Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Etienne Rassart

Massachusetts Institute of Technology
October 8, 2003

Joint work with Sara Billey and Victor Guillemin

About $\mathfrak{s l}_{k} \mathbb{C}$

- $\mathfrak{s l}_{k} \mathbb{C}$ is the Lie algebra of complex $k \times k$ traceless matrices.
- $\mathfrak{s l}_{k} \mathbb{C}$ is the Lie algebra of complex $k \times k$ traceless matrices.
- It is a simple algebra, of type A_{k-1}.
- $\mathfrak{s l}_{k} \mathbb{C}$ is the Lie algebra of complex $k \times k$ traceless matrices.
- It is a simple algebra, of type A_{k-1}.
- We can take as the Cartan subalgebra \mathfrak{h} the diagonal subalgebra.
- $\mathfrak{s l}_{k} \mathbb{C}$ is the Lie algebra of complex $k \times k$ traceless matrices.
- It is a simple algebra, of type A_{k-1}.
- We can take as the Cartan subalgebra \mathfrak{h} the diagonal subalgebra.
- $\mathfrak{s l}_{k} \mathbb{C}$ and $\mathfrak{g l}_{k} \mathbb{C}$ differ very little:

$$
\mathfrak{g l}_{k} \mathbb{C}=\mathfrak{s l}_{k} \mathbb{C} \oplus \mathbb{C} I
$$

Roots

The dual \mathfrak{h}^{*} of the Cartan subalgebra can be identified with

$$
\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}: x_{1}+\cdots+x_{k}=0\right\},
$$

the hyperplane of \mathbb{R}^{k} where the coordinates sum up to zero.

Roots

The dual \mathfrak{h} * of the Cartan subalgebra can be identified with

$$
\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}: x_{1}+\cdots+x_{k}=0\right\},
$$

the hyperplane of \mathbb{R}^{k} where the coordinates sum up to zero.

- With this identification, the root system is

$$
\Delta=\left\{e_{i}-e_{j}: 1 \leq i \neq j \leq k\right\} .
$$

The
roots are

$$
\Delta_{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq k\right\} .
$$

- The roots are

$$
\Delta_{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq k\right\} .
$$

The
roots are

$$
\Pi=\left\{e_{i}-e_{i+1}: 1 \leq i \leq k-1\right\} .
$$

- The roots are

$$
\Delta_{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq k\right\} .
$$

The
roots are

$$
\Pi=\left\{e_{i}-e_{i+1}: 1 \leq i \leq k-1\right\} .
$$

- We will denote $e_{i}-e_{i+1}$ by α_{i}.
- The roots are

$$
\Delta_{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq k\right\} .
$$

The roots are

$$
\Pi=\left\{e_{i}-e_{i+1}: 1 \leq i \leq k-1\right\} .
$$

- We will denote $e_{i}-e_{i+1}$ by α_{i}.
- There are $k-1$ simple roots and they form a basis of \mathfrak{h}.

Weights

The defined by

$$
\left\langle\alpha_{i}, \omega_{j}\right\rangle=\delta_{i j} .
$$

Weights

The defined by

$$
\left\langle\alpha_{i}, \omega_{j}\right\rangle=\delta_{i j} .
$$

- With the identification above, we have

$$
\omega_{i}=\frac{1}{k}(\underbrace{k-i, k-i, \ldots, k-i}_{i \text { times }}, \underbrace{-i,-i, \ldots,-i}_{k-i \text { times }})
$$

Weights

The defined by

$$
\left\langle\alpha_{i}, \omega_{j}\right\rangle=\delta_{i j} .
$$

- With the identification above, we have

$$
\omega_{i}=\frac{1}{k}(\underbrace{k-i, k-i, \ldots, k-i}_{i \text { times }}, \underbrace{-i,-i, \ldots,-i}_{k-i \text { times }})
$$

The is $\Lambda_{R}=\mathbb{Z} \Delta$.

The
is $\Lambda_{W}=\mathbb{Z}\left\{\omega_{1}, \ldots, \omega_{k-1}\right\}$.

- The is $\Lambda_{W}=\mathbb{Z}\left\{\omega_{1}, \ldots, \omega_{k-1}\right\}$.
- Λ_{R} is a sublattice of Λ_{W} of index k.
- The is $\Lambda_{W}=\mathbb{Z}\left\{\omega_{1}, \ldots, \omega_{k-1}\right\}$.
- Λ_{R} is a sublattice of Λ_{W} of index k.

$$
\begin{aligned}
\delta & =\frac{1}{2} \sum_{\alpha \in \Delta_{+}} \alpha=\sum_{i=1}^{k-1} \omega_{i} \\
& =\frac{1}{2}(k-1, k-3, \ldots,-(k-3),-(k-1)) .
\end{aligned}
$$

The Weyl group

The is the group generated by the reflections with respect to the hyperplanes through the origin with the roots as normals.

The Weyl group

The is the group generated by the reflections with respect to the hyperplanes through the origin with the roots as normals.

- In the case of $\mathfrak{s l}_{k} \mathbb{C}$, the reflection through the hyperplane with normal $e_{i}-e_{j}$ simply interchanges the i th and j th coordinates.

The Weyl group

The is the group generated by the reflections with respect to the hyperplanes through the origin with the roots as normals.

- In the case of $\mathfrak{s l}_{k} \mathbb{C}$, the reflection through the hyperplane with normal $e_{i}-e_{j}$ simply interchanges the i th and j th coordinates.

Thus the Weyl group for $\mathfrak{s l}_{k} \mathbb{C}$ is the symmetric acting on $\left\{e_{1}, \ldots, e_{k}\right\}$.

The Weyl group

The is the group generated by the reflections with respect to the hyperplanes through the origin with the roots as normals.

- In the case of $\mathfrak{s l}_{k} \mathbb{C}$, the reflection through the hyperplane with normal $e_{i}-e_{j}$ simply interchanges the i th and j th coordinates.
- Thus the Weyl group for $\mathfrak{s l}_{k} \mathrm{C}$ is the symmetric acting on $\left\{e_{1}, \ldots, e_{k}\right\}$.

The lattices Λ_{R} and Λ_{W} are invariant under the action of the Weyl group.

Example: A_{2}

Example: A_{2}

Example: A_{2}

Example: A_{2}

Example: A_{2}

Representations

- A representation of \mathfrak{g} is a vector space V with a Lie algebra homomorphism $\rho: \mathfrak{g} \longrightarrow \mathfrak{g l}(V)$.

Representations

- A representation of \mathfrak{g} is a vector space V with a Lie algebra homomorphism $\rho: \mathfrak{g} \longrightarrow \mathfrak{g l}(V)$.
- Any representation V of a complex semisimple Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} can be broken up into the

$$
V=\bigoplus_{\beta \in \mathfrak{h}^{*}} V_{\beta}
$$

where

$$
V_{\beta}=\{v \in V: \rho(h) \cdot v=\beta(h) v \quad \forall h \in \mathfrak{h}\} .
$$

The indexed by

representations of $\mathfrak{s l}_{k} \mathbb{C}$ are $\lambda \in \Lambda_{W}$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$.

The representations of $\mathfrak{s l}_{k} \mathbb{C}$ are indexed by minant weights, i.e. weights $\lambda \in \Lambda_{W}$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
The of β in λ is the dimension of the weight space $\left(V_{\lambda}\right)_{\beta}$.

- The representations of $\mathfrak{s l}_{k} \mathbb{C}$ are indexed by i.e. weights $\lambda \in \Lambda_{W}$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
- The of β in λ is the dimension of the weight space $\left(V_{\lambda}\right)_{\beta}$.
- The β 's for which $\left(V_{\lambda}\right)_{\beta} \neq 0$ are exactly those for which

The representations of $\mathfrak{s l}_{k} \mathbb{C}$ are indexed by minant weights, i.e. weights
$\lambda \in \Lambda_{W}$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
The of β in λ is the dimension of the weight space $\left(V_{\lambda}\right)_{\beta}$.

- The β 's for which $\left(V_{\lambda}\right)_{\beta} \neq 0$ are exactly those for which
- $\beta \in \Lambda_{W}$,

The representations of $\mathfrak{s l}_{k} \mathbb{C}$ are indexed by minant weights, i.e. weights
$\lambda \in \Lambda_{W}$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$.

- The of β in λ is the dimension of the weight space $\left(V_{\lambda}\right)_{\beta}$.
- The β 's for which $\left(V_{\lambda}\right)_{\beta} \neq 0$ are exactly those for which
- $\beta \in \Lambda_{W}$,
. $\lambda-\beta \in \Lambda_{R}$,

The representations of $\mathfrak{s l}_{k} \mathbb{C}$ are indexed by minant weights, i.e. weights
$\lambda \in \Lambda_{W}$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$.

- The of β in λ is the dimension of the weight space $\left(V_{\lambda}\right)_{\beta}$.
- The β 's for which $\left(V_{\lambda}\right)_{\beta} \neq 0$ are exactly those for which
- $\beta \in \Lambda_{W}$,
\& $\lambda-\beta \in \Lambda_{R}$,
- $\beta \in \operatorname{conv}\left(\mathbb{S}_{k} \cdot \lambda\right)$.
- Irreducible representations of $\mathfrak{s l}_{k} \mathbb{C}$ can be lifted to irreducible polynomial representations of $\mathfrak{g l}_{k} \mathbb{C}$.
- Irreducible representations of $\mathfrak{s l}_{k} \mathbb{C}$ can be lifted to irreducible representations of $\mathfrak{g l}_{k} \mathbb{C}$.

Those are indexed by partitions with at most k parts.

- Irreducible representations of $\mathfrak{s l}_{k} \mathbb{C}$ can be lifted to irreducible representations of $\mathfrak{g l}_{k} \mathbb{C}$.

Those are indexed by partitions with at most k parts.

- The character of the representation indexed by λ is the Schur symmetric function $s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$.

The weight space decomposition corresponds to the identity

$$
s_{\lambda}=\sum_{\mu \leq \lambda} K_{\lambda \mu} m_{\mu}
$$

The weight space decomposition corresponds to the identity

$$
s_{\lambda}=\sum_{\mu \leq \lambda} K_{\lambda \mu} m_{\mu} .
$$

This means that

$$
K_{\lambda \mu}=m_{\bar{\lambda}}(\bar{\mu})
$$

where $\bar{\gamma}=\gamma-\frac{|\gamma|}{k}\left(\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right)$.

Kostant's multiplicity formula

The is the function

$$
K(v)=\left|\left\{\left(k_{\alpha}\right)_{\alpha \in \Delta_{+}} \in \mathbb{N}^{\left|\Delta_{+}\right|}: \sum_{\alpha \in \Delta_{+}} k_{\alpha} \alpha=v\right\}\right|,
$$

i.e. $K(v)$ is the number of ways that v can be written as a sum of positive roots.

Kostant's multiplicity formula

The is the function

$$
K(v)=\left|\left\{\left(k_{\alpha}\right)_{\alpha \in \Delta_{+}} \in \mathbb{N}^{\left|\Delta_{+}\right|}: \sum_{\alpha \in \Delta_{+}} k_{\alpha} \alpha=v\right\}\right|,
$$

i.e. $K(v)$ is the number of ways that v can be written as a sum of positive roots.

$$
\begin{gathered}
\text { Kostant's multiplicity formula } \\
m_{\lambda}(\beta)=\sum_{\sigma \in \mathcal{G}_{k}}(-1)^{\operatorname{inv}(\sigma)} K(\sigma(\lambda+\delta)-(\beta+\delta)) .
\end{gathered}
$$

