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Abstract

We give an account of the Pinsker bound describing the exact asymptotics of
the minimax risk in a class of nonparametric smoothing problems. The parameter
spaces are Sobolev classes or ellipsoids, and the loss is of squared L2-type. The
result from 1980 turned out to be a major step in the theory of nonparametric
function estimation.
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Consider observation of a Gaussian white noise model

dy(t) = f(t)dt+ n−1/2σ dW (t), t ∈ [0, 1] (1)

where dW (t) is the derivative of standard Brownian motion and n→∞ and σ is fixed.
Assume the function f is in a function class Σ, defined as follows. Let ‖·‖2 be the L2-
norm on [0, 1], and let f (m) be the generalized derivative of f in the sense that f (m−1)

is absolutely continuous. The periodic Sobolev class W̃m
2 (M) is the class of functions

on [0, 1] which satisfy
∥∥f (m)

∥∥2

2
≤ M and where periodic boundary conditions hold:

Dkf(0) = Dkf(1), k = 0, . . . ,m− 1. Let f̂ be an estimator of f based on observations

of the process y(t), t ∈ [0, 1] and consider a loss
∥∥∥f̂ − f∥∥∥2

2
. Consider the minimax risk

over all estimators:

Rn(Σ) = inf
f̂

sup
f∈Σ

En,f

∥∥∥f̂ − f∥∥∥2

2
. (2)

Pinsker’s theorem [44] says that for Σ = W̃m
2 (M)

lim
n→∞

n2m/(2m+1)Rn(Σ) = (σ/π)2m/(2m+1) M1/(2m+1) Pm (3)

where

Pm =

(
m

(m+ 1)

)2m/(2m+1)

(2m+ 1)1/(2m+1) (4)

is the Pinsker constant (in the narrow sense). The importance of that results is that
it provides the exact asymptotic behaviour of the minimax risk, i. e. not only the
”optimal rate of convergence for estimators” n−2m/(2m+1), but also the ”optimal con-
stant” , i.e. the right hand side of (3). The rate n−2m/(2m+1) for the convergence
Rn(W̃m

2 (M)) → 0 had been established before by Ibragimov and Khasminskii ([35],
chap. VII). Pinsker’s bound represents a breakthrough in nonparametric estimation
theory, by allowing comparison of estimators on the level of constants rather than just
comparing rates of convergence. In parametric theory, such constants are given in the
form of ”Fisher’s bound for asymptotic variances” and its modern version (the Hajek-
LeCam asymptotic minimax theorem). Consider e. g. the case where f is constant:

Σ =
{
f : f = ϑ1, ϑ2 ≤M

}
.

Then estimating f with the above loss means just estimating ϑ with squared loss, and
from general parametric estimation theory

lim
n→∞

n Rn(Σ) = σ2 (5)

Here the rate is n−1 and the constant is σ2. Thus, Pinsker’s bound (3) can be seen as
an analog of Fisher’s bound for an ill-posed (non-

√
n-consistent) function estimation

problem.

The ellipsoid framework for sequence data
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Actually Pinsker’s result [44] was developed in a more general framework of a parameter
space given as an ellipsoid. Consider countably many observations

yj = θj + ε ξj, j = 1, 2, . . . (6)

where ξj are i.i.d. N(0, σ2), ε > 0 is the noise size, and the sequence θ = (θj) is in l2.
Consider a parameter space

Θ =

{
θ :

∞∑
j=1

ajθ
2
j ≤M

}
(7)

where a = (aj) is a sequence of nonnegative numbers, aj → ∞, i. e. Θ is an ellipsoid
in l2. Consider the problem of estimating the parameter θ with a loss given by the
squared norm in l2. A linear filter is a sequence c = (cj) ∈ l2 such that 0 ≤ cj ≤ 1 for

all j. For such a c, a linear filtering estimate of θ is given by θ̂c = (cjyj). Pinsker’s
result is obtained by looking at the minimax estimator within this class: define

RL,ε(Θ) = inf
c

sup
θ∈Θ

Eε,θ

∥∥∥θ̂c − θ∥∥∥2

l2
. (8)

Along with this minimax risk over a restricted class of estimators, consider the risk
over arbitrary estimators (analogous to 2)

Rε(Θ) = inf
θ̂

sup
θ∈Θ

Eε,θ

∥∥∥θ̂ − θ∥∥∥2

l2
. (9)

In this framework, Pinker’s result takes the following remarkable form (notation a ∼ b
means a = b(1 + o(1))): if RL,ε(Θ)/ε2 →∞ then

Rε(Θ) ∼ RL,ε(Θ), ε→ 0 (10)

In words, the minimax linear filtering estimate is asymptotically minimax among all
estimators. The asymptotics of RL,ε(Θ) can often be found as regards rates and con-
stants, and then gives rise to results like (3), (4). The minimax linear filter is easy
to calculate in the above framework. For any θ̂c we have by the usual bias-variance
decomposition

En,θ

∥∥∥θ̂c − θ∥∥∥2

l2
=
∞∑
j=1

(1− cj)2θ2
j + ε2

∞∑
j=1

c2
j = Lε(c, θ), (11)

say. Set θ(2) = (θ2
j ); then Lε(c, θ) is concave in θ(2) and convex in c, and θ(2) varies in

a compact, convex subset of l2 if θ ∈ Θ while c varies in a closed convex subset of l2.
Hence

RL,ε(Θ) = inf
c

sup
θ∈Θ

Lε(c, θ) = sup
θ∈Θ

inf
c
Lε(c, θ) (12)
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and there is a saddle point (c∗ε , θ
∗
ε ). This saddle point is found as follows (see e. g.

Belitser and Levit [1]. Observe that there exists a unique solution µε of

ε2
∞∑
j=1

a
1/2
j (1− µεa1/2

j )+ = µεM.

(where x+ = x ∨ 0). Then

Lε(c
∗
ε , θ
∗
ε ) = ε2

∞∑
j=1

(1− µεa1/2
j )+, c

∗
ε = ((1− µεa1/2

j )+) (13)

and θ∗ε has components ε2(µ−1
ε a

−1/2
j −1)+ for aj > 0, 0 otherwise. Thus the asymptotics

of RL,ε(Θ) = Lε(c
∗
ε , θ
∗
ε ) is made explicit in its dependence upon a, M and ε. The

principal case is that aj ∼ (πj)2m, j →∞, where a calculation yields

RL,ε(Θ) ∼ ε−4m/(2m+1) (M/π2m)1/(2m+1) Pm (14)

with Pm from (4). This coincides with (3) for ε = n−1/2σ.

The model (1) with parameter space W̃m
2 (M) as a special case. Consider

the trigonometric orthonormal basis in L2(0, 1): put ϕ1(t) ≡ 1, ϕ2k(t) = 2−1/2 cos(2πkt),
ϕ2k+1(t) = 2−1/2 sin(2πkt) for k ≥ 1. The model (1) can be mapped canonically to
a sequence model (6) via yj =

∫
ϕj(t)dy(t). Then the components of the signal are

θj =
∫
ϕj(t)fj(t)dt, i. e. the Fourier coefficients of f , and it is known that

W̃m
2 (M) =

{
f : f =

∞∑
j=1

θjϕj,
∞∑
k=1

(2πk)2m(θ2
2k + θ2

2k+1) ≤M

}
. (15)

By Parseval’s identity we also have ‖f‖2
2 = ‖θ‖2

l2
, so that the loss functions coincide.

Then Rn(W̃m
2 (M)) from (2) coincides with Rε(Θ) from (9) for ε = n−1/2σ and for an

ellipsoid Θ = Θ(a,M) given by aj = (πj)2m for even j, aj = (π(j − 1))2m for uneven
j. Thus the asymptotics is aj ∼ (πj)2m for j →∞ as above.

Estimating a bounded normal mean

Consider the following variant of the model (6), (7): we observe

yj = θj + ξj, j = 1, . . . , n (16)

and the problem is to estimate the n-dimensional parameter θ = (θj) with normed
squared Euclidean loss n−1 ‖·‖2. The parameter space is Θ = {θ : n−1 ‖θ‖2 ≤ M}.
(Strictly speaking this is not a special case of (6), (7), but can be transformed via
θ̃ = n−1/2θ into an extended ellipsoid model where ε = n−1/2 and a is allowed to
depend on n, and aj = 1, j ≤ n, aj = ∞ for j > n). Let Rn(Θ) be the minimax risk
over all estimators.
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Upper asymptotic bound. Consider the linear filter cj = M/(M + 1), j = 1, . . . , n.
Then from (11) we obtain

En,θn
−1
∥∥∥θ̂c − θ∥∥∥2

= n−1

n∑
j=1

(
(1/(M + 1)2)θ2

j +M2/(M + 1)2
)
≤M/(M + 1).

Lower asymptotic bound. Note that we need only consider estimators θ̂ with

values in Θ, i. e. such that n−1
∥∥∥θ̂∥∥∥2

≤ M . Let Qn be a prior distribution Qn on R
n

(not necessarily concentrated on Θ) and let rn(Qn) be the associated Bayes risk. Then

Rn(Θ) ≥ rn(Qn)− sup
θ̂

∫
Θc

En,θn
−1
∥∥∥θ̂ − θ∥∥∥2

Qn(dθ)

≥ rn(Qn)− 2MQn(Θc)− 2

(∫
n−2 ‖θ‖4Qn(dθ)

)1/2

Q1/2
n (Θc).

Take Qn such that θj are i.i.d. N(0, δ2M) for some δ < 1. Then

Qn(Θc) = Pr(n−1

n∑
j=1

θ2
j > M)→ 0 (17)

from the law of large numbers, and∫
n−2 ‖θ‖4 Qn(dθ) = EQn

(
n−1

n∑
j=1

θ2
j

)2

= O(1).

A standard reasoning for Gaussian priors yields

r(Qn) = n−1

n∑
j=1

(δ2M/(1 + δ2M)) = δ2M/(1 + δ2M).

Letting δ ↗ 1 we obtain

lim inf
n

Rn(Θ) ≥M/(M + 1).

�

In this simple model the Pinsker bound Rn(Θ) ∼ M/(M + 1), n→∞ is the result of
a dimension asymptotics effect when estimating a bounded normal mean in Euclidean
space. A connection with Stein estimation in this setting is discussed by Beran [3].

Background: Bayes-minimax problems

In the model (16) Rn(Θ), RL,n(Θ) and rn(Q) are the minimax risk, the minimax risk
among linear filters and the Bayes risk, respectively. Let us consider the case n = 1;
for this we omit the subscript n. Thus we look at the univariate problem of estimating
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θ from data y having distribution N(θ, 1), with quadratic loss and parameter space
Θ = {θ : θ2 ≤M}. A linear estimator θ̂c is given byθ̂c = cy where c is a real number.
Its risk is

Eθ(θ̂
c − θ)2 = (1− c)2θ2 + c2 = L(c, θ),

say. For given θ, the best linear estimator is given by c(θ2) = θ2/(θ2 + 1), c(θ2) is a
linear filter, and the risk is θ2/(θ2 + 1). In view of the minimax theorem (12), θ̂c(M) is
minimax among linear estimators and

RL(Θ) = M/(M + 1).

Note that θ̂c(θ
2) has another interpretation as a Bayes estimator: for a prior distribution

Q on θ having EQθ
2 = σ2, not necessarily concentrated on Θ, the mixed risk is again

EQEθ(θ̂
c − θ)2 = (1− c)2EQθ

2 + c2 = L(c, σ).

Hence θ̂c(σ
2) is the Bayesian-among-linear estimator for Q, with risk σ2/(σ2 + 1). This

estimator is actually Bayesian if Q = Nσ2 = N(0, σ2). Hence

r(NM) = M/(M + 1) = RL(Θ).

Moreover, Donoho and Johnstone [4] establish the following:

sup
EQθ2≤M

r(Q) = r(NM). (18)

Thus RL(Θ) is also the solution of a Bayes-minimax problem: it is a least favorable
Bayes risk over Q: EQθ

2 ≤M . Consider now the model (16) for general n; it is obvious
by reasons of symmetry that again

RL,n(Θ) = RL(Θ) = r(NM).

and that for any Q we have rn(Q⊗n) = r(Q). Since RL,n(Θ) ≥ Rn(Θ), the minimax
risk Rn(Θ) is bracketed

sup
suppQ⊂Θ

rn(Q) ≤ Rn(Θ) ≤ sup
EQθ2≤M

rn(Q⊗n).

This gives the basic heuristics for the validity of the Pinsker bound. Distributions Q⊗n

with EQθ
2 < M do not have support in Θ in general, but as n → ∞ they tend to

be concentrated on Θ (cp. the law of large numbers (17)), so that asymptotically the
upper and lower brackets coincide.
The special role of Gaussian priors in the symmetric setting (16) is determined by
(18); in the general ”oblique” ellipsoid case (6) product priors with non-identical com-
ponents are appropriate. The proof in [44] employs also non-Gaussian components,
in dependence on the size of aj. Bayes-minimax problems in relation to the Pinsker
bound are discussed by Heckman and Woodroofe [34], Donoho, MacGibbon and Liu
[6], and Donoho and Johnstone [4].
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Renormalization and continuous minimax problem. Let us sketch a derivation
of the asymptotics (14) by a renormalization technique. Suppose that aj = (πj)2m and
consider linear filters cj = c(hj), where c: [0,∞) 7→ [0, 1] is a ”filter function” (assumed
Riemann integrable) and h is a bandwidth parameter, tending to 0 for ε→ 0. Consider
also a Gaussian prior measure N(0, σ2

j ) for θj where σj = Mπ−2mh2m+1σ(jh) for a
(continuous) function σ : [0,∞) 7→ R, fulfilling∫ ∞

0

x2mσ2(x)dx ≤ 1. (19)

Then the restriction σ ∈ Θ is asymptotically satisfied since

M ≥
∞∑
j=1

ajσ
2
j = Mh

∞∑
j=1

(jh)2mσ2(jh)

→ M

∫ ∞
0

x2mσ2(x)dx, h→ 0.

A choice h = (ε2π2m/M)1/(2m+1) and a similar reasoning for the functional Lε(c, σ)
gives

Lε(c, σ) ∼ ε4m/(2m+1)(M/π2m)1/(2m+1)L0(c, σ) (20)

where

L0(c, σ) =

∫ ∞
0

(1− c(x))2σ2(x)dx+

∫ ∞
0

c2(x)dx.

The saddle point problem (12) for each ε is thus asymptotically expressed in terms of
a fixed continuous problem. The solution is as follows, cf. Golubev [17]. There is a
unique solution λ∗ of the equation∫ ∞

0

((λx)m − (λx)2m)+dx = 1. (21)

Then the saddle point (c∗, σ2∗) is given by

c∗(x) = (1− (λ∗x)m)+, σ
2∗(x) = ((λ∗x)−m − 1)+ (22)

and the Pinsker constant Pm from (4) is the value of the game:

Pm = L0(c∗, σ2∗) = inf
c

sup∫
x2mσ2(x)dx≤1

L0(c, σ).

The function c∗(x) in (22) has sometimes been called the Pinsker filter (cp. c∗ε in (13)).
The continuous saddle point problem arises naturally in a continuous Gaussian white
noise setting (1) and a parameter space described in terms of the continuous Fourier
transform (cf. Golubev [17]), e. g. a Sobolev class of functions on the whole real
line. Using the basic structure of the above renormalization argument, it is easy to
mimick the rigorous proof in the model (16) above for a proof of (3). The Gaussian
prior distribution then should be taken for the saddle point function σ∗ with respect
to a restriction

∫
x2mσ2(x)dx ≤ δ < 1; cf. [41] for details.
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Statistical applications and further developments

The result of Pinsker [44] for the signal in white noise model (1) or (6) gave rise to
a multitude of results in related nonparametric curve estimation problems having a
similar structure.

Nonparametric density estimation. Efromovich and Pinsker [8] treated the case
of observed i.i.d. random variables yj, j = 1, . . . , n with values in [0, 1] having a density
f . This density is assumed to be in a set Σ which has an ellipsoid representation in
terms of the Fourier basis (cp. (15)):

Σ =

{
f : f =

∞∑
j=1

θjϕj, θ1 = 1,
∞∑
j=2

ajθ
2
j ≤M

}
;

then Σ+ = Σ ∩ {f : f(x) ≥ 0, x ∈ [0, 1]} is a set of densities. Let Rn(Σ+) be the
minimax risk for the density problem defined analogously to (2) and let RL,ε(Θ) be the
minimax linear filtering risk (8) in a discrete white noise model with ε = n−1/2 and
ellipsoid given by coefficients aj where a1 = 0; then under a condition aj/ log j → ∞
for j →∞ we have, similarly to (10)

Rn(Σ+) ∼ RL,n−1/2(Θ), n→∞

and in the main case of a periodic Sobolev class one obtains again (14). Indeed for
a2k = a2k+1 = (2πk)2m, k ≥ 1 the class Σ+ above coincides with the set of densities in
W̃m

2 (M). The proof relies essentially on a kind of uniform LAN property, individually
for each Fourier coefficient θk =

∫
fϕk considered as a functional of f . Similar re-

sults were obtained for spectral density estimation for an observed Gaussian stationary
sequence, cf. Efromovich and Pinsker [7], Golubev [24], [25].

Nonparametric regression. Consider observations

yi = f(ti) + ζi, i = 1, . . . , n (23)

where ζi are i. i. d. N(0, 1) , ti = i/n and f is a smooth function on [0, 1]. The Sobolev

class Wm
2 (M) is the class of functions on [0, 1] which satisfy

∥∥f (m)
∥∥2

2
≤ M (without

periodic boundary conditions). Consider a semi scalar product (f, g)n =
∑n

i=1 f(ti)g(ti)

and the associated seminorm ‖f‖2,n = (f, f)
1/2
n , and define a minimax risk Rn(Σ) as in

(2) but for a ”design loss”
∥∥∥f̂ − f∥∥∥2

2,n
. Then in the case Σ = Wm

2 (M) the asymptotics

(3) obtains, cf. [41]. The key for this result is the representation of the model in
the ellipsoid form (6), (7). This can be achieved using the Demmler-Reinsch spline
basis, which is an orthonormal set of functions ϕj,n, j = 1, . . . , n with respect to (·, ·)n
and which simultaneously diagonalizes the quadratic form (f (m), g(m)) (the expression

(·, ·) denotes scalar product in L2(0, 1)). The numbers ajn = (ϕ
(m)
j,n , ϕ

(m)
j,n ) represent

the coefficients aj in (7). Then the analytic result is required that ajn ∼ (πj)2m with
appropriate uniformity in n, so that again (14) can be inferred. The optimal estimator
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of f then is of the linear filtering type in terms of the Demmler-Reinsch spline basis
and the Pinsker filter c∗ from (22).
Speckman [46] independently found this estimator as minimax linear and gave its risk
asymptotics; he used the following setting. Call an estimator f̂ of f in (23) linear if it is
linear in the n-dimensional data vector y; then f̂ = Ay where A is a nonrandom linear

operator. The estimator f̂ is minimax linear if it minimizes supf∈Σ En,f

∥∥∥f̂ − f∥∥∥2

2,n

among all linear estimators. In (8) only linear filtering estimates are admitted; it
turns out that in the ellipsoid case the minima coincide (cf. Pilz [43]). Thus another
paraphrase of (10) is that the minimax linear estimator is asymptotically minimax
among all estimators.
The spectral asymptotics of differential quadratic forms like (f (m), f (m)) turns out to
be crucial, since it governs the behaviour of the ellipsoid coefficients aj. If spectral
values are calculated with respect to (f, f) rather than to (f, f)n (which corresponds
to observations (1) with parameter space Wm

2 (M)) then the appropriate basis consists
of eigenfunctions of a differential operator, cf. [28], sec. 5.1. The spectral asymptotics
is known to be aj ∼ (πj)2m. The spectral theory for differential operators allows to
obtain the Pinsker bound for quite general Sobolev smoothness classes on domains of
R
k; for the periodic case on a hypercube domain cf. [40].

asymptotically gaussian models. The proof for the cases of density and spectral
density estimation ([7], [8]) is based on the asymptotic Gaussianity of those models, in
the problem of estimating one individual Fourier coefficient. Inspired by this, Golubev
[21] formulated a general LAN type condition for a function estimation problem for
the validity of the lower bound part of the Pinsker bound. The regression case (23)
with nongaussian noise ζi in (23) was treated in [28]; for random design regression cf.
Efromovich [13].

Analytic functions. The case of m-smooth functions where aj ∼ (πj)2m was
treated as a standard example here, but another important case in the ellipsoid asymp-
totics is aj ∼ exp(βj). Then (14) is replaced by

RL,n(Θ) ∼ (ε2 log ε−1) β−1.

The exponential increase of aj corresponds to the case of analytic functions; cf. Gol-
ubev, Levit, Tsybakov [27]. Ibragimov and Khasminskii [36] obtained an exact risk
asymptotics in a case where the functions are even smoother (entire functions of ex-
ponential type on the real line) and the rate is ε2, even though the problem is still
nonparametric.

Adaptive Estimation. The minimax linear filtering estimate attaining the bound
(10) depends on the ellipsoid via the set of coefficients a and M . A siginificant result of
Efromovich and Pinsker [9] is that this attainment is possible even when a and M are
not known, provided a varies in some large class of coefficients. The Efromovich-Pinsker
algorithm of adaptive estimation (cf. also Efromovich [10]) thus allows to attain the
bound (3) for periodic Sobolev classes by an estimator which does not depend on the
degree of smoothness m and on the bound M . This represented a considerable advance
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in adaptive smoothing theory, improving respective rate of convergence results; for
further developments and related theory cf. results in [19], [20], [29], [30], [24] and the
discussion in [28].

Other constants. Korostelev [39] obtained an analog of (3) when the squared L2-
loss ‖·‖2

2 is substituted by the sup-norm loss and the Sobolev function class W̃m
2 (M) is

replaced by a Hölder class of smoothness m (a class where f satisfies a Hölder condition
with exponent m ∈ (0, 1] uniformly on [0, 1]). The rate in n then changes to include
a logarithmic term and naturally the constant in (3) is another one; this Korostelev
constant represents a further breakthrough and stimulated the search for constants in
nonparametric function estimation. Tsybakov [47] was able to extend the realm of the
Pinsker theory to loss functions l(‖·‖2) where l is monotone and possibly bounded. An
analog of the Pinsker bound for nonparametric hypothesis testing was established by
Ermakov [14]; cf. also Ingster [37].

Besov bodies and wavelet estimation. Above it was seen that the case of data
(16) and parameter space Θ = {θ :

∑n
n=1 θ

2
j ≤M} is in some sense the simplest model

where the Pinsker phenomenon (10) occurs. Donoho, MacGibbon and Liu [6] set out
to investigate more general parameter spaces like Θ = {θ :

∑n
j=1 θ

p
j ≤ M} (p-bodies);

further results were obtained by Donoho and Johnstone [4]. It was found that (10)
occurs only for p = 2; linear estimators were found to be asymptotically nonoptimal
for p < 2, and threshold rules were described as nonlinear alternatives. The limitation
of the Pinsker phenomenon to a Hilbertian setting thus became apparent; however
this stimulated the development of nonlinear wavelet smoothing for function classes
representable as Besov bodies (cf. Donoho and Johnstone [5]).

Remark. Several developments and facets of the theory have not been discussed here;
these include applications in deterministic settings ([31], [32], [33]), inverse problems
([15], [16]), design of experiments ([28], [22]), discontinuities at unknown points ([42]).
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