A q-analogue of the Kostant partition function and twisted representations

Etienne Rassart

IAS and Cornell University

FPSAC 2005, Taormina

Joint work Victor Guillemin

Outline

- The origins of the problem (geometry)
- Twisted representations
- Making everything symmetric functions
- A branching rule
- A q-analogue of the Kostant partition function

The origins of the problem

Geometric setup

$\begin{array}{ccc}\text { - } & (M, \omega) & \\ \text { - } & G & \\ & & \text { symplectic manifold } \\ \text { - } & \tau: G & \rightarrow \operatorname{Diff}(M) \\ g & & \text { compact Lie group } \\ & \tau_{g} & \\ \end{array}$
Assume that M is prequantizable:

- $\mathbb{L} \rightarrow M \quad$ Hermitean line bundle
- τ extends to the line bundle
- we have a connection ∇ with $\operatorname{curv}(\nabla)=\omega$

The spin- \mathbb{C} Dirac operator

- The spin- \mathbb{C} Dirac operator $\not_{\mathbb{C}}$ exists on every symplectic manifold.
- For M prequantizable, using the connection ∇, we can lift $\mathscr{D}_{\mathbb{C}}$ to a G-invariant operator $\phi_{\mathbb{C}}^{\mathbb{L}}$ on the line bundle $\mathbb{L} \rightarrow M$.
- The index of $\phi_{\mathbb{C}}^{\mathbb{L}}$ is the virtual vector space

$$
\operatorname{Ind} \phi_{\mathbb{C}}^{\mathbb{L}}=\operatorname{ker} \not_{\mathbb{C}}^{\mathbb{L}} \oplus\left(-\operatorname{coker} \phi_{\mathbb{C}}^{\mathbb{L}}\right)
$$

- It is a (virtual) representation of G known as the quantization of τ (with respect to $\not \mathscr{D}_{\mathbb{C}}$).

Quantization and representations

- Let G be a semisimple Lie group and \mathfrak{g} its Lie algebra.
- Let T be a Cartan subgroup (maximal torus) and t its Lie algebra.
- \mathfrak{t}_{+}^{*} is the fundamental Weyl chamber
- We have the coadjoint representation of G on \mathfrak{g}^{*}.
- Denote by O_{λ} the coadjoint orbit through a point $\lambda \in \mathfrak{t}_{+}^{*}$.

Bott-Borel-Weil

- Suppose that λ is a dominant weight.
- Then O_{λ} is a prequantizable symplectic manifold.
- The cokernel of $\mathscr{D}_{\mathbb{C}}^{\mathbb{L}}$ vanishes and the index is

$$
\operatorname{Ind} \phi_{\mathbb{C}}^{\mathbb{L}}=\operatorname{ker} \phi_{\mathbb{C}}^{\mathbb{L}}=V_{\lambda},
$$

the irreducible representation of G with highest weight λ. (Bott-Borel-Weil theorem)

Twisted representations

The signature Dirac operator

- The signature Dirac operator $\phi_{\operatorname{sig}}$ exists on any oriented manifold (with a Riemannian metric).
- The index

$$
\operatorname{Ind} \not_{\mathrm{sig}}=\operatorname{ker} \not_{\mathrm{sig}} \oplus\left(-\operatorname{coker} \not_{\mathrm{sig}}\right)
$$

is also a virtual representation of G.

- It is also known as the quantization of τ, but with respect to $\not_{\text {sig }}$.

Guillemin-Sternberg-Weitsman

- Let G be a semisimple Lie group and T a maximal torus as above
- Let λ be a strictly dominant weight (in the interior of the fundamental Weyl chamber).

Theorem (Guillemin-Sternberg-Weitsman)
The index of $\not_{\text {sig }}$ on the coadjoint orbit O_{λ} is

$$
\text { Ind } \not \varnothing_{\mathrm{sig}}=(-1)^{\frac{1}{2} \operatorname{dim} O_{\lambda}} V_{\lambda-\delta} \otimes V_{\delta},
$$

where δ is half the sum of the positive roots.

To remember

The thing to remember from all of this:

> Quantization for $\phi_{\mathbb{C}}^{\mathbb{L}} \quad \leftrightarrow \quad V_{\lambda}$ Quantization for $\phi_{\text {sig }} \quad \rightsquigarrow \quad V_{\lambda-\delta} \otimes V_{\delta}$

So in a certain world and in a certain sense, the representations $V_{\lambda-\delta} \otimes V_{\delta}$ play the role of the irreducible representations in the classical theory.

Twisted representations

- δ is half the sum of the positive roots.
- V_{μ} is the irreducible representation with highest weight μ.
- For λ strictly dominant, we define the twisted representation

$$
\widetilde{V}_{\lambda}=V_{\lambda-\delta} \otimes V_{\delta} .
$$

Tensor products

- Tensor products of twisted representations can be written in terms of twisted representations again:

$$
\begin{aligned}
\widetilde{V}_{\lambda} \otimes \widetilde{V}_{\mu} & =\left(V_{\lambda-\delta} \otimes V_{\delta}\right) \otimes\left(V_{\mu-\delta} \otimes V_{\delta}\right) \\
& =\left(V_{\lambda-\delta} \otimes V_{\delta} \otimes V_{\mu-\delta}\right) \otimes V_{\delta}
\end{aligned}
$$

Tensor products

- Tensor products of twisted representations can be written in terms of twisted representations again:

$$
\begin{aligned}
\tilde{V}_{\lambda} \otimes \widetilde{V}_{\mu} & =\left(V_{\lambda-\delta} \otimes V_{\delta}\right) \otimes\left(V_{\mu-\delta} \otimes V_{\delta}\right) \\
& =\underbrace{\left(V_{\lambda-\delta} \otimes V_{\delta} \otimes V_{\mu-\delta}\right)}_{\begin{array}{c}
\text { break into sum } \\
\text { of irreducibles }
\end{array}} \otimes V_{\delta} \\
& =\bigoplus_{\nu} \widetilde{V}_{\nu}^{\oplus \tilde{N}_{\lambda \mu}^{\nu}}
\end{aligned}
$$

Symmetric functions (type A)

Type A_{k-1}

For $\mathrm{GL}_{k} \mathbb{C}$ things are especially nice because

- A dominant weight is just a partition with k parts (0-parts allowed).
- δ is the staircase partition:

$$
\delta=(k-1, k-2, \ldots, 1,0)
$$

- λ strictly dominant means the partition λ has distinct parts ($\lambda-\delta$ is still a partition).

Taking characters

- The character χ_{μ} of the irreducible (polynomial) representation V_{μ} is a Schur polynomial:

$$
\chi_{\mu}=s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

- This means that the character $\widetilde{\chi}_{\lambda}$ of the twisted representation \widetilde{V}_{λ} is

$$
\begin{aligned}
\widetilde{\chi}_{\lambda} & =\chi_{\lambda-\delta} \cdot \chi_{\delta} \\
& =s_{\lambda-\delta}\left(x_{1}, \ldots, x_{k}\right) s_{\delta}\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

Hall-Littlewood polynomials

- The character $\widetilde{\chi}_{\lambda}$ is the $t=-1$ specialization of the Hall-Littlewood polynomial $P_{\lambda}\left(x_{1}, \ldots, x_{k} ; t\right)$.
- $P_{\lambda}\left(x_{1}, \ldots, x_{k} ; 0\right)$ is the Schur function $s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$, so the character χ_{λ}.
- We (almost) have, together with J. Weitsman, a geometrical object whose character is $P_{\lambda}\left(x_{1}, \ldots, x_{k} ;-(q-1)\right)$.
- This is where the q-analogue of the Kostant partition function comes in.

A branching rule

Branching rules

- A branching rule describes how the restriction of a representation of a group G to a subgroup H decomposes into H-representations.

Branching rules

- A branching rule describes how the restriction of a representation of a group G to a subgroup H decomposes into H-representations.
- \mathfrak{S}_{n-1} is a subgroup of \mathfrak{S}_{n} (by leaving the last element fixed).
- $\mathrm{GL}_{k-1} \mathbb{C}$ is the subgroup
 of $\mathrm{GL}_{k} \mathbb{C}$.

Branching for \mathfrak{S}_{n}

- Let $\left\{W_{\lambda}: \lambda \vdash n\right\}$ be the set of irreducible representations of \mathfrak{S}_{n}.
- Let $\left\{W_{\mu}: \mu \vdash n-1\right\}$ be the set of irreducible representations of \mathfrak{S}_{n-1}.
- Then

$$
\operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}} W_{\lambda}=\bigoplus_{\mu} W_{\mu}
$$

where the sum is over all partitions that can be obtained from λ by removing one corner.

Branching for $\mathrm{GL}_{k} \mathbb{C}$

- Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k-1}, \lambda_{k}\right)$.
- Let $\nu=\left(\nu_{1}, \ldots, \nu_{k-1}\right)$.
- Say that ν interlaces $\lambda(\nu \triangleleft \lambda)$ if

$$
\lambda_{1} \geq \nu_{1} \geq \lambda_{2} \geq \nu_{2} \geq \cdots \geq \lambda_{k-1} \geq \nu_{k-1} \geq \lambda_{k}
$$

(Obtain ν from λ by removing horizontal strip)

- Then (Weyl's branching rule)

$$
\operatorname{Res}_{\mathrm{GL}_{k-1} \mathbb{C}}^{\mathrm{GL}_{L} \mathbb{C}} V_{\lambda}=\bigoplus_{\nu \triangleleft \lambda} V_{\nu}
$$

Branching rule for the \widetilde{V}_{λ}

- Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k-1}, \lambda_{k}\right) \quad$ distinct parts.
- Let $\nu=\left(\nu_{1}, \ldots, \nu_{k-1}\right)$ distinct parts.
- For $\nu \triangleleft \lambda$, let

$$
\nabla(\lambda, \nu)=\left\{i \in[k-1]: \lambda_{i}>\nu_{i}>\lambda_{i+1}\right\}
$$

Theorem (Guillemin-R)

$$
\operatorname{Res}_{\mathrm{GL}_{k-1} \mathbb{C}}^{\mathrm{GL}_{k} \mathbb{C}} \widetilde{V}_{\lambda}=\bigoplus_{\substack{\nu(\lambda, \nu) \\ V_{\nu} \\ \nu \text { distinct parts }}}
$$

Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_{k}, equal to 1 .

Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_{k}, equal to 1 .
- We have $s_{\lambda}(x, y)=\sum_{\mu \subseteq \lambda} s_{\mu}(x) s_{\lambda / \mu}(y)$.

Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_{k}, equal to 1 .
- We have $s_{\lambda}(x, y)=\sum_{\mu \subseteq \lambda} s_{\mu}(x) s_{\lambda / \mu}(y)$.
- Now $s_{\lambda / \mu}(1)= \begin{cases}1 & \text { if } \lambda / \mu \text { is horizontal strip, } \\ 0 & \text { otherwise. }\end{cases}$

Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_{k}, equal to 1 .
- We have $s_{\lambda}(x, y)=\sum_{\mu \subseteq \lambda} s_{\mu}(x) s_{\lambda / \mu}(y)$.
- Now $s_{\lambda / \mu}(1)= \begin{cases}1 & \text { if } \lambda / \mu \text { is horizontal strip, } \\ 0 & \text { otherwise. }\end{cases}$
- So $s_{\lambda}\left(x_{1}, \ldots, x_{k-1}, 1\right)=\sum_{\mu \triangleleft \lambda} s_{\mu}\left(x_{1}, \ldots, x_{k-1}\right)$.

- On the other hand

$$
\begin{aligned}
s_{\delta}\left(x_{1}, \ldots, x_{k}\right) & =\frac{\operatorname{Vandermonde}\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)}{\operatorname{Vandermonde}\left(x_{1}, \ldots, x_{k}\right)} \\
& =\prod_{1 \leq i<j \leq k}\left(x_{i}+x_{j}\right)
\end{aligned}
$$

- On the other hand

$$
\begin{aligned}
s_{\delta}\left(x_{1}, \ldots, x_{k}\right) & =\frac{\text { Vandermonde }\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)}{\operatorname{Vandermonde}\left(x_{1}, \ldots, x_{k}\right)} \\
& =\prod_{1 \leq i<j \leq k}\left(x_{i}+x_{j}\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
s_{\delta_{\left.\right|_{k}=1}} & =\prod_{1 \leq i<j \leq k-1}\left(x_{i}+x_{j}\right) \prod_{i=1}^{k-1}\left(1+x_{i}\right) \\
& =s_{\delta^{\prime}}\left(x_{1}, \ldots, x_{k-1}\right)\left(e_{0}+e_{1}+\cdots+e_{k-1}\right)
\end{aligned}
$$

where $\delta^{\prime}=(k-2, k-3, \ldots, 1,0)$.

- Define $f^{(m)}=f\left(x_{1}, \ldots, x_{m}\right)$. We have

$$
s_{\lambda-\delta}^{(k)} s_{\delta}^{(k)}{ }_{\left.\right|_{x_{k}=1}}=\sum_{\mu \triangleleft \lambda-\delta} s_{\mu}^{(k-1)} s_{\delta^{\prime}}^{(k-1)}\left(e_{0}^{(k-1)}+\cdots+e_{k-1}^{(k-1)}\right)
$$

- Define $f^{(m)}=f\left(x_{1}, \ldots, x_{m}\right)$. We have

$$
s_{\lambda-\delta}^{(k)} s_{\delta}^{(k)}{ }_{{ }_{x_{k}=1}}=\sum_{\mu \triangleleft \lambda-\delta} s_{\mu}^{(k-1)} s_{\delta^{\prime}}^{(k-1)}\left(e_{0}^{(k-1)}+\cdots+e_{k-1}^{(k-1)}\right)
$$

- By a dual version of the Pieri rule,

$$
s_{\mu} e_{m}=\sum_{\nu} s_{\nu}
$$

where the sum is over all ν obtained from μ by adding a vertical strip of size m.

- Finally,

$$
\begin{aligned}
\left.s_{\lambda-\delta}^{(k)} s_{\delta}^{(k)}\right|_{x_{k}=1} & =\sum_{\mu \triangleleft \lambda-\delta} \sum_{\nu} s_{\nu}^{(k-1)} s_{\delta^{\prime}}^{(k-1)} \\
\widetilde{\chi}_{\lambda}\left(x_{1}, \ldots, x_{k-1}, 1\right) & =\sum_{\mu \triangleleft \lambda-\delta} \sum_{\nu} \widetilde{\chi}_{\nu+\delta}\left(x_{1}, \ldots, x_{k-1}\right),
\end{aligned}
$$

where the sum is over all ν that can be obtained from μ by adding a vertical strip of size at most $k-1$ (and height at most $k-1$).

- We can relabel things and group terms.
- For partitions with distinct parts λ and ν, let $n(\lambda, \nu)$ be the number of ways that $\nu-\delta^{\prime}$ can be obtained by a adding a vertical strip of size and height at most $k-1$ to some partition μ interlacing $\lambda-\delta$. Then

$$
\widetilde{V}_{\lambda}=\bigoplus_{\nu \triangleleft \lambda, \text { distinct parts }} n(\lambda, \nu) \widetilde{V}_{\nu}
$$

- We can relabel things and group terms.
- For partitions with distinct parts λ and ν, let $n(\lambda, \nu)$ be the number of ways that $\nu-\delta^{\prime}$ can be obtained by a adding a vertical strip of size and height at most $k-1$ to some partition μ interlacing $\lambda-\delta$. Then

$$
\widetilde{V}_{\lambda}=\bigoplus_{\nu \triangleleft \lambda, \text { distinct parts }} n(\lambda, \nu) \widetilde{V}_{\nu}
$$

Lemma

$$
n(\lambda, \nu)=2^{\nabla(\lambda, \nu)}
$$

Twisted Gelfand-Tsetlin diagrams

- Since $\operatorname{Res}_{\mathrm{GL}_{k-2} \mathbb{C}}^{\mathrm{GL}_{k-1} \mathbb{C}} \operatorname{Res}_{\mathrm{GL}_{k-1} \mathbb{C}}^{\mathrm{GL}_{k} \mathbb{C}}=\operatorname{Res}_{\mathrm{GL}_{k-2} \mathbb{C}}^{\mathrm{GL}_{2} \mathbb{C}}$, we can iterate the branching rule to restrict to $\mathrm{GL}_{1} \mathbb{C}$.
- This way, we can index one-dimensional subspaces of a twisted representation by a sequence of interlacing partitions with distinct parts. (Indexing not multiplicity-free)
- This sequence forms a triangular array of integers akin to Gelfand-Tsetlin diagrams for the irreducible representations of $\mathrm{GL}_{k} \mathbb{C}$.

Twisted Gelfand-Tsetlin diagrams

Proposition

$$
\operatorname{Res}_{\mathrm{GL}_{1} \mathbb{C}}^{\mathrm{GL}_{k} \mathbb{C}} \tilde{V}_{\lambda}=\bigoplus_{\lambda^{(1)} \triangleleft \cdots \triangleleft \lambda^{(k)}=\lambda} 2^{\nabla\left(\lambda^{(k)}, \lambda^{(k-1)}, \ldots, \lambda^{(1)}\right)} \widetilde{V}_{\lambda^{(1)}}
$$

where $\lambda^{(m)}$ is a partition with m distinct parts and

$$
\nabla\left(\lambda^{(k)}, \lambda^{(k-1)}, \ldots, \lambda^{(1)}\right)=\sum_{i=1}^{k-1} \nabla\left(\lambda^{(i+1)}, \lambda^{(i)}\right) .
$$

A q-analogue of the KPF

Characters in general

- For a semisimple Lie group G with Cartan subgroup T, the character of the irreducible representation of G with highest weight $\lambda \in \mathfrak{t}_{+}^{*}$ is given by Weyl's character formula:

$$
\chi_{\lambda}=\sum_{\omega \in \mathcal{W}}(-1)^{|\omega|} e^{\omega(\lambda+\delta)-\delta} \prod_{\alpha \in \Delta_{+}} \frac{1}{1-e^{-\alpha}}
$$

where \mathcal{W} is the Weyl group and Δ_{+}is the set of positive roots.

- For $\mathrm{GL}_{k} \mathbb{C}$, thinking of $x_{i}=\exp \left(e_{i}\right)$, this is the Schur function $s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

The Kostant partition function

- We can define the Kostant partition function K through its generating function:

$$
\sum_{\mu} K(\mu) e^{\mu}=\prod_{\alpha \in \Delta_{+}} \frac{1}{1-e^{\alpha}}
$$

- So $K(\mu)$ is the number of ways that μ can be written as a sum of positive roots.
- Kostant's multiplicity formula expresses weight multiplicities in terms of the KPF. For $\mathrm{GL}_{k} \mathbb{C}$, these are Kostka numbers.

q-analogues

- Our general geometric object has "character"

$$
\chi_{\lambda}^{(q)}=\sum_{\omega \in \mathcal{W}} e^{\omega(\lambda)} \prod_{\alpha \in \Delta_{+}} \frac{1+(q-1) e^{-\omega(\alpha)}}{1-e^{-\omega(\alpha)}} .
$$

- This prompts the definition of a q-analogue K_{q} of the KPF by

$$
\sum_{\mu} K_{q}(\mu) e^{\mu}=\prod_{\alpha \in \Delta_{+}} \frac{1+(q-1) e^{\alpha}}{1-e^{\alpha}} .
$$

Remarks

- We can think of K_{q} as counting integer points in a polytope with certain weights (in q).
- The $q=2$ case is the one yielding the twisted representations.
- This is not the classical q-analogue of the KPF defined by Lusztig through

$$
\sum_{\mu} \widehat{K}_{q}(\mu) e^{\mu}=\prod_{\alpha \in \Delta_{+}} \frac{1}{1-q e^{\alpha}}
$$

to get a q-analogue of weight multiplicities.

- Guillemin, Sternberg and Weitsman have a formula analogous to the Kostant multiplicity formula for twisted representations. Their proof is geometric (Atiyah-Bott formula). We have a purely algebraic proof of this.
- We also have an analogue of the Steinberg formula for decomposing tensor products of twisted representations into twisted representations.
- Both formulas involve the $q=2$ specialization of the q-analogue of the KPF.

A structural result

Theorem (Guillemin-R)

The q-analogue $K_{q}(\mu)$ for the root system A_{k} is given by polynomials of degree $\binom{k}{2}$ with coefficients in $\mathbb{Q}[q]$ of degree $\binom{k+1}{2}$ over the relative interior of the cells of the chamber complex for the Kostant partition function.

Example: A_{2}

- 2-dimensional cones:

$$
\begin{aligned}
& \tau_{1}=\left\{a_{1} \alpha_{1}+a_{2} \alpha_{2}: a_{1}, a_{2}>0 \text { and } a_{1}>a_{2}\right\} \\
& \tau_{2}=\left\{a_{1} \alpha_{1}+a_{2} \alpha_{2}: a_{1}, a_{2}>0 \text { and } a_{1}<a_{2}\right\}
\end{aligned}
$$

- 1-dimensional cones:

$$
\begin{aligned}
& \tau_{3}=\left\{a\left(\alpha_{1}+\alpha_{2}\right): a>0\right\}, \\
& \tau_{4}=\left\{a_{1} \alpha_{1}: a_{1}>0\right\} \\
& \tau_{5}=\left\{a_{2} \alpha_{2}: a_{2}>0\right\}
\end{aligned}
$$

- 0-dimensional cone:

$$
\tau_{6}=\{0\}
$$

Let $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ be in the root lattice.
(In particular, $\mu_{1}+\mu_{2}+\mu_{3}=0$.)
Then

$$
\begin{array}{ll}
\left(\mu_{1}+\mu_{2}-1\right) q^{3}+2 q^{2} & \text { if } \mu \in \tau_{1}, \\
\left(\mu_{1}-1\right) q^{3}+2 q^{2} & \text { if } \mu \in \tau_{2}, \\
\left(\mu_{1}-1\right) q^{3}+q^{2}+q & \text { if } \mu \in \tau_{3}, \\
q & \text { if } \mu \in \tau_{4} \text { or } \mu \in \tau_{5}, \\
1 & \text { if } \mu \in \tau_{6}, \\
0 & \text { otherwise } .
\end{array}
$$

