
Belief Propagation in Genotype-
Phenotype Networks 
 
Rachael Hageman Blair 



Systems Biology 

“If you want truly to understand something, try to change it” 
-Kurt Lewin 1947 (Social psychology pioneer) 
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I. Deterministic Metabolic Models   
-  Model Development 
- The Inverse Problem 

II. Causal Graphical Models 
 - Preliminaries: data, QTL 
 - Approaches and Limitations 
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III. Belief Propagation in Genotype-Phenotype Networks 
 - The modeling 
 - Prediction 
 - Stability 



I. Deterministic Metabolic Models 



Modeling Metabolic Systems 
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Parameter Estimation  
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Underdetermined Parameter Estimation Problem! 
 
At steady state à Linear System 
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II. Causal Graphical Models 
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Genetical Genomics  

JANSEN, R. C., and J. NAP, 2001 Genetical genomics: the added value from segregation. Trends in Genetics 17: 388-391. 



Preliminaries 
Quantitative Trait Locus (QTL):  
A genomic region where allelic variation correlated with trait variation. 
 
Trait:  
Gene Expression (~40,000 transcript) and other clinical measurements.   
 
 
   



Preliminaries 

Leduc MS, Hageman RS, Meng Q, Verdugo RA, Tsaih SW, Churchill GA, Paigen B, Yuan R, Genomic analysis identifies loci  
regulating IGF1 level and longevity. Aging Cell 9(5): 823-836, (2010). 

Quantitative Trait Locus (QTL):  
A genomic region where allelic variation correlated with trait variation. 
 
Trait:  
Gene Expression (~40,000 transcript) and other clinical measurements.   
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Local Approaches  
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Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, et al. (2005) An integrative genomics approach to infer causal 
associations between gene expression and disease. Nature 37: 710-717.  
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Limitations (the trouble with triplets): 
 
-  Identifies primary and secondary regulators – misses hierarchy of interactions. 
 
- Local models pinned together = ‘hairball of traits’ -> over-fitting.  



Local Approaches  

Image (left): http://www.pnas.org/content/104/51/20274/F1.large.jpg 



Global Approaches  

Rooted (loosely) in Probabilistic Graphical Models (PGMs): 
•  Homogeneous Conditional Gaussian Models 
•  Bayesian Networks  
•  Estimation of UDG, then directed. 

 
 
Additional features (via priors): 
•  Penalty on graph density.   
•  Restrictions on the number of parent nodes (fan-in). 
 
 
 
Structural learning: greedy or MCMC-based. 



Bayesian Networks 
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The Assumption: The graph (G) is a Directed Acyclic Graph (DAG).   
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where  P(D |G)α P(D |θ,G)P(θ |G)dθ.∫



The model:  
A continuous child           with parents                                    is modeled as: 
 
 
where                   . 
 
  

Local Families 

 GELMAN, A., and J. HILL, 2007 Data Analysis using Multilevel/Hierarchical Models. Cambridge University Press. 
 

  

€ 

Y = β0 + β1QA ,i + β2QB ,i + β3QH ,i +…+ βs−2QA ,k + βs−1QB ,k + βsQH ,k + βs+1X1 +…+ βt Xn + ε,

€ 

y = Xm   

€ 

πG y( ) = Q1,…,Qk,X1,…,Xn{ }

€ 

βi ~ N µi,σ i
2( )

Q: Discrete

X: Continuous:

Q1 Q2 Qk X1

Y=Xm

X2 Xn

Assumption:  
Each child can have at most k parents. 
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•  12 + approaches to genotype-phenotype network inference. 

•  Network structure has been the “endpoint”. 

•  Limitations to “model interpretation”.   
 Can visually detect “direct” and “indirect” relationships.   
 Can attempt to quantify “strength” of the relationship. 

Now What? 



III. Belief Propagation in Genotype-Phenotype Networks 

•  12 + approaches to genotype-phenotype network inference. 

•  Network structure has been the “endpoint”. 

•  Limitations to “model interpretation”.   
 Can visually detect “direct” and “indirect” relationships.   
 Can attempt to quantify “strength” of the relationship. 



Question: Suppose we have “new information” about the system 
(e.g., a knock-out of a gene, a genotype of an individual, or a 
phenotype value).  Can we understand the system-wide response 
to this “new information”? 
 
 
Changing our way of thinking: 
 
Before: knock out gene A -> everything downstream is effected 
(unclear how exactly).   
 
 
Now: : knock out gene A -> all nodes that are d-connected to A will 
be effected (Causal reasoning, Evidential Reasoning, Inter-causal 
reasoning).   

Belief Propagation: Motivation 



Belief Propagation: Background 
When can X influence Y? 
 
•  X -> Y   - yes, straight downward path 
•  X <- Y    – yes, evidential reasoning 
•  X -> W -> Y    – yes  
•  X <- W <- Y     - yes  
•  X <- W -> Y     - yes 
•  X -> W <- Y  - no V-structure/collider model 
 
 

 
 
 
 



A trail                                 is active if it has no v-structures: 
 
 
 
 
 
 
Therefore, information can flow freely though the network, in 
the “active” sense, unless a v-structure arises.   
 
 
*Lets think about additional evidence 

 
 
 
 

Probabilistic Graphical Models II 

X1 − X2 −…− Xk

Xi−1→ Xi ← Xi+1.

A block in the trail 

General edge type up/down 

Belief Propagation: Background 



When can X influence Y given evidence about Z?: 
 

     Case 1:            Case 2: 
 
 
 
 

Probabilistic Graphical Models II 

X→Y
X←Y
X→W →Y
X←W←Y
X←W →Y
X→W←Y

W ∉ Z W ∈ Z

Influence can’t flow through grade,  
If grade is observed!  

If I tell you the student is intelligent 
The SAT will have no influence on  
Grade. 

If you know grade, this is a case of 
Inter causal reasoning. 

?? 
 

Belief Propagation: Background 



When can X influence Y given evidence about Z: 
 

     Case 1:            Case 2: 
 
 
 
 

Probabilistic Graphical Models II 

X→Y
X←Y
X→W →Y
X←W←Y
X←W →Y
X→W←Y

W ∉ Z W ∈ Z

If you know don’t observe grade directly, but you observe letter? 
        if W and all of its descendants are not observed. 
        if W or one of its descendants is observed. 

Belief Propagation: Background 



Probabilistic Graphical Models II 

Belief Propagation: Background 
Definition:        and       are d-separated in       given      if 
there is no active trail in       between       and       given     .   
 
Notation: 
 
 
 

 
 
 
 

X

d-sepG (X,Y | Z )

Y G Z
G X Y Z



Probabilistic Graphical Models: Belief 
Propagation 

•  Message Passing order: we can start with any leaf. 

Belief Propagation: Background 
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Probabilistic Graphical Models: Belief 
Propagation 

•  Message Passing order: we can start with any leaf. 

Everyone has received a message!  
 
Everyone has passed a message!  

Belief Propagation: Background 



Probabilistic Graphical Models: Belief 
Propagation 

•  Message Passing order: we can start with any leaf. 

Illegal!  C4 has to wait to gather 
All of its information before talking. 

Belief Propagation: Background 



Probabilistic Graphical Models: Belief 
Propagation 

 Introducing new evidence Z=z, and querying X.   
 

•  Case 1: If X appears in clique with Z. 
Multiply clique that contains X and Z with indicator 
function 1(Z=z).  (Reduce evidence). 

     To get posterior, sum out irrelevant variables and     
 renormalize.  

 
•  Case 2:  If X does not appears in clique with Z. 

Multiply clique that contains X and Z with indicator 
function 1(Z=z).  (Reduce evidence). 

     Change the messages…. And pass on! 

Belief Propagation: Background 



Start with a 
known 

network 
structure 

Marry the 
parents and 

drop 
directionality 

No two discrete nodes 
be connected by a path 

that passes only 
through continuous 

nodes 

Belief Propagation in Genotype-Phenotype Networks 



Initialization of the 
junction tree: The 
junction tree is initialized 
through the assignment 
of each node, Xi and Qi, 
to a universe, V 
 
Evidence Absorption: 
New evidence entered by 
setting phenotype Xi = xi

* 

or setting a genotype 
state Qi = g* 
 
Message Passing: 
Information is rest 
propagated from the 
leaves to the strong root, 
and then distributed from 
the strong root back out 
to the leaves of the tree 

Belief Propagation in Genotype-Phenotype Networks 



Belief Propagation in Genotype-Phenotype Networks 
•  Predicting the how the network changes under new lines of 

evidence(s). 
 
•  Initial State: network with no absorbed evidence. 
    Absorbed State: network after absorbed evidence is propagated. 
 
Distance between initial and absorbed states: measured via signed 
Jeffery’s Information (symmetric version of Kullbeck Lieber 
distance):  
 
 
 
 
 



Application 
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Hageman RS, Leduc MS, Caputo CR, Tsaih SW, Paigen B, Churchill GA, and Korstanje R. Uncovering Genes and 
Regulatory Pathways Related to Urinary Albumin Excretion in Mice. Journal of the American Society of Nephrology 22: 
73-81 (2011). 



•  Mus musculus Kidney eQTL Data:  
–  173 males, F2 inter-cross between inbred MRL/MpJ and SM/

J strains of mice.  
•  Pre-processing 

–  Variable selection performed by filtering on significance and 
location of QTL, followed by a cross-validated elastic net 
procedure, with Tlr12 as the response.  

–  The 14 genes and their SNP markers corresponding to their 
QTL were included as variables for the graphical model.    

•  Structure Learning 
–  PC-algorithm using RHugin package for the R programming 

language (α incremented from 0 to 0.1)  
–  QTLnet method (Markov chain of 20000 iterations, burn-in 

rate 10%, model averaged network structure constructed from 
causal relationships with posterior probability of 0.5 or higher) 

Application 



Results: A single line of evidence 



•  Coordination and co-regulation are suggested in the 
direction of effect observed in the different regions of 
the pathway  

–  Activation of {Rbbp4, Stx12, Ak2, Hmgcl} 
genes involved either in AMP/ADP/ATP 
metabolism or protein biosynthesis/transport 

–  Repression {Mecr, Zbtb8a, Slc5a9, Cyp4a31, 
Ptp4a2, Trspap1, Atpif1} 

•  Absorbing evidence in Tlr12 < 0 leads to: 
–  Decrease in the marginal mean of Mecr 

indicating inhibition of fatty acid synthesis  
–  Increase in the marginal mean of Wdtc1 which 

plays a role in negative regulation of fatty acid 
biosynthesis. 

–  Inhibition of sodium dependent glucose 
transport f Slc5a9  

–  Activation of sodium and chloride dependent 
glycine transport Slc6a9 

Results: A single line of evidence 



Results: Two lines of evidence 



•  Belief propagation, which enables computational in silico 
predictions of the system-wide response inhibition or activation of 
phenotypes (perturbation(s)).  

•  Applications reveal coordination and co-regulation between sub-
pathways in response to perturbation(s) of phenotypes in the 
network.  This information is not revealed through network topology 
alone.   

•  A first step toward alleviating longstanding issues associated with 
model interpretation of genotype-phenotype networks.  

•  Insights provide a new layer of information, which may drive 
hypotheses generation, and the development of new experiments. 

•  Promising avenue for integration of probabilisitic constraints into a 
deterministic steady-state cellular model. 

   
 
 

 

Conclusions 
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