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Vibrations of Fluid-Filled Spherical and Spheroidal Shells

R. RanDp anD F. DiMaGGIO

Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027

Frequency equations and mode shapes are obtained in analytic form for the axisymmetric, extensional, non-
torsional vibrations of fluid-filled elastic spherical shells and rigid prolate spheroidal shells, while a numerical
scheme is developed for the fluid-filled elastic prolate spheroidal shell. Exténsive numerical results in the
form of frequency spectra and mode shapes for these problems are displayed.

LIST OF SYMBOLS

a normal coordinate of shell middle surface,
inverse of eccentricity of shell middle
surface

ag, 01 functions of #; see Eq. B12
square matrix; see Eq. 38

bo, b1 constants; see Eq. Bi2

c velocity of sound progation in fluid

Cs shear-wave velocity associated with shell
material; see Eq. 10

d interfocal distance; see Figs. 1 and 2

f1, fa, <+ +, fs functions of n defined in Appendix A

F Ro,V; see Eq. B2

g1, g2, * -+, gs functions of 5 defined in Appendix A

G Son; see Eq. B3

hy, ha, -+ -, hg functions of 5 defined in Appendix A

h minimum shell thickness; see Fig. 2

Jnid Bessel function of order n-+43

L, Legendre polynomial of degree #

P dynamic pressure in fluid

P pressure mode; see Eq. 1

P column matrix; see Eq. 38

Q functional defined by Eq. Al

r radial distance from center of spherical
shell

R radius of spherical shell

Ry, prolate spheroidal radial function of the
first kind

s1, S, * -+, 55 functions of n defined in Appendix A

S auxiliary function defined by Eq. A3

Son prolate spheroidal angle function of the
first kind
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a1, ag, a3
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time

functional defined by Eq. A2

tangential displacement of points on shell
middle surface; see Fig. Z

tangential displacement mode, defined by
Eq. 1

normal displacement of points on shell
middle surface; see Fig. 2

normal displacement mode, defined by
Eq. 1

frequency parameter defined by Eq. 20
functions of # defined in Appendix B
functions of » defined in Appendix B
frequency parameter defined by Eq. 30
tangential ellipsoidal coordinate, see
Fig. 1

spherical polar angle

parameter defined by Eq. 8

parameter defined by Eq. 22

parameter defined by Eq. 9

prolate spheroidal eigenvalue of order 0
and degree

shear modulus of shell material
Poisson’s ratio of shell material

normal ellipsoidal coordinate; see Fig. 1
density of fluid

density of shell material

ratio of major to minor axis of shell
middle surface; see Eq. 32

natural frequency



VIBRATIONS OF FLUID-FILLED SHELLS

INTRODUCTION

XTENSIONAL axisymmetric vibrations of an
elastic spherical shell in vacuo were first studied by
Lamb.! Rayleigh? first solved the problem of axisym-
metric vibrations of a fluid in a rigid spherical shell.
Extensional axisymmetric vibrations of elastic prolate
spheroidal shells i vacuo were studied by Nemergut and
Brand? for shells of constant thickness and by DiMaggio
and Rand* for shells bounded by confocal spheroids.
The solution for vibrations of a fluid-filled spherical
membrane appears in Morse and Feshbach.’

In this paper, frequency equations and mode shapes
are obtained in analytic form for the axisymmetric ex-
tensional vibrations of fluid-filled elastic spherical shells
and rigid prolate spheroidal shells, and a numerical
scheme is developed for fluid-filled elastic prolate
spheroidal shells. Extensive numerical results in the

I. FORMULATION OF THE PROBLEM

Using Flammer’s® notation, the prolate spheroidal
coordinate system and shell geometry are shown in
Figs. 1 and 2.

An isotropic elastic shell is bounded by confocal
spheroids defined by {=a=#/d, where d is the inter-
focal distance, £ the minimum thickness, and t=¢
(EccENTRICITY=1/a) denotes the middle surface. Ex-
tensional, nontorsional shell displacements % and w—re-
spectively, tangent and normal to the shell middle sur-
face—are assumed axisymmetric,

Letting p denote the dynamic pressure of the linear
acoustic fluid that fills the shell, and w a natural fre-
quency, the displacement and pressure modes, U, W,
and P, defined by

u(nf)=U(me*=!, wn,t)=W (n)eie,

form of frequency spectra and mode shapes for these pEm)=Pgmeiet (1)
problems are displayed. satisfy
(A= (= (1= ) U~ (1 2)*d{[ - '(“2_1)*] W}
— (1= —{(1— — (A=) U~ (1—g2)— a
e ’ L@ a—p
— (1=v)n(1—9?)} 1~ v pyod?
W — (@®—n)U=0, (2)
(a*—1)}(a*—1?) 2 4
v (a*—1)1d (1—)n(1—n2)t 1 2v a*—1
| e [a—er3- VA b Lo
(@1t a*—n? ddy (a*—1)¥(a*—7?) =1 a—q* (a—qp?)?
T = L P, @)
- -(a -7 = a‘t— a“—n am), 3
2 4y 3 duh
W 2 (a’—l)*aP( | @
= —a,n),
wlpd\a?—n¥/ 0ot
or . dP g dP wd\ ?
{(l—nz)—]+—[<sﬂ—1)—]+<—d> (e—11)P=0, )
a ol 0o¢ at 2

and
U(x1)=0, (6)

where » is Poisson’s ratio, u is the shear modulus, p, is
the mass density of the shell material, p is the density

1H. Lamb, “On the Vibrations of a Spherical Shell,” Proc.
London Math. Soc. 14, 50-56 (1882).

% J. W. Strutt Lord Rayleigh, “On the Vibrations of a Gas Con-
tained within a Rigid Spherical Envelope,” Proc. London Math.
Soc. 4, 93-103 (1872).

# P. J. Nemergut and R. S. Brand, “Axisymmetric Vibrations of
Prolate Spheroidal Shells,” J. Acoust. Soc. Am. 37, 262-265 (1965).

4 F. DiMaggio and R. Rand, “Axisymmetric Vibrations of Pro-
late Spheroidal Shells,” J. Acoust. Soc. Am. 38, 179-186 (1966).

® P. M. Morse and H. Feshback, Methods of T heoretical Physics
(McGraw-Hill Book Co., New York, 1953), Part II, pp.
1469-1472,

of the fluid, and ¢ is the velocity of sound in the fluid.
Equations 2 and 3 are the shell equations of motion,
Eq. 5is the fluid field equation, and Eq. 4 states that the
normal shell velocity must be equal to that of the fluid
on its surface. Except for a change of sign in Eq. 3,
Eqgs. 2-6 are identical to those for the shell surrounded
by fluid.” Here, Eq. 5 must be satisfied in the region
1<t<a, —1<n<+1.

By eliminating U and W from Egs. 2-4, as outlined
in Appendix A, a boundary condition on P only is

8C. Flammer, Spheroidal Wave Funciions (Stanford Uni-
versity Press, Stanford, Calif., 1957).

?T. Yen and F. DiMaggio, “Forced Vibrations of Submerged
Spheroidal Shells,” J. Acoust. Soc. Am. 41, 618-626 (1967).
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d !
€:[108
£:1102 . .

n=-1 I n=1 F16. 1. Prolate spheroidal coordinate system.

7=-CoST n=cosT
n=-C0s T n=cos ¥
n=cosT
=cosT
n= 0 7]=COS?_;’-77‘ 3
obtained as (14 )d [
-LA— 042014 »)W
[P gyt haP ek P -+ heP - Py - P =0, VI
f=o, —1<n<1 (D)
1—vp p,R2%? 1-vR?
where subscripts on P denote partial differentiation and - W= —P(R;y), (14)
the k;(n) are displayed in Appendix A. 2 hu
It is seen from Appendix A and what follows that, for 1 9P
a given eccentricity and Poisson’s ratio, natural fre- W=——(R), (15)
quencies will depend only on the parameters wp Or
x=(p/ps)(ad/2h) (8) 9 3P 3, AP\
and — (1—n2)—]+—<r’— +—rP=0, (16)
1 an amd or\ ar/ ¢
A=p*/2u=1%(c/c.)?, ©
where U(£1)=0, 17
Cg= (ﬂ/ Ps)* (10) and
181 etllluin Z:(l:(;ic;iy of propagation of shear waves in the [81P et g2P et go P +84Poit-gsPo+geP] =0,
r=R, (18)

II. ELASTIC SPHERICAL SHELLS

Equations for a spherical shell of radius R may be
obtained from Eqs. 2-7 by letting

d—0 and £—

such that
td—2r and ad— 2R 11

and
7= cosb,

(12)

where 7 is the radial coordinate and § the polar angle, as

a2
— (== A=WV~ (1=
dn?

AW  1—yp p R%?
= (1=n)t(14p)— U=0, (13)
dy u
1280  Volume 42  Number 6 1967

where the g;(n) are displayed in Appendix A.
By separation of variables, bounded solutions to
Eq. 16 for the pressure mode are obtained as

Prm)=r" iy (w/c)rLan),

where L, is the Legendre polynomial of degree » and
J iy is the Bessel function of order #+3. Substituting
Eq. 19 into Eq. 18, noting that

(19)

(1= L, —~ 2Ly’ +n(n+1)L,=0,

where primes denote differentiation with respect to e
and using?

8T niy(@)/da=[(n+4)/a]] nry(@) — T nesla),

8 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, Cambridge, England, 1923), p. 18,
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the frequency equation for

z=wR/c (20)
if obtained as
1—yp
H:(l-}-v))\z _2](1+)\Z )
Az? T ntr3(2)
e G
1—y 1
+xo)\z2|:< )(1+xz2)—"("+ ):|=0, 1)
14-» 14-»

whose solutions z for a given mode number »# depend
only on v and the parameters A and

ko= (P/PS)R/h7

which is the spherical counterpart of the « of Eq. 8 and
can be obtained from it by performing the limiting
operations of Eq. 11.

The corresponding displacement modes may now be
found from Eqs. 13-15 as

22)

La(n)
W)= (1] i3 (2)— 2T ns3(2) ] (23)
w?oR}
and
dL,
(1=} 2
n
V)= wpR} 1+>\z2{["(1_1+y>

- :fy]fm (&)— z(l _ 1:1)]"”(2) ] . (20

From Eq. 22, it is seen that

limky = limky=0. (25)
p— ps—r o
psfinite p finite

Correspondingly, Eq. 21 is satisfied for k0=0 if either

[(:-_ :>>\z2— 2:|(1+>\zz)+n(n+ 1)<1 - 1)::2 ) ~0,

(26)

12

which is Lamb’s' frequency equation for a spherical
shell ## vacuo, or

"“ZEJHQ(Z)/JHi(Z)]=Os (27

which is a different form of the frequency equation for
a fluid-filled rigid spherical shell obtained by Rayleigh.?
For sufficiently small values-of «o, the frequency spec-
trum corresponding to Eq. 21 should be well approxi-
mated by superposing the spectra for Eqs. 26 and 27,

da

N

(N4
3
g

F16. 2. Geometry of shell.

III. NUMERICAL RESULTS FOR SPHERICAL SHELLS

Figure 3 is a plot of the frequency spectrum for any
fluid in a rigid spherical shell, obtained from Eq. 27.
(It is to be noted that this and all other spectra plotted
in this paper are discrete, i.e., only those points corre-
sponding to integral values of the mode number # are
physically meaningful.) Figure 4 is a similar plot for
spherical shells i vacuo obtained from Eq. 26, using

. 6/c=2.205 and »=0.33, which corresponds to an

aluminum shell if ¢ is the value for water. Superposition
of the spectra of Figs. 3 and 4 yields Fig. 5, which
should be a good approximation to the spectrum of
Eq. 21 for small values of ko. For x,=0.158, e.g., the
spectrum corresponding to Eq. 21 is indistinguishable
from that of Fig. 5,

/
/1

AN

Fic. 3. Frequency
spectrum for a rigid
uid-filled spherical 8
shell.
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(o]

0 2 4 ¢ n 8
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F16. 4. Frequency
spectrum for an elas-
tic spherical shell in
vacuo for y=0.33 and
¢:/c=2.205.

L

[¢] 2 4 6

In Fig. 6, the spectrum of Eq. 21 is plotted for
v=0.33, c/c=2.205, ps/p=2.699, h/R=0.02105,

which corresponds to an aluminum shell filled with

P
Y )

I/

F16. 5. Superposi-
tion of frequency

spectra of Figs. 3
/ and 4. &
¢ 7
4
—
% 2 4 6 , 8
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// Fic. 6. Frequency

4 / spectrum for an elas-
tic fluid-filled spheri-

/ cal shell for v=0.33,
2=0.103, xo=17.60.

D

water, For these values, Eqs. 9 and 22 yield
A=0.103, Ko=17.60.

It is easily seen that Fig. 5 is no longer a good approxi-
mation of the spectrum for this value of ko for a spherical
shell. Figure 7 is a plot of the mode shape for »=2 ob-
tained from Eqs. 23 and 24 for these same parameters.

In Fig. 8, the spectrum of Eq. 23 is plotted for

»=0.33, A=6.00, xo=17.60.
For this value of A, the upper branch of the spectrum of
Eq. 26 is below the lowest branch of that of Eq. 27.
IV. RIGID PROLATE SPHEROIDAL SHELLS

Setting the radial velocity of the shell equal to zero,
Eq. 4 becomes

(3P/a£)(am)=0.

Bounded solutions of Eq. 5 are obtained using separa-
tion of variables as®

P(¢n)=Ron®(v,£)Son(v,m)

(28)

(29)

DEFORMED SHELL

Fic. 7. Displacement mode
for an elastic fluid-filled spheri-
\ cal shell for »=0.33, A=0.103,
AN %=17.60, n=2, and £=5.37.

UNDEFORMED SHELL: \\
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AT
A

LN
i

spectrum for an elas- 16

tic fluid-filled spheri- _
cal shell for »=0.33,

A =6.00, xo=17.60. "

Fic. 8. Frequency

where

vy=wd/2c (30)

and Rop, ™ and So, are, respectively, the prolate sphe-
roidal radial and angle functions of the first kind, order
zero, and degree #. Substitution of Eq. 29 into Eq. 28
yields the frequency equation

dRo, M (a)/dE=0. (31)

22

5\

A\

=10

i

o] 1 2 n 3

0

Fic. 9. Lowest branch of the frequency spectrum for rigid
fluid-filled prolate spheroidal shells of various ratios of major
to minor axis.

EQ. 7 7
£

EQ. 33
or
EQ. 34

| EQ. 36

£=1

EQ. 35 ) EQ. 37

F16. 10, Transformed domain and governing equations.

V. NUMERICAL RESULTS FOR RIGID PROLATE
SPHEROIDAL SHELLS

Figure 9 is a plot of the lowest branches of the spectra
of Eq. 31 for the first few modes of shells with various
ratios of major to minor axis given by

r=a/(a?—1)}, (32)

The plots for r>1 were obtained using all available
tabulated values of dR.™/d¢ on pp. 168 and 169 of
Ref. 6, while the curve for =1, corresponding to a
spherical shell, is identical to the lowest branch of Fig. 3.

VI. ELASTIC PROLATE SPHEROIDAL SHELLS

In Appendix B, it is shown that a single product of
the form of Eq. 29, which represents bounded solutions
to Eq. 5, cannot satisfy Eq. 7. A numerical method of
solution has therefore been developed.

By considering separately symmetric modes (z even),
for which

P(E,"])=P(£) —77): (33)
and antisymmetric modes (z# odd) for which
P(E,ﬂ)=—P(f, —77)) (34)

the original domain of integration is halved by making
it unnecessary to consider negative values of 7.

P.

Ak

Z|

§:1 7
% KO M, LA TNy Tt !

F16. 11. Grid system used for numerical integration.

The Journal of the Acoustical Society of America

1283



RAND AND DIMAGGIO
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F16. 12, Frequency spectrum for an elastic fluid-filled prolate
spheroidal shell, for »=0.33, A=0.103, x=17.60, r=10.0.

For solutions with bounded second derivatives,
Eq. 5 is replaced along the major axis of the shell by

a*P OP 3P juwd\?
13 2c

I’ an
t=1, 0<n<t (39)
apP d*P P  swd\?
[-r—+e-0—ra+(5) e-p o
an ag 9t \2
1=+1, 1<t<a (36)

and
[8P/3t—0P/3n]t=1,m1=0. (37

The problem consists of solving simultaneously Eq. 5
in the region 0<9<1 and 1<£<a, Eq. 35 at ¢{=1 for
0<9<1, Eq. 36 at n=1 for 1<¢<aq, Eq. 37 at =1,
n=1 and Eq. 7 at {=a and 0<»<1, for modes satis-
fying Eq. 33 or Eq. 34. This is shown schematically
in Fig. 10. Each of these equations was written in finite
difference form with errors of second order in the spacing

DEFORMED SHELL‘)

UNDEFORMED SHELL)

F16. 13. Displacement mode for an elastic fluid-filled prolate
spheroidal shell for »=0.33, A=0.103, x=17.60, r=10.0, n=2,
and ay=0.7755. )
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4
123
S
»
&
3
Fic. 14. Lowest
branches of fre-
) quency spectra for
an elastic spheroid
ELASTIC SPHEROID in vacuo and a fluid-
IN VACUO filled rigid spheroid,
for r=10.0.
1
) FLUID-FILLED
/K RIGID SPHEROID
A
/7
/
N
0 3 6 9 12

and applied to the N(M+1) pivotal points shown in
Fig. 11,
The resulting equations are of the form

AP=0, (38)

where A is an N(M+1) square matrix whose elements
are functions of the frequency parameter v of Eq. 30,
and P is an N(M+1) column matrix of the pressure
mode elements Py;. A trial-and-error process was used
in which v was assumed and detA calculated until

detA=0 (39)

was satisfied. For each value of v satisfying Eq. 39, P
was determined from Egs. 38 and pivotal values of W
and U from Egs. 4 and A13.

By ordering Eqs. 38 with increasing 9 and £, A attains
a maximum bandwidth of 4M+9. Using the Gaussian-
elimination-back-substitution technique (as incorpo-
rated in the LEQ?® library routine) for N (M +1)=150,
30 sec was required on an IBM 7094 computer to
evaluate detA for one assumed value of ¥.

VII. NUMERICAL RESULTS FOR ELASTIC
PROLATE SPHEROIDAL SHELLS

The numerical procedure outlined in Sec. VI was first
checked by applying it to problems solved analytically
in Secs. II-V. In particular, using ¢=7(r=1.01),
»=0.33, A=0.103 and x=17.60, results indistinguish-
able from those of Figs. 6 and 7 were obtained, while

® M. Goldstein, “Linear Equations Solution and Determinant
Evaluation,” SHARE Program No. SDA3239 (1964).
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insertion of a=1.005(r=10.0) and a=1.077(r=2.69)
for k=0 produced results identical to those of Fig. 9
and Ref. 4.

In Fig. 12, the lowest two branches of the frequency
spectrum for

2=1.005(r=10.0), »=0.33, A=0.103, x=17.60

as obtained using the numerical method of Sec. VI are
plotted. For the same parameters, Fig. 13 shows the
mode shape for =2 and:ay=0.7755. ... /2
It is of practical interest to note that, for this ec-
centricity, the spectra of Fig. 12 are excellently approxi-
mated by superposing the lowest branches of the spectra

for an elastic shell iz vacuo as obtained in Ref, 4 and for
a rigid shell as plotted in Fig. 9. These are reproduced
in Fig, 14. For this value of «, this superposition was not
valid for the spherical case, as demonstrated in Sec. II1.
It appears that as the eccentricity of the shell increases,
the upper limit of x for which this superposition is
valid increases also.
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Appendix A

To eliminate U and W from Eqgs. 2-4, first multiply
Egs. 2 and 3 by (a>—»?)* and substitute the expression
for W of Eq. (4) to obtain, at ¢=g,

18"+ oS+ faPyet-f1P=0Q=0 (A1)
and

fS'+ foS+ f1P et fiP =T =0, (A2)
where primes indicate differentiation with respect to 7,
subscripts £ and 4 denote partial differentiation,

where . :
s1i= fs(fufe— fsfs), (A14)
$2= fifsfs, (A15)
ss= fifsfs'— ffs(fo+ f3), (A16)
and si=fs(ffd = faf) = fifs(fd+ o), (A17)
ss=fufe(fs'+fo)+ fe(fofs— fufs).  (A18)

Finally, substituting Eq. A13 into Eq. A2, Eq. 7

S=(1—n?)¥(wd/2a)U, (A3) is obtained with
fi=(a—n))}(1—n?), (A4) hi= f5155, (A19)
fa= Q=) (@—m)[1+M2(a*—7D) ], (AS) ho= foses1'+ foses5— fos156+ fesiss, (A20)
fo= =) [ (@ =)+ =)@ —1)], (46) = fsssd— foswd+ foswet frs,  (A20)
fe=n(t—m) (da—r=3), (A7) ha= fosass (A22)
fi=a(@—)[(@—n)/ (@—1)+1], ag) T fesiE S fusitfs, (A2
. an
fe=[1/(a*— 1) J[—a*(1 =)y (a*~9)1], (A9) he= fss655'— fssass'+ fosass+ fase?. (A24)
fr=a*(@®— )%/ (a*— 1)+ 2va (@ —n?) +a*(a—1) The corresponding coefficients of Eq. 18 are obtained
—(1—»)(a?*—n?®\y?, (A10) by performing analogous operations on Egs. 13-15, as
and o= —m)[1—2?/ (1], (A25)
fi=(1/a)[— A=)y M (@ —7?)*]. (A11) go=—2[1—2zt/(1+»)], (A26)
Now, referring to Egs. Al and A2 and noting that gi= 12 {2—[A—»)/ A+ 2},  (A27)
Hlfs'+ f) T+ f°Q—F1fsTy=0, (A12) gs=— (1= ez?/ (14-v)R, (A28)
S is obtained in terms of P as g5=2n(\xo22)/ (14 »)R, (A29)
S=(1/55) (s1P ¢+ 5P+ 5:sP+5.P5), (Al13) ge=—(1—»)A+N) D/ R(140)].  (A30)
Appendix B
If a solution of the form of Eq. 29 is to satisfy G)=So(vm), (B3)
Eq. 7, then :
B1=hia1+hsas, (B4)
[G' BiF'+B:F)+G(B:F +B.F)]=0, ¢(=a (B1)
Ba= ka1t hsas, (BS)
where
F(&)=Roa® (v,8), (B2) Bs=haa+hyas, (B6)
The Journal of the Acoustical Society of America 1285
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Ba=hacot hoas, (B7)
ay=—2, (B8)
as=Aon—7™?, (B9)
az=—(1—7%); (B10)

primes denote differentiation with respect to £ or 5, as
appropriate; and use has been made of the equation
defining So,, i.e.,®

(1 _772)507;”_ 2"7S0n,+ ()\On_'yz'flz)son: 0, (Bll)

in''which the Ao,(y) are the prolate spheroidal eigen-
values of order 0 and degree n.

Equation B1 can be satisfied identically with respect
to 7 (for —1<9<1) if and only if it is separable, i.e.,
if it can be written in the form

Lao(m)G () +a1(n)G’ (n) 1[boF (a)+:F" () ]=0, (B12)
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in which case the frequency equation would be obtained
by requiring the second bracket to vanish. Equation Bl
can be put in the form of Eq. B12 if and only if the
identities

boao(n)=P4(n), (B13)

boai(n)=B:(n), (B14)

b1ao(n)=Bs(n), (B15)
and

b1a1(n)=PB1(n) (B16)

are satisfied. But Eqgs. B13 and B16 can be satisfied if
and only if

B1(n)B4(n) —B2(n)Bs(n)=0. (B17)

The identity of Eq. B17 is not satisfied by the §;(n)
of Egs. B13-B16. Therefore, a single product of the
form of Eq. 29 cannot satisfy Eq. 7.



