Polynomiality properties of the Kostka numbers and Littlewood-Richardson coefficients

Etienne Rassart

Massachusetts Institute of Technology

October 8, 2003

Joint work with Sara Billey and Victor Guillemin

Outline

- Introduction with pictures
- A partition function for the Kostka numbers
- Some symplectic geometry
- The Kostant arrangements
- Polynomiality in the chamber complex
- Factorization patterns
- Littlewood-Richardson coefficients

Introduction

 Kostka numbers appear in combinatorics and representation theory.

Introduction

Kostka numbers appear in combinatorics and representation theory.

• The Kostka number $K_{\lambda\beta}$ is the number of semistandard Young tableaux of shape λ and content β .

Introduction

- Kostka numbers appear in combinatorics and representation theory.
- The Kostka number $K_{\lambda\beta}$ is the number of semistandard Young tableaux of shape λ and content β .
- $K_{\lambda\beta}$ is also the multiplicity with which the weight β appears in the irreducible representation of $\mathrm{GL}_k\mathbb{C}$ (or $\mathrm{SL}_k(\mathbb{C})$) with highest weight λ .

Schur functions

$$s_{\lambda}(x_1,\ldots,x_k) = \sum_{T \in SSYT(\lambda;k)} \mathbf{x}^T.$$

1	1	1	1	1	2	1	2	1	3	1	3	2	2	2	3
2		3		2		3		2		3		3		 3	
r^2r_2		r^2r_2		$r_1 r_2^2$		$x_1x_0x_0$		$r_1 r_0 r_0$		$x_1 x_2^2$		$r_{2}^{2}r_{2}$		$r_0 r_0^2$	

$$x_1^2x_2$$

$$x_1^2x_3$$

$$x_1x_2^2$$

$$x_1x_2x_3$$

$$x_1x_2x_3$$

$$x_1 x_3^2$$

$$x_2^2 x_3$$

$$x_2x_3^2$$

Schur functions

$$s_{\lambda}(x_1,\ldots,x_k) = \sum_{T \in SSYT(\lambda;k)} \mathbf{x}^T.$$

$$s_{\square}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_2 x_3 + x_2 x_3 + x_2 x_3 + x_1 x_2 x_3 + x$$

Kostka numbers

From the definition of the Schur functions, we have that

$$s_{\lambda} = \sum_{\beta} K_{\lambda\beta} \mathbf{x}^{\beta},$$

where $K_{\lambda\beta}$ is the number of ways of filling a SSYT of shape λ with integers distributed according to composition β .

Kostka numbers

From the definition of the Schur functions, we have that

$$s_{\lambda} = \sum_{\beta} K_{\lambda\beta} \mathbf{x}^{\beta},$$

where $K_{\lambda\beta}$ is the number of ways of filling a SSYT of shape λ with integers distributed according to composition β .

• The set of β 's for which $K_{\lambda\beta} \neq 0$ consists of the lattice points inside the convex hull of the orbit of λ under \mathfrak{S}_k . This convex hull is a permutahedron.

$$\lambda = (18, 7, 2)$$

$$K_{\lambda\beta} = 1$$

$$K_{\lambda\beta}=2$$

$$K_{\lambda\beta}=3$$

$$K_{\lambda\beta} = 4$$

$$\lambda = (18, 7, 2)$$

$$K_{\lambda\beta} = 5$$

$$\lambda = (18, 7, 2)$$

$$K_{\lambda\beta} = 6$$

$\overline{\mathbf{As}} \lambda \mathbf{varies}$

Up to deformation: two "generic" cases

As λ varies

- Up to deformation: two "generic" cases
- 8 polynomials suffice to describe all the Kostka numbers for partitions with at most three parts

As λ varies

- Up to deformation: two "generic" cases
- 8 polynomials suffice to describe all the Kostka numbers for partitions with at most three parts
- Central region (lacunary) in which the Kostka numbers are constant

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta}=1$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta}=2$$

$$K_{\lambda\beta}=3$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta}=4$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 5$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 7$$

$$K_{\lambda\beta} = 9$$

$$K_{\lambda\beta} = 10$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 12$$

$$K_{\lambda\beta} = 15$$

$$K_{\lambda\beta} = 18$$

$$K_{\lambda\beta} = 19$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 22$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 26$$

$$K_{\lambda\beta} = 30$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 31$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 35$$

$$K_{\lambda\beta} = 40$$

$$K_{\lambda\beta} = 45$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 50$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 55$$

$$\lambda = (23, 7, 5, 1)$$

$$K_{\lambda\beta} = 60$$

$$\lambda = (23, 7, 5, 1)$$

Roots and weights for A_{k-1}

Roots

$$\Delta = \{e_i - e_j : 1 \le i \ne j \le k\}.$$

Positive roots

$$\Delta_{+} = \{e_i - e_j : 1 \le i < j \le k\}.$$

Simple roots

$$\Pi = \{ \underbrace{e_i - e_{i+1}}_{\alpha_i} : 1 \le i \le k - 1 \}.$$

• Fundamental weights: $\omega_1, \ldots, \omega_{k-1}$ defined by $\langle \alpha_i, \omega_j \rangle = \delta_{ij}$.

$$\omega_i \equiv (\underbrace{1,1,\ldots,1}_{i \text{ times}},\underbrace{0,0,\ldots,0}_{k-i \text{ times}})$$

• The normals to the facets of the permutahedron $\operatorname{conv}(\mathfrak{S}_k \cdot \lambda)$ are the conjugates $\theta(\omega_i)$ of the fundamental weights.

$$\delta = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha$$

Kostant's multiplicity formula

The Kostant partition function is the function

$$K(v) = \left| \left\{ (k_{\alpha})_{\alpha \in \Delta_{+}} \in \mathbb{N}^{|\Delta_{+}|} : \sum_{\alpha \in \Delta_{+}} k_{\alpha}\alpha = v \right\} \right|,$$

i.e. K(v) is the number of ways that v can be written as a sum of positive roots.

Kostant's multiplicity formula

The Kostant partition function is the function

$$K(v) = \left| \left\{ (k_{\alpha})_{\alpha \in \Delta_{+}} \in \mathbb{N}^{|\Delta_{+}|} : \sum_{\alpha \in \Delta_{+}} k_{\alpha}\alpha = v \right\} \right|,$$

i.e. K(v) is the number of ways that v can be written as a sum of positive roots.

Kostant's multiplicity formula

$$K_{\lambda\beta} = \sum_{\sigma \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma)} K(\sigma(\lambda + \delta) - (\beta + \delta)).$$

A Gelfand-Tsetlin diagram is an array of integers of the form

such that

$$\lambda_1^{(k)}$$
 $\lambda_2^{(k)}$ \cdots $\lambda_{k-1}^{(k)}$ $\lambda_k^{(k)}$ $\lambda_k^{(k)}$ $\lambda_k^{(k)}$ $\lambda_k^{(k-1)}$ \cdots $\lambda_{k-1}^{(k-1)}$ $\lambda_{k-1}^{(k-1)}$ \cdots \vdots \cdots \vdots $\lambda_1^{(2)}$ $\lambda_1^{(2)}$ $\lambda_1^{(1)}$ $\lambda_1^{(1)}$

$$\lambda_1 \qquad \lambda_2 \qquad \cdots \qquad \lambda_{k-1} \qquad \lambda_k \\ \lambda_1^{(k-1)} \qquad \lambda_2^{(k-1)} \qquad \cdots \qquad \lambda_{k-1} \\ \qquad \ddots \qquad \vdots \qquad \ddots \\ \qquad \qquad \lambda_{1}^{(2)} \qquad \lambda_2^{(2)} \\ \qquad \qquad \qquad \lambda_1^{(1)} \qquad \qquad \lambda_2^{(2)} \\ \qquad \qquad \qquad \lambda_1^{(1)} \qquad \qquad \lambda_{j+1}^{(i+1)} \\ \qquad \qquad \qquad \lambda_j^{(i)} \qquad \qquad \lambda_{j+1}^{(i)} \\ \qquad \qquad \lambda_j^{(i)} \qquad \qquad \lambda_j^{(i)}$$

for every such triangle in the diagram.

GT-diagrams and Kostka numbers

Gelfand-Tsetlin

The Kostka number $K_{\lambda\beta}$ is the number of Gelfand-Tsetlin diagrams with top row λ and row sums satisfying

$$\sum_{i=1}^m \lambda_i^{(m)} = \beta_1 + \dots + \beta_m \qquad \text{for } 1 \le m \le k.$$

Gelfand-Tsetlin polytopes

7 5 4 1
$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = 17$$

6 5 2 $\beta_1 + \beta_2 + \beta_3 = 13$
5 3 $\beta_1 + \beta_2 = 8$
3 $\beta_1 = 3$

7 5 4 1
$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = 17$$

6 5 2 $\beta_1 + \beta_2 + \beta_3 = 13$
5 3 $\beta_1 + \beta_2 = 8$
 $\beta_1 = 3$

1 1 1

(3)

7 5 4 1
$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = 17$$

6 5 2 $\beta_1 + \beta_2 + \beta_3 = 13$
5 3 $\beta_1 + \beta_2 = 8$
 $\beta_1 = 3$

(5,3)

7 5 4 1
$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = 17$$

6 5 2 $\beta_1 + \beta_2 + \beta_3 = 13$
5 3 $\beta_1 + \beta_2 = 8$
3 $\beta_1 = 3$

1	1	1	2	2	3
2	2	2	3	3	
3	3				

(6,5,2)

7 5 4 1
$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = 17$$

6 5 2 $\beta_1 + \beta_2 + \beta_3 = 13$
5 3 $\beta_1 + \beta_2 = 8$
 $\beta_1 = 3$

1	1	1	2	2	3	4
2	2	2	3	3		
3		4				
4						

(7,5,4,1)

Vector partition functions

Let M be a $d \times n$ matrix over the integers. The vector partition function associated to M is the function

$$\phi_M: \mathbb{Z}^d \longrightarrow \mathbb{N}$$

$$b \mapsto |\{x \in \mathbb{N}^n : Mx = b\}|$$

Vector partition functions

Let M be a $d \times n$ matrix over the integers. The vector partition function associated to M is the function

$$\phi_M: \mathbb{Z}^d \longrightarrow \mathbb{N}$$

$$b \mapsto |\{x \in \mathbb{N}^n : Mx = b\}|$$

Example

If
$$M = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ then $\phi_M(b) = 3$

since
$$b = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Polytopes and partition functions

• If M is such that $\ker M \cap \mathbb{R}^n_{\geq 0} = 0$, then

$$P_b = \{x \in \mathbb{R}^n_{\geq 0} : Mx = b\}$$

is a polytope.

 $\phi_M(b)$ is the number of integral points in P_b .

Polytopes and partition functions

• If M is such that $\ker M \cap \mathbb{R}^n_{\geq 0} = 0$, then

$$P_b = \{x \in \mathbb{R}^n_{>0} : Mx = b\}$$

is a polytope.

 $\phi_M(b)$ is the number of integral points in P_b .

ullet ϕ_M vanishes outside of $\mathrm{pos}(M)$.

The structure of partition functions

• ϕ_M is piecewise quasipolynomial of degree $n - \operatorname{rank}(M)$. (Sturmfels)

The structure of partition functions

• ϕ_M is piecewise quasipolynomial of degree $n - \operatorname{rank}(M)$. (Sturmfels)

• The domains of quasipolynomiality form a complex of convex polyhedral cones, the chamber complex of ϕ_M .

The structure of partition functions

• ϕ_M is piecewise quasipolynomial of degree $n - \operatorname{rank}(M)$. (Sturmfels)

• The domains of quasipolynomiality form a complex of convex polyhedral cones, the chamber complex of ϕ_M .

 Alekseevskaya, Gelfand and Zelevinsky described how to determine the chamber complex of a partition function from its matrix.

Determining the chamber complex

We can assume without loss of generality that M has full rank d.

• Find all the $d \times d$ nonsingular submatrices M_{σ} of M .

Determining the chamber complex

We can assume without loss of generality that M has full rank d.

• Find all the $d \times d$ nonsingular submatrices M_{σ} of M .

• Determine the cone $au_{\sigma} = \mathrm{pos}(M_{\sigma})$ spanned by the columns of M_{σ} .

Determining the chamber complex

We can assume without loss of generality that \overline{M} has full rank d.

• Find all the $d \times d$ nonsingular submatrices M_{σ} of M .

• Determine the cone $au_{\sigma} = \mathrm{pos}(M_{\sigma})$ spanned by the columns of M_{σ} .

• The chamber complex of ϕ_M is the common refinement of the τ_σ .

The Kostant partition function for A_3

$$\Delta_{+}^{(A_3)} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$$

The Kostant partition function for A_3

$$\Delta_{+}^{(A_3)} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$$

$$K(v) = \phi_{M_{A_3}}(v) \text{ for }$$

$$M_{A_3} = \left(egin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 \end{array}
ight)$$

The Kostant partition function for A_3

$$\Delta_{+}^{(A_3)} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$$

$$K(v) = \phi_{M_{A_3}}(v) \text{ for }$$

$$M_{A_3} = \left(egin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 \end{array}
ight)$$

$$\mathcal{B} = \{123, 125, 126, 134, 135, 136, 145, 146, \\ 234, 236, 245, 246, 256, 345, 356, 456\}.$$

Unimodularity

A $d \times n$ matrix of full rank d is unimodular if all its $d \times d$ submatrices have determinant 0 or ± 1 .

Vector partitions functions of unimodular matrices are polynomial over the cones of their chamber complexes. (Sturmfels)

Unimodularity

A $d \times n$ matrix of full rank d is unimodular if all its $d \times d$ submatrices have determinant 0 or ± 1 .

Vector partitions functions of unimodular matrices are polynomial over the cones of their chamber complexes. (Sturmfels)

(well-known) The matrix M_{A_n} is unimodular for all n.

Unimodularity

A $d \times n$ matrix of full rank d is unimodular if all its $d \times d$ submatrices have determinant 0 or ± 1 .

Vector partitions functions of unimodular matrices are polynomial over the cones of their chamber complexes. (Sturmfels)

(well-known) The matrix M_{A_n} is unimodular for all n.

is polynomial of degree $\binom{k-1}{2}$ over the cones of its chamber complex.

A partition function for the $K_{\lambda\beta}$

Theorem A

For every k, we can find integer matrices E_k and B_k such that the Kostka numbers for partitions with at most k parts can be written as

$$K_{\lambda\beta} = \phi_{E_k} \left(B_k \begin{pmatrix} \lambda \\ \beta \end{pmatrix} \right) .$$

Example: A_2

Gelfand-Tsetlin diagrams for A_2 have the form

$$\lambda_1$$
 λ_2 λ_3
 μ_1 μ_2
 ν

Example: A_2

Gelfand-Tsetlin diagrams for A_2 have the form

$$\lambda_1$$
 λ_2 λ_3
 μ_1 μ_2
 ν

Row sums:

$$\nu = \beta_1$$

$$\mu_1 + \mu_2 = \beta_1 + \beta_2$$

$$\lambda_1 + \lambda_2 + \lambda_3 = \beta_1 + \beta_2 + \beta_3.$$

μ_1	$\leq \lambda_1$	
$-\mu_1$	$\leq -\lambda_2$	
$-\mu_1$	$\leq \lambda_2 - \beta_1 - \beta_2$	β_2
μ_1	$\leq \beta_1 + \beta_2 + \lambda$	$\lambda_1 + \lambda_2$
$-\mu_1$	$\leq -\beta_1$	
$-\mu_1$	$\leq -\beta_2$.	

$$\mu_1 + s_1 = \lambda_1$$
 $-\mu_1 + s_2 = -\lambda_2$
 $-\mu_1 + s_3 = \lambda_2 - \beta_1 - \beta_2$
 $\mu_1 + s_4 = \beta_1 + \beta_2 + \lambda_1 + \lambda_2$
 $-\mu_1 + s_5 = -\beta_1$
 $-\mu_1 + s_6 = -\beta_2$.

$$\mu_1 + s_1 = \lambda_1$$
 $-\mu_1 + s_2 = -\lambda_2$
 $-\mu_1 + s_3 = \lambda_2 - \beta_1 - \beta_2$
 $\mu_1 + s_4 = \beta_1 + \beta_2 + \lambda_1 + \lambda_2$
 $-\mu_1 + s_5 = -\beta_1$
 $-\mu_1 + s_6 = -\beta_2$.

• The s_i are constrainted to be nonnegative.

$$\mu_1 + s_1 = \lambda_1$$
 $-\mu_1 + s_2 = -\lambda_2$
 $-\mu_1 + s_3 = \lambda_2 - \beta_1 - \beta_2$
 $\mu_1 + s_4 = \beta_1 + \beta_2 + \lambda_1 + \lambda_2$
 $-\mu_1 + s_5 = -\beta_1$
 $-\mu_1 + s_6 = -\beta_2$.

- The s_i are constrainted to be nonnegative.
- Finally we can use $\mu_1 = \lambda_1 s_1$ to get rid of μ_1 .

$$s_1 + s_2 = \lambda_1 - \lambda_2$$

 $-s_2 + s_3 = 2\lambda_2 - \beta_1 - \beta_2$
 $s_2 + s_4 = \beta_1 + \beta_2 + \lambda_1$
 $-s_2 + s_5 = \lambda_2 - \beta_1$
 $-s_2 + s_6 = \lambda_2 - \beta_2$

$$s_1 + s_2 = \lambda_1 - \lambda_2$$
 $-s_2 + s_3 = 2\lambda_2 - \beta_1 - \beta_2$
 $s_2 + s_4 = \beta_1 + \beta_2 + \lambda_1$
 $-s_2 + s_5 = \lambda_2 - \beta_1$
 $-s_2 + s_6 = \lambda_2 - \beta_2$

• Solving for $s_i \geq 0 \ \forall i$.

$$s_1 + s_2 = \lambda_1 - \lambda_2$$
 $-s_2 + s_3 = 2\lambda_2 - \beta_1 - \beta_2$
 $s_2 + s_4 = \beta_1 + \beta_2 + \lambda_1$
 $-s_2 + s_5 = \lambda_2 - \beta_1$
 $-s_2 + s_6 = \lambda_2 - \beta_2$

- ullet Solving for $s_i \geq 0 \ \ \forall i$.
- Requiring the s_i 's to be integers yields all integer solutions to the Gelfand-Tsetlin constraints.

So we are solving

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
s_1 \\
s_2 \\
s_3 \\
s_4 \\
s_5 \\
s_6
\end{pmatrix} =
\begin{pmatrix}
\lambda_1 - \lambda_2 \\
2\lambda_2 - \beta_1 - \beta_2 \\
\beta_1 + \beta_2 + \lambda_1 \\
\lambda_2 - \beta_1 \\
\lambda_2 - \beta_1
\end{pmatrix}$$

$$\frac{1}{\lambda_2 - \beta_1}$$

$$\frac{1}{\lambda_2 - \beta_2}$$

for $\vec{s} \in \mathbb{N}^6$.

So we are solving

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
s_1 \\
s_2 \\
s_3 \\
s_4 \\
s_5 \\
s_6
\end{pmatrix} =
\begin{pmatrix}
\lambda_1 - \lambda_2 \\
2\lambda_2 - \beta_1 - \beta_2 \\
\beta_1 + \beta_2 + \lambda_1 \\
\lambda_2 - \beta_1 \\
\lambda_2 - \beta_1
\end{pmatrix}$$

$$\frac{1}{\lambda_2 - \beta_1}$$

$$\frac{1}{\lambda_2 - \beta_2}$$

for
$$\vec{s} \in \mathbb{N}^6$$
. Hence

for
$$ec{s} \in \mathbb{N}^6$$
. Hence $K_{\lambda\beta} = \phi_{E_2}\left(B_2inom{\lambda}{\beta}\right)$.

A chamber complex for the $K_{\lambda\beta}$

Theorem A implies that the Kostka numbers are given by quasipolynomials over the cells of a chamber complex $C^{(k)}$.

A chamber complex for the $K_{\lambda\beta}$

- Theorem A implies that the Kostka numbers are given by quasipolynomials over the cells of a chamber complex $C^{(k)}$.
- The vector partition function ϕ_{E_k} puts λ and β on an equal footing: $\mathcal{C}^{(k)}$ is a complex in (λ, β) -space.

A chamber complex for the $K_{\lambda\beta}$

- Theorem A implies that the Kostka numbers are given by quasipolynomials over the cells of a chamber complex $C^{(k)}$.
- The vector partition function ϕ_{E_k} puts λ and β on an equal footing: $\mathcal{C}^{(k)}$ is a complex in (λ, β) -space.
- By intersecting $C^{(k)}$ with the affine subspace corresponding to fixing λ , we get the domains of quasipolynomiality for $\operatorname{conv}(\mathfrak{S}_k \cdot \lambda)$.

• For every λ there is a function, the Duistermaat-Heckman function, that is piecewise polynomial on $\operatorname{conv}(\mathfrak{S}_k \cdot \lambda)$.

• For every λ there is a function, the Duistermaat-Heckman function, that is piecewise polynomial on $conv(\mathfrak{S}_k \cdot \lambda)$.

It approximates the Kostka numbers.

• For every λ there is a function, the Duistermaat-Heckman function, that is piecewise polynomial on $conv(\mathfrak{S}_k \cdot \lambda)$.

It approximates the Kostka numbers.

$$K_{\lambda\beta} = \sum_{\sigma \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma)} K(\sigma(\lambda + \delta) - (\beta + \delta)).$$

- For every λ there is a function, the Duistermaat-Heckman function, that is piecewise polynomial on $\operatorname{conv}(\mathfrak{S}_k \cdot \lambda)$.
- It approximates the Kostka numbers.

$$K_{\lambda\beta} = \sum_{\sigma \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma)} K(\sigma(\lambda + \delta) - (\beta + \delta)).$$

$$f_{\lambda}^{\mathrm{DH}}(\beta) = \sum_{\sigma \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma)} \tilde{K}(\sigma(\lambda) - \beta).$$

Theorem (Heckman, Guillemin-Lerman-Sternberg)

Consider the convex polytopes

$$\operatorname{conv}(W \cdot \sigma(\lambda))$$

where $\sigma \in \mathfrak{S}_k$ and W is the stabilizer of a facet of $\operatorname{conv}(\mathfrak{S}_k \cdot \lambda)$.

These polytopes are walls that partition $conv(\mathfrak{S}_k \cdot \lambda)$ into convex subpolytopes over which the Duistermaat-Heckman function is polynomial.

DH-measure and multiplicities

Theorem B

The partitions of the permutahedron into its domains of polynomiality for the Kostka numbers and for the Duistermaat-Heckman function are the same.

Namely, the domains are the regions determined by the theorem of Heckman.

 A_3

From the connection with the Duistermaat-Heckman function, we get

 a uniform combinatorial description for the walls partitioning the permutahedron into its domains of quasipolynomiality for the Kostka numbers;

From the connection with the Duistermaat-Heckman function, we get

 a uniform combinatorial description for the walls partitioning the permutahedron into its domains of quasipolynomiality for the Kostka numbers;

that these domains are actually domains of polynomiality.

The Kostant arrangements

The Kostant arrangements will be the main tool to

 complete the proof that the Kostka numbers are given by polynomials on the cones of a chamber complex;

The Kostant arrangements

The Kostant arrangements will be the main tool to

 complete the proof that the Kostka numbers are given by polynomials on the cones of a chamber complex;

find interesting factorization patterns in the polynomials giving the Kostka numbers. Kostant's multiplicity formula:

$$K_{\lambda\beta} = \sum_{\sigma \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma)} K(\sigma(\lambda + \delta) - (\beta + \delta)).$$

Kostant partition function is piecewise polynomial

Kostka numbers are locally polynomial

Kostant's multiplicity formula:

$$K_{\lambda\beta} = \sum_{\sigma \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma)} K(\sigma(\lambda + \delta) - (\beta + \delta)).$$

Kostant partition function is piecewise polynomial

Kostka numbers are locally polynomial

 We will find a family of hyperplane arrangements over whose regions the Kostka numbers are given by polynomials.

Example: $\lambda = (21, 7, 2)$

Example: $\lambda = (21, 7, 2)$

Walls supporting the facets of the top-dimensional domains of the permutahedron (partition for the Duistermaat-Heckman function):

$$\langle \sigma(\lambda) - \psi(\beta), \theta(\omega_j) \rangle = 0.$$

• Walls supporting the facets of the top-dimensional domains of the permutahedron (partition for the Duistermaat-Heckman function):

$$\langle \sigma(\lambda) - \psi(\beta), \theta(\omega_j) \rangle = 0.$$

$$\langle \sigma(\lambda+\delta)-(\psi(\beta)+\delta), \theta(\omega_j)\rangle=0$$

• Walls supporting the facets of the top-dimensional domains of the permutahedron (partition for the Duistermaat-Heckman function):

$$\langle \sigma(\lambda) - \psi(\beta), \theta(\omega_j) \rangle = 0.$$

$$\langle \sigma(\lambda + \delta) - (\psi(\beta) + \delta), \theta(\omega_j) \rangle = 0$$

• Walls supporting the facets of the top-dimensional domains of the permutahedron (partition for the Duistermaat-Heckman function):

$$\langle \sigma(\lambda) - \psi(\beta), \theta(\omega_j) \rangle = 0.$$

$$\langle \sigma(\lambda) - (\psi(\beta)) \rangle$$
, $\theta(\omega_j) \rangle = \langle \delta - \sigma(\delta), \theta(\omega_j) \rangle$

• Walls supporting the facets of the top-dimensional domains of the permutahedron (partition for the Duistermaat-Heckman function):

$$\langle \sigma(\lambda) - \psi(\beta), \theta(\omega_j) \rangle = 0.$$

$$\langle \sigma(\lambda) - \psi(\beta), \ \theta(\omega_j) \rangle = \langle \delta - \sigma(\delta), \ \theta(\omega_j) \rangle$$

• Walls supporting the facets of the top-dimensional domains of the permutahedron (partition for the Duistermaat-Heckman function):

$$\langle \sigma(\lambda) - \psi(\beta), \theta(\omega_j) \rangle = 0.$$

$$\langle \sigma(\lambda) - \psi(\beta), \theta(\omega_j) \rangle = \underbrace{\langle \delta - \sigma(\delta), \theta(\omega_j) \rangle}_{\text{shift}(\sigma, \theta, j)}$$

Polynomiality in the chamber complex

Theorem C

The quasipolynomials giving the Kostka numbers in the cones of $C^{(k)}$ are polynomials of degree $\binom{k-1}{2}$ in the β_i , with coefficients of degree $\binom{k-1}{2}$ in the λ_j .

Lemma

For each cone C of the chamber complex for the Kostka numbers, we can find a region R of any of the Kostant arrangements such that $C \cap R$ contains an arbitrarily large ball.

Lemma

For each cone C of the chamber complex for the Kostka numbers, we can find a region R of any of the Kostant arrangements such that $C \cap R$ contains an arbitrarily large ball.

• Then the polynomial on R and the quasipolynomial on C agree on all the lattice points (λ, β) in that ball.

Lemma

For each cone C of the chamber complex for the Kostka numbers, we can find a region R of any of the Kostant arrangements such that $C \cap R$ contains an arbitrarily large ball.

- Then the polynomial on R and the quasipolynomial on C agree on all the lattice points (λ, β) in that ball.
- The degree bounds follow from the degree bounds on the Kostant partition function.

Scaling (or stretching)

Corollary

For any $\lambda, \beta \in \Lambda_W$ with $\lambda - \beta \in \Lambda_R$, the function

$$N \in \mathbb{N} \quad \longmapsto \quad K_{N\lambda N\beta}$$

is polynomial of degree at most $2\binom{k-1}{2}$ in N.

Scaling (or stretching)

Corollary

For any $\lambda, \beta \in \Lambda_W$ with $\lambda - \beta \in \Lambda_R$, the function

$$N \in \mathbb{N} \quad \longmapsto \quad K_{N\lambda N\beta}$$

is polynomial of degree at most $2\binom{k-1}{2}$ in N.

• This function is the Ehrhart polynomial of the Gelfand-Tsetlin polytope $GT_{\lambda\mu}$. (Kirillov)

Scaling (or stretching)

Corollary

For any $\lambda, \beta \in \Lambda_W$ with $\lambda - \beta \in \Lambda_R$, the function

$$N \in \mathbb{N} \quad \longmapsto \quad K_{N\lambda N\beta}$$

is polynomial of degree at most $2\binom{k-1}{2}$ in N .

- This function is the Ehrhart polynomial of the Gelfand-Tsetlin polytope $GT_{\lambda\mu}$. (Kirillov)
- $GT_{\lambda\mu}$ is not an integral polytope in general (Clifford, King-Tollu-Toumazet, DeLoera-McAllister).

Factorization patterns

Theorem D

Suppose that H is the hyperplane supporting a facet of the permutahedron with normal $\theta(\omega_j)$.

Then the polynomials giving the Kostka numbers in all the domains of the permutahedron with a facet on H are divisible by j(k-j)-1 linear factors.

The following diagrams will explain what those factors are.

Similar factorization phenomena were recently observed to hold for general vector partition functions by Szenes and Vergne.

Littlewood-Richardson coefficients

The LR coefficients express the multiplication rule for Schur functions:

$$s_{\lambda} \cdot s_{\mu} = \sum_{
u} c^{
u}_{\lambda\mu} s_{
u} \,.$$

Littlewood-Richardson coefficients

The LR coefficients express the multiplication rule for Schur functions:

$$s_{\lambda} \cdot s_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} s_{\nu} \,.$$

• In the representation theory of $GL_k\mathbb{C}$, the characters of the irreducible polynomial representations are Schur functions in appropriate variables.

$$V_{\lambda} \otimes V_{\mu} = \bigoplus_{\nu} c_{\lambda\mu}^{\nu} V_{\nu} .$$

We want to find analogues of

 Gelfand-Tsetlin diagrams, so that we can write Littlewood-Richardson coefficients as a vector partition function;

We want to find analogues of

- Gelfand-Tsetlin diagrams, so that we can write Littlewood-Richardson coefficients as a vector partition function;
- the Kostant arrangements, over the regions of which the Littlewood-Richardson coefficients would be given by polynomial functions.

Hives

Theorem (Knutson-Tao, Fulton)

Let λ , μ and ν be partitions with at most k parts such that $|\lambda| + |\mu| = |\nu|$.

The Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ is the number of integral k-hives satisfying the boundary conditions and the hive conditions.

Steinberg's formula

Steinberg's formula

$$c_{\lambda\mu}^{\nu} = \sum_{\sigma \in \mathfrak{S}_k} \sum_{\tau \in \mathfrak{S}_k} (-1)^{\mathrm{inv}(\sigma\tau)} K(\sigma(\lambda + \delta) + \tau(\mu + \delta) - (\nu + 2\delta)).$$

Partition functions and polynomiality

• Using hives, we can find a vector partition function for the LR coefficients, so they are given by quasipolynomial functions in λ , μ and ν over the cones of a chamber complex.

Partition functions and polynomiality

- Using hives, we can find a vector partition function for the LR coefficients, so they are given by quasipolynomial functions in λ , μ and ν over the cones of a chamber complex.
- We can construct a hyperplane arrangement from Steinberg's formula over whose regions the LR coefficients are given by a polynomial in λ , μ and ν .

Partition functions and polynomiality

- Using hives, we can find a vector partition function for the LR coefficients, so they are given by quasipolynomial functions in λ , μ and ν over the cones of a chamber complex.
- We can construct a hyperplane arrangement from Steinberg's formula over whose regions the LR coefficients are given by a polynomial in λ , μ and ν .
- We can relate the chamber complex to the Steinberg arrangement and show that the quasipolynomials are really polynomials.

Stretching for LR coefficients

This shows in particular that the function

$$N \in \mathbb{N} \quad \longmapsto \quad c_{N\lambda N\mu}^{N\nu}$$

is polynomial in N.

This was known previously (Derksen-Weyman, Knutson).

• This function is the Ehrhart polynomial of the hive polytope for λ , μ and ν .

Conjectures

Conjecture (Kirillov, King-Tollu-Toumazet)

For all partitions λ , μ such that $K_{\lambda\mu} > 0$ there exists a polynomial $P_{\lambda\mu}(N)$ in N with nonnegative rational coefficients such that $P_{\lambda\mu}(0) = 1$ and $P_{\lambda\mu}(N) = K_{N\lambda \ N\mu}$ for all positive integers N.

Open problem

$oxed{k}$	#(facets)	deg	j=1	j=2	j=3	j=4
3	6	1	1 (6)			
4	14	3	2 (8)	3 (6)		
5	30	6	3 (10)	5 (20)		
6	62	10	4 (12)	7 (30)	8 (20)	
7	126	15	5 (14)	9 (42)	11 (70)	
8	254	21	6 (16)	11 (56)	14 (112)	15 (70)
9	510	28	7 (18)	13 (72)	17 (168)	19 (252)

Open problem Determine what the other factors are on the boundary of the permutahedron.

Conclusion

- We have found vector partition functions expressing the Kostka numbers and LR coefficients as quasipolynomials over the cells of a complex of cones.
- We have found a combinatorial description for the domains of quasipolynomiality of the Kostka numbers.
- We have proved that the quasipolynomials are actually polynomials.
- Many of these polynomials exhibit interesting factorization patterns.