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ABSTRACT

We examine an unconventional method for control of flexible space struc-
tures using feedback control of certain elements of the stiffness matrix. The
advantage of using this method of configuration control is that it can be accom—.
pPlished in practical structures by changing the initial stress state in the
structure. The initial stress state can be controlled hydraulically or by
cables. The method leads, however, to nonlinear control equations. In parti-
cular, we examine a long slender truss structure under cable induced initial
compression. Both analytical and numerical analyses are presented. Nonlinear
analysis using center manifold theory and normal form theory is used to
determine criteria on the nonlinear control gains for stable or unstable

operation. The analysis is made possible by the use of the exact computer
algebra system MACSYMA.

INTRODUCTION

The use of linear feedback forces to control linear flexible structures has
been studiea for over a decade, (1)—(4]. The efficacy of these methods has been
demonstrated experimentally in the laboratory for a few cases (see e.g. Ref. 2,
3). However, the problem of applying linear feedback forces to an actual struc-
ture in space is formidable. For structures with significant bending deforma-
tions, forces transverse to the major axis of the structure are required such as
small distributed rocket motors. An alternative is to use a scheme used in
nature to control animal structural configuration, namely active control of
their internal stress or muscles. In a man-made structure this analogy can be
exploited by applying a self-equilibrated internal stress state through the use
of cables or hydraulic actuators (Figure 1l). The tension in cables can be
controlled by DC servomotors and gear reducers. Such a method for control of
internal stresses is suited to low frequency applications where control of the
lowest moaes of the structure is desired. From elementary structural theory it
is known that the initial stress state can change the elastic stiffness matrix.
The simplest example is the beam-column. In this case, the initial axial stress
can even make the stiffness go to zero at buckling. Stiffness control of a
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vibrating string has been studied by Chen (5), and a two mode analysis of
stiffness control has been presented by Fason et al. (6).

We propose the use of feedback to control elements of the stiffness matrix
by controlling the internal stress. In one problem, we assume the structure is
initially in a desired configuration and is impulsively disturbed. We examine
the ability of several control laws to return the structure to its initial
configuration. Both linear and nonlinear control laws are examined. Conditions
for stable and unstable behavior of the system are derived.

STIFFNESS CONTROL — A SIMPLE EXAMPLE

The simplest structure for which an initial stress T can change the
stiffness is the beam-column whose equation for the transverse displacement u
is given below (Figure 2):

a2 . a2u \ 32u
2 2 Y T2
9% ox ot

9 84 _ a9
+ 3% T % f + 3% (1)

wnere f represents either distributed disturbances or linear control forces
and g represents distributed torques such as those due to thermal or solar
induced stresses. D is the bending stiffness and T is the axial
compression induced by placing cables in tension along the beam. The mass
aensity is y .

Conventional control theory of flexible structures uses f£f(x,t) to control
the shape. 1In this paper we propose to use the initial stress or cable tension
1 to control the lowest mode. This eliminates the need for transverse control
forces such as rockets or jets. When D and T are uniform along the beam, we
have (neglecting distributed torques):

4 2 2
D 3 : + Y 3 ; + 7T g
X ot 9x

5 = £(x) (2)
A single mode model may be derived using Galerkin's method where we assume the
shape function is known

u(x,t) = A(t)U(x) (3)
The equation for A(t) takes the form,

A+ (wz - BT)A = F(t) (4)
Thus we can see that the stiffness term is linear in the initial stress T .

We propose a general control law for T , which includes both linear and
nonlinear terms.
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In general, the control law for the cable tension will have a lag due to
servomotor or hydraulic system inertia or control circuit delay or stress waves
propagating along the tension cables. (In a large structure the latter might
not be negligible.) The tension will have a static and a dynamic part:

T =T +%(t) (5)
where
dlIA
1 1 o .
o dt + 11 = G(A,A) (6)

ihree aifferent control laws are examined

G = FlA + PZA (7)
G =T.a%2 + T Ak + I A% | (8)
3 4 5
[ _aA
G=__6_2 (9)
(1 + P7A )

Equations (4)-(6) constitute a nonlinear system of equations where the
stiffness is controlled by a feedback parameter T , hence the term parametric
stitfiness control. This system is analogous to the Mathieu equation in which,
nowever, the stiffness term is a known periodic function of time.

STIFFNESS CONTROL - GENERAL THEORY

For more general structures with a stiffness matrix (k) . Mass matrix [m)
ana a set of cable tensions {T} one has a set of linear coupled equations for
the generalized cisplacements or modal amplitudes {x} .

(mj{xt + (K){x} = {£(&)} (10)

wnere {f} represents disturbances. In classic control theory of flexible
structures one would use {f} to provide control. In the present theory

however we recognize that the elements of (k] are linear functions of the
tensions, 1i.e.,

- o A
k1j kij + Bijkik ‘ (11)
Thus one can try to vary the T  to effect a change in any or all of the
{x(t)} . 7o supplement these equations one requires a control law for the cable
tensions. To account for lags in the cable control system, these control laws
might take the form

l ® [
— Y » - i . Q
lk + 1 = Gl(xi' xj, S(t)) (12)
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where the S(t) might be desired displacements. The system of equations (10)-
(12) is clearly nonlinear. One can raise questions of observability,
controllability, stability, etc. To effect all the modes one might require a
combination of control force £} and stiffness control {T'} . 1In the section

below we examine a single mode problem and examine the question of stability for
stitfness control alone.

ONE-MODE MODEL - STABILITY ANALYSIS

A) Nonlinear Quadratic Feedback Control

In this section we examine the stability of the equilibrium point at the
origin under the quadratic feedback law (8). If one nondimensionalizes the
modal amplitude so that the physical amplitude A is replaced by a
dimensionless amplitude x , the equations (4), (6), and (8) can Ee put into the
form of the rate of change of the state space vector r = (x,Y,z)  where

X=y (13)
¥ =-1+ 2)x (14)
Z2=- gz + a(Gzoxz + G xy + Gozyz) (15)

where a general quadratic nonlinear control law has been assumed with control
gains . We shall investigate the stability of this system of
equatlons 1n tﬁe nelghborhood of the equilibrium point at the origin r=(0,0,0).

We note that the linearized system has eigenvalues i , -i , and -a
The last eigenvalue corresponds to the decay of the servomotor transient 1z , 0.
This suggests that any motion starting close to the origin will eventually move
down onto the x,y plane. To obtain a more precise description one must account
for the nonlinear terms. This situation is clarified by the Center Manifold
Theorem (7), which states that there exists a surface

z = £(x,y) (16)

which is tangent to the x,y plane at the origin to which all solutions starting
sufficiently close to the origin tend asymptotically. The surface is moreover
invariant under the motion or flow given by (13)-(15).

In oraer to formally approximate (16) we expand f(x,y) in a power series:
z= 3 .z mijx y ' (17)
i=2 j=2

The constant and linear terms in (17) are dropped in order that the surface be
tangent to the x,y plane at the origin. The coefficients mj4i may be found by
dltferentlatlng (17) with respect to t and using (13)-(15) and (17) to
eliminate X, ¥, 2 and z . Collecting terms of like powers of xiy) one can
obtain the constants mjj . Needless to say this procedure involves much
algebra which is easily handled by the computer using the exact symbolic
computer algebra system MACSYMA (see e.g. Kand (8)). Proceeding in this fashion
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we find that z consists of only even order terms. We expand (17) to powers up
to fourth order and obtain expressions for the coefficients mp¢ , m11 ,

mo2 .
Mgg , m31 , m2 , m3 , mpg4 . To illustrate the complexity of these
coefficients we display four of them;
2
(a + 2)G20 + aGll + 2G02
M2 = 2
a + 4
-20G. . + % + 206G
20 T %5 02
My~ 2
a + 4
) (18)
o 26, - a6, + @ + 2)6,
02 a2 + 4
0 6.2 -5 4 2 2,3 -
m 4=~ (20 G,~1007G G, +a (32602G20+14Gll+16602)+a (=926, G, 1~36G G, )
+a (12862 +96G__G. +8G2 +64G>_)+q (~176G. .G. ~176G. G. . )+320G>
o 20" 002027207 0117 °%8g) T 11°20 02°11 20

e 2 8 6 4 2
+£56G02620 64602)/(a +280, +240q +8320, +1024)

The tull set will be given in a forthcoming paper with more details.

The Center Manifold Theorem (7] states that the stability of the origin in
the full three dimensional flow (13)-(15) is the same as the stability of the
equilibrium point x =y = 0 in the flow on the center manifold. %Thus, we are
led to study the stability of the system of equations

X=y

4 4 (19)
Y=-(0+ & I m.xyhx+0(7) i+tj< 4

R ij <

i=0 =0

which may be consiaered as an oscillator with linear, cubic, and quintic rorces.
In the linearizea case the eigenvalues +i correspond to the "critical case" of

Liapunov (see e.g., Minorsky, p. 150 (9)) and the stability cannot be determined
on the basis of linear terms alone.

To stuay the stability ot (19) we use the method of normal forms (see e.g.,
Guckenheimer and Holmes [10)). We posit a "near identity” transformation from
X,y to u,v coordinates of the form
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b4 u+ g(u,v)

(20)

y =v + h(u,v)

where g,h are polynomials with terms cubic and quintic in u,v having
undetermined coefficients. Takens (11), has shown that it is always possible to
transform systems like (19) (which have linear parts equivalent to simple

harronic oscillators) into a form which may be expressed simply in polar
coorainates in tne u,v plane:

3 5
ar’ + ayr” + 0(7) (21)

1

.
I

-1+ blrz + b2r4 + 0(6) (22)

b

where u =1 cosb , v =r sinf . Although this procedure is straightforward,
the choice of functions g,h involves solving sixteen algebraic equations.
Again this task was made tractable by using MACSYMA.

The result of this computation is that the quantities a, , a, bl v b2

in (21)-(22) are obtained in terms of the mij . We find
a; = -my,/8
ay = ~(2my) = mymyp + 2my 5 - myom,y,)/32 23)
b1 = -(96m20 + 32m02)/256
2
b2 = -(80m40 + 16m22 - 21m20 + 18m02m20
2 2
- 5m 1t 16m04 + 3m02)/256
In terms of the original control gains in (15) we find
2 .
ZGGZO -Q G11 - 20G02
a, = 2 (24)
8a~ + 32
5 3 2 6 4 2 5
a2 = —-((2a +48a +96a)G20+((-a -28a -320 )Gll+(4a +64a)602)G20
S5 o032 ., 6,4 _, 2 5,003 2
+ (20 -8Q )G11+( o —-40 -640 )G02G11+(2a +16a. 32a)G02)
6 4 2
/ (320 +3840 +15360.+2048)

The equation for r + (21), governs the stability of the origin and the
existence of limit cycles, while the equation for 8 ¢+ (22), specifies the
frequency of the periodic motion corresponding to a limit cycle.

In particular the origin will be asymptotically stable if a, < 0 and
unstable of aj) > 0 . If a] = 0 then the sign of a3 determines the
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stability of the origin. Limit cycles correspond to equilibria of (21) and have
a radius R given by

2
R™ = -a,/a, (25)

Since the power series expansions (17) and (19) are only valid in a neighborhood
of the origin, the expression (25) can only be expected to be valid in a
neighborhood of aj = 0 . In terms of the control gains we have

o2 . 4.2 2.2 2 s
= 4(c?+4)2 (26,06, ~26y,)/ (20762 +480762 +9662 ~a’G G,
3 4 42 .22 5
m2800Gy 16073206, 16 gt 4a GGy *t64G .G 0 20 Gy ~8a Gy~ Gy 6y
3 4.2
406G, | ~6406 G, +2d Goz+16a 62 32Goz’ (26)

From (24) the condition for the stability of the equilibrium point at the origin
is given by

2
aG,, + 2a(G,,=G,.)
_ 11 5 02 20 <0 (27)
a + 4
In the limit of zero servomotor lag q »+ « , (27) requires that Gj;; > 0 .
This corresponds to a quadratic damping feedback law where in (7) G = r5A2 .
The stability condition (27) is a plane in control space (Gll, G02’ GZO) with

a normal given by

N= (ar 2, -2)
The maximum damping is obtained by choosing Gj; , Gg2 , Gzg 80 as to
maximize the distance from this plane subject to the inequality (27).

Numerical integration of three specific quadratic feedback laws is shown in
Figures 3, 4, and 5. A fourth order Runge-Kutta algorithm was used. In the
stable case, we have Ggp =1, G9=0, G1] =-1, and o =1 which
satisfies the stability criterion (27). We note the slow oscillatory decay
which is characteristic of nonlinear quadratic damping (Figure 3).

In the secona case (Figure 4) q = 3 , and the control system admits a
limit cycle oscillation. In this case eq. (26) predicts a limit cycle radius of

~ 0,86 which agrees favorably with the numerical result. In the third
example (Figure 5) we choose G =0, Gll = 1 . This case shows a
stable damped spiral as in Flgugé 3.

B) Linear Feedback Control

The curious reader may wonder why we did not treat the case of the linear
feedback (7) first. A linear feedback law, however, introduces quadratic terms
in the dynamic equation (4) (or (13), (14)) in the limit of small lag ¢ + « .
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This introduces a saddle point in the phase plane and the system may not be
globally bounded. However, using an analysis similar to that in the previous
section we can show that the origin can be made stable in the limit of I
In this limit a linear feedback law

z = klx + k2y (28)
leads to the dynamic equation

X+ x + klx2 + kzxy =0 (29)
Using normal form theory, an expression for the phase plane motion in polar

coorainates can be found similar to (21)

k.k.r>

——— + 0(5) ‘ (30)

e
]

e
|

1 2 2 2
=22 (k2 + lOkl)r -1+ 0(4) (31)

By choosing kjkz < 0 a damped spiral motion can be obtained in the vicinity of
the origin.

Numerical integration of the equation (29) confirms the result implied in
(30), namely a stable spiral will result for kjkz < 0 . This is illustrated in
Figure 6. One can also observe in the Figure that for large initial conditions,
the motion is not bounded because of the aforementioned saddle point at y = 0 ,
X = -1/k1 .

C) Nonlinear Feedback -~Rational Functions

As a tinal example we examine the case of stiffness control with a rational
traction feedback law where the equations take the form

Ne

=Y

e
n

-1 + z)x (32)

~az + P (x,y)/Q(x,y)

wnere P , Q are polynomials in the amplitude and velocity variables x,y .
As a special case, we choose a form of P,Q such that for large amplitude

X + « and small feedback lag ¢ + o , the system (32) looks like a damped linear
oscillator. One choice is the following

oe
]

y

e
L}

-(1+2)x (33)

~az + qIxy/(1 + nxz)
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When |x| > o and ¢ + o this looks like

X+ _x+x=0 (34)

S

For small Ix] » (33) reduces to the previous example A with G._ =G. = 0 ’

r=e¢ . From the previous analysis we require r >0 for stabgfity.zoBy'
choosling optimum values for I'nm one can hope to get the state vector to
approach the origin with little oscillation.

A numerical simulation of the equations (33) was carried out using a fourth
order Runge-Kutta algorithm for the case p =10 , n=1 . The results are

shown in Figure 7. This control law has clear advantages over the quadratic
case.

CONCLUSION

This pilot study on the possibility of stiffness control of structural
dynamics illustrates some of the complexities of this concept. First the nature
of stiffness control leads to a nonlinear dynamical problem even when the
feedback law is linear. Second the study shows that nonlinear feedback laws may
be more desirable than linear control when stiffness control is used. Finally
we note the power of exact computer algebra (MACSYMA) in allowing one to use
powerful nonlinear perturbation techniques such as normal form theory to analyze
the stability of these nonlinear systems.
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FIGURE 1

FEEDBACK CONTROLLED
TENSION CABLES
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IDEALIZED MODEL

FIGURE 2
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FIGURE 3. Numerical
integration of
eqgs.(13)-(15) for
parameter values
=1, G02=1, Gll=-1,
G20=0. Note absence
of limit cycle.

FIGURE 4. Numerical
integration of
eqgs.(13)-(15) for
parameter values
«=3, G02=1, Gll=-1,
G20=0. Presence of
limit cycle
indicated by growing
inner trajectory and
decaying outer
trajectory.
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FIGURE 5. Numerical
integration of
eqs.(13)-(15) for
parameter values

« =1, G02=0, Gl1l=1,
G20=0. The origin
is aymptotically
stable, in agreement
with eq.(27).

FIGURE 6. Numerical
integration of
eq.(29) with y=dx/dt
for parameter values
kl=l, k2=-1.
Although the origin
is aymptotically
stable for
sufficiently small
initial conditions,
the presence of a
saddle S at x=-1,
y=0 prevents the
origin from
exhibiting global
asymptotic
stability.
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FIGURE 7. Numerical
integration of
egs.(33) for
parameter values
oa=1, M=10, n =1.



