A q-analogue of the Kostant partition function and twisted representations

Etienne Rassart
IAS and Cornell University

FPSAC 2005, Taormina

Joint work Victor Guillemin
Outline

- The origins of the problem (geometry)
- Twisted representations
- Making everything symmetric functions
- A branching rule
- A q-analogue of the Kostant partition function
The origins of the problem
Geometric setup

- (M, ω) symplectic manifold
- G compact Lie group
- $\tau : G \to \text{Diff}(M)$ group action with $\tau_g^* \omega = \omega$

Assume that M is prequantizable:

- $\mathbb{L} \to M$ Hermitean line bundle
- τ extends to the line bundle
- we have a connection ∇ with $\text{curv}(\nabla) = \omega$
The spin-\mathbb{C} Dirac operator

- The spin-\mathbb{C} Dirac operator $\mathcal{D}_\mathbb{C}$ exists on every symplectic manifold.

- For M prequantizable, using the connection ∇, we can lift $\mathcal{D}_\mathbb{C}$ to a G-invariant operator $\mathcal{D}_\mathbb{C}^L$ on the line bundle $L \to M$.

- The index of $\mathcal{D}_\mathbb{C}^L$ is the virtual vector space

$$\text{Ind } \mathcal{D}_\mathbb{C}^L = \ker \mathcal{D}_\mathbb{C}^L \oplus \left(-\text{coker } \mathcal{D}_\mathbb{C}^L\right).$$

- It is a (virtual) representation of G known as the quantization of τ (with respect to $\mathcal{D}_\mathbb{C}$).
Quantization and representations

- Let G be a semisimple Lie group and \mathfrak{g} its Lie algebra.

- Let T be a Cartan subgroup (maximal torus) and \mathfrak{t} its Lie algebra.

- \mathfrak{t}^* is the fundamental Weyl chamber

- We have the coadjoint representation of G on \mathfrak{g}^*.

- Denote by O_λ the coadjoint orbit through a point $\lambda \in \mathfrak{t}^*$.

Suppose that λ is a dominant weight.

Then O_λ is a prequantizable symplectic manifold.

The cokernel of $\hat{\phi}_C^L$ vanishes and the index is

$$\text{Ind } \hat{\phi}_C^L = \ker \hat{\phi}_C^L = V_\lambda,$$

the irreducible representation of G with highest weight λ. (Bott-Borel-Weil theorem)
Twisted representations
The signature Dirac operator

- The signature Dirac operator $\hat{\mathcal{D}}_{\text{sig}}$ exists on any oriented manifold (with a Riemannian metric).

- The index

$$\text{Ind } \hat{\mathcal{D}}_{\text{sig}} = \ker \hat{\mathcal{D}}_{\text{sig}} \oplus (-\text{coker } \hat{\mathcal{D}}_{\text{sig}})$$

is also a virtual representation of G.

- It is also known as the quantization of τ, but with respect to $\hat{\mathcal{D}}_{\text{sig}}$.
Let G be a semisimple Lie group and T a maximal torus as above.

Let λ be a strictly dominant weight (in the interior of the fundamental Weyl chamber).

Theorem (Guillemin-Sternberg-Weitsman)

The index of \mathcal{O}_{sig} on the coadjoint orbit O_λ is

$$\text{Ind } \mathcal{O}_{\text{sig}} = (-1)^{\frac{1}{2} \dim O_\lambda} V_{\lambda-\delta} \otimes V_\delta,$$

where δ is half the sum of the positive roots.
To remember

The thing to remember from all of this:

Quantization for $\mathcal{O}_C^L \iff V_\lambda$

Quantization for $\mathcal{O}_{\text{sig}} \iff V_{\lambda-\delta} \otimes V_\delta$

So in a certain world and in a certain sense, the representations $V_{\lambda-\delta} \otimes V_\delta$ play the role of the irreducible representations in the classical theory.
Twisted representations

- δ is half the sum of the positive roots.

- V_μ is the irreducible representation with highest weight μ.

- For λ strictly dominant, we define the twisted representation

$$\tilde{V}_\lambda = V_{\lambda-\delta} \otimes V_\delta.$$
Tensor products

Tensor products of twisted representations can be written in terms of twisted representations again:

\[
\tilde{V}_\lambda \otimes \tilde{V}_\mu = (V_{\lambda-\delta} \otimes V_{\delta}) \otimes (V_{\mu-\delta} \otimes V_{\delta})
\]

\[
= (V_{\lambda-\delta} \otimes V_{\delta} \otimes V_{\mu-\delta}) \otimes V_{\delta}
\]
Tensor products

Tensor products of twisted representations can be written in terms of twisted representations again:

\[\tilde{V}_\lambda \otimes \tilde{V}_\mu = (V_{\lambda-\delta} \otimes V_\delta) \otimes (V_{\mu-\delta} \otimes V_\delta) \]

\[= \left(V_{\lambda-\delta} \otimes V_\delta \otimes V_{\mu-\delta} \right) \otimes V_\delta \]

break into sum of irreducibles

\[= \bigoplus \tilde{V}_\nu \oplus \tilde{N}^\nu_{\lambda\mu} \]
Symmetric functions (type A)
For $\text{GL}_k \mathbb{C}$ things are especially nice because

- A dominant weight is just a partition with k parts (0-parts allowed).

- δ is the staircase partition:

$$\delta = (k - 1, k - 2, \ldots, 1, 0).$$

- λ strictly dominant means the partition λ has distinct parts ($\lambda - \delta$ is still a partition).
Taking characters

The character χ_μ of the irreducible (polynomial) representation V_μ is a Schur polynomial:

$$\chi_\mu = s_\mu(x_1, x_2, \ldots, x_k).$$

This means that the character $\tilde{\chi}_\lambda$ of the twisted representation \tilde{V}_λ is

$$\tilde{\chi}_\lambda = \chi_{\lambda-\delta} \cdot \chi_\delta$$

$$= s_{\lambda-\delta}(x_1, \ldots, x_k) s_\delta(x_1, \ldots, x_k).$$
Hall-Littlewood polynomials

- The character $\tilde{\chi}_\lambda$ is the $t = -1$ specialization of the Hall-Littlewood polynomial $P_\lambda(x_1, \ldots, x_k; t)$.

- $P_\lambda(x_1, \ldots, x_k; 0)$ is the Schur function $s_\lambda(x_1, \ldots, x_k)$, so the character χ_λ.

- We (almost) have, together with J. Weitsman, a geometrical object whose character is $P_\lambda(x_1, \ldots, x_k; -(q - 1))$.

- This is where the q-analogue of the Kostant partition function comes in.
A branching rule
Branching rules

A branching rule describes how the restriction of a representation of a group G to a subgroup H decomposes into H-representations.
Branching rules

- A branching rule describes how the restriction of a representation of a group G to a subgroup H decomposes into H-representations.

- \mathcal{S}_{n-1} is a subgroup of \mathcal{S}_n (by leaving the last element fixed).

- $\text{GL}_{k-1}\mathbb{C}$ is the subgroup of $\text{GL}_k\mathbb{C}$.

\[
\begin{pmatrix}
\text{GL}_{k-1}\mathbb{C} & 0 \\
0 & \text{GL}_{k-1}\mathbb{C} \\
\end{pmatrix}
\]
Branching for \mathfrak{S}_n

- Let $\{W_\lambda : \lambda \vdash n\}$ be the set of irreducible representations of \mathfrak{S}_n.

- Let $\{W_\mu : \mu \vdash n - 1\}$ be the set of irreducible representations of \mathfrak{S}_{n-1}.

Then

$$\text{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} W_\lambda = \bigoplus_{\mu} W_\mu$$

where the sum is over all partitions that can be obtained from λ by removing one corner.
Branching for $GL_k \mathbb{C}$

- Let $\lambda = (\lambda_1, \ldots, \lambda_{k-1}, \lambda_k)$.
- Let $\nu = (\nu_1, \ldots, \nu_{k-1})$.
- Say that ν interlaces λ ($\nu \triangleleft \lambda$) if
 $$\lambda_1 \geq \nu_1 \geq \lambda_2 \geq \nu_2 \geq \cdots \geq \lambda_{k-1} \geq \nu_{k-1} \geq \lambda_k.$$ (Obtain ν from λ by removing horizontal strip)
- Then (Weyl’s branching rule)
 $$\text{Res}_{GL_{k-1} \mathbb{C}}^{GL_k \mathbb{C}} V_{\lambda} = \bigoplus_{\nu \triangleleft \lambda} V_{\nu}.$$
Branching rule for the \widetilde{V}_λ

- Let $\lambda = (\lambda_1, \ldots, \lambda_{k-1}, \lambda_k)$ distinct parts.
- Let $\nu = (\nu_1, \ldots, \nu_{k-1})$ distinct parts.
- For $\nu \triangleleft \lambda$, let
 $$\nabla(\lambda, \nu) = \{ i \in [k-1] : \lambda_i > \nu_i > \lambda_{i+1} \} .$$

Theorem *(Guillemin-R)*

$$\text{Res}_{GL_{k-1}\mathbb{C}}^{GL_k\mathbb{C}} \widetilde{V}_\lambda = \bigoplus_{\nu \triangleleft \lambda} 2^{\nabla(\lambda, \nu)} \widetilde{V}_\nu .$$

ν distinct parts
Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_k, equal to 1.
Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_k, equal to 1.

- We have $s_{\lambda}(x, y) = \sum_{\mu \subseteq \lambda} s_{\mu}(x) s_{\lambda/\mu}(y)$.
Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_k, equal to 1.

- We have
 \[s_\lambda(x, y) = \sum_{\mu \subseteq \lambda} s_\mu(x) s_{\lambda/\mu}(y). \]

- Now
 \[s_{\lambda/\mu}(1) = \begin{cases}
 1 & \text{if } \lambda/\mu \text{ is horizontal strip}, \\
 0 & \text{otherwise}.
\end{cases} \]
Sketch of proof

- In terms of the characters, restricting just means setting the last variable, x_k, equal to 1.

- We have $s_\lambda(x, y) = \sum_{\mu \subseteq \lambda} s_\mu(x)s_{\lambda/\mu}(y)$.

- Now $s_{\lambda/\mu}(1) = \begin{cases} 1 & \text{if } \lambda/\mu \text{ is horizontal strip,} \\ 0 & \text{otherwise.} \end{cases}$

- So $s_\lambda(x_1, \ldots, x_{k-1}, 1) = \sum_{\mu \triangleleft \lambda} s_\mu(x_1, \ldots, x_{k-1})$.
On the other hand

\[s_\delta(x_1, \ldots, x_k) = \frac{\text{Vandermonde}(x_1^2, \ldots, x_k^2)}{\text{Vandermonde}(x_1, \ldots, x_k)} = \prod_{1 \leq i < j \leq k} (x_i + x_j). \]
On the other hand

\[s_\delta(x_1, \ldots, x_k) = \frac{\text{Vandermonde}(x_1^2, \ldots, x_k^2)}{\text{Vandermonde}(x_1, \ldots, x_k)} \]

\[= \prod_{1 \leq i < j \leq k} (x_i + x_j). \]

Then

\[s_\delta|_{x_k=1} = \prod_{1 \leq i < j \leq k-1} (x_i + x_j) \prod_{i=1}^{k-1} (1 + x_i) \]

\[= s_{\delta'}(x_1, \ldots, x_{k-1})(e_0 + e_1 + \cdots + e_{k-1}). \]

where \(\delta' = (k - 2, k - 3, \ldots, 1, 0). \)
Define $f^{(m)} = f(x_1, \ldots, x_m)$. We have

$$s^{(k)}_{\lambda - \delta} s^{(k)}_{\delta} |_{x_k = 1} = \sum_{\mu < \lambda - \delta} s^{(k-1)}_{\mu} s^{(k-1)}_{\delta'} (e_0^{(k-1)} + \cdots + e_{k-1}^{(k-1)})$$
Define \(f^{(m)} = f(x_1, \ldots, x_m) \). We have

\[
\left. s^{(k)}_{\lambda-\delta} s^{(k)}_{\delta} \right|_{x_k=1} = \sum_{\mu < \lambda-\delta} s^{(k-1)}_{\mu} s^{(k-1)}_{\delta'} (e^{(k-1)}_{0} + \cdots + e^{(k-1)}_{k-1})
\]

By a dual version of the Pieri rule,

\[
s_{\mu} e_m = \sum_{\nu} s_{\nu},
\]

where the sum is over all \(\nu \) obtained from \(\mu \) by adding a vertical strip of size \(m \).
Finally,

\[S_{\lambda - \delta}^{(k)} S_{\delta}^{(k)} |_{x_k = 1} = \sum_{\mu < \lambda - \delta} \sum_{\nu} S_{\nu}^{(k-1)} S_{\delta'}^{(k-1)} \]

\[\tilde{\chi}_\lambda(x_1, \ldots, x_{k-1}, 1) = \sum_{\mu < \lambda - \delta} \sum_{\nu} \tilde{\chi}_{\nu + \delta}(x_1, \ldots, x_{k-1}), \]

where the sum is over all \(\nu \) that can be obtained from \(\mu \) by adding a vertical strip of size at most \(k - 1 \) (and height at most \(k - 1 \)).
We can relabel things and group terms.

For partitions with distinct parts λ and ν, let $n(\lambda, \nu)$ be the number of ways that $\nu - \delta'$ can be obtained by adding a vertical strip of size and height at most $k - 1$ to some partition μ interlacing $\lambda - \delta$. Then

$$\tilde{V}_{\lambda} = \bigoplus_{\nu \triangleleft \lambda, \text{distinct parts}} n(\lambda, \nu) \tilde{V}_\nu.$$
We can relabel things and group terms.

For partitions with distinct parts \(\lambda \) and \(\nu \), let \(n(\lambda, \nu) \) be the number of ways that \(\nu - \delta' \) can be obtained by adding a vertical strip of size and height at most \(k - 1 \) to some partition \(\mu \) interlacing \(\lambda - \delta \). Then

\[
\tilde{V}_\lambda = \bigoplus_{\nu \triangleleft \lambda, \text{distinct parts}} n(\lambda, \nu) \tilde{V}_\nu.
\]

Lemma

\[
n(\lambda, \nu) = 2^{\nabla(\lambda, \nu)}.
\]
Twisted Gelfand-Tsetlin diagrams

Since \(\operatorname{Res}_{GL_{k-1}\mathbb{C}}^{GL_k\mathbb{C}} \operatorname{Res}_{GL_{k-2}\mathbb{C}}^{GL_{k-1}\mathbb{C}} = \operatorname{Res}_{GL_{k-2}\mathbb{C}}^{GL_{k}\mathbb{C}} \), we can iterate the branching rule to restrict to \(GL_1\mathbb{C} \).

This way, we can index one-dimensional subspaces of a twisted representation by a sequence of interlacing partitions with distinct parts. (Indexing not multiplicity-free)

This sequence forms a triangular array of integers akin to Gelfand-Tsetlin diagrams for the irreducible representations of \(GL_k\mathbb{C} \).
Proposition

\[\text{Res}_{\text{GL}_1 \mathbb{C}}^{\text{GL}_k \mathbb{C}} \tilde{V}_\lambda = \bigoplus_{\lambda^{(1)} \prec \ldots \prec \lambda^{(k)} = \lambda} 2^{\nabla(\lambda^{(k)}, \lambda^{(k-1)}, \ldots, \lambda^{(1)})} \tilde{V}_{\lambda^{(1)}} \]

where \(\lambda^{(m)} \) is a partition with \(m \) distinct parts and

\[\nabla(\lambda^{(k)}, \lambda^{(k-1)}, \ldots, \lambda^{(1)}) = \sum_{i=1}^{k-1} \nabla(\lambda^{(i+1)}, \lambda^{(i)}). \]
A q-analogue of the KPF
Characters in general

For a semisimple Lie group G with Cartan subgroup T, the character of the irreducible representation of G with highest weight $\lambda \in t^*_+$ is given by Weyl’s character formula:

$$
\chi_\lambda = \sum_{\omega \in \mathcal{W}} (-1)^{|\omega|} e^{\omega(\lambda + \delta) - \delta} \prod_{\alpha \in \Delta_+} \frac{1}{1 - e^{-\alpha}},
$$

where \mathcal{W} is the Weyl group and Δ_+ is the set of positive roots.

For $GL_k \mathbb{C}$, thinking of $x_i = \exp(e_i)$, this is the Schur function $s_\lambda(x_1, \ldots, x_k)$.
The Kostant partition function

- We can define the **Kostant partition function** \mathbf{K} through its generating function:

$$\sum_{\mu} \mathbf{K}(\mu) e^\mu = \prod_{\alpha \in \Delta_+} \frac{1}{1 - e^\alpha}.$$

- So $\mathbf{K}(\mu)$ is the number of ways that μ can be written as a sum of positive roots.

- **Kostant’s multiplicity formula** expresses weight multiplicities in terms of the KPF. For $\text{GL}_k \mathbb{C}$, these are **Kostka numbers**.
"q\text{-analogues}

Our general geometric object has “character”

\[
\chi^{(q)}_\lambda = \sum_{\omega \in \mathcal{W}} e^{\omega(\lambda)} \prod_{\alpha \in \Delta_+} \frac{1 + (q - 1)e^{-\omega(\alpha)}}{1 - e^{-\omega(\alpha)}}.
\]

This prompts the definition of a \(q\text{-analogue} K_q\) of the KPF by

\[
\sum_{\mu} K_q(\mu) e^\mu = \prod_{\alpha \in \Delta_+} \frac{1 + (q - 1)e^\alpha}{1 - e^\alpha}.
\]
Remarks

- We can think of \(K_q \) as counting integer points in a polytope with certain weights (in \(q \)).

- The \(q = 2 \) case is the one yielding the twisted representations.

- This is not the classical \(q \)-analogue of the KPF defined by Lusztig through

 \[
 \sum_{\mu} \hat{K}_q(\mu) \ e^\mu = \prod_{\alpha \in \Delta_+} \frac{1}{1 - q \ e^\alpha}
 \]

 to get a \(q \)-analogue of weight multiplicities.
Guillemin, Sternberg and Weitsman have a formula analogous to the Kostant multiplicity formula for twisted representations. Their proof is geometric (Atiyah-Bott formula). We have a purely algebraic proof of this.

We also have an analogue of the Steinberg formula for decomposing tensor products of twisted representations into twisted representations.

Both formulas involve the $q = 2$ specialization of the q-analogue of the KPF.
A structural result

Theorem (Guillemin-R)

The q-analogue $K_q(\mu)$ for the root system A_k is given by polynomials of degree $\binom{k}{2}$ with coefficients in $\mathbb{Q}[q]$ of degree $\binom{k+1}{2}$ over the relative interior of the cells of the chamber complex for the Kostant partition function.
Example: A_2

- 2-dimensional cones:
 \[
 \tau_1 = \left\{ a_1 \alpha_1 + a_2 \alpha_2 : a_1, a_2 > 0 \text{ and } a_1 > a_2 \right\},
 \tau_2 = \left\{ a_1 \alpha_1 + a_2 \alpha_2 : a_1, a_2 > 0 \text{ and } a_1 < a_2 \right\},
 \]

- 1-dimensional cones:
 \[
 \tau_3 = \left\{ a(\alpha_1 + \alpha_2) : a > 0 \right\},
 \tau_4 = \left\{ a_1 \alpha_1 : a_1 > 0 \right\},
 \tau_5 = \left\{ a_2 \alpha_2 : a_2 > 0 \right\},
 \]

- 0-dimensional cone:
 \[
 \tau_6 = \{0\}.
 \]
Let $\mu = (\mu_1, \mu_2, \mu_3)$ be in the root lattice.
(In particular, $\mu_1 + \mu_2 + \mu_3 = 0$.)

Then

$$K_q(\mu) = \begin{cases}
(\mu_1 + \mu_2 - 1)q^3 + 2q^2 & \text{if } \mu \in \tau_1, \\
(\mu_1 - 1)q^3 + 2q^2 & \text{if } \mu \in \tau_2, \\
(\mu_1 - 1)q^3 + q^2 + q & \text{if } \mu \in \tau_3, \\
q & \text{if } \mu \in \tau_4 \text{ or } \mu \in \tau_5, \\
1 & \text{if } \mu \in \tau_6, \\
0 & \text{otherwise.}
\end{cases}$$