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ON THE STABILITY OF THE VIBRATIONS OF A PARTICLE
IN THE PLANE RESTRAINED BY TWO NON-IDENTICAL
SPRINGS
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Abstract—The stability of the vibrations of a particle constrained to a plane and restrained by two non-identical
springs with initial stress is studied by using Floquet theory and perturbations. It is shown that unexpected
regions of instability occur due to the non-identical properties of the springs.

INTRODUCTION

THE stability of the vibrations of a particle constrained to a plane and restrained by two
identical springs with initial stress has been studied by Yang and Rosenberg [ 1, 2], and by
Rand and Tseng [3].

In any real system, the springs cannot be made identical. It is therefore of interest to
extend the results of [1-3] to include the effects of non-identical springs, especially for
springs which are nearly identical.

In this paper it is shown that the nature of the stability diagram is qualitatively changed

if the springs are not identical. Unexpected regions of instability occur even if the springs
are nearly identical.

FORMULATION

Consider a particle with coordinates (x, y) constrained to the x—y plane and restrained
by two non-identical linear springs with initial stress, as in Fig, 1.
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F1G. 1. A particle in the plane.

Let the equilibrium position of the particle be the origin of the x-y coordinate system,
oriented such that the larger of the two lengths AB, BC lies in the positive x direction.
Choose the unit of mass such that the mass of the particle is unity, the unit of length such
that the distance between the supports, AC, is twice unity, and the unit of time such that
the sum of the two spring constants is unity.
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Let D be the smaller of the two lengths AB, BC. Then

0<Dx1 8))
Let K be the spring constant of the spring associated with D. Then
0<K«<l 2)
Let L be the original length of the spring associated with D and K. Then
L>0. 3)

Let A be the original length of the other spring. Since the particle is in equilibrium when
x=y=0,

KD-L=(1-K)Y@Q-D-1) @)
Requiring A > 0 imposes the condition

_K(L-D)
b= +2-D>0 )

Clearly D, K and L are independent parameters which completely specify the physical
properties of the model. For given D and K, from (3) and (5),

L>max{0,p_gﬂl_—_fg>} 6
K
The equations of motion for the particle are
x:u—mufwb—p-@—K@_”w+n
d2 dl
" d, — A d,— L
dy d

where
di = (D + x)* + y*
d2=(Q2—-D — x)* + y?

and where dots represent differentiation with respect to time, ¢.
A possible mode of vibration, the x-mode, is

X =ecost
y=0
where, in order to avoid collisions of the particle with the support,

0<e<D 0
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The first variational equations corresponding to the x-mode are

5x +dx=0 (8)
Sy +f®)dy =0 )
where
_ (D— L)+ ecost (2—D—-A) —ecost
=K D+ ecost +1-K) (2— D) —ecost (10)

The x-mode is stable only if both (8) and (9) are stable. (An equation is said to be stable
if all of its solutions are bounded for all ¢t > 0, and unstable if an unbounded solution
exists.) Since (8) is stable, the stability of the x-mode is dependent only on the stability of (9).

STABILITY ANALYSIS

A particular case of Hill’s equation, (9) may be rewritten as

F+f)z=0 an
where
z =0y
Ee?cos®t + Fecost + 4
Jo = Ee?cos?t + Gecost + 1 (12)
E = —1/[DQ2 — D)] (13)
F = [2K — D)/[D(2 - D)] (14)
G = 2(1 — D)/[D2 — D)] 15)
and
4= 2K(D — L)([D2 — D)] (16)

The stability of (11) is dependent upon the values of D, K, L and e. The region of physical
interest for each is given by (1), (2), (6) and (7), respectively. D and K are viewed as fixed
while L and e are varied in order to find, for given D and K, those values of L and e which
are stable. From this point of view the quantities E, F and G are fixed while 4 is permitted
to vary because of its linear dependence on L. From (16) and (4) it is clear that 4 is pro-
portional to the initial stress. In what follows, the stable regions of the 4—e plane will be
found for given D and K. This information can then be used to find stable values of L and
e from (16).

Substituting (6) into (16) gives the region of physical interest for 4,

2K 21 -K) } 7

A < min s
2-D D
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If
. 2K 21 -K
A*=mm{2—u’ ( D )}
then using (1) and (2) it may be shown that
4* <1
and hence
4<4*<1 (18)

Before applying the results of Floquet theory to (11), consider two particular cases of
stability :

Equation (11) will always have bounded solutions if F = G and 4 = 1, whence f(¢) = 1.
However, (18) shows that this case is not within the region of physical interest.

Equation (11) will always have unbounded solutions if the denominator of f(¢), in (12),
vanishes. This condition requires either

cost = — Dfe
or
cost = (2 — D)/e
However, cos? t < 1. Thus in order for the denominator of f(¢) to vanish, either
e? > D?
or
e > (2 — Dy

From (1) and (7) this case is also not within the region of physical interest.

It is well known from Floquet theory (Stoker [4], p. 201) that corresponding to transition
values of 4 and e (for given D and K) from stability to instability, there must exist at least
one periodic solution to (11) of period Q or 20, where Q is the least period of f(t). From
(12), = 2n. Therefore, in order to obtain all transition values of 4 and e, it is sufficient to
examine solutions of period 4n/N, all of which have period 4z. (Here and in what follows,
N=0,12..)

Now for e = 0 and 4 > 0, the solutions to (11) are of the form sin (,/4) t and cos (\/4) ¢,
which have period 2r/,/4. Thus for e = 0, transition points can occur if

2nf(\/4) = 4n/N
or
4 = N?/4 (19)

Note that N = 0 corresponds to a constant, which is a solution to (11) when 4 = e = 0,
and which may be thought of as a periodic function of period 4.

For e =0 and 4 < 0, (11) has unbounded solutions, and hence the entire negative
A axis is unstable.
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In general two transition curves intersect each of the above transition points on the
4-axis, the solution along one behaving like sin (Nt/2), the solution along the other like
cos (Nt/2) for e = 0. (N = 0 is an exception, and only a single transition curve intersects
the 4-axis at 4 = 0. On this curve the solution behaves like a constant for e = 0.) This is
the situation for Mathieu’s equation, for example (Stoker [4], p. 205).

However, all such transition curves do not necessarily lie within the region of physical
interest. (18) shows that only N = 0, 1, 2 need be considered, i.e. transition points on the
A-axis which are of physical interest can occur at most at 4 = 0, 4, 1.

To obtain explicit expressions for the transition curves which intersect these points, a
perturbation method is used (Stoker [4], p. 209).

Expand

2) = 2g(t) + () € + zy0) € + ... (20)
4=N¥Y4+ Aje + A,e* + ... (21)

and substitute (20) and (21) into (11). By equating the coefficients of like powers of e,
obtain a linear differential equation with constant coefficients on zy(t). Requiring z,(t)
to be periodic gives a value for 4y. For N = 1, 2, z, is taken as sin (Nt/2), then as cos (Nt/2),
since each choice gives a separate transition curve,

In this manner the equations for the following five transition curves were obtained :

4= %{Di)gez + C,e* + 0(e®) (22)
A= % - % e + Cye? — Cye® + Cye® + 0(e) 23)
A= % + % e+ C,e? + Cye3 + Cue* + 0(e%) (24)
p=1- K Dl 2:)3()2(2? DJ;27D “ 8 4 cyet + 0 25)
A=1+ 2K+ D —2)(10K — 13D + 8)82 + Coe* + 0(e) (26)

12D%2 — Dy?

where C, ..., Cg are known functions of D and K, and are listed in the Appendix.

DISCUSSION OF THE TRANSITION CURVES

Figures 2, 3 and 4 show the regions of stability of (11) which are of physical interest
for K = 025,05 and 0-75, respectively, and for various values of D, based on (22)—26).

The problem reduces to the identical spring case if K = 0-5 and D = 1. In this case
f(t) becomes, from (12),

—e%cos?t+ 4
—e?cos?t+ 1

fe) =
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K=0-25

D=0-2
0 01 02 A

FiG. 2. Regions of stability of (11) for K = 0-25 and for various values of D.

Now the smallest period of f(¢) is m, and from the arguments advanced in the previous
section, transition points will occur on the 4-axis at 4 = N2. Clearly the transition point
of the non-identical spring case, 4 = , e = 0, is excluded from the identical spring case.
Hence as the parameters K and D simultaneously approach 0-5 and 1, respectively, the
two transition curves intersecting 4 = 1, e = 0 coalesce (see Fig. 3), and the associated
region of instability vanishes.

In addition, it has been shown [3] that in the identical spring case the region of instability
associated with 4 = 1, e = 0 vanishes. (In fact the region of instability associated with
4 = (2N + 1)?, e = 0 vanishes.)

Hence in the identical spring case the only transition curve which actually separates
a region of stability from a region of instability is (22). This system is thus a very special case
of the non-identical spring system. For any other values of K and D in the regions (1) and (2),
two additional regions of instability may occur, due to transition curves (23)26). These
regions may or may not lie in the region of physical interest given by (7) and (17).

These additional regions of instability due to (23)+(26) are obviously quite small if the
springs are nearly identical. However, there are still other cases for which these regions are
small, S. g if4K = 1 + D, then the region of instability associated with (23) and (24) vanishes
to O(e).
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APPENDIX

The C, appearing in (22)26) are listed below:

32C, = (FB, + E)[3E + B,(8F — B,)]
8C, = — 3E — B;B,
64C, = 5EB, + (2B — 3E)B,
32C, = B,[(SE — 8C, + 164,) A5 — A,(4F — 25G)] + 2E(54, + 214,)
16Cs = B{B,[E + B,(B,/27 — Bs/72)]
8Ces = B,[ — F(3E + 4A4,) + B,(5E/6 — 24,/9 — B,B;/144)]
where
324, = 3E — 2B2
964, = 3E + 2B;B,

44, = B,

124, = B,(5F + 4G)
B,=F-G
B,=F — 4G
B, = (4F — G)/4
B, = (4F — 9G)/4
B;=F —9G

Résumé-- La Stabilité des vibrations d’une particule mobile dans un plan et retenue par deux ressorts different.s
soumis a une tension initiale est etudiée en utilisant la theorie de Floguet et les perturbations. On montre qu’il
existe des regions d’instabilite dues aux propriétés differentes des ressorts.

Zusammenfassung—Die Stabilitat der Schwingungen eines Teilchens, zwangsbeschrinkt auf eine Ebene und von
zwei ungleichen Federn mit anfinglicher Spannung gehalten, wird unter Verwendung der Floquet-Theorie mit
Stérungen untersucht. Es wird gezeigt, dass unerwartete instabile Gebiete als Folge der ungleichen Eigenschaften
der Federn auftreten.



