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The origins of the problem
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Geometric setup

(M,ω) symplectic manifold
G compact Lie group

τ : G → Diff(M)
g 7→ τg

group action with τ ∗
g ω = ω

Assume that M is prequantizable:

L → M Hermitean line bundle

τ extends to the line bundle

we have a connection ∇ with curv(∇) = ω
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The spin-C Dirac operator

The spin-C Dirac operator ∂/C exists on every
symplectic manifold.

For M prequantizable, using the connection
∇, we can lift ∂/C to a G-invariant operator
∂/L

C on the line bundle L → M .

The index of ∂/L

C is the virtual vector space

Ind ∂/L

C = ker ∂/L

C ⊕
(
−coker ∂/L

C

)
.

It is a (virtual) representation of G known as
the quantization of τ (with respect to ∂/C).
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Quantization and representations

Let G be a semisimple Lie group and g its Lie
algebra.

Let T be a Cartan subgroup (maximal torus)
and t its Lie algebra.

t∗+ is the fundamental Weyl chamber

We have the coadjoint representation of G on
g∗.

Denote by Oλ the coadjoint orbit through a
point λ ∈ t∗+.
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Bott-Borel-Weil

Suppose that λ is a dominant weight.

Then Oλ is a prequantizable symplectic
manifold.

The cokernel of ∂/L

C vanishes and the index is

Ind ∂/L

C = ker ∂/L

C = Vλ ,

the irreducible representation of G with
highest weight λ. (Bott-Borel-Weil theorem)
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Twisted representations
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The signature Dirac operator

The signature Dirac operator ∂/ sig exists on
any oriented manifold (with a Riemannian
metric).

The index

Ind ∂/ sig = ker ∂/ sig ⊕
(
−coker ∂/ sig

)

is also a virtual representation of G.

It is also known as the quantization of τ , but
with respect to ∂/ sig.
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Guillemin-Sternberg-Weitsman

Let G be a semisimple Lie group and T a
maximal torus as above

Let λ be a strictly dominant weight (in the
interior of the fundamental Weyl chamber).

Theorem (Guillemin-Sternberg-Weitsman)
The index of ∂/ sig on the coadjoint orbit Oλ is

Ind ∂/ sig = (−1)
1
2dimOλ Vλ−δ ⊗ Vδ ,

where δ is half the sum of the positive roots.
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To remember

The thing to remember from all of this:

Quantization for ∂/L

C ! Vλ

Quantization for ∂/ sig ! Vλ−δ ⊗ Vδ

So in a certain world and in a certain sense, the
representations Vλ−δ ⊗ Vδ play the role of the ir-
reducible representations in the classical theory.
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Twisted representations

δ is half the sum of the positive roots.

Vµ is the irreducible representation with
highest weight µ.

For λ strictly dominant, we define the twisted
representation

Ṽλ = Vλ−δ ⊗ Vδ .
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Tensor products

Tensor products of twisted representations
can be written in terms of twisted
representations again:

Ṽλ ⊗ Ṽµ = (Vλ−δ ⊗ Vδ) ⊗ (Vµ−δ ⊗ Vδ)

= (Vλ−δ ⊗ Vδ ⊗ Vµ−δ) ⊗ Vδ
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Tensor products

Tensor products of twisted representations
can be written in terms of twisted
representations again:

Ṽλ ⊗ Ṽµ = (Vλ−δ ⊗ Vδ) ⊗ (Vµ−δ ⊗ Vδ)

= (Vλ−δ ⊗ Vδ ⊗ Vµ−δ)︸ ︷︷ ︸
break into sum
of irreducibles

⊗Vδ

=
⊕

ν

Ṽ
⊕Ñν

λµ

ν
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Symmetric functions (type A)
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Type Ak−1

For GLkC things are especially nice because

A dominant weight is just a partition with k
parts (0-parts allowed).

δ is the staircase partition:

δ = (k − 1, k − 2, . . . , 1, 0) .

λ strictly dominant means the partition λ has
distinct parts (λ − δ is still a partition).
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Taking characters

The character χµ of the irreducible
(polynomial) representation Vµ is a Schur
polynomial:

χµ = sµ(x1, x2, . . . , xk) .

This means that the character χ̃λ of the
twisted representation Ṽλ is

χ̃λ = χλ−δ · χδ

= sλ−δ(x1, . . . , xk) sδ(x1, . . . , xk) .
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Hall-Littlewood polynomials

The character χ̃λ is the t = −1 specialization
of the Hall-Littlewood polynomial
Pλ(x1, . . . , xk; t) .

Pλ(x1, . . . , xk; 0) is the Schur function
sλ(x1, . . . , xk), so the character χλ .

We (almost) have, together with J. Weitsman,
a geometrical object whose character is
Pλ(x1, . . . , xk; −(q − 1)) .

This is where the q-analogue of the Kostant
partition function comes in.
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A branching rule

• G • ∼ • Sym • BR • q • 18



Branching rules

A branching rule describes how the restriction
of a representation of a group G to a
subgroup H decomposes into
H-representations.
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Branching rules

A branching rule describes how the restriction
of a representation of a group G to a
subgroup H decomposes into
H-representations.

Sn−1 is a subgroup of Sn (by leaving the last
element fixed).

GLk−1C is the subgroup




0

GLk−1C
...
0

0 · · · 0 1




of GLkC .
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Branching for Sn

Let {Wλ : λ ` n} be the set of irreducible
representations of Sn.

Let {Wµ : µ ` n − 1} be the set of irreducible
representations of Sn−1.

Then
ResSn

Sn−1
Wλ =

⊕

µ

Wµ

where the sum is over all partitions that can
be obtained from λ by removing one corner.
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Branching for GLkC

Let λ = (λ1, . . . , λk−1, λk).

Let ν = (ν1, . . . , νk−1).

Say that ν interlaces λ (ν Cλ) if

λ1 ≥ ν1 ≥ λ2 ≥ ν2 ≥ · · · ≥ λk−1 ≥ νk−1 ≥ λk .

(Obtain ν from λ by removing horizontal strip)

Then (Weyl’s branching rule)

ResGLkC
GLk−1C Vλ =

⊕

ν C λ

Vν .
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Branching rule for the Ṽλ

Let λ = (λ1, . . . , λk−1, λk) distinct parts.

Let ν = (ν1, . . . , νk−1) distinct parts.

For ν Cλ, let

∇(λ, ν) = {i ∈ [k − 1] : λi > νi > λi+1} .

Theorem (Guillemin-R)

ResGLkC
GLk−1C Ṽλ =

⊕

ν C λ
ν distinct parts

2∇(λ,ν) Ṽν .
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Sketch of proof

In terms of the characters, restricting just
means setting the last variable, xk, equal to 1.

We have sλ(x, y) =
∑

µ⊆λ

sµ(x)sλ/µ(y) .

Now sλ/µ(1) =

{
1 if λ/µ is horizontal strip,
0 otherwise.

So sλ(x1, . . . , xk−1, 1) =
∑

µ C λ

sµ(x1, . . . , xk−1) .
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On the other hand

sδ(x1, . . . , xk) =
Vandermonde(x2

1, . . . , x
2
k)

Vandermonde(x1, . . . , xk)

=
∏

1≤i<j≤k

(xi + xj) .

Then
sδ |xk=1

=
∏

1≤i<j≤k−1

(xi + xj)
k−1∏

i=1

(1 + xi)

= sδ′(x1, . . . , xk−1)(e0 + e1 + · · · + ek−1) .

where δ′ = (k − 2, k − 3, . . . , 1, 0).
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Define f (m) = f(x1, . . . , xm). We have

s
(k)
λ−δs

(k)
δ |xk=1

=
∑

µCλ−δ

s(k−1)
µ s

(k−1)
δ′ (e

(k−1)
0 +· · ·+e

(k−1)
k−1 )

By a dual version of the Pieri rule,

sµem =
∑

ν

sν ,

where the sum is over all ν obtained from µ
by adding a vertical strip of size m.
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Finally,

s
(k)
λ−δs

(k)
δ |xk=1

=
∑

µCλ−δ

∑

ν

s(k−1)
ν s

(k−1)
δ′

χ̃λ(x1, . . . , xk−1, 1) =
∑

µCλ−δ

∑

ν

χ̃ν+δ(x1, . . . , xk−1) ,

where the sum is over all ν that can be
obtained from µ by adding a vertical strip of
size at most k − 1 (and height at most k − 1).
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We can relabel things and group terms.

For partitions with distinct parts λ and ν, let
n(λ, ν) be the number of ways that ν − δ′ can
be obtained by a adding a vertical strip of size
and height at most k − 1 to some partition µ
interlacing λ − δ. Then

Ṽλ =
⊕

νCλ, distinct parts

n(λ, ν) Ṽν .
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We can relabel things and group terms.

For partitions with distinct parts λ and ν, let
n(λ, ν) be the number of ways that ν − δ′ can
be obtained by a adding a vertical strip of size
and height at most k − 1 to some partition µ
interlacing λ − δ. Then

Ṽλ =
⊕

νCλ, distinct parts

n(λ, ν) Ṽν .

Lemma
n(λ, ν) = 2∇(λ,ν) .
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Twisted Gelfand-Tsetlin diagrams

Since Res
GLk−1C

GLk−2C ResGLkC
GLk−1C = ResGLkC

GLk−2C , we
can iterate the branching rule to restrict to
GL1C.

This way, we can index one-dimensional
subspaces of a twisted representation by a
sequence of interlacing partitions with distinct
parts. (Indexing not multiplicity-free)

This sequence forms a triangular array of
integers akin to Gelfand-Tsetlin diagrams for
the irreducible representations of GLkC.
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Twisted Gelfand-Tsetlin diagrams

Proposition

ResGLkC
GL1C Ṽλ =

⊕

λ(1)
C···Cλ(k)=λ

2∇(λ(k),λ(k−1),...,λ(1)) Ṽλ(1)

where λ(m) is a partition with m distinct parts and

∇(λ(k), λ(k−1), . . . , λ(1)) =
k−1∑

i=1

∇(λ(i+1), λ(i)) .
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A q-analogue of the KPF
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Characters in general
For a semisimple Lie group G with Cartan
subgroup T , the character of the irreducible
representation of G with highest weight λ ∈ t∗+
is given by Weyl’s character formula:

χλ =
∑

ω∈W

(−1)|ω|eω(λ+δ)−δ
∏

α∈∆+

1

1 − e−α
,

where W is the Weyl group and ∆+ is the set
of positive roots.

For GLkC, thinking of xi = exp(ei), this is the
Schur function sλ(x1, . . . , xk).
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The Kostant partition function

We can define the Kostant partition function
K through its generating function:

∑

µ

K(µ) eµ =
∏

α∈∆+

1

1 − eα
.

So K(µ) is the number of ways that µ can be
written as a sum of positive roots.

Kostant’s multiplicity formula expresses
weight multiplicities in terms of the KPF.
For GLkC, these are Kostka numbers.
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q-analogues

Our general geometric object has “character”

χ(q)
λ =

∑

ω∈W

eω(λ)
∏

α∈∆+

1 + (q − 1)e−ω(α)

1 − e−ω(α)
.

This prompts the definition of a q-analogue
Kq of the KPF by

∑

µ

Kq(µ) eµ =
∏

α∈∆+

1 + (q − 1)eα

1 − eα
.
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Remarks

We can think of Kq as counting integer points
in a polytope with certain weights (in q).

The q = 2 case is the one yielding the twisted
representations.

This is not the classical q-analogue of the
KPF defined by Lusztig through

∑

µ

K̂q(µ) eµ =
∏

α∈∆+

1

1 − q eα

to get a q-analogue of weight multiplicities.
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Guillemin, Sternberg and Weitsman have a
formula analogous to the Kostant multiplicity
formula for twisted representations. Their
proof is geometric (Atiyah-Bott formula). We
have a purely algebraic proof of this.

We also have an analogue of the Steinberg
formula for decomposing tensor products of
twisted representations into twisted
representations.

Both formulas involve the q = 2 specialization
of the q-analogue of the KPF.
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A structural result

Theorem (Guillemin-R)

The q-analogue Kq(µ) for the root system Ak is
given by polynomials of degree

(
k
2

)
with

coefficients in Q[q] of degree
(
k+1
2

)
over the

relative interior of the cells of the chamber
complex for the Kostant partition function.
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Example: A2

2-dimensional cones:
τ1 = {a1α1 + a2α2 : a1, a2 > 0 and a1 > a2} ,

τ2 = {a1α1 + a2α2 : a1, a2 > 0 and a1 < a2} ,

1-dimensional cones:
τ3 = {a(α1 + α2) : a > 0} ,

τ4 = {a1α1 : a1 > 0} ,

τ5 = {a2α2 : a2 > 0} ,

0-dimensional cone:
τ6 = {0} .
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Let µ = (µ1, µ2, µ3) be in the root lattice.
(In particular, µ1 + µ2 + µ3 = 0 .)
Then

Kq(µ) =





(µ1 + µ2 − 1)q3 + 2q2 if µ ∈ τ1 ,

(µ1 − 1)q3 + 2q2 if µ ∈ τ2 ,

(µ1 − 1)q3 + q2 + q if µ ∈ τ3 ,

q if µ ∈ τ4 or µ ∈ τ5 ,

1 if µ ∈ τ6 ,

0 otherwise .
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