Schubert Calculus with Puzzles a dialogue between geometry and combinatorics

Portia Anderson

Department of Mathematics
Cornell University

September 24, 2022

Table of Contents

Intro to Schubert Calculus

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

Hexagons

Table of Contents

Intro to Schubert Calculus

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

Hexagons

The Grassmannian

Definition

We define the Grassmannian of k-planes in \mathbb{C}^{n} as

$$
\operatorname{Gr}\left(k, \mathbb{C}^{n}\right):=\left\{V \leq \mathbb{C}^{n} \mid \operatorname{dim}(V)=k\right\} .
$$

Facts

- Compact smooth complex manifold/projective variety with $\operatorname{dim}=k(n-k)$
- $G:=G L_{n}(\mathbb{C})$ acts transitively. $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong G / P$.
- The B-orbits X_{λ}°, called Schubert cells, are indexed by binary strings $\lambda \in\binom{[n]}{k}$ and give a cell decomposition of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$.
- The orbit closures $X_{\lambda}:=\overline{X_{\lambda}^{\circ}}$, called Schubert varieties, give a \mathbb{Z}-basis for $H^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$ via Poincaré duality.
- The opposite Schubert varieties $X^{\lambda}:=w_{0} \cdot X_{w_{0} \lambda}$ give a dual basis under the perfect pairing $\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X^{\mu}\right]=\delta_{\lambda, \mu}$.

Schubert Varieties

Definition

Given a string $\lambda=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$ with content $0^{n-k} 1^{k}$, the Schubert variety $X_{\lambda} \subseteq \operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ is defined by

$$
X_{\lambda}=X_{\lambda}\left(F_{\bullet}\right):=\left\{V \in \operatorname{Gr}(k, n) \mid \operatorname{dim}\left(V \cap F_{i}\right) \geq \lambda_{1}+\cdots+\lambda_{i}\right\},
$$

where F_{\bullet} is the standard complete flag $0=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=\mathbb{C}^{n}$ (i.e.
$F_{i}=\operatorname{span}\left\{\vec{e}_{1}, \ldots, \vec{e}_{i}\right\}$ for each $\left.i\right)$.

Example

$$
\begin{aligned}
X_{0101} & =\left\{\begin{array}{ll}
\text { 2-planes } V \leq \mathbb{C}^{4} \left\lvert\, \begin{array}{l}
\operatorname{dim}\left(V \cap F_{1}\right) \geq 0, \\
\operatorname{dim}\left(V \cap F_{2}\right) \geq 0+1=1, \\
\operatorname{dim}\left(V \cap F_{3}\right) \geq 0+1+0=1, \\
\operatorname{dim}\left(V \cap \mathbb{C}^{4}\right) \geq 0+1+0+1=2
\end{array}\right.
\end{array}\right\} \subseteq \operatorname{Gr}\left(2, \mathbb{C}^{4}\right) \\
& =\left\{\text { 2-planes } V \leq \mathbb{C}^{4} \mid \operatorname{dim}\left(V \cap F_{2}\right) \geq 1\right\}
\end{aligned}
$$

This is the set of all 2-planes V that intersect the 2-plane F_{2}.
If we projectivize, this becomes "the set of all lines that intersect a line" $\mathbb{P}\left(F_{2}\right)$.

A classic Schubert calculus problem

Question

Take four (projective) lines $L_{1}, L_{2}, L_{3}, L_{4}$ generically positioned in space. How many (projective) lines intersect all four?

Answer

Recall that $X_{0101}=\{$ "Lines that intersect a certain line" $\}$.
Perturb with generic elements $g_{i} \in \mathrm{GL}_{n}(\mathbb{C})$ so that:

$$
\begin{aligned}
& g_{1} \cdot X_{0101}=\left\{\text { "Lines that intersect } L_{1} "\right\} \\
& g_{2} \cdot X_{0101}=\left\{\text { "Lines that intersect } L_{2} "\right\} \\
& g_{3} \cdot X_{0101}=\left\{\text { "Lines that intersect } L_{3} "\right\} \\
& g_{4} \cdot X_{0101}=\left\{\text { "Lines that intersect } L_{4} "\right\}
\end{aligned}
$$

A point in their intersection is a line that intersects all four.

$$
\begin{gathered}
{\left[\left(g_{1} \cdot X_{0101}\right) \cap\left(g_{2} \cdot X_{0101}\right) \cap\left(g_{3} \cdot X_{0101}\right) \cap\left(g_{4} \cdot X_{0101}\right)\right]} \\
=\left[g_{1} \cdot X_{0101}\right]\left[g_{2} \cdot X_{0101}\right]\left[g_{3} \cdot X_{0101}\right]\left[g_{4} \cdot X_{0101}\right] \\
=\left[X_{0101}\right]\left[X_{0101}\right]\left[X_{0101}\right]\left[X_{0101}\right] \\
=2\left[X_{1100}\right]
\end{gathered}
$$

Two points!

Schubert Calculus

Schubert calculus is about computing the structure constants of the cohomology of the Grassmannian $H^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$ in the Schubert variety basis.

These are the coefficients $c_{\lambda, \mu}^{\nu}$ (Littlewood-Richardson numbers) appearing in the product expansions

$$
\left[X_{\lambda}\right]\left[X_{\mu}\right]=\sum_{\nu} c_{\lambda, \mu}^{\nu}\left[X_{\nu}\right] .
$$

One way is to compute these is to count the points in triple intersections of Schubert varieties:

$$
c_{\lambda, \mu}^{\nu}=\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X_{\mu}\right]\left[X^{\nu}\right] .
$$

Another way is to count puzzles.
Theorem (Knutson-Tao)

$$
c_{\lambda, \mu}^{\nu}=\#\left\{\Delta_{\lambda, \mu}^{\nu}-\text { puzzles }\right\} .
$$

Puzzles

Definition

Let $\Delta_{\lambda, \mu}^{\nu}$ denote the equilateral triangle whose edges are labeled with binary strings $\lambda, \mu, \nu \in\binom{[n]}{k}$ in the orientations shown at right. Then a $\Delta_{\lambda, \mu}^{\nu}$-puzzle is a filling of $\Delta_{\lambda, \mu}^{\nu}$ using the puzzle pieces below.

Examples

Puzzles

Example

$$
\left[X_{0101}\right]\left[X_{0101}\right]=1 \cdot\left[X_{1001}\right]+1 \cdot\left[X_{0110}\right]
$$

These are the only two puzzles with 0101 and 0101 on the NW and NE edges.

$$
c_{0101,0101}^{1001}=1 \quad \text { and } \quad c_{0101,0101}^{0110}=1
$$

Table of Contents

Intro to Schubert Calculus

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

Hexagons

Commutativity

$$
\begin{gathered}
{\left[X_{\lambda}\right]\left[X_{\mu}\right]=\left[X_{\mu}\right]\left[X_{\lambda}\right]} \\
\Longrightarrow \int_{\mathrm{Gr}_{r}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X_{\mu}\right]\left[X^{\nu}\right]=\int_{\mathrm{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\mu}\right]\left[X_{\lambda}\right]\left[X^{\nu}\right] \\
\Longrightarrow c_{\lambda, \mu}^{\nu}=c_{\mu, \lambda}^{\nu} \\
\Longrightarrow \#\left\{\Delta_{\lambda, \mu}^{\nu} \text {-puzzles }\right\}=\#\left\{\Delta_{\mu, \lambda}^{\nu} \text {-puzzles }\right\}
\end{gathered}
$$

Non-obvious from just looking at puzzles.

\mathbb{Z}_{3} Symmetry

A 120° rotation of a puzzle is still a puzzle.

Dual Grassmannian Symmetry

Flip over a puzzle and exchange the 1's and 0's. This gives you a puzzle.

$$
\begin{gathered}
\Longrightarrow c_{\lambda, \mu}^{\nu}=c_{\mu^{*}, \lambda^{*}}^{\nu^{*}} \\
\Longrightarrow \int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\lambda}\right]\left[X_{\mu}\right]\left[X^{\nu}\right]=\int_{\operatorname{Gr}\left(n-k,\left(\mathbb{C}^{n}\right)^{*}\right)}\left[X_{\mu^{*}}\right]\left[X_{\lambda^{*}}\right]\left[X^{\nu^{*}}\right]
\end{gathered}
$$

Table of Contents

```
Intro to Schubert Calculus
Some classic examples of symmetries
Schubert Calculus with Parallelogram-Shaped Puzzles
```

Equivariant Parallelograms
Hexagons

Schubert Calculus with Parallelogram-Shaped Puzzles

Label the edges of a parallelogram (clockwise from NW) with strings $\lambda, \alpha, \mu, \beta$ such that

$$
\operatorname{sort}(\alpha)=\operatorname{sort}(\beta)=0^{a_{0}} 1^{a_{1}} \quad \text { and } \quad \operatorname{sort}(\lambda)=\operatorname{sort}(\mu)=0^{\ell_{0}} 1^{\ell_{1}}
$$

We can trivially complete any puzzle with boundary $\square_{\lambda, \alpha, \mu, \beta}$ to a triangular puzzle with boundary $\Delta_{\operatorname{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}}$ like so:

This gives a bijection

$$
\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\} \leftrightarrow\left\{\Delta_{\operatorname{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}} \text {-puzzles }\right\}
$$

and thus a geometric interpretation of parallelograms.

Rotational Symmetry of Parallelograms

Also, 180° rotation yields a bijection:

$$
\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\} \leftrightarrow\left\{\square_{\mu, \beta, \lambda, \alpha} \text {-puzzles }\right\}
$$

Silly from puzzle standpoint, but what about the geometric meaning?

Rotational Symmetry of Parallelograms

$$
\Longrightarrow c_{\mathrm{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\stackrel{\overleftarrow{\beta}}{ } \bar{\mu}}=c_{\mathrm{sort}}^{\overleftarrow{\alpha} \bar{\lambda}}(\alpha) \mu, \beta \operatorname{sort}(\lambda)
$$

Original goal:
Understand this symmetry geometrically. This led to a stronger result.

Edge Swapping

Theorem (1)

Swapping just two opposite edge labels, α and β, we have:

$$
\#\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\}=\#\left\{\square_{\lambda, \beta, \mu, \alpha} \text {-puzzles }\right\}
$$

This also holds if we allow any one of the following additional pieces:

$$
\AA_{1}^{1} \quad \bigwedge_{10}^{10} \bigwedge_{10}^{10} \text { (K-theory) } \quad{ }_{10}^{10} \bigvee^{10} \quad(\text { (} \text {-theory })^{*}
$$

Corollary
Can also swap λ and μ, i.e. $\#\left\{\square_{\lambda, \alpha, \mu, \beta-\text { puzzles }\}}=\#\left\{\square_{\mu, \alpha, \lambda, \beta}\right.\right.$-puzzles $\}$.

Puzzle-Based Proof

Here's a cartoon proof of Theorem 1 It relies on commutativity of (triangular) puzzle edges.

Puzzle-Based Proof

Turns out the yellow region has ≤ 1 filling. Shifts the counting problem into just the smaller green triangles.

Theorem (2)

For a fixed pair η, θ, the number of H^{*} puzzles filling the yellow region is either 0 or 1. It is 1 iff \hbar and $\overleftarrow{\theta}$ (as partitions) are complements in an $\ell_{0} \times a_{1}$ rectangle. In this case write $\theta=\eta^{\prime}$, as it is unique to η. Then we have

$$
\begin{equation*}
\#\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\}=\sum_{\bar{\eta} \subseteq \ell_{0} \times a_{1}} c_{\alpha, \beta}^{\eta} \cdot c_{\lambda, \mu}^{\eta^{\prime}} \tag{}
\end{equation*}
$$

We can prove this directly, going piece by piece. But we can also obtain (*) as

$$
\int_{\operatorname{Gr}\left(a_{1}, a_{0}+a_{1}\right) \times \operatorname{Gr}\left(\ell_{1}, \ell_{0}+\ell_{1}\right)}\left(\left[X_{\alpha}\right]\left[X_{\beta}\right] \otimes\left[X_{\lambda}\right]\left[X_{\mu}\right]\right)\left(\sum_{\bar{\eta} \subseteq a_{1} \times \ell_{0}}\left[X^{\eta}\right] \otimes\left[X^{\eta^{\prime}}\right]\right)
$$

Table of Contents

Intro to Schubert Calculus

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

Hexagons

Equivariant Puzzles

If we allow the additional puzzle piece ${ }^{1}{ }^{0}$, then puzzles compute the structure constants $c_{\lambda, \mu}^{\nu} \in \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$ of the T-equivariant cohomology of the Grassmannian, $H_{T}^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$.

To do this, we give each equivariant piece ${ }^{1} V_{0}$ a weight $\operatorname{wt}(p)=y_{j}-y_{i}$, where (i, j) corresponds to its position.

$y_{4}-y_{2}$

$y_{6}-y_{1}$

$y_{5}-y_{4}$

Each puzzle contributes the product of the weights of its equivariant pieces.
Theorem (Knutson-Tao)

$$
c_{\lambda, \mu}^{\nu}=\sum_{\substack{\text { Puzzles } P: \\ \partial P=\Delta_{\lambda, \mu}^{ \pm}}} w t(P)=\sum_{\substack{P_{\text {uzzles }} P: \\ \partial P=\Delta_{\lambda, \mu}^{ \pm}}}\left(\prod_{\substack{\text { equivariant } \\ \text { pieces } p \text { in } P}} w t(p)\right)
$$

Equivariant Edge Swapping

As before, let $\alpha, \beta, \lambda, \mu$ be strings with
$\operatorname{sort}(\alpha)=\operatorname{sort}(\beta)=0^{a_{0}} 1^{a_{1}} \quad$ and $\quad \operatorname{sort}(\lambda)=\operatorname{sort}(\mu)=0^{\ell_{0}} 1^{\ell_{1}}$.
Now, allowing equivariant pieces, consider the puzzle to the left. What happens if we swap edges?

Let $a:=a_{0}+a_{1}$ and $\ell:=\ell_{0}+\ell_{1}$, and define

$$
\Phi_{a}:=\left[\begin{array}{c|c}
J_{a} & \mathbf{0} \\
\hline \mathbf{0} & I_{\ell}
\end{array}\right] \quad \text { and } \quad \Phi_{\ell}:=\left[\begin{array}{c|c}
I_{a} & \mathbf{0} \\
\hline \mathbf{0} & J_{\ell}
\end{array}\right]
$$

where $I_{a}, J_{a} \in S_{a}$ are the identity and anti-diagonal permutations respectively, and similarly for $I_{\ell}, J_{\ell} \in S_{\ell}$.
Theorem (3)
In $H_{T}^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$, where $n=a_{0}+a_{1}+\ell_{0}+\ell_{1}$ and $k=a_{1}+\ell_{1}$, we have

$$
c_{\mathrm{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}}=\Phi_{a} \cdot c_{\operatorname{sortt}(\alpha) \lambda, \beta \operatorname{sort}(\mu)}^{\bar{\alpha} \bar{\mu}}=\Phi_{\ell} \cdot c_{\operatorname{sort}(\beta) \mu, \alpha \operatorname{sort}(\lambda)}^{\bar{\beta} \bar{\lambda}} .
$$

In other words swapping $\alpha \leftrightarrow \beta$ reverses the y_{1}, \ldots, y_{a}, and swapping $\lambda \leftrightarrow \mu$ reverses the y_{a+1}, \ldots, y_{n}.

Idea of proof

$F_{\bullet}:=F_{0} \subset \cdots \subset F_{n}$ standard flag, $\tilde{F}_{\bullet}:=\tilde{F}_{0} \subset \cdots \subset \tilde{F}_{n}$ anti-standard flag, $\mathbb{C}^{n}=F_{a} \oplus \tilde{F}_{\ell}$.
Have a T-invariant closed immersion:

$$
\begin{aligned}
& \delta: \operatorname{Gr}\left(a_{1}, F_{a}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right) \hookrightarrow \operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \\
& \left(V_{a}, V_{\ell}\right) \mapsto V_{a} \oplus V_{\ell} \\
& C_{\operatorname{sort}(\beta) \lambda, \alpha \operatorname{sort}(\mu)}^{\bar{\beta} \bar{\mu}}=\int_{\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)}\left[X_{\operatorname{sort}(\beta) \lambda}\right]\left[X_{\alpha \operatorname{sort}(\mu)}\right]\left[X^{\bar{\beta} \bar{\mu}}\right] \\
& =\int_{\operatorname{Gr}\left(k, \mathrm{C}^{n}\right)}\left[X_{\text {sort }(\alpha) \lambda]}\right] \delta_{*}\left[\left(X_{\alpha} \cap X^{\bar{\beta}}\right) \times X^{\bar{\mu}}\right] \\
& =\int_{\operatorname{Gr}\left(a_{1}, F_{a}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right)} \delta^{*}\left[X_{\text {sort }(\beta) \lambda}\right]\left(\left[X_{\alpha}\right]\left[X^{\bar{\beta}}\right] \otimes\left[X^{\bar{\mu}}\right]\right) \\
& =\int_{\operatorname{Gr}\left(a_{1}, F_{a}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right)} \delta^{*}\left[\Phi_{a} \cdot X_{\text {sort }(\alpha) \lambda}\right]\left(\left[J_{a} \cdot X_{\beta}\right]\left[J_{a} \cdot X^{\bar{\alpha}}\right] \otimes\left[I_{\ell} \cdot X^{\bar{\mu}}\right]\right) \\
& =\Phi_{a} \cdot \int_{\operatorname{Gr}\left(a_{1}, F_{a}\right) \times \operatorname{Gr}\left(\ell_{1}, \tilde{F}_{\ell}\right)} \delta^{*}\left[X_{\text {sort }(\alpha) \lambda]}\right]\left(\left[X_{\beta}\right]\left[X^{\grave{\alpha}}\right] \otimes\left[X^{\bar{\mu}}\right]\right) \\
& =\Phi_{a} \cdot c_{\operatorname{sort}(\alpha) \lambda, \beta \operatorname{sort}(\mu)}^{\grave{\mu}}
\end{aligned}
$$

Equivariant Edge Swapping

Corollary

The number of equivariant parallelogram puzzles is invariant under edge swapping of $\alpha \leftrightarrow \beta$ or $\lambda \leftrightarrow \mu$.

$$
\#\left\{\square_{\lambda, \alpha, \mu, \beta} \text {-puzzles }\right\}=\#\left\{\square_{\lambda, \beta, \mu, \alpha} \text {-puzzles }\right\}
$$

and

$$
\#\left\{\square_{\lambda, \alpha, \mu, \beta \text {-puzzles }\}}=\#\left\{\square_{\mu, \alpha, \lambda, \beta} \text {-puzzles }\right\}\right.
$$

(This doesn't automatically follow. Requires a further simple proof.)
Remark
This bijection is combinatorially mysterious!

Table of Contents

Intro to Schubert Calculus

Some classic examples of symmetries

Schubert Calculus with Parallelogram-Shaped Puzzles

Equivariant Parallelograms

Hexagons

Hexagons

The original original question was an analogous one about hexagons.

Edge swapping results on Hexagons

For two nice cases where the edge labels have symmetric content, namely

$$
\begin{align*}
& \operatorname{sort}(\alpha)=\operatorname{sort}(\delta), \quad \operatorname{sort}(\beta)=\operatorname{sort}(\varepsilon), \quad \operatorname{sort}(\gamma)=\operatorname{sort}(\zeta) \tag{1}\\
& \operatorname{sort}(\alpha)=\operatorname{sort}(\gamma)=\operatorname{sort}(\varepsilon), \quad \operatorname{sort}(\beta)=\operatorname{sort}(\delta)=\operatorname{sort}(\zeta) \tag{2}
\end{align*}
$$

we found that (at least in H^{*}) we can swap

$$
\begin{gather*}
\alpha \leftrightarrow \delta \quad \beta \leftrightarrow \varepsilon \quad \gamma \leftrightarrow \zeta \tag{1}\\
\alpha \leftrightarrow \gamma \leftrightarrow \varepsilon \quad \beta \leftrightarrow \delta \leftrightarrow \zeta \tag{2}
\end{gather*}
$$

(1) can be seen by completing the hexagon to a parallelogram and applying our edge-swapping theorem.

Further Questions

Are there interesting ways to extend these parallelogram/hexagon puzzle symmetries to other cohomology theories? What would be the interpretation, and what could we learn?

- K-theory: Puzzles with ${ }^{10} \bigwedge_{10}^{10}$ and puzzles with ${ }^{10} \stackrel{10}{10}_{10}$ compute the structure constants in the dual $\left[\mathcal{O}_{x_{\lambda}}\right]$ and $\left[\mathcal{I}_{X_{\lambda}}\right]$ bases for $K\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$ respectively. What is the geometric proof? Also this is weird:

(Implies structure constant is the same in both $\left[\mathcal{O}_{X_{\lambda}}\right]$ and $\left[\mathcal{I}_{X_{\lambda}}\right]$ bases)
- SMM (Segre-Schwartz-MacPherson): Puzzles containing both ${ }^{10} \bigwedge_{10}^{10}$ and ${ }_{10} \stackrel{ }{10}_{10}$ compute the structure constants for the SSM classes of Schubert varieties.

