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Although the phrase ‘unreasonable effectiveness of mathe-
matics’ is widely used, it is not clear what it means. To 
understand this phrase critically, we first need to under-
stand the meaning of mathematics and what it means 
to use it in the sciences. This paper begins by con-
sidering the different views on the nature of mathe-
matics, the diversity of which points to the difficulty in 
understanding what mathematics really is, a difficulty 
which adds to the mysteriousness of the applicability 
of mathematics. It is also not clear as to what is applied 
when we apply mathematics. What is clear however is 
that mathematics cannot be applied to the world but 
only to some descriptions of the world. This descrip-
tion occurs through the medium of language and mod-
els, thus leading us to consider the role of mathematics 
as language. The use of a language like English to des-
cribe the world is itself ‘unreasonably effective’ and 
the puzzle with mathematics is just one reflection of this 
larger mystery of the relation between language and 
the world. The concluding parts of this paper argue 
how the view of mathematics as language can help us un-
derstand the mechanisms for its effective applicability.  
 
SOME words and phrases are destined to capture the imagina-
tion and in so doing get widely used. As a consequence, they 
are also open to serious misunderstanding. ‘Unreasonable 
effectiveness of mathematics’ is one such phrase which is 
often invoked but little analysed or understood. This phrase 
was made famous by Eugene Wigner in the Richard Courant 
Lecture in Mathematical Sciences at New York University 
in 1959, which was subsequently published in the Communi-
cations in Pure and Applied Mathematics in 1960. I will 
begin by summarizing Wigner’s arguments in order to 
understand exactly what he meant when he used the phrase 
‘unreasonable effectiveness’, after which I will analyse 
what mathematics and mathematization means, and then 
conclude with one explanation for the effectiveness of mathe-
matics. 
 Wigner begins with a story of two friends, one of whom, 
a statistician, was working on population distribution1. 
When the statistician explained the symbol ð occurring in 
a particular distribution, the friend, who presumably was 
not a mathematician, thought it was a joke and said, ‘surely 

the population has nothing to do with the circumference 
of a circle’. Wigner learns a lesson or two from this story. 
He first notes that mathematical concepts turn up unex-
pectedly thereby providing close descriptions of some 
phenomena. Secondly, he believes that because we do not 
know the reason why mathematics is so unexpectedly useful 
we will not be able to say with certainty whether a theory we 
hold true is uniquely appropriate to a phenomenon or not. 
With this as his starting point he analyses the usefulness of 
mathematics in the natural sciences and comments that this 
usefulness is mysterious and has ‘no rational explanation’ 
for it. 
 The significant use of mathematics in the sciences owes 
a great debt to the belief that the laws of nature are writ-
ten in the language of mathematics, a statement attributed 
to Galileo and one which has been echoed for centuries 
after by figures such as Newton, Einstein and Feynman. 
Wigner too joins this chorus and begins by correctly noting 
that only some mathematical concepts are used in the formu-
lation of laws of nature and these concepts are not chosen 
arbitrarily. One of the elements contributing to the mystery 
of mathematics lies in the physicist stumbling upon a 
mathematical concept that best describes a phenomenon 
only to find that the mathematician has already developed 
that concept independently. As examples, Wigner cites com-
plex numbers and functions, the appropriateness of which is 
especially manifested in the formulation of the complex 
Hilbert space which is so essential to quantum mechanics. 
The surprising (to the common sense) and necessary role 
of complex numbers and functions along with the idea of 
analytic functions is one example of the ‘miracle’ of mathe-
matization.  
 The important argument here is that mathematical con-
cepts are not accidentally useful but are necessary in the sense 
that they are the ‘correct language’ of nature. Wigner offers 
three examples to illustrate this necessary relation. The first 
is that of Newton’s law. Not only was this law based on 
‘scanty observations’, it also contained the physically 
non-intuitive idea of the second derivative and yet exhib-
ited an extremely high sense of accuracy. The second ex-
ample is the matrix formulation of quantum mechanics. 
The miracle in this case, according to Wigner, lay in the fact 
that one could apply these matrix methods even in cases 
where Heisenberg’s initial rules did not apply, as illustrated 
in the calculation of the lowest energy level of helium. 
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The third example is that of quantum electrodynamics, 
particularly the theory of Lamb shift, a theory which 
again showed extremely high accuracy with experiment. 
From this, Wigner concludes that mathematical concepts, 
‘chosen for their manipulability’, are not only appropriate 
but are also accurate formulation of the laws of nature. 
For him, these laws together with the laws of invariance are 
the foundation of the mathematical method in sciences. 
Finally, he considers the uniqueness of theories in phys-
ics and asks whether mathematics alone can help adjudi-
cate which theories are essentially right. The problem here 
is that some theories which are known to be false also 
give ‘amazingly accurate results’. The examples he gives 
of these ‘false’ theories are Bohr’s early model of the atom, 
Ptolemy’s epicycles and the free-electron theory. 
 Wigner concludes by saying that the ‘miracle of the appro-
priateness of the language of mathematics for the formula-
tion of the laws of physics is a wonderful gift which we 
neither understand nor deserve’. I have no comments on 
whether we deserve this ‘gift’ or not but as for understanding 
it, we can at least make an honest try – and this many philo-
sophers have done.  

But what is mathematics? 

Much of what Wigner says must perforce depend on what 
he means by mathematics. Wigner says little about what 
mathematics is but what he says is suggestive. Wigner 
writes, ‘mathematics is the science of skillful operations with 
concepts and rules invented just for this purpose. The prin-
cipal emphasis is on the invention of concepts’. This ability 
to create concepts takes the mathematician into unchar-
tered realms to the point of being imaginatively ‘reck-
less’. Further, there is a notion of generality, simplicity and 
beauty inherent in this creation. 
 Wigner, like many scientists, blissfully ignores some of 
the seminal contributions from philosophy to the understand-
ing of mathematics. His view of mathematics, emphasiz-
ing the importance of rules and the human creative element 
in creating concepts and rules, runs counter to some domi-
nant views on mathematics. Although Wigner does not 
explicitly push this point further, it is clear that his under-
standing of mathematics as being rule-driven makes the 
effectiveness of it a much greater mystery. Namely, how 
is an activity of humans, driven as it is by rules we create 
and with human-centred ideas such as beauty, so well matched 
with the natural world? Wigner was right in his charac-
terization of mathematics even though his analysis of the 
question is incomplete. 
 It will be useful to briefly discuss the dominant views 
of mathematics before we consider the question of appli-
cability. I will summarize five different views on the nature 
of mathematics. The divergence of these positions clearly 
suggests that the mysteriousness of applicability has its 
origins in the ‘mysteriousness’ of mathematics itself.  

Platonism 

Let me first consider the realist view of mathematics. Realists 
about mathematics believe that mathematical entities exist 
independently of humans just as trees and tables do. Pla-
tonism about mathematical entities is the dominant realist 
tradition. Platonists believe that mathematical entities have 
an existence independent of human minds. These entities in-
habit a special world, the Platonic world. Platonism thus 
believes not only in the independent existence of mathe-
matical objects and relations but also believes that the 
‘reality’ of that world explains the universal nature of 
mathematical truth. However, Platonism, although popu-
lar among mathematicians and scientists, runs into serious 
problems when confronted with the applicability of mathe-
matics. In this case, the basic problem is to understand how 
these Platonic entities, which do not have spatial or temporal 
characteristics, can get in touch with our physical world, 
which is defined by spatio-temporal extension. In other 
words, how do we as humans access these Platonic objects? 
And how do these objects link up with our real world? 

Logicism 

One dominant view of mathematics relates it intrinsically to 
logic. Logic elucidates the structure and validity of arguments. 
Reduction of mathematics to logic, in particular deductive 
logic, meant that the complete domain of mathematical acti-
vity was a logical one. Echoing this, the influential logician 
and philosopher Frege argued that ‘mathematics was nothing 
but the systematic construction of complex deductive ar-
guments’, a view which has been dubbed the logicist view 
of mathematics2. Russell attempted to show that all mathe-
matical concepts could be redefined in terms of purely logical 
concepts. The reduction of mathematics to logic would then 
imply, for Russell, that all of mathematics, including its 
axioms and postulates, could be derived entirely from logical 
laws. However, as Dummett notes, there are various problems 
in this reduction of mathematics to logic, including Zer-
melo’s axiom of choice and the axiom of infinity3. Moreover, 
there was a serious problem even with a fundamental 
mathematical entity, the set. If logicism is right, then a set 
should be a logical concept. However, it was clear that a 
set was not a logical concept – one reason being that there 
are many incompatible axiomatizations of set theory. 

Formalism 

Another view of mathematics, influential in its own way, 
is called formalism4. This school was largely associated with 
the German school of mathematics and most notably with the 
illustrious mathematician David Hilbert. The basic idea in 
the formalist view of mathematics is that mathematics is noth-
ing but a set of rules and formal manipulations of mathe-
matical symbols and terms according to these rules. For 
formalists there are no meanings attached to mathematical 
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objects, equations or operations over and beyond these 
meaningless formal manipulations, whether in proof or 
applications. An analogy that has often been made is that 
mathematics is like a chess game, which has its objects 
such as pawns, queen, king and so on, and rules of movement 
for each of these pieces. The formalist view of mathematics 
argues that there is no meaning to mathematics over and 
beyond the game which is played with these mathematical 
objects according to some given rules. Not only was Hil-
bert a strong proponent of this view but so was G. H. 
Hardy who believed that mathematics was just like chess. 
Moreover, Hardy describes even formal mathematical 
proof in terms of the structure of chess: ‘The axioms cor-
respond to the given position of the pieces; the process of 
proof to the rules for moving them; and the demonstrable 
formulae to all possible positions which can occur in the 
game’5. The basic problem with formalism is that it seems 
difficult to accept mathematics as just a game; in particular 
its applicability to the sciences then seems totally arbitrary 
and forces us to ask, why is not chess applicable to the world 
like mathematics is? In fact, Frege believed that it is the 
applicability of mathematics alone that makes mathematics 
more than just a game. On the other hand, for Hardy, the 
very idea of applying mathematics was distasteful and he 
writes that mathematics which has practical uses is ‘on the 
whole, rather dull’ and has ‘least aesthetic va 6. 

Intuitionism 

In contrast to formalism is intuitionism7. The contrast is also 
illustrated in the nationalities associated with these two 
views. Intuitionism was predominantly influenced by the 
French while formalism was developed by German mathe-
maticians. The father of intuitionism was the French mathe-
matician Brouwer who (ironically?) drew upon the German 
philosopher Immanuel Kant’s ideas of intuition and a priori 
truth of mathematics. Intuitionism accepts the ‘obviousness’ 
of mathematical entities and places them on par with objects 
such as chairs and tables. It is in this sense that Godel 
says that we can perceive mathematical objects like sets in 
a manner similar to our perception of objects in our world. 
Godel suggests that ‘we do have something like a perception 
of the objects of set theory, as is seen from the fact that 
the axioms force themselves upon us as being true’8. This is 
an intriguing way of understanding perception; namely, 
perception of something is not the reason for it being true 
but recognizing the truth of something actually suggests 
its perceptability. However, mathematical intuitionism 
seems counter-intuitive, at least with regard to our common 
understanding of perception. The intuitionists find the idea 
of infinity problematic and Brouwer argues that the formal-
ists’ approach to infinity and transfinite set theory is ‘mean-
ingless’ since these are beyond the limits of mathematical 
intuitions. For the intuitionists, mathematics is something 
to be created and not discovered, and the role of a creator 
is best exhibited when the mathematician has to exhibit proof 
for all existential mathematical assertions. 

Mathematics as language 

Finally, let me consider the view that mathematics is a 
product of human imagination, is grounded in our experi-
ence with the world and functions like a language. First is 
the obvious fact that mathematics is a product of humans 
and is created through our interaction with the world. 
This implies that the world catalyses mathematical ideas, 
including the kinds of mathematical entities such as numbers, 
sets, functions and so on. For example, the mathematical 
principle of linearity illustrates the physical principle of super-
position9. If we think of mathematics as beginning with 
numbers along with some operations like addition we can 
find an immediate link between human experience (including 
the activity of counting and aggregating), the structure of 
the world around us and mathematics. While this does not 
mean that every mathematical entity or operation is somehow 
connected to our activity in this world it suggests that the 
distance between mathematics and our world is not that far 
removed in the first place. And this relation between the 
world, humans and mathematics can be analysed in different 
ways. Steiner argues that anthropocentrism pervades applied 
mathematics10. Rotman argues that mathematics is not di-
vorced from the world and mathematical concepts and 
objects arise first from the world11. Sarukkai has shown 
how various discursive strategies actually help to create 
mathematics as we know it now12. This view of mathematics 
offers a canonical answer to the puzzle of unreasonable 
effectiveness of mathematics. Part of the puzzle lies in the 
mysteriousness of the relation between two different kinds 
of worlds – the physical and the mathematical. But if we 
question the proposition that these are different worlds 
and argue that mathematics actually ‘arises’ from the world 
then the unnatural connection is no longer there, thereby 
diluting the puzzle as far as this relation is concerned. I will 
discuss this view of mathematics in much more detail towards 
the end. 
 So we find that there is no simple answer to what mathe-
matics really is. This ambiguity about the scope and depth 
of mathematics gets transferred to the question of applicabi-
lity. The mysteriousness that is enshrined in the phrase 
‘unreasonable effectiveness’ of mathematics reflects as 
much a confusion about the mysteriousness of what mathe-
matics is as much as its applicability. Moreover, there are 
many different types of applicability and different mean-
ings to applicability. I will briefly discuss this issue in a 
later section.  

Mathematization in modern science: lessons from 
the early days 

How exactly did mathematization of the sciences begin? 
Historians trace the origin of the modern sensibility of mathe-
matization from Galileo onwards although he was not the 
first person to use mathematics to describe the world. The 
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Greeks placed mathematics on the highest pedestal; as is well 
known, the golden section was one of the most privileged 
concepts in Greek art, architecture, ethics and science. 
Indian astronomy made extensive use of mathematics, as 
did Ptolemy. But what was special to Galileo was that he 
combined mathematics with experimentation, thereby jus-
tifying his being called the father of modern science. 
 Although Galileo radically changed some fundamental 
presuppositions, his effort nevertheless was built on work by 
others. For example, there were mathematical-philosophers 
predating Galileo who, among other things, had analysed 
the idea of motion in great detail. What Galileo did was 
to relook at the phenomenon of motion in order to describe 
it as faithfully as possible with the help of mathematics, 
corresponding to his belief that physical events were des-
cribable correctly by mathematics. Again what differenti-
ated Galileo from other natural philosophers who used 
mathematics was his insistence that experiments were 
necessary to test and verify the mathematical description. 
This ‘harmony between the world of experience and the 
mathematical form of knowledge, to be attained through 
experiment and critical observation’13 was the unique 
contribution of Galileo. 
 Let me analyse one particular component of Galileo’s 
method to illustrate why the method of mathematization 
seems to work so effectively. Galileo’s mathematics was 
not calculus but number sequences. He discovered by his 
experiment on motion that the distance of free fall of an 
object is proportional to the square of the interval of time. 
How does mathematics manifest itself in this case? Let us 
assume that we have the necessary apparatus to do this ex-
periment. We drop a ball and find the distance it travels after 
one second, two seconds, three seconds and so on. Just by 
noting the distance travelled, we can see a pattern, which 
is that the distance fallen is in multiples of 4, 9 and so on. 
Without needing to know any physical laws or calculus 
we can conjecture that distance varies as the square of the 
distance14.  
 The basic point is this: a pattern about free fall motion is 
discernible by a particular kind of observation that meas-
ures some parameter, in this case distance. Neither the act of 
measurement nor the use of numbers constitutes mathemati-
zation of this problem. But what they do is to illustrate a 
pattern about motion which is not otherwise discernable. 
That the distance varies as time squared is of profound 
importance – this observation plays an important role in 
helping Newton postulate the gravitational force law as 
an inverse square law. 
 Suppose somebody claimed that we could as well have 
described the fall of the object in English instead of mathe-
matics. So when asked to describe this free fall, this person 
could say that the object falls fast, faster and … Note that 
in using English we do not have the capacity to specify 
the relation between fast and faster. Mathematics, as a lan-
guage, has this capacity to tell us something about relations. 
It can tell us that the distance fallen after two seconds is 

not only greater than the distance fallen after one second 
but that the distance is four times more. So the use of 
numbers gives us more information about the distances 
compared to the use of phrases such as ‘greater than’. 
 But this still does not explain the mystery of mathematiza-
tion. Suppose we had numbers but did not have multiplication 
or the concept of proportion. Then we can conceivably 
give values for distance fallen but we will find no propor-
tional relation between them. Say an object falls 16 ft after 
the first second and 64 ft after the second second. Let us 
suppose (however improbable it may seem!) that our 
mathematics has no concept of multiplication and division 
but only addition. Then looking at these numbers we cannot 
find the law that distance varies as time squared. So just 
having numbers is not enough but we also need an appro-
priate set of operations. The question therefore is: if we 
discover new operations and new kinds of numbers would 
we be able to have a ‘better’ description of nature? But 
how do we know what operations are needed? Can nature 
tell us that? Or does mathematics first offer us this? Also, 
note that there are already prior physical concepts in use 
even in this simple problem. Even in a simple mathematical 
description there are many physical concepts which makes 
possible the mathematization. For example, before Newton’s 
law can be written down in a mathematical form the physical 
ideas of force, mass and acceleration need to be present. De-
scribing acceleration as a second-derivative comes after the 
physical intuition of acceleration as a ‘property’ of the mov-
ing object. Thus, the miracle is not in the use of second 
derivative as Wigner has it but in the discovery of accele-
ration as an essential physical concept. Even in the case 
of Newton’s equations, Newton himself notes in his Prin-
cipia that Galileo had known the first two laws of motion – 
this without the use of the second derivative! 
 Descartes, one of the most influential mathematicians and 
philosophers of all time, believed that physics is a branch 
of mathematics as well exemplified by his statement that 
‘no other principles are required in physics than are used 
in Geometry or Abstract Mathematics, nor should any be 
desired, for all natural phenomena are explained by 
them’15. However, his view on mass is an instructive exam-
ple about the pitfalls of ignoring the differences in the ideas 
of the physical and the mathematical. Consider two ways 
of characterizing mass: mass as extensional and as point-like. 
In one sense, mass as extensional reflects a brute facticity 
whereas mass as point-like seems to be counter-intuitive to 
the common sense. Descartes, for all his belief that physics 
is a branch of mathematics, conceptualized mass as being 
extensional. Newton, on the other hand, believed that the 
essence of mass was to be point-like, a move which allowed 
him to formulate his physics. Although Descartes had formu-
lated the principle of inertia which was ‘formally equiva-
lent’ to that of Newton, he did not discover Newtonian 
physics partly because of his belief in the essence of matter 
as being extensional. Descartes’ belief that physics was a 
branch of mathematics came in the way of his acknowledging 
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the importance of experiments in physics. Although he had 
formulated his rule of inertial motion and set of rules of 
impact, they were incorrect because he did not consider the 
vector nature of momentum. Cohen notes that Descartes could 
have easily discovered his mistake by simple experiments16. 
 As a final example, I will briefly consider a seminal 
contribution of Newton to the process of mathematiza-
tion. This particular method of mathematization which he 
initiated continues to influence the way mathematics is used 
in modern science. Cohen isolates one aspect of Newton’s 
use of mathematics, what he calls ‘Newton style’, as illus-
trated in Newton’s derivation of Kepler’s law. First, Newton 
considers a purely mathematical system, nothing to do 
with how the world is but dictated by the concerns of pure 
mathematics. Here a ‘single mass-point moves about a 
centre of force’17. Mathematically, if the centre of force is 
stationary and if the force is always directed towards the 
centre then Kepler’s law of areas can be derived. This is a 
mathematical problem and treated as such. From this 
model he goes on to derive the other laws of Kepler, under 
appropriate conditions. After doing this, Newton compares 
this imaginary world with the real one. This immediately 
necessitates him to deal with two-particle motion since the 
centre of force is also a massive object. Then he develops 
the mathematics of this system. Next, when he compares 
his model with the real world, he finds that he has to take 
into account a much more complex world which has more 
than two bodies in the solar system. This dynamic interplay 
between mathematical ideas and comparison with the physical 
world made Newton realize that laws are absolutely correct 
only as mathematical laws but in physics they are only 
approximations (what he called ‘hypothes  
of mathematization is a continuation of this method (that is, 
the creation of ideal models) along with the concomitant 
realization of the important role of the notion of approxi-
mation18.  

What exactly is being mathematized and applied? 

Let us begin with a catalogue of the furniture of mathe-
matics – there are objects such as numbers, sets, functions 
and matrices; operators such as the ones used in arithmetic 
and calculus; rules of operation which make possible cal-
culation; the equality sign (and associated with it appropriate 
inequalities) and a host of concepts such as continuous, 
analytical, differentiable and so on. So the first point to note 
is that applying mathematics could mean applying any or 
all of the above elements that belong to mathematics. 
 What is mathematics being applied to? Even in the simple 
example of applying a number we notice an interesting 
facet of application. For example, let us say that we first 
start with a statement (in English): ‘there are some apples 
on the table’, then apply the concept of number to this and 
get, say, the statement ‘there are ten apples on the table’. 
This is a proto application of mathematics. But what is 

getting applied to what? Here, the idea of a number is being 
‘applied’ to a sentence in English. The concept of number 
is not being applied to the real apples in the world but to 
a particular description of the world which is first ex-
pressed in English with the help of the word ‘some’. The 
lesson from this simple example is one that is central to 
the process of mathematization: mathematics is first and 
foremost applied not to phenomena in themselves but to 
descriptions of phenomena. The two common modes of des-
cribing phenomena are through language and through 
idealized models (it can be argued that models themselves 
are one kind of linguistic description). Here I would like to 
focus attention on language and in particular to consider-
ing the possibility that the first defining characteristic of 
mathematical application is not the application of mathemat-
ics to the world as such but to other language(s). One way of 
understanding this is as follows: models and languages 
mediate between mathematics and the physical world. 
 Consider the example given by Wigner. Wigner was sur-
prised that a second-derivative, which stands for acceleration, 
was integral to the mathematical formulation yet had no 
common-sensical correlate. But did Newton really write 
his equation this way? It is well known that in Principia 
Newton states his law as follows: ‘The change of motion 
is proportional to the motive force impressed; and is made 
in the direction of the right line in which that force is im-
pressed’19. What exactly has been mathematized in this case? 
Where is the mathematics in Newton’s law expressed in 
the modern form which says force is equal to mass times 
acceleration? In writing force as F, there has really been 
no mathematics done. In the usual form of the equation 
F = ma, we only have a symbolic shorthand for a longer 
sentence and this simple strategy is an important element 
of mathematization. Moreover, force, mass and acceleration 
are not ‘mathematical’ concepts. They are physical ideas 
and the genius of Newton lay in formulating the appro-
priate physical concepts first. (For Galileo, appropriate 
for science implies that they can be measured.) The mys-
tery for Wigner would lie in the fact that the physical idea 
of acceleration can actually be correctly described by a 
second derivative. 
 Mathematics is therefore applied not to the world but 
to language and this application can even be at the level 
of creating appropriate symbolizations. It may also be argued 
that mathematization is actually an application of mathe-
matics to (idealized) models. In the case of planetary motion, 
for example, one applies mathematics to idealized pictures 
and models of the planets. The use of mathematics in order 
to create new descriptions of pictures and models is also 
closely related to the mechanism of applying mathematics 
to language. In the next section I will discuss a little more 
about this particular process of application of mathematics. 
 Finally, the common belief that there is a miraculous 
correspondence between mathematical entities and physical 
concepts might suggest that recognition of this corre-
spondence is instantaneous. But this is hardly the case. 
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Physical concepts like mass or force get refined over centu-
ries. During this process, they come to be associated with 
various physical and mathematical meanings till they settle 
down to some stable mode of description. The real mystery 
might occur when mathematics itself begins to supply physi-
cal concepts20.  
 The problem is compounded when we consider the fol-
lowing: the space of mathematics is much larger than that 
which is applied or perhaps even applicable. There is a sur-
plus of mathematics and only a part of it finds use in the sci-
ences. And more problematically, the same mathematics 
can be used to model and describe worlds which are not 
only very different but also contradictory to our world. That 
is, as far as the truths of our world are concerned, mathemat-
ics is quite indifferent to them. And if we believe that sci-
ence correctly describes our world then this indifference 
of mathematics to the ‘truths’ of our world is a potential em-
barrassment for science if we want to claim that mathematics 
is essential to it. 

Explaining the obvious: the unreasonable  
effectiveness of language21 

Here is one possible way of analysing the usefulness of 
mathematics in the sciences. First, mathematics constitu-
tes a particular kind of description of the world. Descrip-
tion is an activity of language. Languages describe the 
world around us. Different languages offer descriptions 
that are unique to that language. The unique elements of a 
language include the kinds of concepts the language pos-
sesses, its grammatical structure and its larger vocabulary and 
meaning. A same phenomenon can in principle be descri-
bed in different ways by using different languages.  
 The capacity of language to ‘correctly’ describe our world 
is already mysterious. The problem is simple. Assume that the 
world is given to us. The world, distinct from language, is 
nothing but a collection of objects and events. Language 
arises in learning to talk about the objects and events of 
the world. Language not only seems to give us a ‘proper’ 
description of the world but also allows us to negotiate and 
intervene with the world in various ways. For simplicity, 
in what follows let me consider English as an example of 
a language. Describing the world with the help of English 
seems to capture some important facets of the world. Consider 
this simple example. Say we are seeing two objects in 
front of us and we describe our perception by saying ‘one 
object is to the left of the other’. The capacity of English 
to create a word called ‘left’, which describes not an ob-
ject in itself but a relation, is itself surprising but what is 
more amazing is that the linguistic statement ‘one object 
is to the left of the other’ seems to correctly match with our 
perception. But we somehow seem to take it for granted 
that there is no mysteriousness in the capacity of English 
to describe the world. We do not think that the use of English 
suggests an ‘unreasonable effectiveness’ just as the use of 

mathematics does. What could possibly be the reason for this 
lack of surprise at the role of language? 
 One possible reason is this: a natural language like English 
seems to largely arise out of our interaction with the world. 
The word ‘tree’ denotes an object tree – suggesting that 
we create a word in our language to say something about 
an object that we already have in front of us. We can name 
by pointing to things and children often learn the association 
of a word to thing through the act of pointing. In this naï ve 
sense, words in a language seem to be derivative to the 
real world around us and arise in response to the given 
world. Objects and events surround us and we use lan-
guage to talk about them leading us to the commonly held 
view that the world comes first and language follows the 
dictates of the world. This in a way reduces the mysteri-
ousness in the act of using language to talk about the 
world, because it is expected that a natural language like 
English, since it arises from the wellspring of the world, 
should well describe the world. 
 And this is exactly where mathematics is seen to differ 
from English. Mathematical objects are not seen as those 
that belong to the natural world. Many mathematicians 
and scientists in fact believe quite the opposite – namely, 
mathematical entities belong to a Platonic world. How-
ever, mathematics functions in a way similar to natural 
language in the sense that the mathematical language is also 
a language, one which describes the mathematical world. 
For example, it gives names (such as ‘sets’) to mathe-
matical objects (namely, sets), presumably existing in the 
world of mathematics. Therefore, the surprise is all the 
more exaggerated when it is found that mathematical objects, 
which presumably exist independently of our physical world, 
are very apt in describing our physical world. The surprise 
arises in finding that mathematics is doing a work which 
it supposedly should not be doing. And ironically, it seems 
to be doing it ‘better’ than natural language. In what sense 
is it doing a better job? 
 That mathematics does a better job than natural languages 
is perhaps most forcefully explained by the predictive 
success of the sciences based on mathematics. It is the 
predictive success of the sciences, based on mathematics, 
which gives the most important validation of mathematics. 
The mysteriousness of the effectiveness of mathematics is 
enhanced when a scientist stumbles upon a mathematical 
term which is then found to be the best fit to a particular 
physical description, like in the case of groups and symmetry 
or gauge theory and fibre bundles. Echoing this sentiment, 
Weinberg says that it is ‘positively spooky how the 
physicist finds the mathematician has been there before 
him or her’22.  
 However, both these descriptions of the character of Eng-
lish and mathematics are only partly right. English, although 
arising from a response to our natural world, also has the 
capacity to generate words which stand for physically 
non-existent objects. Abstract nouns, for example, refer to 
an abstract entity. Even the very act of having a word ‘num-
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ber’, referring to a mathematical entity number, shows the 
capacity of natural language to refer to things which are be-
yond our physical world. Further, English generates a large 
amount of words which have nothing to do with physical ob-
jects. And the flip side of this is also that mathematics is 
not to be understood as being totally concerned with a 
Platonic world. So, both English and mathematics share 
some important, common features of languages, including the 
capacity to use both of them in different kinds of predic-
tions. Mathematical description seems to be far more suited 
to certain types of description, typically quantitative, whereas 
a description in English may have superior qualitative expres-
sions. 
 There are also some important differences between mathe-
matics and English that we need to note23. In the context 
of applicability, I believe that the most important distinc-
tion which we need to focus upon is the observation that 
mathematics is not ‘one’ language like English. It is actu-
ally a collection of sub-languages each of which has some 
common links. Geometry, algebra, topology, etc. are sub-
languages of a larger entity called mathematics. These are 
sub-languages in the sense that they function like a separate 
language in terms of the concepts they possess, the methodo-
logies they use, their aesthetics and so on, yet share a common 
world with each other. Each discipline of mathematics is 
actually like a sub-language and in talking about mathematics 
as a language, as something homogenous, we overlook this 
important diversity and difference of its many sub-languages. 
 This diverse character of mathematics is very important 
and actually offers an explanation of why mathematics is so 
unreasonably effective. The different sub-languages that 
constitute mathematics make the descriptive enterprise of 
mathematics very interesting. Languages, when they are used 
to describe, explain, define, argue and so on, have specific 
narrative structures. Languages create narratives. A descrip-
tion is one kind of narration. The nature and the effectiveness 
of the description depend on the narrative structure of a lan-
guage. In mathematics, the narrative structure is composed of 
the different elements of its different sub-languages, thereby 
expanding the scope of its narrative capability. Therefore, de-
scription in mathematics consists of much larger and more 
complex narratives than description restricted to only English. 
Let me give a simple illustration of how this is done24. 
 Consider light reflecting from a mirror. How can we 
invoke mathematics here? What kinds of descriptions can 
we develop about this event with the use of mathematics? 
First, as is commonly done, we can give a pictorial repre-
sentation of this process. The mirror is represented by a 
straight line and the incoming ray and the outgoing ray by 
two straight lines. Drawing the normal, we have the angle 
between the rays and the normal. This pictorial represen-
tation is very useful for science in that it allows us to do what 
we want with an idealized system. Mathematics comes 
into play on this idealized picture when we ‘name’ angles 
and use properties of terms such as momentum. So from a 
picture of the process we move into geometry (a sub-

language of mathematics) of the system. This allows us to 
define and describe components of the momenta, forces 
and so on. At this stage we begin to do geometry – in the 
particular case of the reflection of light we do geometry 
on a plane. The results of these calculations will depend 
on some results that belong to the domain of this geome-
try and not the domain of the real phenomenon.  
 So typically this is what happens in the process of 
mathematization. The event in the world is first represented 
pictorially, for example, which can then be expressed in 
another sub-language, say geometry, and then in algebra and 
so on. Each one of these steps takes the real world event into 
different narrative domains. For example, light bouncing off 
a mirror has no velocity component in the real world but 
a mathematical description talks as if the components of 
momentum are real. So the shift into pictures and other 
sub-languages succeeds in adding new descriptions of the 
original event. It is important to note that these descriptions 
are unique to the different sub-languages. Description in the 
pictorial form is very different when compared to the ones 
derived from the geometrical narrative, which is itself very 
different from the one derived from using algebra. For exam-
ple, once we enter the descriptive space of algebra we have 
a new vocabulary that is available to us to describe the 
process: continuity, rate of change, equations of motion and 
so on. This vocabulary, which was not present in the earlier 
sub-languages of pictorial representation or geometry, suc-
ceeds in expanding the narrative possibilities of this process. 
In the realm of algebra, the vocabulary allows us to talk of 
motion in higher dimensions, the possibility of transfor-
mations of co-ordinates, even the physically non-intuitive 
idea of transforming momenta into co-ordinates and so on. 
The important sub-language of calculus along with algebra 
allows us to develop extremely rich narratives about a simple 
process such as a ray of light bouncing off a mirror. 
 Thus, we see that the process of mathematization using 
the many sub-languages of mathematics enlarges the pos-
sible descriptions one can have of a process. There are 
literally no conceivable limits to what sub-languages we can 
use for this description. If, for example, someone finds the 
vocabulary and grammar of topology useful in the description 
of a bouncing ball then it becomes part of the larger mathe-
matical description of this process. 
 So, first and foremost, using mathematics to describe the 
physical world is a means of finding ways to create mul-
tiple descriptions of a physical object or event. We can 
see that a language like English will only create limited 
narratives about a phenomenon because it does not have 
the rich sub-languages that mathematics has. When we use 
mathematics as a language to describe a process we first 
of all create a rich storehouse of possible narratives. What 
among them will fit the world is an issue that mathematics 
is unconcerned about. The job of mathematics in sciences 
is essentially to proliferate narratives and the more number 
of narrative descriptions are possible the better probability 
that there will be a fit somewhere, sometime. 
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Compounding the problem – the pictorial role of 
mathematics 

A great deal of creative mathematics, both pure and applied, 
depends on analogy. I want to illustrate a few cases of analo-
gies that have to do with formal patterns of the mathematical 
symbols. It is remarkable that mimicking the patterns of 
written mathematical terms yields profound new ideas in 
physics. The history of mathematics and science is replete 
with this strategy. The following elementary example is 
primarily to illustrate a seemingly arbitrary method used 
in mathematization. A detailed analysis of the role of form 
in mathematical discourse is extremely illuminating but here 
I will only briefly touch upon this issue25. 
 The basic strategy is this: by looking at the way in which 
mathematical expressions are written and arise in the course 
of calculation we are able to identify some new information. 
A simple example is that of a term which looks like 
1/2ab2. When we see such an expression in the context of 
some calculation it seems natural to identify a with a mass 
term and b with a velocity term since this expression looks 
like a kinetic energy term. Identifying and discovering such 
terms can be very important steps in theoretical research 
in science. Consider the following example from Landau 
and Lifshitz’s Mechanics. Consider two particles with 
masses m1, m2 and velocities v1 and v2 in an interactive 
potential field. The total kinetic energy of the system is 
the sum of the kinetic energies of the two particles. In this 
system, we can rewrite the total kinetic energy as one 
term which looks like 1/2ab2. Now, looking at this we in-
terpret a as the mass term (the reduced mass) and b as the 
velocity term. Further, the authors claim that because the 
expression of two-particle kinetic energy terms reduces to 
that of one kinetic energy term the two-particle motion is 
equivalent to the motion of one particle26.  
 This strategy of ‘discovering’ mass is one that is practiced 
right across the many disciplines of science. In physics, it 
is extensively used in areas ranging from classical physics 
to particle physics. In fact, the identification of mass terms 
in quantum field theory follows similar ‘pattern recognition’ 
of symbolic terms. The importance of mathematical form 
should not be underestimated. Mathematical form is not 
about doing mathematics alone; it is also about writing 
mathematics in some specific ways, the underlying belief 
being that physical terms are expressed by unique mathe-
matical forms. Thus, classical kinetic energy will be of the 
form 1/2mv2 or in terms of momentum as p2/2m. When we 
move from classical to quantum physics, the identification 
of ‘kinetic energy’ continues to be p2/2m at the formal 
level although the physical meaning of kinetic energy for 
a wave is very different from that of a particle. In quantum 
theory, we replace p by an operator but the form of the term 
remains the same, as seen in the Schrödinger’s equation. 
 Interestingly, Steiner points out that there is another formal 
analogy in the Schrödinger equation, which is that this 

formally identical to the equation for a mono-

chromatic light wave in a nonhomogeneous medium’27. 
Similarly, the various meanings ascribed to the mass term 
in classical, electromagnetic, relativistic and quantum mecha-
nical theories were significantly dependent on formal sym-
bolic identification28. There are innumerable examples of the 
importance of symbolic manipulation based on formal 
similarity. In fact, I would go to the extent of saying that 
the effectiveness of mathematization significantly depends 
on the power of symbols to act like pictures of ideas, 
concepts and events. The role of mathematics in the sci-
ences seems to be essentially dependent on the possibility 
of using mathematical symbols as ‘pictures’. For example, 
we could look upon 1/2ab2 as the ‘picture’ of kinetic energy. 
So even in contexts that are very different we can still recog-
nize that picture and identify it with the kinetic energy of 
that object or system. Similarly, the generation of ‘alphabets’ 
in mathematics is itself a very creative process and these 
alphabets many times visually suggest the kinds of things 
that can be done with them29.  
 The above discussion indicates the complexity involved 
in the process of mathematization of the world. The great 
challenge to science will lie not only in the creation of new 
mathematics but also in the possibility of creating new modes 
of expressions and new languages in the unending scientific 
search for mapping the universe.  
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