Non-classical Random Walks
Simple models, surprising results, and (embarrassing) open problems

Jonathon Peterson
Department of Mathematics
University of Wisconsin

April 25, 2009
Outline

1. Classical Random Walks
Outline

1. Classical Random Walks
2. Random Walks in Random Environments
Outline

1. Classical Random Walks
2. Random Walks in Random Environments
3. Reinforced Random Walks
Outline

1. Classical Random Walks
2. Random Walks in Random Environments
3. Reinforced Random Walks
4. Excited Random Walks
Outline

1. Classical Random Walks
2. Random Walks in Random Environments
3. Reinforced Random Walks
4. Excited Random Walks
Simple Random Walks on \mathbb{Z}^d

A very simple model for random motion.

Transition probabilities: Probability measure μ on \mathbb{Z}^d.

Example:

$$\mu(x) = \begin{cases}
1/4 & |x| = 1 \\
0 & |x| \neq 1
\end{cases}$$
A very simple model for random motion.

Transition probabilities: Probability measure μ on \mathbb{Z}^d.

Example:

$$\mu(x) = \begin{cases}
1/4 & |x| = 1 \\
0 & |x| \neq 1
\end{cases}$$

Simple random walk

- Start at the origin
- Move from x to $x + e$ with probability $\mu(e)$.
Applications of Random Walks

- Modelling the Stock Market
- Discrete model for chemical diffusion
- Will an insurance company go bankrupt?
Question 1: Average Speed

\[X_n = \text{location of RW after } n \text{ steps.} \]
Question 1: Average Speed

\[X_n = \text{location of RW after } n \text{ steps.} \]

Question: What is \(\lim_{n \to \infty} \frac{X_n}{n} \)? (Does limit even exist?)
Question 1: Average Speed

\[X_n = \text{location of RW after } n \text{ steps.} \]

Question: What is \(\lim_{n \to \infty} \frac{X_n}{n} \)? (Does limit even exist?)

\[X_n = \xi_1 + \xi_2 + \xi_3 + \ldots + \xi_n, \text{ where } \xi_i \text{ are i.i.d. with distribution } \mu. \]

Theorem (Law of Large Numbers)

If \(\xi_i \) is a sequence of i.i.d. random variables with finite expectation, then with probability 1,

\[
\lim_{n \to \infty} \frac{\xi_1 + \xi_2 + \xi_3 + \ldots + \xi_n}{n} = E[\xi_1].
\]
Question 2: Recurrence/Transience

Recurrent: Infinitely many returns to the starting point.

Transient: Finitely many returns to the starting point (possibly zero).

If \(E[\xi_1] = \nu \neq 0 \), then LLN \(\Rightarrow \) Transient.
Question 2: Recurrence/Transience

Recurrent: Infinitely many returns to the starting point.

Transient: Finitely many returns to the starting point (possibly zero).

If \(E[\xi_1] = \nu \neq 0 \), then LLN \(\Rightarrow \) Transient.

What if \(E[\xi_1] = 0 \)?
Question 2: Recurrence/Transience

Recurrent: Infinitely many returns to the starting point.

Transient: Finitely many returns to the starting point (possibly zero).

If $E[\xi_1] = \nu \neq 0$, then LLN \Rightarrow Transient.

What if $E[\xi_1] = 0$?

Theorem

A simple random walk in \mathbb{Z}^d with $E[X_1] = 0$ is

- Recurrent if $d \leq 2$.
- Transient if $d \geq 3$.
Question 2: Recurrence/Transience

Recurrent: Infinitely many returns to the starting point.

Transient: Finitely many returns to the starting point (possibly zero).

If $E[\xi_1] = v \neq 0$, then LLN \Rightarrow Transient.

What if $E[\xi_1] = 0$?

Theorem

A simple random walk in \mathbb{Z}^d with $E[X_1] = 0$ is

- **Recurrent if** $d \leq 2$.
- **Transient if** $d \geq 3$.

Math Joke:
A drunk person will eventually get home.
A drunk bird might never get home.
Question 3: Limiting Distribution

Let $\nu = E[\xi_1]$.
LLN $\Rightarrow X_n \approx n\nu$.

Question: How far away from $n\nu$ is X_n?
Question 3: Limiting Distribution

Let $v = E[\xi_1]$.
LLN $\implies X_n \approx nv$.

Question: How far away from nv is X_n?

Theorem (Central Limit Theorem - $d = 1$)

Let $E[\xi_1] = v$ and $\text{Var}(\xi_1) = \sigma^2$. Then,

$$
\lim_{n \to \infty} P \left(\frac{X_n - nv}{\sigma \sqrt{n}} \leq t \right) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.
$$
Question 3: Limiting Distribution

Let $v = E[\xi_1]$.
LLN $\implies X_n \approx nv$.

Question: How far away from nv is X_n?

Theorem (Central Limit Theorem - $d = 1$)

Let $E[\xi_1] = v$ and $\text{Var}(\xi_1) = \sigma^2$. Then,

$$
\lim_{n \to \infty} P \left(\frac{X_n - nv}{\sigma \sqrt{n}} \leq t \right) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.
$$

Bar chart of probability distributions looks like a normal bell curve centered at nv.

Non-classical Random Walks
Classical Random Walks
Example: Probability distribution of simple random walk with $p = 0.75$ after 50 steps.
Brownian Motion

Random walks are discrete approximations of continuous models. Central Limit Theorem: Scale time by n and space by \sqrt{n}.

$$B_n(t) = \frac{X_{nt} - ntv}{\sigma \sqrt{n}}.$$
Outline

1. Classical Random Walks
2. Random Walks in Random Environments
3. Reinforced Random Walks
4. Excited Random Walks
RWRE on \mathbb{Z}^d

Environment: Transition probabilities ω_x assigned to each $x \in \mathbb{Z}^d$.

Random Environment: The ω_x are randomly assigned.
Non-classical Random Walks

Random Walks in Random Environments

RWRE on \mathbb{Z}^d

Environment: Transition probabilities ω_x assigned to each $x \in \mathbb{Z}^d$.

Random Environment: The ω_x are randomly assigned.

Example: (Dimension 1) Two types of environments:

- **Type 1**
 - Transition probabilities: $\frac{1}{4}$ and $\frac{3}{4}$

- **Type 2**
 - Transition probabilities: $\frac{2}{3}$ and $\frac{1}{3}$

Random environment: Choose type 1 with probability p.
One-dimensional RWRE: Recurrence/Transience

\[\omega_x = P(\xrightarrow{\downarrow} \xrightarrow{\uparrow} \xrightarrow{\downarrow} \xrightarrow{\uparrow}) \]
\[1 - \omega_x = P(\xrightarrow{\downarrow} \xrightarrow{\uparrow} \xrightarrow{\downarrow}) \]

Question 2: When is the RWRE transient to \(+\infty\)?

Reasonable guess: \(E[\omega_0] = P(X_1 = 1) > \frac{1}{2} \).
One-dimensional RWRE: Recurrence/Transience

\[\omega_x = P(\begin{array}{c} \circ \ x \ -1 \\ x \ x+1 \end{array}) \quad 1 - \omega_x = P(\begin{array}{c} \circ \ x \ x-1 \\ x+1 \end{array}) \]

Question 2: When is the RWRE transient to \(+\infty\)?

Reasonable guess: \(E[\omega_0] = P(X_1 = 1) > \frac{1}{2} \). \text{ WRONG}
Non-classical Random Walks

Random Walks in Random Environments

One-dimensional RWRE: Recurrence/Transience

$$\omega_x = P(\textcircled{\scriptsize x} \xrightarrow{\text{\scriptsize x+1}} \textcircled{\scriptsize x} \xrightarrow{\text{\scriptsize x-1}} \textcircled{\scriptsize x-1})$$

$$1 - \omega_x = P(\textcircled{\scriptsize x+1} \xrightarrow{\text{\scriptsize x}} \textcircled{\scriptsize x} \xrightarrow{\text{\scriptsize x-1}} \textcircled{\scriptsize x-1})$$

Question 2: When is the RWRE transient to $$+\infty$$?

Reasonable guess: $$E[\omega_0] = P(X_1 = 1) > \frac{1}{2}$$. **WRONG**

Theorem (Solomon ’75)

Let $$\rho_x = \frac{1 - \omega_x}{\omega_x}$$. Then

- $$X_n \to +\infty \iff E[\ln(\rho_0)] < 0$$
- $$X_n \to -\infty \iff E[\ln(\rho_0)] > 0$$
- $$X_n \text{ recurrent} \iff E[\ln(\rho_0)] = 0.$$
One-dimensional RWRE: Recurrence/Transience

\[\omega_x = P(\xrightarrow{x-1} x \xrightarrow{x+1}) \quad 1 - \omega_x = P(\xrightarrow{x-1} x \xrightarrow{x} x+1) \]

Question 2: When is the RWRE transient to \(+\infty\)?

Reasonable guess: \(E[\omega_0] = P(X_1 = 1) > \frac{1}{2}. \) **WRONG**

Theorem (Solomon ’75)

Let \(\rho_x = \frac{1 - \omega_x}{\omega_x} \). Then

- \(X_n \to +\infty \iff E[\ln(\rho_0)] < 0 \)
- \(X_n \to -\infty \iff E[\ln(\rho_0)] > 0 \)
- \(X_n \text{ recurrent} \iff E[\ln(\rho_0)] = 0. \)

Follows from formula the probability of reaching \(-x\) before \(y\).
One-dimensional RWRE: LLN

Let $E[\ln(\rho_0)] < 0$ (that is $X_n \rightarrow +\infty$).

Question 2: What is a formula for $v = \lim_{n \rightarrow \infty} \frac{X_n}{n} \rightarrow \nu$?
One-dimensional RWRE: LLN

Let $E[\ln(\rho_0)] < 0$ (that is $X_n \to +\infty$).

Question 2: What is a formula for $v = \lim_{n \to \infty} \frac{X_n}{n} \to v$?

Reasonable guess: $v = 2E[\omega_0] - 1 = E[X_1]$.
One-dimensional RWRE: LLN

Let $E[\ln(\rho_0)] < 0$ (that is $X_n \to +\infty$).

Question 2: What is a formula for $v = \lim_{n \to \infty} \frac{X_n}{n} \to v$?

Reasonable guess: $v = 2E[\omega_0] - 1 = E[X_1]$. **WRONG**
One-dimensional RWRE: LLN

Let $E[\ln(\rho_0)] < 0$ (that is $X_n \rightarrow +\infty$).

Question 2: What is a formula for $v = \lim_{n \rightarrow \infty} \frac{X_n}{n} \rightarrow v$?

Reasonable guess: $v = 2E[\omega_0] - 1 = E[X_1]$. **WRONG**

Question 3: When is $\frac{X_n}{n} \rightarrow v > 0$?
One-dimensional RWRE: LLN

Let $E \left[\ln(\rho_0) \right] < 0$ (that is $X_n \longrightarrow +\infty$).

Question 2: What is a formula for $\nu = \lim_{n \to \infty} \frac{X_n}{n} \longrightarrow \nu$?

Reasonable guess: $\nu = 2E[\omega_0] - 1 = E[X_1]$.
WRONG

Question 3: When is $\frac{X_n}{n} \longrightarrow \nu > 0$?

Reasonable guess: Whenever $X_n \longrightarrow +\infty$.

One-dimensional RWRE: LLN

Let $E[\ln(\rho_0)] < 0$ (that is $X_n \to +\infty$).

Question 2: What is a formula for $v = \lim_{n \to \infty} \frac{X_n}{n} \to v$?

Reasonable guess: $v = 2E[\omega_0] - 1 = E[X_1]$. **WRONG**

Question 3: When is $\frac{X_n}{n} \to v > 0$?

Reasonable guess: Whenever $X_n \to +\infty$. **WRONG**
One-dimensional RWRE: LLN

Let $E[\ln(\rho_0)] < 0$ (that is $X_n \to +\infty$).

Question 2: What is a formula for $v = \lim_{n \to \infty} \frac{X_n}{n} \to v$?

Reasonable guess: $v = 2E[\omega_0] - 1 = E[X_1]$. **WRONG**

Question 3: When is $\frac{X_n}{n} \to v > 0$?

Reasonable guess: Whenever $X_n \to +\infty$. **WRONG**

Theorem (Solomon ’75)

If $E_P \ln(\rho_0) < 0$, then $\lim_{n \to \infty} \frac{X_n}{n} = \begin{cases} \frac{1 - E[\rho_0]}{1 + E[\rho_0]} & E[\rho_0] < 1 \\ 0 & E[\rho_0] \geq 1. \end{cases}$
One-dimensional RWRE: LLN

Let $E[\ln(\rho_0)] < 0$ (that is $X_n \to +\infty$).

Question 2: What is a formula for $v = \lim_{n \to \infty} \frac{X_n}{n} \to v$?

Reasonable guess: $v = 2E[\omega_0] - 1 = E[X_1]$. **WRONG**

Question 3: When is $\frac{X_n}{n} \to v > 0$?

Reasonable guess: Whenever $X_n \to +\infty$. **WRONG**

Theorem (Solomon ’75)

If $E_P \ln(\rho_0) < 0$, then $\lim_{n \to \infty} \frac{X_n}{n} = \begin{cases} \frac{1-E[\rho_0]}{1+E[\rho_0]} & E[\rho_0] < 1 \\ 0 & E[\rho_0] \geq 1 \end{cases}$.

Follows from computation of $E[\text{Time to go one unit right}]$.
RWRE on Trees

Fix $\beta > 1$.

Node with k “children”, RWRE moves
- up with probability $\frac{1}{1+k\beta}$
- down with probability $\frac{\beta}{1+k\beta}$.

Question 3: Does the RWRE move down with positive speed?

Reasonable guess: Yes. $\beta > 1$ gives bias downward.

Wrong

Theorem (Lyons, Pemantle, & Peres '96)
There exists a constant β_c such that
- Positive speed for $\beta \in (1, \beta_c)$ (weak bias)
- Zero speed for $\beta \in \left[\beta_c, \infty\right)$ (strong bias).
RWRE on Trees

Fix $\beta > 1$.

Node with k “children”, RWRE moves
- up with probability $\frac{1}{1+k\beta}$
- down with probability $\frac{\beta}{1+k\beta}$.

Question 3: Does the RWRE move down with positive speed?

Reasonable guess: Yes. $\beta > 1$ gives bias downward.
Non-classical Random Walks

Random Walks in Random Environments

RWRE on Trees

Fix $\beta > 1$.

Node with k “children”, RWRE moves
- up with probability $\frac{1}{1+k\beta}$
- down with probability $\frac{\beta}{1+k\beta}$.

Question 3: Does the RWRE move down with positive speed?

Reasonable guess: Yes. $\beta > 1$ gives bias downward. **WRONG**
Non-classical Random Walks

Random Walks in Random Environments

RWRE on Trees

Fix $\beta > 1$.

Node with k “children”, RWRE moves
- up with probability $\frac{1}{1+k\beta}$
- down with probability $\frac{\beta}{1+k\beta}$.

Question 3: Does the RWRE move down with positive speed?

Reasonable guess: Yes. $\beta > 1$ gives bias downward. **WRONG**

Theorem (Lyons, Pemantle, & Peres ’96)

There exists a constant β_c such that
- Positive speed for $\beta \in (1, \beta_c)$ (weak bias)
- Zero speed for $\beta \in [\beta_c, \infty)$. (strong bias)
RWRE on \mathbb{Z}^d

RWRE on \mathbb{Z}^d are very difficult when $d \geq 2$.
RWRE on \mathbb{Z}^d

RWRE on \mathbb{Z}^d are very difficult when $d \geq 2$.

Embarrassing Open Problem

How do you tell if the RWRE is recurrent/transient?
RWRE on \mathbb{Z}^d

RWRE on \mathbb{Z}^d are very difficult when $d \geq 2$.

Embarrassing Open Problem

How do you tell if the RWRE is recurrent/transient?

Embarrassing Open Problem

For $0 \neq \ell \in \mathbb{R}^d$ is

$$\mathbb{P}\left(\lim_{n \to \infty} X_n \cdot \ell = +\infty \right) \in \{0, 1\}?$$

That is, *is there a direction of transience?*
RWRE on \mathbb{Z}^d

RWRE on \mathbb{Z}^d are very difficult when $d \geq 2$.

Embarrassing Open Problem

How do you tell if the RWRE is recurrent/transient?

Embarrassing Open Problem

*For $0 \neq \ell \in \mathbb{R}^d$ is

$$\mathbb{P}(\lim_{n \to \infty} X_n \cdot \ell = +\infty) \in \{0, 1\}?$$

That is, *is there a direction of transience?*

There are examples with two possible directions for transience.*
A Strange Example

Random up/right tree,
A Strange Example

Random up/right tree, and the dual down/left tree.
A Strange Example

Random up/right tree, and the dual down/left tree.

Can assign probabilities so that

$$P(\text{up/right}) = P(\text{down/left}) = \frac{1}{2}$$
Outline

1. Classical Random Walks
2. Random Walks in Random Environments
3. Reinforced Random Walks
4. Excited Random Walks
Reinforced Random Walks

Start with all edges having weight = 1.
Reinforced Random Walks

Start with all edges having weight = 1.

Transition probabilities proportional to edge weights.
Reinforced Random Walks

Start with all edges having weight $= 1$.

Transition probabilities proportional to edge weights.

When an edge is crossed, increase the weight by 1.
Start with all edges having weight $= 1$.

Transition probabilities proportional to edge weights.

When an edge is crossed, increase the weight by 1.

Move according to updated edge weights.
ERRW as a RWRE

RWRE: Transition probabilities fixed (randomly) at start.
ERRW: Transition probabilities change over time.
ERRW as a RWRE

RWRE: Transition probabilities fixed (randomly) at start.
ERRW: Transition probabilities change over time.

Theorem (Diaconis ’88)

An ERRW has the same distribution as a certain RWRE.

- Simple random environment if graph is a tree (even infinite).
ERRW as a RWRE

RWRE: Transition probabilities fixed (randomly) at start.
ERRW: Transition probabilities change over time.

Theorem (Diaconis ’88)
An ERRW has the same distribution as a certain RWRE.

- Simple random environment if graph is a tree (even infinite).
- Example: ERRW on \(\mathbb{Z} \)

\[
\omega_x \sim \begin{cases}
 \text{Beta}(2, 1) & x \leq -1 \\
 \text{U}(0, 1) & x = 0 \\
 \text{Beta}(1, 2) & x \geq 1
\end{cases}
\]
ERRW as a RWRE

RWRE: Transition probabilities fixed (randomly) at start.
ERRW: Transition probabilities change over time.

Theorem (Diaconis ’88)

An ERRW has the same distribution as a certain RWRE.

- Simple random environment if graph is a tree (even infinite).
- Example: ERRW on \mathbb{Z}

$$
\omega_x \sim \begin{cases}
\text{Beta}(2, 1) & x \leq -1 \\
U(0, 1) & x = 0 \\
\text{Beta}(1, 2) & x \geq 1
\end{cases}
$$

- Complicated random environment if graph has cycles.
Recurrence of ERRW

Reinforcement should make recurrence more likely.
Recurrence of ERRW

Reinforcement should make recurrence more likely.

Embarrassing Open Problem

Is an ERRW on \mathbb{Z}^d with $d \geq 2$ recurrent?
Recurrence of ERRW

Reinforcement should make recurrence more likely.

Embarrassing Open Problem

Is an ERRW on \mathbb{Z}^d with $d \geq 2$ recurrent?

Partial progress when $d = 2$ (Merkel & Rolles ’08).
Outline

1. Classical Random Walks
2. Random Walks in Random Environments
3. Reinforced Random Walks
4. Excited Random Walks
Excited (Cookie) Random Walks

\((M, p)\) Cookie Random Walk

Initially \(M\) cookies at each site.
Excited (Cookie) Random Walks

(M, p) Cookie Random Walk
Initially M cookies at each site.

- **Cookie available**: Eat cookie. Move right with probability $p > \frac{1}{2}$.
Excited (Cookie) Random Walks

(M, p) Cookie Random Walk
Initially M cookies at each site.

- **Cookie available:** Eat cookie. Move right with probability $p > \frac{1}{2}$.
Excited (Cookie) Random Walks

\((M, p)\) Cookie Random Walk

Initially \(M\) cookies at each site.

- **Cookie available**: Eat cookie. Move right with probability \(p > \frac{1}{2}\)

\[
\begin{align*}
1 - p \quad & \quad p
\end{align*}
\]
Excited (Cookie) Random Walks

\((M, p)\) Cookie Random Walk
Initially \(M\) cookies at each site.

- **Cookie available:** Eat cookie. Move right with probability \(p > \frac{1}{2}\)
- **No cookies:** Move right/left with probability \(\frac{1}{2}\).
Excited (Cookie) Random Walks

\((M, p)\) Cookie Random Walk
Initially \(M\) cookies at each site.

- **Cookie available**: Eat cookie. Move right with probability \(p > \frac{1}{2}\).
- **No cookies**: Move right/left with probability \(\frac{1}{2}\).
Recurrence/Transience and LLN

\(M\) cookies with strength \(p_1, p_2, \ldots, p_M > \frac{1}{2}\).

\[\alpha = \sum_{i=1}^{M} (2p_i - 1) - 1.\]

Theorem (Zerner '05)

The cookie RW is transient if and only if \(\alpha > 0\).
Recurrence/Transience and LLN

M cookies with strength $p_1, p_2, \ldots, p_M > \frac{1}{2}$.

$$\alpha = \sum_{i=1}^{M} (2p_i - 1) - 1.$$

Theorem (Zerner ’05)

The cookie RW is transient if and only if $\alpha > 0$.

Theorem (Basdevant & Singh ’08)

*Let $v = \lim_{n \to \infty} X_n/n = v$. Then, $v > 0 \iff \alpha > 1$.***
(M, p) cookie random walk

M cookies all of strength \(p > \frac{1}{2} \). \(v > 0 \iff p > \frac{1}{2} + \frac{1}{M} \).
\((M, p)\) cookie random walk

\(M\) cookies all of strength \(p > \frac{1}{2}\). \(v > 0 \iff p > \frac{1}{2} + \frac{1}{M} \).

Embarrassing Open Problem

Find a formula for \(v = v(M, p)\).

Figure: Simulations of speed for a \((3, p)\) cookie walk (Basdevant and Singh '08)
(M, p) cookie random walk

M cookies all of strength \(p > \frac{1}{2} \). \(v > 0 \iff p > \frac{1}{2} + \frac{1}{M} \).

Embarrassing Open Problem

Find a formula for \(v = v(M, p) \).

Figure: Simulations of speed for a (3, p) cookie walk (Basdevant and Singh ’08)