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Introduction

Kostka numbers appear in combinatorics and
representation theory.

The IS the number of
semistandard Young tableaux of shape X\ and
content (.
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Introduction

Kostka numbers appear in combinatorics and
representation theory.

The IS the number of
semistandard Young tableaux of shape X\ and
content 5.

K3 1s also the multiplicity with which the
weight 3 appears in the irreducible
representation of GL;C (or SL;(C)) with
highest weight .

| |GT] VPEF |SPF |SG| KA P IFE JILR



Schur functions

Sx(x1,...,x) = Z x! .

T eSSYT(\; k)
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Schur functions

Sx(x1,...,x) = Z x! .

T eSSYT(\; k)
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I 0 2023 + 2573 + 2175 + X125 + ey

S 2 L1X2X3 .
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Kostka numbers

From the definition of the Schur functions, we

have that
S\ — Z K)\ﬁ Xﬁ 9
B

where K3 IS the number of ways of filling a
SSYT of shape A\ with integers distributed
according to composition (.
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Kostka numbers

From the definition of the Schur functions, we

have that
S\ — Z K)\ﬁ Xﬁ 9
B

where K3 IS the number of ways of filling a

SSYT of shape A\ with integers distributed
according to composition (.

The set of §’s for which K3 # 0 consists of

the lattice points inside the convex hull of the
orbit of A under &,.. This convex hull is a
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AS )\ varies

0 “generic” cases
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AS )\ varies

N KT N/

Up to deformation: two “generic” cases

8 polynomials suffice to describe all the
Kostka numbers for partitions with at most

three parts
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AS )\ varies

VAT —2
Up to deformation: two “generic” cases

8 polynomials suffice to describe all the
Kostka numbers for partitions with at most
three parts

Central region ( ) In which the Kostka
numbers are constant
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Roots and weights fo_

1<i#j<k}.

- 5 < k}.

: 1<i<k—-1}.

. w1, ..., wi_1 defined
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wiz(l,l,...,l,0,0,...,O)
e

7 times k — 1 times

The normals to the facets of the
permutahedron conv(&y - A) are the

conjugates 6(w;) of the fundamental weights.

N — %Za

OCGA_|_
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Kostant’s multiplicity formula

The IS the function
K(v) = ‘{(ka)a€A+ c N2+l Z koo = v}
acA L

l.e. K(v) is the number of ways that v can be
written as a sum of positive roots.
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Kostant’s multiplicity formula

The IS the function
K(®) = |{ (ka)aca, € N!0 3 ko = v},
acA L

l.e. K(v) is the number of ways that v can be
written as a sum of positive roots.

Kostant’s multiplicity formula
K=Y (-1)™K(a(A+6) — (8+0)).

ceG,
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Gelfand-Tsetlin cﬁag_

~Is an array of integers
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)‘k 1 )\k

1
A

Iz

)
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- Gelfand-Tsetlin diagrams
B )\k 1 )‘k

k-1

A
Iz
(1)
1
(i+1)
Ajr
Ty
)
the diagram.
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GT-diagrams and Kostka numbers

Lemma (Gelfand-Tsetlin)

The Kostka number Kz Is the number of
Gelfand-Tsetlin diagrams with top row A and row
sums satisfying

m

Z)\(m)zﬂ1+---+ﬁm for 1 <m <k.

1
i=l
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GT-diagrams and S_

- P2 + B3 + B4 = 17
- P2 + 03 = 13
-2 =8

3

1 [GT [VPE [SPE [SG| (KA JP JE




GT-diagrams and S_

- P2 + B3 + B4 = 17
- P2 + 03 = 13
-2 =8

3
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GT-diagrams and SS_

+ 02 + 03+ o= 17
+ P2 + 03 =13
+ 02 = 8
=3
2
)
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GT-diagrams and SS_

+ P2+ 03+ s =17
+ P2 + 03 = 13
+ 02 = 8

213

3
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GT-diagrams and SS_
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Vector partition functions

Let M be a d x n matrix over the integers. The
associated to M iIs the
function

by Z¢ — N
b |{x € N® : Mz = b}
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Vector partition functions

Let M be a d x n matrix over the integers. The
associated to M iIs the
function

by Z¢ — N
e € N® : Mz = b}

Example

If M_<1 ) - 2) and b—(3> then ¢, (b) =3
01 01 1

e b= ():()-0) - ()-) - )-C)
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Polytopes and partition functions

If M Is such that kerM N R%, = 0, then
Py={x € R, : Mz = b}
IS a polytope.

¢1(b) Is the number of integral points in P, .
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Polytopes and partition functions

If M Is such that kerM N RY, = 0, then
Py={x € R, : Mz = b}
IS a polytope.

¢1(b) Is the number of integral points in P, .

¢y Vanishes outside of pos(M) .
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The structure of parti_

e sipolynomial of degree
fels)
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The structure of partition functions

¢ 1S plecewise quasipolynomial of degree
n — rank(M) . (Sturmfels)

The domains of quasipolynomiality form a
complex of convex polyhedral cones, the

Ofng
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The structure of partition functions

¢ 1S plecewise quasipolynomial of degree
n — rank(M) . (Sturmfels)

The domains of quasipolynomiality form a
complex of convex polyhedral cones, the

Ofng

Alekseevskaya, Gelfand and Zelevinsky
described how to determine the chamber
complex of a partition function from its matrix.
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Determining the chamber complex

We can assume without loss of generality that M
has full rank d.

Find all the d x d nonsingular submatrices M,
of M .
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Determining the chamber complex

We can assume without loss of generality that M
has full rank d.

Find all the d x d nonsingular submatrices M,
of M .

Determine the cone 7, = pos(M,) spanned by
the columns of M, .

20
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Determining the chamber complex

We can assume without loss of generality that M
has full rank d.

Find all the d x d nonsingular submatrices M,
of M .

Determine the cone 7, = pos(M,) spanned by
the columns of M, .

The chamber complex of ¢,,; Is the common
refinement of the 7, .
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‘ The Kostant partiti_

2, Q9 _|_043,0él -+ Q9 —|—a3}
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The Kostant partitio_

2, (2 —|—043,0él —|—C¥2 —I—Ckg}

_ O O
O ==
—_ = O
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The Kostant partition function for As;

A(As)

K(U) i ¢MA3 (?}) for

10010
Ms=|01011
0Nl 0 1

B = {123,125,126,134, 135,136,145, 146,
234, 236, 245, 246, 256, 345, 356, 456} .
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146

145

136

135

134

126

125

123
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a1+ do

-

A
V

Oo+ 03

a;+aztag
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Unimodularity

A d x n matrix of full rank d is If all its
d X d submatrices have determinant O or +1.

Vector partitions functions of unimodular
matrices are over the cones of their
chamber complexes. (Sturmfels)
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Unimodularity

A d x n matrix of full rank d is If all its
d X d submatrices have determinant O or +1.

Vector partitions functions of unimodular
matrices are over the cones of their
chamber complexes. (Sturmfels)

Lemma (well-known) The matrix M4 IS
unimodular for all n.
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Unimodularity

A d x n matrix of full rank d is If all its
d X d submatrices have determinant O or +1.

Vector partitions functions of unimodular
matrices are over the cones of their
chamber complexes. (Sturmfels)

Lemma (well-known) The matrix M4 IS
unimodular for all n.

Corollary The Kostant partition function for A;._;

is polynomial of degree (*,"') over the cones of
Its chamber complex.
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A partition function for the )z

Theorem A

For every £k, we can find integer matrices £} and
B;. such that the Kostka numbers for partitions
with at most £ parts can be written as

=)
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Example: A,

1 [GT [VPE [SPE [SG| (KA JP JE

for A, have the form

A3
2




Example: A,

Gelfand-Tsetlin diagrams for A, have the form

A1 Ao A3
M1 M2
v
Row sums:
| 61
p+pe = 01+ 5o
AL+t A3 = B+ 0+ s
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Ao

\o — 01 — 2
4+ B2+ A1+ Ao
b

B .

d to be nonnegative.




g+ s1 = A
LT S2 = —X
SHINE S35 = A — 01— 2
g + sS4 = Oitft+ A+ A
—p1 + S5 = —[
Sl + S = —[ao.

The s; are constrainted to be nonnegative.

Finally we can use p; = A\; — s; to get rid of p;.
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S1+ S92 = A — Ao
—Sg+83 = 2X— 1 — Do
So+84 = Pi+ 0+ M
—S3+ 85 = A — O
—S2+ 8¢ = Ay — [

Solving for s; > 0 Vz.

Requiring the s;’s to be integers yields all
Integer solutions to the Gelfand-Tsetlin
constraints.
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So we are solving

1 000 0
/0—_1000\
NG 1 0 0 |-
NG 0 1 0
) 0 0 1/
Es
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So we are solving

for s N°. Hence
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1 0000
/0—_1000\
NG 1 0 0 |-
NG 0 1 0
) 0 0 1/
e

[ 51 e
52 2X9 — 1 — Do
ig — | Bi+D2+ N
4 Ao — 3
S -

R -5  /
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A chamber complex for the K,z

Theorem A implies that the Kostka numbers
are given by guasipolynomials over the cells

of a chamber complex C¥).
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A chamber complex for the K,z

Theorem A implies that the Kostka numbers
are given by guasipolynomials over the cells

of a chamber complex C¥).
The vector partition function ¢z, puts A and 3

on an equal footing: C*) is a complex in
(A, B)-space.

| |GT] VPEF |SPF |SG| KA P IFE JILR

AS



A chamber complex for the K,z

Theorem A implies that the Kostka numbers
are given by guasipolynomials over the cells

of a chamber complex C¥).

The vector partition function ¢z, puts A and 3

on an equal footing: C*) is a complex in
(A, B)-space.

By intersecting C*) with the affine subspace
corresponding to fixing A, we get the domains
of quasipolynomiality for conv(G&;, - A).
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The Duistermaat-Heckman function

For every )\ there is a function, the
, that Is
piecewise polynomial on conv(Sy - A).
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The Duistermaat-Heckman function

For every )\ there is a function, the
, that Is
piecewise polynomial on conv(Sy - A).

It approximates the Kostka numbers.
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The Duistermaat-Heckman function

For every )\ there is a function, the
, that Is
piecewise polynomial on conv(Sy - A).

It approximates the Kostka numbers.
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The Duistermaat-Heckman function

For every )\ there is a function, the
, that Is
piecewise polynomial on conv(Sy - A).

It approximates the Kostka numbers.

VHB) = ) (D)™ K(o(N) - B).

cES
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Theorem (Heckman, Guillemin-Lerman-Sternberg)
Consider the convex polytopes
conv(W - a(\))

where o € &, and W Is the stabilizer of a facet of
conv(Sy - ).

These polytopes are walls that partition
conv(G; - \) into convex subpolytopes over which
the Duistermaat-Heckman function is
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DH-measure and multiplicities

Theorem B

The partitions of the permutahedron into its
domains of polynomiality for the Kostka numbers
and for the Duistermaat-Heckman function are
the same.

Namely, the domains are the regions determined
by the theorem of Heckman.

| |GT] VPEF |SPF |SG| KA P IFE JILR

33



Yy

W~

iy w




From the connection with the
Duistermaat-Heckman function, we get

a uniform combinatorial description for the
walls partitioning the permutahedron into its

domains of quasipolynomiality for the Kostka
numbers;
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From the connection with the
Duistermaat-Heckman function, we get

a uniform combinatorial description for the
walls partitioning the permutahedron into its
domains of quasipolynomiality for the Kostka
numbers;

that these domains are actually domains of
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The Kostant arrangements

The Kostant arrangements will be the main tool
(0]

complete the proof that the Kostka numbers
are given by polynomials on the cones of a
chamber complex;
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The Kostant arrangements

The Kostant arrangements will be the main tool
(0]

complete the proof that the Kostka numbers
are given by polynomials on the cones of a
chamber complex;

find interesting factorization patterns in the
polynomials giving the Kostka numbers.
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Kostant’s multiplicity formula:

Kostant partition function is piecewise polynomial

4

Kostka numbers are locally polynomial
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Kostant’s multiplicity formula:

Kostant partition function is piecewise polynomial

4

Kostka numbers are locally polynomial

We will find a family of hyperplane
arrangements over whose regions the Kostka
numbers are given by polynomials.
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Example: A= (21, 7,2)
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Walls of the permutahedron

Walls supporting the facets of the
top-dimensional domains of the
permutahedron (partition for the
Duistermaat-Heckman function):

(0(A) =9(f), O(w;)) =0.
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Walls of the permutahedron

Walls supporting the facets of the
top-dimensional domains of the
permutahedron (partition for the
Duistermaat-Heckman function):

(0(A) =9(f), O(w;)) =0.

Hyperplanes of the Kostant arrangements:

(0(A+0)=(¥(06)+9), B(w;)) =0
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Walls of the permutahedron

Walls supporting the facets of the
top-dimensional domains of the
permutahedron (partition for the
Duistermaat-Heckman function):

(0(A) =9(f), O(w;)) =0.

Hyperplanes of the Kostant arrangements:

(0(A+0)=((6)+0), O(w;)) =0
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Walls of the permutahedron

Walls supporting the facets of the
top-dimensional domains of the
permutahedron (partition for the
Duistermaat-Heckman function):

(0(A) =9(f), O(w;)) =0.

Hyperplanes of the Kostant arrangements:

(a(A )= @W(B) ), Ow;)) = (0—0(9), Ow;))
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Walls of the permutahedron

Walls supporting the facets of the
top-dimensional domains of the
permutahedron (partition for the
Duistermaat-Heckman function):

(0(A) =9(f), O(w;)) =0.

Hyperplanes of the Kostant arrangements:

(a(A) = 9(6), O(w;)) = (0 —0(9), Ow;))
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Walls of the permutahedron

Walls supporting the facets of the
top-dimensional domains of the
permutahedron (partition for the
Duistermaat-Heckman function):

(0(A) =9(f), O(w;)) =0.

Hyperplanes of the Kostant arrangements:

(a(A) = 9(6), O(w;)) = (0 —0(9), Ow;))

_—
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Polynomiality in the chamber complex

Theorem C

The gquasipolynomials giving the Kostka numbers
in the cones of C'*) are polynomials of degree
(") in the 8;, with coefficients of degree (*,") in

the >‘j-
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_emma

~or each cone C of the chamber complex for the
Kostka numbers, we can find a region R of any of
the Kostant arrangements such that C N R
contains an arbitrarily large ball.
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_emma

~or each cone C of the chamber complex for the
Kostka numbers, we can find a region R of any of
the Kostant arrangements such that C N R
contains an arbitrarily large ball.

Then the polynomial on R and the
guasipolynomial on C' agree on all the lattice
points (A, ) in that ball.
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_emma

~or each cone C of the chamber complex for the
Kostka numbers, we can find a region R of any of
the Kostant arrangements such that C N R
contains an arbitrarily large ball.

Then the polynomial on R and the
guasipolynomial on C' agree on all the lattice
points (A, ) in that ball.

The degree bounds follow from the degree
bounds on the Kostant partition function.
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Idea of proof

/C
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Idea of proof
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Ildea of proof
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Idea of proof
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Idea of proof
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Idea of proof

/C
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Scaling (or stretching)

Corollary
Forany A\, B € Ay with A — 5 € Ay, the function

NeN +— KN)\Nﬁ

is polynomial of degree at most 2(*,") in .
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Scaling (or stretching)

Corollary
Forany A\, B € Ay with A — 5 € Ay, the function

N eN +— Ky NB
is polynomial of degree at most 2(*,") in .

This function Is the of the
Gelfand-Tsetlin polytope GT, . (Kirillov)
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Scaling (or stretching)

Corollary
Forany A\, B € Ay with A — 5 € Ay, the function

N eN +— Ky NB
is polynomial of degree at most 2(*,") in .

This function Is the of the
Gelfand-Tsetlin polytope GT, . (Kirillov)

GT), IS not an Integral polytope in general

(Clifford, King-Tollu-Toumazet,
DelLoera-McAllister).
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Factorization patterns

Theorem D

Suppose that A Is the hyperplane supporting a
facet of the permutahedron with normal 6(w;).

Then the polynomials giving the Kostka numbers
In all the domains of the permutahedron with a
facet on H are divisible by j(k — j) — 1 linear
factors.

The following diagrams will explain what those
factors are.
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Idea of proof
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Idea of proof
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Idea of proof
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Idea of proof
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Idea of proof
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Similar factorization phenomena
were recently observed to hold for

general vector partition functions
by Szenes and Vergne.
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Littlewood-Richardson coefficients

The LR coefficients express the multiplication
rule for Schur functions:

_E : 1%

vV
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Littlewood-Richardson coefficients

The LR coefficients express the multiplication
rule for Schur functions:

_E : 1Y

vV

In the representation theory of GL,C, the
characters of the irreducible polynomial
representations are Schur functions in
appropriate variables.

Vi & VM = 69 CKMVV :

vV
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We want to find analogues of

Gelfand-Tsetlin diagrams, so that we can
write Littlewood-Richardson coefficients as a
vector partition function;
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We want to find analogues of

Gelfand-Tsetlin diagrams, so that we can
write Littlewood-Richardson coefficients as a

vector partition function;

the Kostant arrangements, over the regions of
which the Littlewood-Richardson coefficients
would be given by polynomial functions.
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Hives
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Theorem (Knutson-Tao, Fulton)

Let \, x and v be partitions with at most & parts
such that |\| + |u| = |v|.

The Littlewood-Richardson coefficient ¢, is the

number of integral k-hives satisfying the
boundary conditions and the hive conditions.
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Steinberg’s formula _

's formula

K (0(A+8)+7(u+8)— (v+25)) .

1 [GT [VPE [SPE [SG| (KA JP JE




Partition functions and polynomiality

Using hives, we can find a vector partition
function for the LR coefficients, so they are
given by quasipolynomial functions in A,
and v over the cones of a chamber complex.
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Partition functions and polynomiality

Using hives, we can find a vector partition
function for the LR coefficients, so they are
given by quasipolynomial functions in A,
and v over the cones of a chamber complex.

We can construct a hyperplane arrangement
from Steinberg’s formula over whose regions
the LR coefficients are given by a polynomial
In A\, ©x and v.
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Partition functions and polynomiality

Using hives, we can find a vector partition
function for the LR coefficients, so they are
given by quasipolynomial functions in A,
and v over the cones of a chamber complex.

We can construct a hyperplane arrangement
from Steinberg’s formula over whose regions
the LR coefficients are given by a polynomial
In A\, ©x and v.

We can relate the chamber complex to the
Steinberg arrangement and show that the
guasipolynomials are really

| |GT] VPEF |SPF |SG| KA P IFE JILR
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Stretching for LR coefficients

This shows In particular that the function
Nv
NeN r— cy\ny,
IS polynomial in V.

This was known previously
(Derksen-Weyman, Knutson).

This function is the Ehrhart polynomial of the
hive polytope for \, 1 and v.
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Conjectures

Conjecture (Kirillov, King-Tollu-Toumazet)

For all partitions A, x such that K, > 0 there
exists a polynomial Py, (N) in N with

rational coefficients such that P,,(0) = 1 and
P\.(N) = Kn) vy, for all positive integers V.

| |GT] VPEF |SPF |SG| KA P IFE JILR

54



Open problem

k | #(facets) |deg || =1 | 5 =2 7 =3 !
3 6 1 |1 (6)

4 14 3 112 (8) |3 (6)

D 30 6 ||3(10)|5 (20)

§ 62 10 |[4(12) |7 (30) |8 (20)

7 126 15 |[5(14) |9 (42) |11 (70)

8 254 21 || 6 (16) | 11 (56) | 14 (112) | 15 (70)
9 510 28 || 7 (18) [ 13 (72) | 17 (168) | 19 (252)

Open problem Determine what the other factors
are on the boundary of the permutahedron.
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Conclusion

We have found vector partition functions
expressing the Kostka numbers and LR

coefficien
cells of a

ts as quasipolynomials over the
complex of cones.

We have found a combinatorial description for

the doma

INs of quasipolynomiality of the

Kostka numbers.

We have
are actua

Many of t

oroved that the quasipolynomials
ly polynomials.

nese polynomials exhibit interesting

factorization patterns.

| |GT |VPE |SPF |SG| KA P _IE

LR

56



	Outline
	hyperlink {OutIntro}{Introduction}hypertarget {Intro}{}
	Schur functions
	Kostka numbers
	$lambda =(18,, 7,, 2)$
	As $lambda $ varies
	$lambda =(23,,7,,5,,1)$
	$lambda =(23,,7,,5,,1)$
	Roots and weights for $A_{k-1}$
	
	Kostant's multiplicity formula
	hyperlink {OutIntro}{Gelfand-Tsetlin diagrams}hypertarget {Gelfand}{}
	GT-diagrams and Kostka numbers
	Gelfand-Tsetlin polytopes
	GT-diagrams and SSYTs
	hyperlink {OutIntro}{Vector partition functions}hypertarget {PartF}{}
	Polytopes and partition functions
	The structure of partition functions
	Determining the chamber complex
	The Kostant partition function for $A_3$
	
	Unimodularity
	hyperlink {OutMult}{A partition function for the $K_{lambda �eta }$}hypertarget {Mult}{}
	Example: $A_2$
	
	
	
	A chamber complex for the $K_{lambda �eta }$
	hyperlink {OutSymp}{The Duistermaat-Heckman function}hypertarget {Symp}{}
	
	
	DH-measure and multiplicities
	$A_3$
	
	hyperlink {OutKostant}{The Kostant arrangements}hypertarget {Kostant}{}
	
	Example: $lambda = (21,,7,,2)$
	Walls of the permutahedron
	hyperlink {OutPoly}{Polynomiality in the chamber complex}hypertarget {Poly}{}
	
	Idea of proof
	Scaling (or stretching)
	hyperlink {OutFac}{Factorization patterns}hypertarget {Fac}{}
	Idea of proof
	
	hyperlink {OutLRc}{Littlewood-Richardson coefficients}hypertarget {LRc}{}
	
	Hives
	
	Steinberg's formula
	Partition functions and polynomiality
	Stretching for LR coefficients
	Conjectures
	Open problem
	Conclusion

