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The Grassmannian

Definition
We define the Grassmannian of k-planes in Cn as

Gr(k,Cn) := {V ≤ Cn | dim(V ) = k}.

Facts

▶ Compact smooth complex manifold/projective variety with dim = k(n− k)

▶ G := GLn(C) acts transitively. Gr(k,Cn) ∼= G/P.

▶ The B-orbits X ◦
λ , called Schubert cells, are indexed by binary strings

λ ∈
(
[n]
k

)
and give a cell decomposition of Gr(k,Cn).

▶ The orbit closures Xλ := X ◦
λ , called Schubert varieties, give a Z-basis for

H∗(Gr(k,Cn)) via Poincaré duality.

▶ The opposite Schubert varieties Xλ := w0 · Xw0λ give a dual basis under
the perfect pairing

∫
Gr(k,Cn)

[Xλ][X
µ] = δλ,µ.



Schubert Varieties

Definition
Given a string λ = λ1λ2 · · ·λn with content 0n−k1k , the Schubert variety
Xλ ⊆ Gr(k,Cn) is defined by

Xλ = Xλ(F•) := {V ∈ Gr(k, n) | dim(V ∩ Fi ) ≥ λ1 + · · ·+ λi},

where F• is the standard complete flag 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn (i.e.
Fi = span{e⃗1, . . . , e⃗i} for each i).

Example

X0101 =

2-planes V ≤ C4

∣∣∣∣∣
dim(V ∩ F1) ≥ 0,

dim(V ∩ F2) ≥ 0 + 1 = 1,

dim(V ∩ F3) ≥ 0 + 1 + 0 = 1,

dim(V ∩ C4) ≥ 0 + 1 + 0 + 1 = 2

 ⊆ Gr(2,C4)

=
{
2-planes V ≤ C4 | dim(V ∩ F2) ≥ 1

}
This is the set of all 2-planes V that intersect the 2-plane F2.
If we projectivize, this becomes “the set of all lines that intersect a line” P(F2).



A classic Schubert calculus problem

Question
Take four (projective) lines L1, L2, L3, L4 generically positioned in space. How
many (projective) lines intersect all four?

Answer
Recall that X0101 = {“Lines that intersect a certain line”}.
Perturb with generic elements gi ∈ GLn(C) so that:

g1 · X0101 = {“Lines that intersect L1”}
g2 · X0101 = {“Lines that intersect L2”}
g3 · X0101 = {“Lines that intersect L3”}
g4 · X0101 = {“Lines that intersect L4”}

A point in their intersection is a line that intersects all four.

[(g1 · X0101) ∩ (g2 · X0101) ∩ (g3 · X0101) ∩ (g4 · X0101)]

= [g1 · X0101][g2 · X0101][g3 · X0101][g4 · X0101]

= [X0101][X0101][X0101][X0101]

= 2[X1100]

Two points!



Schubert Calculus

Schubert calculus is about computing the structure constants of the
cohomology of the Grassmannian H∗(Gr(k,Cn)) in the Schubert variety basis.

These are the coefficients cνλ,µ (Littlewood-Richardson numbers) appearing in
the product expansions

[Xλ][Xµ] =
∑
ν

cνλ,µ[Xν ].

One way is to compute these is to count the points in triple intersections of
Schubert varieties:

cνλ,µ =

∫
Gr(k,Cn)

[Xλ][Xµ][X
ν ].

Another way is to count puzzles.

Theorem (Knutson-Tao)

cνλ,µ = #{∆ν
λ,µ-puzzles}.



Puzzles

Definition
Let ∆ν

λ,µ denote the equilateral triangle whose edges are

labeled with binary strings λ, µ, ν ∈
(
[n]
k

)
in the orientations

shown at right. Then a ∆ν
λ,µ-puzzle is a filling of ∆ν

λ,µ

using the puzzle pieces below.

Examples



Puzzles

Example

[X0101][X0101] = 1 · [X1001] + 1 · [X0110]

These are the only two puzzles with 0101 and 0101 on the NW and NE edges.

c10010101,0101 = 1 and c01100101,0101 = 1
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Commutativity

[Xλ][Xµ] = [Xµ][Xλ]

=⇒
∫
Gr(k,Cn)

[Xλ][Xµ][X
ν ] =

∫
Gr(k,Cn)

[Xµ][Xλ][X
ν ]

=⇒ cνλ,µ = cνµ,λ

=⇒ #{∆ν
λ,µ-puzzles} = #{∆ν

µ,λ-puzzles}

Non-obvious from just looking at puzzles.



Z3 Symmetry

A 120◦ rotation of a puzzle is still a puzzle.

=⇒ cνλ,µ = c
⃗λ

µ, ⃗ν = c ⃗µ
⃗ν,λ

=⇒
∫
Gr(k,Cn)

[Xλ][Xµ][X
ν ] =

∫
Gr(k,Cn)

[Xµ][X ⃗ν ][X
⃗λ] =

∫
Gr(k,Cn)

[X ⃗ν ][Xλ][X
⃗µ]



Dual Grassmannian Symmetry

Flip over a puzzle and exchange the 1’s and 0’s. This gives you a puzzle.

=⇒ cνλ,µ = cν
∗

µ∗,λ∗

=⇒
∫
Gr(k,Cn)

[Xλ][Xµ][X
ν ] =

∫
Gr(n−k,(Cn)∗)

[Xµ∗ ][Xλ∗ ][X ν∗
]
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Schubert Calculus with Parallelogram-Shaped Puzzles

Label the edges of a parallelogram (clockwise from NW) with strings λ, α, µ, β
such that

sort(α) = sort(β) = 0a01a1 and sort(λ) = sort(µ) = 0ℓ01ℓ1 .

We can trivially complete any puzzle with boundary λ,α,µ,β to a triangular

puzzle with boundary ∆
⃗β ⃗µ

sort(β)λ,α sort(µ) like so:

This gives a bijection{
λ,α,µ,β-puzzles

}
↔

{
∆

⃗β ⃗µ
sort(β)λ,α sort(µ)-puzzles

}
and thus a geometric interpretation of parallelograms.



Rotational Symmetry of Parallelograms

Also, 180◦ rotation yields a bijection:{
λ,α,µ,β-puzzles

}
↔

{
µ,β,λ,α-puzzles

}

rotate 180°

Silly from puzzle standpoint, but what about the geometric meaning?



Rotational Symmetry of Parallelograms

rotate 180°

=⇒ c
⃗β ⃗µ

sort(β)λ,α sort(µ) = c ⃗α ⃗λ
sort(α)µ,β sort(λ)

Original goal:

Understand this symmetry geometrically. This led to a stronger result.



Edge Swapping

Theorem (1)

Swapping just two opposite edge labels, α and β, we have:

# { λ,α,µ,β-puzzles} = # { λ,β,µ,α-puzzles}

This also holds if we allow any one of the following additional pieces:

0 1

01 (equivariant)
10 10

10 (K-theory) 10 10

10

(K-theory)∗

Corollary

Can also swap λ and µ, i.e. # { λ,α,µ,β-puzzles} = # { µ,α,λ,β-puzzles}.



Puzzle-Based Proof

Here’s a cartoon proof of Theorem 1 It relies on commutativity of (triangular)
puzzle edges.

commute  commute  

commute  



Puzzle-Based Proof

Turns out the yellow region has ≤ 1 filling. Shifts the counting problem into
just the smaller green triangles.

Theorem (2)

For a fixed pair η, θ, the number of H∗ puzzles filling the yellow region is either
0 or 1. It is 1 iff ⃗η and ⃗θ (as partitions) are complements in an ℓ0 × a1
rectangle. In this case write θ = η′, as it is unique to η. Then we have

# { λ,α,µ,β-puzzles} =
∑
⃗η⊆ℓ0×a1

cηα,β · cη
′

λ,µ. (*)

We can prove this directly, going piece by piece. But we can also obtain (*) as∫
Gr(a1,a0+a1)×Gr(ℓ1,ℓ0+ℓ1)

([Xα][Xβ ]⊗ [Xλ][Xµ])

 ∑
⃗η⊆a1×ℓ0

[X η]⊗ [X η′
]

 .
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Equivariant Puzzles

If we allow the additional puzzle piece

0 1

01 , then puzzles compute the structure
constants cνλ,µ ∈ Z[y1, . . . , yn] of the T -equivariant cohomology of the
Grassmannian, H∗

T (Gr(k,Cn)).

To do this, we give each equivariant piece

0 1

01 a weight wt(p) = yj − yi , where
(i , j) corresponds to its position.

Each puzzle contributes the product of the weights of its equivariant pieces.

Theorem (Knutson-Tao)

cνλ,µ =
∑

Puzzles P:
∂P=∆ν

λ,µ

wt(P) =
∑

Puzzles P:
∂P=∆ν

λ,µ

 ∏
equivariant
pieces p in P

wt(p)





Equivariant Edge Swapping

As before, let α, β, λ, µ be strings with

sort(α) = sort(β) = 0a01a1 and sort(λ) = sort(µ) = 0ℓ01ℓ1 .

Now, allowing equivariant pieces, consider the puzzle
to the left. What happens if we swap edges?

Let a := a0 + a1 and ℓ := ℓ0 + ℓ1, and define

Φa :=

[
Ja 0
0 Iℓ

]
and Φℓ :=

[
Ia 0
0 Jℓ

]
,

where Ia, Ja ∈ Sa are the identity and anti-diagonal permutations respectively,
and similarly for Iℓ, Jℓ ∈ Sℓ.

Theorem (3)

In H∗
T (Gr(k,Cn)), where n = a0 + a1 + ℓ0 + ℓ1 and k = a1 + ℓ1, we have

c
⃗β ⃗µ

sort(β)λ,α sort(µ) = Φa · c ⃗α ⃗µ
sort(α)λ,β sort(µ) = Φℓ · c

⃗β ⃗λ
sort(β)µ,α sort(λ).

In other words swapping α ↔ β reverses the y1, . . . , ya, and swapping λ ↔ µ
reverses the ya+1, . . . , yn.



Idea of proof

F• := F0 ⊂ · · · ⊂ Fn standard flag, F̃• := F̃0 ⊂ · · · ⊂ F̃n anti-standard flag,
Cn = Fa ⊕ F̃ℓ.
Have a T -invariant closed immersion:

δ : Gr(a1,Fa)×Gr(ℓ1, F̃ℓ) ↪→ Gr(k,Cn)

(Va,Vℓ) 7→ Va ⊕ Vℓ

c
⃗β ⃗µ

sort(β)λ,α sort(µ) =

∫
Gr(k,Cn)

[Xsort(β)λ][Xα sort(µ)][X
⃗β ⃗µ]

=

∫
Gr(k,Cn)

[Xsort(α)λ]δ∗[(Xα ∩ X
⃗β)× X ⃗µ]

=

∫
Gr(a1,Fa)×Gr(ℓ1,F̃ℓ)

δ∗[Xsort(β)λ]
(
[Xα][X

⃗β ]⊗ [X ⃗µ]
)

=

∫
Gr(a1,Fa)×Gr(ℓ1,F̃ℓ)

δ∗[Φa · Xsort(α)λ]
(
[Ja · Xβ ][Ja · X ⃗α]⊗ [Iℓ · X ⃗µ]

)
= Φa ·

∫
Gr(a1,Fa)×Gr(ℓ1,F̃ℓ)

δ∗[Xsort(α)λ]
(
[Xβ ][X

⃗α]⊗ [X ⃗µ]
)

= Φa · c ⃗α ⃗µ
sort(α)λ,β sort(µ)



Equivariant Edge Swapping

Corollary

The number of equivariant parallelogram puzzles is invariant under edge
swapping of α ↔ β or λ ↔ µ.

# { λ,α,µ,β-puzzles} = # { λ,β,µ,α-puzzles}

and
# { λ,α,µ,β-puzzles} = # { µ,α,λ,β-puzzles}

(This doesn’t automatically follow. Requires a further simple proof.)

Remark
This bijection is combinatorially mysterious!
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Hexagons

The original original question was an analogous one about hexagons.

rotate 180°

sort(α)

sort(ε) sort(γ)
sort(β) sort(ζ)

sort(δ)



Edge swapping results on Hexagons

For two nice cases where the edge labels have symmetric content, namely

sort(α) = sort(δ), sort(β) = sort(ε), sort(γ) = sort(ζ) (1)

sort(α) = sort(γ) = sort(ε), sort(β) = sort(δ) = sort(ζ) (2)

we found that (at least in H∗) we can swap

α ↔ δ β ↔ ε γ ↔ ζ (1)

α ↔ γ ↔ ε β ↔ δ ↔ ζ (2)

(1) can be seen by completing the hexagon to a parallelogram and applying our
edge-swapping theorem.

sort(α)

sort(δ)



Further Questions

Are there interesting ways to extend these parallelogram/hexagon puzzle
symmetries to other cohomology theories? What would be the interpretation,
and what could we learn?

▶ K-theory: Puzzles with
10 10

10 and puzzles with 10 10

10

compute the structure
constants in the dual [OXλ ] and [IXλ ] bases for K(Gr(k,Cn)) respectively.
What is the geometric proof? Also this is weird:

rotate 180°edge swapping 10 10

10

10 10

10
10 10

10

(Implies structure constant is the same in both [OXλ ] and [IXλ ] bases)

▶ SMM (Segre-Schwartz-MacPherson): Puzzles containing both
10 10

10 and

10 10

10

compute the structure constants for the SSM classes of Schubert
varieties.
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