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Torsional Vibrations of Elastic Prolate Spheroids

Ricuarp H. Ranp

Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14850

Frequency equations and mode shapes are presented in analytic form for the torsional vibrations of solid
prolate spheroids and thick prolate spheroidal shells. The solutions are shown to include the previously
obtained solid sphere and thin prolate spheroidal shell results as limiting cases. Numerical results are pre-

sented for solid prolate spheroids.

INTRODUCTION

HE torsional vibrations of elastic spheres were

first studied by Jaerisch!, and later by Lamb.?
DiMaggio and Silbiger? have studied the torsional
vibrations of thin prolate spheriodal shells. Jaerisch4
presented the governing equations for the torsional
vibrations of elastic prolate spheroids, but never solved
them.

In this paper, frequency equations and mode shapes
are presented in analytic form for the torsional vibra-
tions of solid prolate spheroids and thick prolate
spheroidal shells. The solutions are shown to include
the previously obtained solid sphere and thin prolate
spheroidal shell results as limiting cases. Numerical
results are presented for solid prolate spheroids.

I. FORMULATION OF THE PROBLEM

Using Flammer’s® notation, the prolate spheroidal
coordinate system is represented by coordinates 7, £,
¢. See Fig. 1.

Let v be the torsional axisymmetric displacement.
For free vibrations,

v(n,&,0) =V (n,£) expliwt], ey

where V' is the torsional displacement mode and w is
the natural frequency.

For this dilatationless displacement field, the dis-
placement equations of motion of the linear theory of

' P. Jaerisch, J. F. Math. (Crelle) 88, 131-145 (1880).

¢ H. Lamb, London Math. Soc. Proc. 13, 189-212 (1882).

3F. L. DiMaggio and A. Silbiger, J. Acoust. Soc. Am. 33,
56-58 (1961).

4P, Jaerisch, J. F. Math (Crelle) 104, 177-210 (1889).

b C. Flammer, Spheroidal Wave Functions (Stanford University
Press, Stanford, Calif., 1957).

elasticity become®
d? 92

(A= P—[ (1= H (F— D[ (F-1)}V]
ot op

+aE-mr=0, @

where
= pwhl*/4pu,

p is the mass density, u is the modulus of rigidity, and
d is the interfocal distance.

If a prolate spheroidal boundary surface of the form
t=a=const., is to be traction free, the stress com-
ponents 7, 74y, Tt Must vanish there.

Hooke’s law for an elastic solid with a dilatationless
displacement field yields

T4 = 2uey,

Tn= 2;1.85,,, (3)
and

Tio=2uesq,

where e, €;,, and ;4 are strain components.

The strain-displacement relations (Ref. 6, p. 54)
reveal that for the assumed displacement field e and
ez, vanish identically, and that in order for e¢4 to vanish
on {=a,

aV/dg—[¢/(#-1)]V=0 on ¢=a. (4)

The problem is, then, to find bounded solutions to
the partial differential equation, Eq. 2, which satisfy the
condition Eq. 4 on the boundaries.

8A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, Inc., New York, 1944).
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II. SOLID PROLATE SPHEROIDS

By separation of the variables, hounded solutions to
Eq. lg are obtained as

V(ﬂ,$)=31n(6m)R1n(” (C E) (5)

where S1, and Ry, @ are, respektwelv the prolate
spheroidal angle and radial functions of the first kind,
order 1, and degree n.

Substltutlon of Eq. 3 into Condition 4 yields the
frequency equation

den(l)
(c,a)—
dg a?—

R1aM(c,a)=0. (6)

lII.vTHIC“,K PROLATE SPHEROIDAL SHELLS

Consider a prolate spheroidal shell bounded by con-
focal spheroids, and thus having a variable thickness.
Let £=a; represent the outer bounda.r_v and let £¢=a,
represent the inner boundary.

By separation of the variables, bounded solutions to
Eq. Jie'are obtained as

V(0,8)=S1(e,n)[Rin® (¢,0)+ KR, @ (c,8)], (7)

where R,,® is the prolate spheroidal radial function of
the second kind, order 1, and degree #, and K is an
arbitrary constant.

Define

Jia)=(dR:."/d8) (c,a;)
, —[a;/ (a2—1)]JR1.(c,a;). (8)

Then substltutlon of Eq. 7 into Condltlon 4 at £= =0y
and at S*az, 3;eld< respectlvely

fl(al)+Kf2(dJ)—() (9)
and .

~ fi(a)+K fo(a,)=0. (10)
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Solving Egs. 9 and 10 for K,

K=~ fi(a1)/ fr(a) = — f2(a2)/ f1(as), (11)
whence the frequency equation becomes
fi(a1) fo(as)~ fi(as) f2(a:)=0. (12)

IV. LIMITING CASE OF A SOLID SPHERE

The solution for a solid sphere of radius R may be
obtained from Eqs. 5 and 6 by the following limiting

process.
Let
. §—> oo, d—0 (13)
such that
(d— 2r, ad — 2R, (14)
and let
n=cosf, (15)

where r is the radial spherical coordinate and 6 is the
polar angle.

Then
2= pw?d?/4u — 0, (16)
£ par?/u=22, an
@’ — pu’ R /u= (18)
and (see Ref. 5)
S1nle;n) = Pa'(n), (19)
Rin®(c,8) = jn(2), (20)

where P,! is the assoc1ated Legendre function of the
first kind, order 1, and degree #, and 7, is the spherical
Bessel function of the first klnd of order n.

Equations 5 and 6 become, respectively,

V(n,r)=Py'(n) ju(2) (21)
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and
Z(djn/dz)(Z)— ju(Z)=0. (22)

Equations 21 and 22 agree with the results of Jaerisch!
and Lamb.?

V. LIMITING CASE OF A THIN PROLATE
SPHEROIDAL SHELL

Let the minimum thickness of the shell be #<<d, and
let the middle surface be £=e. Then the outer boundary
becomes (see Ref. 3) £=a+ (2/d) and the inner bound-
ary f{=a—(k/d). The frequency equation, Eq. 12,
becomes

DAL
e Lo

Expanding f; in a Taylor’s series about a, obtain
(24)

Substituting Eq. 24 into Eq. 23, and neglecting terms
of order [h/d]? and higher, yields

Ji(@)(dfo/dE) (@) — frla)(dfr/dE) (@)=0.  (25)
From Egq. 8,
dfs &Ry, a 1
i<a)= (Caa)_ ((’ya)
d¢ d§t a’— ¢
T e 0

The functions Ry, satisfy the differential equation
(see Ref. 5)

@Ry,
dg
- [:)\ln_ C2£2+ (52_ 1)-1.—.|R1n(i) (C;E) = 07

(#-1) (c,£)+2

e
(o

(27)

TABLE I. Values of ¢ for solid prolate spheroids.

a B n=2 n=3 n=4 n=>5
1.01 7.12 2.56 4.27 5.89 7.49
1.02 5.07 2.53 4.22 5.82 7.39
1.03 4.17 2.51 4.17 5.75 7.29
1.04 3.64 2.48 4.12 v 5.68 7.20
1.05 3.28 2.46 4.07 5.61 7.11
1.06 3.01 243 4.03 5.54 7.02
1.07 2.81 241 3.98 5.48 6.93
1.08 2.65 2.38 3.94 5.41 6.85
1.09 2.51 2.36 3.90 5.35 6.77
1.10 2.40 2.34 3.86 5.29 6.69

where A1, is the prolate spheroidal eigenvalue of order 1
and degree #.

Substituting Eqs. 26 and 27 into Eq. 25 yields the
frequency equation

2— At ca?=0, (28)

which agrees with the solution presented by DiMaggio
and Silbiger.?

VI. NUMERICAL RESULTS FOR SOLID
PROLATE SPHEROIDS

The frequency equation (Eq. 6) may be solved
approximately with the aid of the tabulation of R;,®
and dR;,V/d%, as presented in Ref. 7.

The results of such computations are shown in
Table I, where the lowest values of ¢ satisfying Eq. 6
are tabulated. The parameter 8 is the ratio of the major
to the minor axis of the prolate spheroid,

B=a/(@— 1" (29)
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