\]

where \(\varphi\) is the parameter mentioned previously.
Table of Contents

1. Pseudospherical Surfaces
2. Proving Lie’s Theorem
3. Geometric Exterior Differential Systems
4. Future Directions
5. Appendix
There are many interesting Bäcklund transformations which are “infinitesimally geometric”, in the sense that the relevant relation is a relation on $g \times \hat{g}$ rather than $G \times \hat{G}$. Let f be a surface and

$$F^{-1}dF = \omega = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \tau^1 & 0 & \lambda & \nu^1 \\ \tau^2 & -\lambda & 0 & \nu^2 \\ 0 & -\nu^1 & -\nu^2 & 0 \end{bmatrix}$$
There are many interesting Bäcklund transformations which are “infinitesimally geometric”, in the sense that the relevant relation is a relation on $g \times \hat{g}$ rather than $G \times \hat{G}$. Let f be a surface and

$$F^{-1}dF = \omega = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \tau^1 & 0 & \lambda & \nu^1 \\ \tau^2 & -\lambda & 0 & \nu^2 \\ 0 & -\nu^1 & -\nu^2 & 0 \end{bmatrix}$$

- A surface f is minimal if and only if

$$\hat{\omega} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -\tau^2 & 0 & \lambda & \nu^1 \\ \tau^1 & -\lambda & 0 & \nu^2 \\ 0 & -\nu^1 & -\nu^2 & 0 \end{bmatrix}$$

is integrable.
A surface f has constant mean curvature 1 (CMC) if and only if

$$\hat{\omega} = \begin{bmatrix} 0 & \tau^2 & -\tau^1 & 0 \\ -\tau^2 & 0 & \lambda & \nu^1 \\ \tau^1 & -\lambda & 0 & \nu^2 \\ 0 & -\nu^1 & -\nu^2 & 0 \end{bmatrix}$$

is integrable in $\mathfrak{so}(4)$.

The surface corresponding to $\hat{\omega}$ is minimal in S^3. Combined with the Dorfmeister-Pedit-Wu method, we get a new Weierstrass representation for CMC surfaces (N–, 2006).
A surface f has constant mean curvature 1 (CMC) if and only if

$$\hat{\omega} = \begin{bmatrix} 0 & \tau^2 & -\tau^1 & 0 \\ -\tau^2 & 0 & \lambda & \nu^1 \\ \tau^1 & -\lambda & 0 & \nu^2 \\ 0 & -\nu^1 & -\nu^2 & 0 \end{bmatrix}$$

is integrable in $\mathfrak{so}(4)$.

The surface corresponding to $\hat{\omega}$ is minimal in S^3. Combined with the Dorfmeister-Pedit-Wu method, we get a new Weierstrass representation for CMC surfaces (N–, 2006).

(N–, 2008) There are similar transformations taking Nambu-Goto strings in $\mathcal{L}^{2,1}$ to themselves, and taking Nambu-Goto strings in $(2, 1)$-dimensional deSitter space to strings subject to an additional field in $\mathcal{L}^{2,1}$.
In the classical case, it happens that θ is a solution to the sine-Gordon equation

$$\frac{\partial^2 \theta}{\partial u^2} - \frac{\partial^2 \theta}{\partial v^2} = \frac{1}{2} \sin(2\theta)$$

The geometric Bäcklund transformations also induce Bäcklund transformations of the sine-Gordon equation.
In the classical case, it happens that θ is a solution to the sine-Gordon equation

$$\frac{\partial^2 \theta}{\partial u^2} - \frac{\partial^2 \theta}{\partial v^2} = \frac{1}{2} \sin(2\theta)$$

The geometric Bäcklund transformations also induce Bäcklund transformations of the sine-Gordon equation.

Conjecture

By comparing the special frames appearing in the transformations to canonical frames, we should be able to systematically associate a totally integrable PDE for H-valued functions to each geometric transformation on G/H.
In the classical Bäcklund transform, the relations $|\hat{f} - f| = 1$ and $\langle n, \hat{n} \rangle = 0$ can be replaced with $|\hat{f} - f| = \sin \alpha$, $\langle n, \hat{n} \rangle = \cos \alpha$ to get a Bäcklund transform β_α.

Theorem (Bianchi’s Permutability Theorem)

Let f be a pseudospherical surface, and $\beta_\alpha f$ its transform. Then

$$\beta_\alpha \beta_\alpha' f = \beta_\alpha' \beta_\alpha f$$

Furthermore, $\beta_\alpha \beta_\alpha' f$ is an algebraic function of f, $\beta_\alpha f$, and $\beta_\alpha' f$.

Leads to a *nonlinear superposition principle* for these surfaces. Can this be generalized?
The techniques described here only pick out “elementary” equations, so we get things like $aK + bH + c = 0$ but not $H^2 - K = 0$, despite the fact that $H^2 - K = (\kappa_1 - \kappa_2)^2$ is a Euclidean invariant.

Is there a natural analog of prolongation which gives access to these invariants?
Thank you for your time!
Table of Contents

1. Pseudospherical Surfaces
2. Proving Lie’s Theorem
3. Geometric Exterior Differential Systems
4. Future Directions
5. Appendix
Integrating an Overdetermined System

To integrate an overdetermined PDE $df = \Phi(\vec{x}, f)$, pick a complete flag $X_1 \subset X_2 \subset \cdots \subset X$ on the independent variables and solve for f inductively. Moving up each step in the flag only involves integrating an ODE.
Integrating an Overdetermined System

To integrate an overdetermined PDE $df = \Phi(\vec{x}, f)$, pick a complete flag $X_1 \subset X_2 \subset \cdots \subset X$ on the independent variables and solve for f inductively. Moving up each step in the flag only involves integrating an ODE.
Integrating an Overdetermined System

To integrate an overdetermined PDE \(df = \Phi(\vec{x}, f) \), pick a complete flag \(X_1 \subset X_2 \subset \cdots \subset X \) on the independent variables and solve for \(f \) inductively. Moving up each step in the flag only involves integrating an ODE.
Integrating an Overdetermined System

To integrate an overdetermined PDE \(df = \Phi(\vec{x}, f) \), pick a complete flag \(X_1 \subset X_2 \subset \cdots \subset X \) on the independent variables and solve for \(f \) inductively. Moving up each step in the flag only involves integrating an ODE.
Integrating an Overdetermined System

To integrate an overdetermined PDE $df = \Phi(\vec{x}, f)$, pick a complete flag $X_1 \subset X_2 \subset \cdots \subset X$ on the independent variables and solve for f inductively. Moving up each step in the flag only involves integrating an ODE.
Kuen’s Surface
Kuen’s Surface

\[\hat{f}(u, v) = \left(\begin{array}{c}
\frac{2}{1+v^2 \text{sech}^2 u} (\text{sech} u \cos v + v \text{sech} u \sin v) \\
\frac{2}{1+v^2 \text{sech}^2 u} (\text{sech} u \sin v - v \text{sech} u \cos v) \\
u - \frac{2}{1+v^2 \text{sech}^2 u} \tanh u
\end{array} \right) \]