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slkC

slkC is the Lie algebra of complex k × k
traceless matrices.

It is a simple algebra, of type Ak−1.

We can take as the Cartan subalgebra h the
diagonal subalgebra.

slkC and glkC differ very little:

glkC = slkC ⊕ CI .
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Roots

The dual h∗ of the Cartan subalgebra can be
identified with

{(x1, . . . , xk) ∈ R
k : x1 + · · · + xk = 0} ,

the hyperplane of R
k where the coordinates

sum up to zero.

With this identification, the root system is

∆ = {ei − ej : 1 ≤ i 6= j ≤ k} .
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The positive roots are

∆+ = {ei − ej : 1 ≤ i < j ≤ k} .

The simple roots are

Π = {ei − ei+1 : 1 ≤ i ≤ k − 1} .

We will denote ei − ei+1 by αi.

There are k − 1 simple roots and they form a
basis of h∗.
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Weights

The fundamental weights ω1, . . . , ωk−1 are
defined by

〈αi, ωj〉 = δij .

With the identification above, we have

ωi =
1

k
(k − i, k − i, . . . , k − i
︸ ︷︷ ︸

i times

,−i,−i, . . . ,−i
︸ ︷︷ ︸

k − i times

)

The root lattice is ΛR = Z∆.
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The weight lattice is ΛW = Z{ω1, . . . , ωk−1}.

ΛR is a sublattice of ΛW of index k.
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The weight lattice is ΛW = Z{ω1, . . . , ωk−1}.

ΛR is a sublattice of ΛW of index k.

δ =
1

2

∑

α∈∆+

α =
k−1∑

i=1

ωi

=
1

2
(k − 1, k − 3, . . . ,−(k − 3),−(k − 1)) .
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The Weyl group

The Weyl group is the group generated by the
reflections with respect to the hyperplanes
through the origin with the roots as normals.

In the case of slkC, the reflection through the
hyperplane with normal ei − ej simply
interchanges the ith and jth coordinates.

Thus the Weyl group for slkC is the symmetric
group Sk acting on {e1, . . . , ek}.

The lattices ΛR and ΛW are invariant under
the action of the Weyl group.
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Example: A2
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Example: A2

α1 = e1 − e2
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Example: A2

α2 = e2 − e3
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Example: A2

ω1 = e1 −
1
3(1 1 1)
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Example: A2

ω2 = e1 + e2 −
2
3(1 1 1)
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Representations

A representation of g is a vector space V with
a Lie algebra homomorphism ρ : g −→ gl(V ).

Any representation V of a complex
semisimple Lie algebra g with Cartan
subalgebra h can be broken up into the
weight space decomposition

V =
⊕

β∈h∗

Vβ

where

Vβ = {v ∈ V : ρ(h) · v = β(h)v ∀h ∈ h} .
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The irreducible representations of slkC are
indexed by dominant weights, i.e. weights
λ ∈ ΛW such that λ1 ≥ · · · ≥ λk.

The multiplicity mλ(β) of β in λ is the
dimension of the weight space

(
Vλ

)

β
.

The β’s for which
(
Vλ

)

β
6= 0 are exactly those

for which
β ∈ ΛW ,
λ − β ∈ ΛR ,
β ∈ conv(Sk · λ) .
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Irreducible representations of slkC can be
lifted to irreducible polynomial
representations of glkC.

Those are indexed by partitions with at most k
parts.

The character of the representation indexed
by λ is the Schur symmetric function
sλ(x1, . . . , xk).
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The weight space decomposition
corresponds to the identity

sλ =
∑

µ≤λ

Kλµmµ .

This means that

Kλµ = mλ̄(µ̄)

where γ̄ = γ −
|γ|

k
(1 1 · · · 1).
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Kostant’s multiplicity formula

The Kostant partition function is the function

K(v) =
∣
∣
∣

{

(kα)α∈∆+
∈ N

|∆+| :
∑

α∈∆+

kαα = v
}∣
∣
∣ ,

i.e. K(v) is the number of ways that v can be
written as a sum of positive roots.
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kαα = v
}∣
∣
∣ ,

i.e. K(v) is the number of ways that v can be
written as a sum of positive roots.

Kostant’s multiplicity formula
mλ(β) =

∑

σ∈Sk

(−1)inv(σ)K(σ(λ + δ) − (β + δ)) .
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