A polynomiality property for Littlewood-Richardson coefficients

Etienne Rassart

Massachusetts Institute of Technology

FPSAC 2004, Vancouver

Outline

Littlewood-Richardson coefficients

The hive model

Partition functions

The Steinberg arrangement

Polynomiality in the chamber complex

Littlewood-Richardson coefficients

Symmetric functions. LR coefficients express the multiplication rule for Schur functions:

$$s_{\lambda} \cdot s_{\mu} = \sum_{\nu} c^{\nu}_{\lambda \mu} s_{\nu} .$$

Littlewood-Richardson coefficients

Symmetric functions. LR coefficients express the multiplication rule for Schur functions:

$$s_{\lambda} \cdot s_{\mu} = \sum_{\nu} c^{\nu}_{\lambda \mu} s_{\nu} .$$

They also appear when writing skew Schur functions in terms of the Schur function basis:

$$s_{
u/\lambda} = \sum_{\mu} c^{
u}_{\lambda\mu} s_{\mu} \,.$$

• Representation theory of $\operatorname{GL}_k\mathbb{C}$. The character of the irreducible polynomial representation V_λ is the Schur function $s_\lambda(x_1,\ldots,x_k)$.

• Representation theory of $\operatorname{GL}_k\mathbb{C}$. The character of the irreducible polynomial representation V_{λ} is the Schur function $s_{\lambda}(x_1,\ldots,x_k)$.

• As such, the $c_{\lambda\mu}^{\nu}$ gives the multiplicity with which the irreducible representation V_{ν} of $\mathrm{GL}_k\mathbb{C}$ appears in the tensor product of the irreducible representations V_{λ} and V_{μ} :

$$V_{\lambda} \otimes V_{\mu} = \bigoplus_{\nu} c_{\lambda\mu}^{\nu} V_{\nu} = \bigoplus_{\nu} V_{\nu}^{\oplus c_{\lambda\mu}^{\nu}}.$$

Schubert calculus. Schubert classes form a linear basis of the cohomology ring of the Grassmannian, and the LR coefficients again express the multiplication rule:

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \sum_{
u} c^{
u}_{\lambda \mu} \sigma_{
u} \,.$$

The main result

$$\lambda = (\lambda_1, \dots, \lambda_k)$$

$$\mu = (\mu_1, \dots, \mu_k)$$

$$\nu = (\nu_1, \dots, \nu_k)$$

$$|\lambda| + |\mu| = |\nu|$$

The hive model

An integral k-hive is an array of nonnegative integers of the form (here for k=4):

- 0
- ullet λ_1
- • $\lambda_1 + \lambda_2$
- • $\lambda_1 + \lambda_2 + \lambda_3$
- \bullet \bullet \bullet $|\lambda|$

$$\nu_1$$
 • λ_1

$$\nu_1 + \nu_2$$
 • • $\lambda_1 + \lambda_2$

$$\nu_1 + \nu_2 + \nu_3$$
 • • $\lambda_1 + \lambda_2 + \lambda_3$

|
u| • • $|\lambda|$

8

Hive conditions

Hive conditions

Hive conditions

Meorem (Knutson-Tao, Fulton)

Let λ , μ and ν be partitions with at most k parts such that $|\lambda| + |\mu| = |\nu|$.

The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ is the number of integral k-hives satisfying the boundary conditions and the hive conditions.

The root system A_{k-1}

Roots

$$\Delta = \{e_i - e_j : 1 \le i \ne j \le k\}.$$

Positive roots

$$\Delta_{+} = \{e_i - e_j : 1 \le i < j \le k\}.$$

•

$$\delta = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha$$

 δ corresponds to the staircase partition

$$(k-1, k-2, \ldots, 1, 0)$$
.

The Kostant partition function

The Kostant partition function is the function

$$K(v) = \left| \left\{ (k_{\alpha})_{\alpha \in \Delta_{+}} \in \mathbb{N}^{|\Delta_{+}|} : \sum_{\alpha \in \Delta_{+}} k_{\alpha}\alpha = v \right\} \right|.$$

• K(v) is the number of ways that v can be written as a sum of positive roots.

Steinberg's formula

There is a formula due to Steinberg that gives the multiplicities of the irreducible factors in the tensor product of two irreducible representations of a complex semisimple Lie algebra.

Steinberg's formula (for $GL_k\mathbb{C}$)

$$c_{\lambda\mu}^{\nu} = \sum_{\sigma \in \mathfrak{S}_k} \sum_{\tau \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma\tau)} K(\sigma(\lambda + \delta) + \tau(\mu + \delta) - (\nu + 2\delta))$$

Vector partition functions

Let M be a $d \times n$ matrix over the integers. The vector partition function associated to M is the function

$$\phi_M: \mathbb{Z}^d \longrightarrow \mathbb{N}$$

$$b \mapsto |\{x \in \mathbb{N}^n : Mx = b\}|$$

Vector partition functions

Let M be a $d \times n$ matrix over the integers. The vector partition function associated to M is the function

$$\phi_M: \mathbb{Z}^d \longrightarrow \mathbb{N}$$

$$b \mapsto |\{x \in \mathbb{N}^n : Mx = b\}|$$

Example

If
$$M = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ then $\phi_M(b) = 3$

since
$$b = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

ullet ϕ_M vanishes outside of $\mathrm{pos}(M)$.

- ullet ϕ_M vanishes outside of $\overline{\mathrm{pos}(M)}$.
- ϕ_M is piecewise quasipolynomial of degree $n \operatorname{rank}(M)$. (Sturmfels)

- ullet ϕ_M vanishes outside of $\mathrm{pos}(M)$.
- ϕ_M is piecewise quasipolynomial of degree $n \operatorname{rank}(M)$. (Sturmfels)
- The domains of quasipolynomiality form a complex of convex polyhedral cones, the chamber complex of ϕ_M .

- ullet ϕ_M vanishes outside of $\mathrm{pos}(M)$.
- ϕ_M is piecewise quasipolynomial of degree $n \operatorname{rank}(M)$. (Sturmfels)
- The domains of quasipolynomiality form a complex of convex polyhedral cones, the chamber complex of ϕ_M .
- Alekseevskaya, Gelfand and Zelevinsky described how to determine the chamber complex of a partition function from its matrix.

Unimodularity

A $d \times n$ matrix of full rank d is unimodular if all its $d \times d$ submatrices have determinant 0 or ± 1 .

Vector partition functions of unimodular matrices are polynomial over the cones of their chamber complexes. (Sturmfels)

Unimodularity

A $d \times n$ matrix of full rank d is unimodular if all its $d \times d$ submatrices have determinant 0 or ± 1 .

Vector partition functions of unimodular matrices are polynomial over the cones of their chamber complexes. (Sturmfels)

(well-known) The root system A_n is unimodular for all n.

Unimodularity

A $d \times n$ matrix of full rank d is unimodular if all its $d \times d$ submatrices have determinant 0 or ± 1 .

Vector partition functions of unimodular matrices are polynomial over the cones of their chamber complexes. (Sturmfels)

(well-known) The root system A_n is unimodular for all n.

is polynomial of degree $\binom{k-1}{2}$ over the cones of its chamber complex.

16

A partition function for the $c_{\lambda\mu}^{ u}$

Theorem A

For every k, we can find integer matrices E_k and B_k such that the Littlewood-Richardson coefficients for partitions with at most k parts can be written as

$$c_{\lambda\mu}^{\nu} = \phi_{E_k} \left(B_k \begin{pmatrix} \lambda \\ \mu \\ \nu \end{pmatrix} \right).$$

Example: k = 3

We want to find a vector partition function counting the integral 3-hives of the form

$$\nu_1$$

$$\lambda_1$$

$$\nu_1 + \nu_2$$

$$\lambda_1 + \lambda_2$$

$$|\lambda| + \mu_1 + \mu_2$$
 $|\lambda| + \mu_1$

$$|\lambda| + \mu_1$$

 $|\lambda|$

The hives conditions are given by

$$m \leq \lambda_{1} + \nu_{1}$$

$$-m \leq -\lambda_{1} - \lambda_{3} - \mu_{1}$$

$$-m \leq -\lambda_{1} - \lambda_{2} - \lambda_{3} - \mu_{1} - \mu_{2} + \nu_{2}$$

$$-m \leq -\lambda_{2} - \nu_{1}$$

$$m \leq \lambda_{1} + \lambda_{2} + \mu_{1}$$

$$-m \leq \mu_{2} - \nu_{1} - \nu_{2}$$

$$-m \leq -\lambda_{1} - \nu_{2}$$

$$-m \leq -\lambda_{1} - \lambda_{2} - \mu_{2}$$

$$m \leq \lambda_{1} + \lambda_{2} + \lambda_{3} + \mu_{1} + \mu_{2} - \nu_{3}$$

This corresponds to the matrix system

$$E_3 \cdot \begin{pmatrix} m \\ s_1 \\ s_2 \\ \vdots \\ s_9 \end{pmatrix} = B_3 \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

with

and

$$B_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & -1 & -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

A chamber complex for the $c^{ u}_{\lambda\mu}$

• Theorem A implies that the Littlewood-Richardson coefficients are given by quasipolynomials over the cells of a chamber complex $\mathcal{C}^{(k)}$.

A chamber complex for the $c_{\lambda\mu}^{ u}$

- Theorem A implies that the Littlewood-Richardson coefficients are given by quasipolynomials over the cells of a chamber complex $\mathcal{C}^{(k)}$.
- The vector partition function ϕ_{E_k} puts λ , μ and ν on an equal footing: $\mathcal{C}^{(k)}$ is a complex in (λ, μ, ν) -space.

Example: k = 3 (continued)

$$a_1 = (1\ 1\ 1\ |\ 0\ 0\ 0\ |\ 1\ 1\ 1\ 1)$$
 $a_2 = (0\ 0\ 0\ |\ 1\ 1\ 1\ |\ 1\ 1\ 1)$
 $b = (2\ 1\ 0\ |\ 2\ 1\ 0\ |\ 3\ 2\ 1)$
 $c = (1\ 1\ 0\ |\ 1\ 0\ 0\ |\ 1\ 1\ 0\ |\ 1\ 1\ 0)$
 $d_1 = (1\ 1\ 0\ |\ 0\ 0\ |\ 1\ 1\ 0)$ $d_2 = (1\ 0\ 0\ |\ 1\ 1\ 0\ |\ 1\ 1\ 0)$
 $e_1 = (1\ 1\ 0\ |\ 0\ 0\ 0\ |\ 1\ 1\ 0)$ $e_2 = (0\ 0\ 0\ |\ 1\ 1\ 0\ |\ 1\ 1\ 0)$
 $g_1 = (1\ 0\ 0\ |\ 0\ 0\ 0\ |\ 1\ 0\ 0)$ $g_2 = (0\ 0\ 0\ |\ 1\ 0\ 0\ |\ 1\ 0\ 0)$

Cone	Positive hull description	Polynomial
κ_1	$pos(a_1, a_2, b, c, d_1, d_2, e_1, e_2)$	$1 - \lambda_2 - \mu_2 + \nu_1$
κ_2	$pos(a_1, a_2, b, c, d_1, d_2, g_1, g_2)$	$1 + \nu_2 - \nu_3$
κ_3	$pos(a_1, a_2, b, c, e_1, e_2, g_1, g_2)$	$1 + \lambda_1 + \mu_1 - \nu_1$
κ_4	$pos(a_1, a_2, b, d_1, d_2, e_1, e_2, f)$	$1+ u_1- u_2$
κ_5	$pos(a_1, a_2, b, d_1, d_2, f, g_1, g_2)$	$1 + \lambda_2 + \mu_2 - \nu_3$
κ_6	$pos(a_1, a_2, b, e_1, e_2, f, g_1, g_2)$	$1 - \lambda_3 - \mu_3 + \nu_3$
κ_7	$pos(a_1, a_2, b, c, d_1, d_2, e_1, g_1)$	$1 + \lambda_3 + \mu_1 - \nu_3$
κ_8	$pos(a_1, a_2, b, c, d_1, d_2, e_2, g_2)$	$1 + \lambda_1 + \mu_3 - \nu_3$

κ_9	$pos(a_1, a_2, b, c, d_1, e_1, e_2, g_2)$	$1 + \lambda_1 - \lambda_2$
κ_{10}	$pos(a_1, a_2, b, c, d_2, e_1, e_2, g_1)$	$1 + \mu_1 - \mu_2$
κ_{11}	$pos(a_1, a_2, b, c, d_1, e_1, g_1, g_2)$	$1 - \lambda_2 - \mu_3 + \nu_2$
κ_{12}	$pos(a_1, a_2, b, c, d_2, e_2, g_1, g_2)$	$1 - \lambda_3 - \mu_2 + \nu_2$
κ_{13}	$pos(a_1, a_2, b, d_1, d_2, e_1, f, g_1)$	$1 - \lambda_1 - \mu_3 + \nu_3$
κ_{14}	$pos(a_1, a_2, b, d_1, d_2, e_2, f, g_2)$	$1 - \lambda_3 - \mu_1 + \nu_3$
κ_{15}	$pos(a_1, a_2, b, d_1, e_1, f, g_1, g_2)$	$1 + \mu_2 - \mu_3$
κ_{16}	$pos(a_1, a_2, b, d_2, e_2, f, g_1, g_2)$	$1 + \lambda_2 - \lambda_3$
κ_{17}	$pos(a_1, a_2, b, d_1, e_1, e_2, f, g_2)$	$1 + \lambda_1 + \mu_2 - \nu_2$
κ_{18}	$pos(a_1, a_2, b, d_2, e_1, e_2, f, g_1)$	$1 + \lambda_2 + \mu_1 - \nu_2$

The Steinberg arrangement

Steinberg's formula:

$$c_{\lambda\mu}^{\nu} = \sum_{\sigma \in \mathfrak{S}_k} \sum_{\tau \in \mathfrak{S}_k} (-1)^{\operatorname{inv}(\sigma\tau)} K(\sigma(\lambda + \delta) + \tau(\mu + \delta) - (\nu + 2\delta)).$$

Kostant partition function K polynomial over cones

The $c_{\lambda\mu}^{\nu}$ are locally polynomial

The Steinberg arrangement

Steinberg's formula:

$$c_{\lambda\mu}^{\nu} = \sum_{\sigma \in \mathfrak{S}_k} \sum_{\tau \in \mathfrak{S}_k} (-1)^{\operatorname{inv}(\sigma\tau)} K(\sigma(\lambda + \delta) + \tau(\mu + \delta) - (\nu + 2\delta)).$$

Kostant partition function K polynomial over cones

The $c^{\nu}_{\lambda\mu}$ are locally polynomial

We find a hyperplane arrangement, the Steinberg arrangement, over whose regions the $c_{\lambda\mu}^{\nu}$ are given by polynomials.

Polynomiality in the chamber complex

Theorem B

The quasipolynomials giving the Littlewood-Richardson coefficients in the cones of $C^{(k)}$ are polynomials of total degree $\binom{k-1}{2}$ in the sets of variables λ , μ and ν .

$$\lambda = (\lambda_1, \dots, \lambda_k)$$
 $\mu = (\mu_1, \dots, \mu_k)$
 $\nu = (\nu_1, \dots, \nu_k)$

Lemma

For each cone C of the chamber complex $C^{(k)}$, we can find a region R of the Steinberg arrangement such that $C \cap R$ contains an arbitrarily large ball.

Lemma

For each cone C of the chamber complex $C^{(k)}$, we can find a region R of the Steinberg arrangement such that $C \cap R$ contains an arbitrarily large ball.

• Then the polynomial on R and the quasipolynomial on C agree on all the lattice points (λ, μ, ν) in that ball.

Lemma

For each cone C of the chamber complex $C^{(k)}$, we can find a region R of the Steinberg arrangement such that $C \cap R$ contains an arbitrarily large ball.

- Then the polynomial on R and the quasipolynomial on C agree on all the lattice points (λ, μ, ν) in that ball.
- The degree bounds follow from the degree bounds on the Kostant partition function.

Stretching for LR coefficients

Theorem B shows in particular that the function

$$N \in \mathbb{N} \quad \longmapsto \quad c_{N\lambda N\mu}^{N\nu}$$

is polynomial in N.

This was known previously (Derksen-Weyman, Knutson).

Hive polytopes

- If we consider hives with real entries with the same boundary and hive conditions, we get a polytope, the hive polytope, whose number of integer points gives the corresponding $c_{\lambda\mu}^{\nu}$.
- The function $N \mapsto c_{N\lambda N\mu}^{N\nu}$ is the Ehrhart polynomial of the hive polytope for λ , μ and ν .
- Hive polytopes are not integral in general (King-Tollu-Toumazet).

Conjecture

Conjecture (King-Tollu-Toumazet)

For all partitions λ , μ and ν such that $c^{\nu}_{\lambda\mu} > 0$ there exists a polynomial $P^{\nu}_{\lambda\mu}(N)$ in N with nonnegative rational coefficients such that $P^{\nu}_{\lambda\mu}(0) = 1$ and $P^{\nu}_{\lambda\mu}(N) = c^{N\nu}_{N\lambda N\mu}$ for all positive integers N.