Schubert calculus and edge-swapping symmetries of Knutson-Tao puzzles

Portia Anderson
Department of Mathematics
Cornell University

December 2, 2022

Table of Contents

Intro to Schubert Calculus
Puzzles
Some classic examples of symmetries
Schubert Calculus with Parallelogram-Shaped Puzzles
Equivariant Parallelograms
Hexagons

Schubert calculus classically is about computing structure constants in the cohomology ring of the Grassmannian by taking transverse intersections of Schubert varieties.

Puzzles are combinatorial gadgets that perform these calculations.
Sometimes, a symmetry that is readily observed in puzzles can reveal a more obscure geometric phenomenon, or vice versa.

Today we'll examine some of this interplay with edge-swapping symmetries of parallelogram and hexagon-shaped puzzles.

Table of Contents

Intro to Schubert Calculus

Puzzles

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

The Grassmannian

Definition

We define the Grassmannian of k-planes in \mathbb{C}^{n} as

$$
\operatorname{Gr}\left(k, \mathbb{C}^{n}\right):=\left\{k \text {-dimensional subspaces } V \text { of } \mathbb{C}^{n}\right\}
$$

Facts

- Smooth complex manifold/projective variety with $\operatorname{dim}=k(n-k)$
- $G:=G L_{n}(\mathbb{C})$ acts transitively. $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong G / P$ a homogeneous space.
- The B-orbits X_{λ}° are called Schubert cells.
- Indexed by binary strings $\lambda \in\binom{[n]}{k}$
- Also indexed by partitions λ fitting in a $k \times(n-k)$ rectangle.
- Give a cell decomposition of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$
- The cell closures $X_{\lambda}:=\overline{X_{\lambda}^{\circ}}$ are called Schubert varieties.
- The classes $\left[X_{\lambda}\right]$ are a \mathbb{Z}-basis for $H^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$ via Poincaré duality
- The structure constants are Littlewood-Richardson numbers $c_{\lambda, \mu}^{\nu}$.
- The opposite Schubert varieties $X^{\lambda}:=w_{0} \cdot X_{w_{0} \lambda}$ give a dual basis under the perfect pairing $\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X^{\mu}\right]=\delta_{\lambda, \mu}$.

The Grassmannian

We can represent an element $V \in \operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ as a $k \times n$ matrix of rank k. Choose a basis for V and put the basis vectors as the rows of a matrix. Example:

$$
V=\text { rowspan }\left[\begin{array}{ccccccc}
7 & 0 & 1 & 0 & 11 & 8 & 0 \\
0 & 6 & 0 & 9 & 3 & 4 & 0 \\
4 & 4 & 9 & 10 & 8 & 2 & 0
\end{array}\right] \in \operatorname{Gr}\left(3, \mathbb{C}^{7}\right)
$$

Then row equivalent matrices all represent the same V. Choose a unique representative by using the RREF:

$$
V=\text { rowspan }\left[\begin{array}{lllllll}
7 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 3 & 1 & 0 & 0 \\
2 & 2 & 0 & 5 & 0 & 1 & 0
\end{array}\right] \in \operatorname{Gr}\left(3, \mathbb{C}^{7}\right)
$$

We have bijections

$$
\begin{aligned}
\{M \in & \left.M_{k \times n}(\mathbb{C}) \mid \operatorname{rank}(M)=k\right\} / \text { row equivalence } \xrightarrow{\text { rowspan }} \operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \\
& \left\{\operatorname{RREFs} \text { in } M_{k \times n}(\mathbb{C}) \text { with } k \text { pivots }\right\} \xrightarrow{\text { rowspan }} \operatorname{Gr}\left(k, \mathbb{C}^{n}\right)
\end{aligned}
$$

Schubert Cells

Definition

For a binary string $\lambda \in\binom{[n]}{k}$, we can define the Schubert cell in $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ as

$$
X_{\lambda}^{\circ}:=\text { rowspan }\left\{\text { RREFs in } M_{k \times n}(\mathbb{C}) \text { with pivots in columns } \lambda\right\} .
$$

$\operatorname{codim}\left(X_{\lambda}^{\circ}\right)=|\lambda|=\#\{$ inversions in string $\lambda\}=\#\{$ boxes in λ as a partition $\}$.

Example

$$
X_{0010110}^{\circ}=\text { rowspan }\left\{\left[\begin{array}{lllllll}
* & * & 1 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & 1 & 0 & 0 \\
* & * & 0 & * & 0 & 1 & 0
\end{array}\right]\right\} \subseteq \operatorname{Gr}\left(3, \mathbb{C}^{7}\right)
$$

Below highlights the correspondence between the string, RREF, and partition defining $X_{0010110}^{\circ}$.
$\lambda=0010110$

$$
\left[\begin{array}{lllllll}
* & * & 1 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & 1 & 0 & 0 \\
* & * & 0 & * & 0 & 1 & 0
\end{array}\right]
$$

Schubert cell decomposition of $\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)$

$$
\begin{aligned}
& X_{0011}^{\circ}=\text { rowspan }\left\{\left[\begin{array}{llll}
* & * & 1 & 0 \\
* & * & 0 & 1
\end{array}\right]\right\} \\
& X_{0101}^{\circ}=\operatorname{rowspan}\left\{\left[\begin{array}{llll}
* & 1 & 0 & 0 \\
* & 0 & * & 1
\end{array}\right]\right\} \\
& X_{0110}^{\circ}=\operatorname{rowspan}\left\{\left[\begin{array}{llll}
* & 1 & 0 & 0 \\
* & 0 & 1 & 0
\end{array}\right]\right\} \\
& X_{1001}^{\circ}=\operatorname{rowspan}\left\{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & * & * & 1
\end{array}\right]\right\} \\
& X_{1010}^{\circ}=\operatorname{rowspan}\left\{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & * & 1 & 0
\end{array}\right]\right\} \\
& X_{1100}^{\circ}=\operatorname{rowspan}\left\{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\right\}
\end{aligned}
$$

Schubert Calculus

Schubert calculus is about computing structure constants in the Schubert variety basis $\left[X_{\lambda}\right]$ of $H^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$. (Recall $X_{\lambda}:=\overline{X_{\lambda}^{\circ}}$.)

These are the coefficients (Littlewood-Richardson numbers) $c_{\lambda, \mu}^{\nu}$ appearing in the product expansions

$$
\left[X_{\lambda}\right]\left[X_{\mu}\right]=\sum_{\nu} c_{\lambda, \mu}^{\nu}\left[X_{\nu}\right]
$$

Geometric method

Count the points in triple intersections of Schubert varieties (perturbed to be transverse):

$$
c_{\lambda, \mu}^{\nu}=\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X_{\mu}\right]\left[X^{\nu}\right]=\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda} \cap\left(g \cdot X_{\mu}\right) \cap X^{\nu}\right]
$$

If the transverse intersection is finite, then the integral counts the intersection points. Otherwise, it equals 0 .

Puzzle method
Count Knutson-Tao puzzles:

$$
c_{\lambda, \mu}^{\nu}=\#\left\{\Delta_{\lambda, \mu}^{\nu}-\text { puzzles }\right\} .
$$

Table of Contents

Intro to Schubert Calculus

Puzzles

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

Hexagons

Puzzles

Definition

Let $\Delta_{\lambda, \mu}^{\nu}$ denote the equilateral triangle whose edges are labeled with binary strings $\lambda, \mu, \nu \in\binom{[n]}{k}$ in the orientations shown at right. Then a $\Delta_{\lambda, \mu}^{\nu}$-puzzle is a filling of $\Delta_{\lambda, \mu}^{\nu}$ using the puzzle pieces below.

Examples

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

Recall:

$$
c_{\lambda, \mu}^{\nu}=\#\left\{\Delta_{\lambda, \mu}^{\nu}-\text { puzzles }\right\} .
$$

Example

Compute the coefficients in the product expansion

$$
\left[X_{0101}\right]\left[X_{0101}\right]=\sum_{\nu} c_{0101,0101}^{\nu}\left[X_{\nu}\right]=\sum_{\nu} \#\left\{\Delta_{0101,0101}^{\nu} \text {-puzzles }\right\} \cdot\left[X_{\nu}\right]
$$

To answer this, we will look for all puzzles that fill this boundary:

Which strings ν can appear on the bottom edge? And how many puzzles exist for each?

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

Allowed pieces:

Starting at the top, let's try to fill in the boundary.

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

$\downarrow!\quad$ Unique way to finish each $\downarrow!$

Example: $\left[X_{0101}\right]\left[X_{0101}\right]$

\therefore We've found all two puzzles with 0101 and 0101 on the NW and NE edges:

$\nu=0110$

$\nu=1001$

This tells us our answer:

$$
\begin{gathered}
c_{0101,0101}^{\nu}= \begin{cases}1, & \nu=0110 \\
1, & \nu=1001 \\
0, & \text { otherwise }\end{cases} \\
{\left[X_{0101}\right]\left[X_{0101}\right]=\sum_{\nu} c_{0101,0101}^{\nu}\left[X_{\nu}\right]=1 \cdot\left[X_{0110}\right]+1 \cdot\left[X_{1001}\right]}
\end{gathered}
$$

Table of Contents

Intro to Schubert Calculus

Puzzles

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

Hexagons

\mathbb{Z}_{3} Symmetry

A 120° rotation of a puzzle is still a puzzle.

$$
\Longrightarrow c_{\lambda, \mu}^{\nu}=c_{\mu, \overleftarrow{\nu}}^{\stackrel{\leftarrow}{\lambda}}=c_{\overleftarrow{\nu}, \lambda}^{\overleftarrow{\mu}}
$$

$$
\Longrightarrow \int_{\operatorname{Grrk}_{\left(k, C^{n}\right)}}\left[X_{\lambda}\right]\left[X_{\mu}\right]\left[X^{\nu}\right]=\int_{\operatorname{Grrk}_{\left(k, C^{n}\right)}^{[n]}}\left[X_{\mu}\right]\left[X_{\bar{u}}\right]\left[X^{\overline{ }}\right]=\int_{\operatorname{Grrk}_{\left(k, C^{n}\right)}}\left[X_{\bar{u}}\right]\left[X_{\lambda}\right]\left[X^{\bar{\mu}}\right]
$$

where $\overleftarrow{\lambda}:=\lambda$ reversed.

Dual Grassmannian Symmetry

Take the mirror image of a puzzle and exchange the 0s and 1s. It's again a puzzle!

Let * be the operation of reversing a string and exchanging the 0 s and 1 s .
Then this mirroring trick gives a bijection

$$
\begin{gathered}
\left\{\Delta_{\lambda, \mu^{\prime}}^{\nu} \text {-puzzles }\right\} \leftrightarrow\left\{\Delta_{\left.\mu^{*}, \lambda^{*}-\text { puzzles }\right\}}^{\nu^{*}}\right\} \\
\Longrightarrow c_{\lambda, \mu}^{\nu}=c_{\mu^{*}, \lambda^{*}}^{\nu^{*}}
\end{gathered}
$$

Geometric version: The bijection $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \rightarrow \operatorname{Gr}\left(n-k,\left(\mathbb{C}^{n}\right)^{*}\right)$ defined by $V \mapsto V^{\perp}$ sends $\left[X_{\lambda}\right]$ to $\left[X_{\lambda^{*}}\right]$ and intersection points to intersection points, so

$$
\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X_{\mu}\right]\left[X^{\nu}\right]=\int_{\operatorname{Gr}\left(n-k,\left(\mathbb{C}^{n}\right)^{*}\right)}\left[X_{\lambda^{*}}\right]\left[X_{\mu^{*}}\right]\left[X^{\nu^{*}}\right]
$$

Dual Grassmannian Symmetry

Our earlier example shows this symmetry as well.

$\nu=0110$

$\nu=1001$

$$
\begin{gathered}
c_{\lambda, \mu}^{\nu}=c_{\mu^{*}, \lambda^{*}}^{\nu^{*}} \\
c_{0101,0101}^{0110}=c_{(0101)^{*},(0101)^{*}}^{(0110)^{*}}=c_{0101,0101}^{1001}
\end{gathered}
$$

Commutativity

Commutativity of the cohomology classes implies commutativity of puzzles, i.e. we can swap the side edge labels and get the same number of puzzles.

$$
\begin{gathered}
{\left[X_{\lambda}\right]\left[X_{\mu}\right]=\left[X_{\mu}\right]\left[X_{\lambda}\right]} \\
\Longrightarrow \int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X_{\mu}\right]\left[X^{\nu}\right]=\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\mu}\right]\left[X_{\lambda}\right]\left[X^{\nu}\right] \\
\Longrightarrow c_{\lambda, \mu}^{\nu}=c_{\mu, \lambda}^{\nu} \\
\Longrightarrow \#\left\{\Delta_{\lambda, \mu}^{\nu} \text {-puzzles }\right\}=\#\left\{\Delta_{\mu, \lambda}^{\nu}-\text { puzzles }\right\}
\end{gathered}
$$

$c_{01011,01101}^{0111}=c_{01101,01011}^{01110}=1$, but no visible relationship between the puzzles.

Table of Contents

```
Intro to Schubert Calculus
Puzzles
Some classic examples of symmetries
Schubert Calculus with Parallelogram-Shaped Puzzles
```

Equivariant Parallelograms
Hexagons

Schubert Calculus with Parallelogram-Shaped Puzzles

Schubert Calculus with Parallelogram-Shaped Puzzles

Label the edges of a parallelogram (clockwise from NW) with strings $\lambda, \alpha, \mu, \beta$ such that

$$
\operatorname{sort}(\alpha)=\operatorname{sort}(\beta)=0^{a_{0}} 1^{a_{1}} \quad \text { and } \quad \operatorname{sort}(\lambda)=\operatorname{sort}(\mu)=0^{\ell_{0}} 1^{\ell_{1}}
$$

We can trivially complete any puzzle with boundary $\square_{\lambda, \alpha, \mu, \beta}$ to a triangular puzzle with boundary $\Delta_{\operatorname{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}}$ like so:

This gives a bijection

$$
\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\} \leftrightarrow\left\{\Delta_{\operatorname{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}} \text {-puzzles }\right\}
$$

and thus a geometric interpretation of parallelograms.

Rotational Symmetry of Parallelograms

Another puzzle...obviously!

Rotational Symmetry of Parallelograms

180° rotation yields a bijection:

$$
\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\} \leftrightarrow\left\{\square_{\mu, \beta, \lambda, \alpha} \text {-puzzles }\right\}
$$

Trivial from puzzle standpoint, but what about the geometric meaning?

Rotational Symmetry of Parallelograms

$$
\Longrightarrow c_{\mathrm{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}}=c_{\mathrm{sort}}^{\stackrel{\alpha}{\alpha} \bar{\lambda}} \mu, \beta \operatorname{sort}(\lambda)
$$

Original goal:
Understand this symmetry geometrically. This led to a stronger result.

Parallelogram Edge Swapping

Theorem (A.)

Swapping just two opposite edge labels, α and β, we have:

$$
\#\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\}=\#\left\{\square_{\lambda, \beta, \mu, \alpha} \text {-puzzles }\right\}
$$

This also holds if we allow any one of the following additional pieces:
$\stackrel{1}{1}_{0}^{1}{ }_{0}^{1}$
(T-equivariant cohomology)

$$
{ }_{10}^{10} \bigwedge_{10}^{10} \text { (K-theory) } \quad{ }_{10}^{10} \bigvee_{10}^{10}
$$

(K-theory)*
Corollary
Can also swap λ and μ, i.e. $\#\left\{\square_{\lambda, \alpha, \mu, \beta}\right.$-puzzles $\}=\#\left\{\square_{\mu, \alpha, \lambda, \beta}\right.$-puzzles $\}$.

Puzzle-Based Proof

Here's a cartoon proof of the theorem that works for H^{*} and K-theory It relies on commutativity and rotational symmetry of (triangular) puzzles.

Note: This doesn't work for equivariant puzzles because we can't rotate the equivariant piece

Puzzle-Based Proof

It turns out the yellow region has ≤ 1 filling. This shifts the counting problem into just the smaller green triangles.
Theorem (A.)
For a fixed pair η, θ, the number of H^{*} puzzles filling the yellow region is either 0 or 1. It is 1 iff $\overleftarrow{\eta}$ and $\overleftarrow{\theta}$ (as partitions) are complements in an $\ell_{0} \times a_{1}$ rectangle. In this case write $\theta=\eta^{\prime}$, as it is unique to η. Then we have

$$
\begin{equation*}
\#\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\}=\sum_{\bar{\eta} \subseteq \ell_{0} \times a_{1}} c_{\alpha, \beta}^{\eta} \cdot c_{\lambda, \mu}^{\eta^{\prime}} \tag{}
\end{equation*}
$$

We can prove this directly, going piece by piece. But we can also obtain (*) as

$$
\int_{\operatorname{Gr}\left(a_{1}, a_{0}+a_{1}\right) \times \operatorname{Gr}\left(\ell_{1}, \ell_{0}+\ell_{1}\right)}\left(\left[X_{\alpha}\right]\left[X_{\beta}\right] \otimes\left[X_{\lambda}\right]\left[X_{\mu}\right]\right)\left(\sum_{\bar{\eta} \subseteq a_{1} \times \ell_{0}}\left[X^{\eta}\right] \otimes\left[X^{\eta^{\prime}}\right]\right)
$$

Table of Contents

```
Intro to Schubert Calculus
Puzzles
Some classic examples of symmetries
Schubert Calculus with Parallelogram-Shaped Puzzles
```

Equivariant Parallelograms

Hexagons

Equivariant Puzzles

If we allow the additional piece ${ }^{1} V_{0}$, then puzzles compute the structure constants $c_{\lambda, \mu}^{\nu} \in \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$ in the T-equivariant cohomology of the Grassmannian, $H_{T}^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$ (which extends the ordinary cohomology).

To do this, we give each equivariant piece ${ }^{1} V_{0}$ a weight $\operatorname{wt}(p)=y_{j}-y_{i}$, where (i, j) are coordinates for its position in the puzzle.

$y_{4}-y_{2}$

$y_{6}-y_{1}$

$y_{5}-y_{4}$

The weight $\mathrm{wt}(P)$ of a puzzle P is the product of the weights of its pieces.
Theorem (Knutson-Tao)

$$
c_{\lambda, \mu}^{\nu}=\sum_{\substack{\text { Puzzles } P: \\ \partial P=\Delta_{\lambda, \mu}^{*}}} w t(P)=\sum_{\substack{P u z z l e s \\ \partial P=\Delta_{\lambda, \mu}^{*}, \mu:}}\left(\prod_{\substack{\text { equivariant } \\ \text { pieces } p \text { in } P}} w t(p)\right)
$$

Equivariant Puzzles

Equivariant puzzles have commutativity and dual symmetry, but not rotational symmetry.

Example

Here is an example showing commutativity.
(The yellow equivariant pieces contribute weights $y_{j}-y_{i}$.)

$c_{010,100}^{100}=y_{3}-y_{1}$

$c_{100,010}^{100}=\left(y_{2}-y_{1}\right)+\left(y_{3}-y_{2}\right)=y_{3}-y_{1}$

Warning: The structure constant is the same, but the number of puzzles may be different!

Equivariant Edge Swapping

As before, let $\alpha, \beta, \lambda, \mu$ be strings with
$\operatorname{sort}(\alpha)=\operatorname{sort}(\beta)=0^{a_{0}} 1^{a_{1}} \quad$ and $\quad \operatorname{sort}(\lambda)=\operatorname{sort}(\mu)=0^{\ell_{0}} 1^{\ell_{1}}$.
Now, allowing equivariant pieces, consider the puzzle to the left. What happens if we swap edges?

Let $a:=a_{0}+a_{1}$ and $\ell:=\ell_{0}+\ell_{1}$, and define permutation matrices

$$
\Phi_{a}:=\left[\begin{array}{c|c}
J_{a} & \mathbf{0} \\
\hline \mathbf{0} & \boldsymbol{I}_{\ell}
\end{array}\right] \quad \text { and } \quad \Phi_{\ell}:=\left[\begin{array}{c|c}
I_{a} & \mathbf{0} \\
\hline \mathbf{0} & J_{\ell}
\end{array}\right]
$$

where $I_{a}, J_{a} \in S_{a}$ are the identity and anti-diagonal permutations respectively, and similarly for $I_{\ell}, J_{\ell} \in S_{\ell}$.
Theorem (A.)
In $H_{T}^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$, where $n=a_{0}+a_{1}+\ell_{0}+\ell_{1}$ and $k=a_{1}+\ell_{1}$, we have

$$
c_{\mathrm{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}}=\Phi_{a} \cdot c_{\operatorname{sortt}(\alpha) \lambda, \beta \operatorname{sort}(\mu)}^{\bar{\alpha} \bar{\mu}}=\Phi_{\ell} \cdot c_{\mathrm{sort}(\beta) \mu, \alpha \operatorname{sort}(\lambda)}^{\bar{\beta} \overline{ }} .
$$

In other words swapping $\alpha \leftrightarrow \beta$ reverses the y_{1}, \ldots, y_{a}, and swapping $\lambda \leftrightarrow \mu$ reverses the y_{a+1}, \ldots, y_{n}.

A glimpse of the geometric proof

$F_{\mathbf{0}}:=F_{0} \subset \cdots \subset F_{n}$ standard flag, $\tilde{F}_{\mathbf{0}}:=\tilde{F}_{0} \subset \cdots \subset \tilde{F}_{n}$ anti-standard flag, $\mathbb{C}^{n}=F_{a} \oplus \tilde{F}_{\ell}$.
We have a T-invariant closed immersion:

$$
\begin{aligned}
& \delta: \operatorname{Gr}\left(a_{1}, F_{a}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right) \hookrightarrow \operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \\
& \left(V_{a}, V_{\ell}\right) \mapsto V_{a} \oplus V_{\ell} \\
& c_{\operatorname{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}}=\int_{G^{\left(k, \mathbb{C}^{n}\right)}}\left[X_{\operatorname{sort}(\beta) \lambda}\right]\left[X_{\alpha \operatorname{sort}(\mu)]}\right]\left[X^{\bar{\beta} \bar{\mu}}\right] \\
& =\int_{\operatorname{Gr}\left(k, \mathrm{C}^{n}\right)}\left[X_{\text {sort }(\alpha) \lambda]}\right] \delta_{*}\left[\left(X_{\alpha} \cap X^{\bar{\beta}}\right) \times X^{\bar{\mu}}\right] \\
& =\int_{\operatorname{Gr}\left(a_{1}, F_{\mathrm{a}}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right)} \delta^{*}\left[X_{\text {sort }(\beta) \lambda}\right]\left(\left[X_{\alpha}\right]\left[X^{\bar{\beta}}\right] \otimes\left[X^{\bar{\mu}}\right]\right) \\
& =\int_{\operatorname{Gr}\left(a_{1}, F_{a}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right)} \delta^{*}\left[\Phi_{a} \cdot X_{\text {sort }(\alpha) \lambda}\right]\left(\left[J_{a} \cdot X_{\beta}\right]\left[J_{a} \cdot X^{\bar{\alpha}}\right] \otimes\left[I_{\ell} \cdot X^{\bar{\mu}}\right]\right) \\
& =\Phi_{a} \cdot \int_{\operatorname{Gr}\left(a_{1}, F_{a}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right)} \delta^{*}\left[X_{\text {sort }(\alpha) \lambda]}\right]\left(\left[X_{\beta}\right]\left[X^{\bar{\alpha}}\right] \otimes\left[X^{\bar{\mu}}\right]\right) \\
& =\Phi_{a} \cdot c_{\operatorname{sort}(\alpha) \lambda, \beta \operatorname{sort}(\mu)}^{\grave{\mu}}
\end{aligned}
$$

Equivariant Edge Swapping

Corollary

The number of equivariant parallelogram puzzles is invariant under edge swapping of $\alpha \leftrightarrow \beta$ or $\lambda \leftrightarrow \mu$.
$\#\left\{\square_{\lambda, \alpha, \mu, \beta \text {-equivariant puzzles }\}}=\#\left\{\square_{\lambda, \beta, \mu, \alpha}\right.\right.$-equivariant puzzles $\}$ and
$\#\left\{\square_{\lambda, \alpha, \mu, \beta \text {-equivariant puzzles }\}}=\#\left\{\square_{\mu, \alpha, \lambda, \beta}\right.\right.$-equivariant puzzles $\}$

(This is not automatic from the theorem. Requires a further simple proof.)

Remark

This bijection remains combinatorially mysterious!

Example

$\left\{\square_{0011,011,1010,101 \text {-equivariant puzzles }\}}=\right.$

After swapping λ and μ :
$\left\{\square_{1010,011,0011,101 \text {-equivariant puzzles }\}=}=\right.$

Table of Contents

```
Intro to Schubert Calculus
Puzzles
Some classic examples of symmetries
Schubert Calculus with Parallelogram-Shaped Puzzles
Equivariant Parallelograms
```

Hexagons

Hexagons

We can generalize some of our questions and results by considering hexagonal puzzles. (Note: A parallelogram is a degenerate hexagon.)

Edge swapping results on Hexagons

For two nice cases where the edge labels have symmetric content, namely

$$
\begin{align*}
& \operatorname{sort}(\alpha)=\operatorname{sort}(\delta), \quad \operatorname{sort}(\beta)=\operatorname{sort}(\varepsilon), \quad \operatorname{sort}(\gamma)=\operatorname{sort}(\zeta) \tag{1}\\
& \operatorname{sort}(\alpha)=\operatorname{sort}(\gamma)=\operatorname{sort}(\varepsilon), \quad \operatorname{sort}(\beta)=\operatorname{sort}(\delta)=\operatorname{sort}(\zeta) \tag{2}
\end{align*}
$$

we found that (at least in H^{*} and K-theory) we can swap

$$
\begin{gather*}
\alpha \leftrightarrow \delta \quad \beta \leftrightarrow \varepsilon \quad \gamma \leftrightarrow \zeta \tag{1}\\
\alpha \leftrightarrow \gamma \leftrightarrow \varepsilon \quad \beta \leftrightarrow \delta \leftrightarrow \zeta \tag{2}
\end{gather*}
$$

and get the same number of puzzles.

Case (2)

Further Questions

Are there interesting ways to extend these parallelogram/hexagon puzzle symmetries to other cohomology theories? What is the interpretation, and what could we learn?

- K-theory: Puzzles with ${ }^{10} \bigwedge_{10}^{10}$ and puzzles with ${ }^{10} \stackrel{10}{10}_{10}$ compute the structure constants in the dual $\left[\mathcal{O}_{X_{\lambda}}\right]$ and $\left[\mathcal{I}_{X_{\lambda}}\right]$ bases for $K\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$ respectively. Here is a strange observation:

rotate 180°

(Implies structure constant is the same in both $\left[\mathcal{O}_{X_{\lambda}}\right]$ and $\left[\mathcal{I}_{X_{\lambda}}\right]$ bases)
- What is a satisfying statement we can make about hexagons for equivariant cohomology?
- SMM (Segre-Schwartz-MacPherson): Puzzles containing both ${ }^{10} \bigwedge_{10}^{10}$ and ${ }_{10} \stackrel{V}{10}_{10}^{10}$ compute the structure constants for the SSM classes of Schubert varieties. Can we swap edges and what would it mean?

Thank you!

