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Geometric sums

Hypergeometric sums were first studied by Euler, and then by

Gauss, Riemann, Kummer, and many others. They are a natural

generalization of geometric sums.

Definition A sum
∑

k

tk

is geometric if the ratio of two consecutive terms tk+1/tk is a

constant with respect to k, i.e.

tk+1

tk
= c

for some (complex) number c not depending on k.

Etienne Rassart 4 MIT



Primera Conferencia Iberoamericana de Matemática Computacional

Hypergeometric sums

Definition A sum
∑

k

tk

is hypergeometric if the ratio of two consecutive terms tk+1/tk is a

rational function of the summation index k, i.e. if we have

tk+1

tk
=

P (k)

Q(k)

for polynomials P, Q ∈ C[k] (Q 6= 0).
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The canonical notation pFq

Suppose t0 = 1 and

tk+1

tk
=

P (k)

Q(k)
=

(k + a1)(k + a2) . . . (k + ap)

(k + b1)(k + b2) . . . (k + bq)(k + 1)
x

where x is a constant.

We denote the sum
∑

k≥0 tk by

pFq





a1 a2 . . . ap

b1 b2 . . . bq

; x



 .
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Remark The extra (k + 1) factor in the denominator of the

factorized ratio of p and Q above is there for historical reasons

mostly, but also because people in the past have written their series

in exponential form
∑

k
tk

k! instead of the ordinary form
∑

k tk.

Example The exponential function is a hypergeometric series:

ex =
∑

k≥0

xk

k!

so that, with the notation above, tk = xk/k! and t0 = 1/0! = 1.

Then
tk+1

tk
=

xk+1/(k + 1)!

xk/k!
=

1

k + 1
x. Therefore

ex = 0F0





−
−

; x



 .
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Example Consider the sum
∑

k(−1)k
(

n

k

)2(3n+k

2n

)

. The first non

zero term of this sum occurs at k = 0 with t0 =
(

3n

2n

)

.

tk+1

tk
=

(−1)k+1
(

n
k+1

)2(3n+k+1
2n

)

(−1)k
(

n

k

)2(3n+k

2n

)

= (−1)
(k − n)(k − n)(k + 3n + 1)

(k + n + 1)(k + 1)(k + 1)
.

Hence

∑

k

(−1)k

(

n

k

)2(
3n + k

2n

)

=

(

3n

2n

)

3F2





−n −n 3n + 1

1 n + 1
; −1



 .
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Applications

Combinatorics Combinatorics is an endless source of

hypergeometric sums because the question “How many

structures of this type (trees, graphs, etc) are there on n

points?” often is a hypergeometric sum, as are many

generating series.

Probability Calculating expectations and moment generating

functions, among other things, sometimes involve

hypergeometric sums.

Physics Hypergeometric sums appear as partition functions of

systems of particles in statistical physics.
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Number Theory Many of the fundamental constants have series

expressions that are hypergeometric. Analytic number theory

is full of hypergeometric sums. Also WZ theory provides ways

to accelerate the convergence of certain series, for example

ζ(3) =
∞
∑

n=0

(−1)n n!10(205n2 + 250n + 77)

64(2n + 1)!5
.

WZ theory also provides a way to systematize the proof of the

irrationality of certain numbers, like ζ(3) for instance.
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Proving hypergeometric identities automatically

The theory developed by Wilf and Zeilberger, building on work by

Sister Celine Fasenmeyer and Gosper, provides a way to make

computers prove a large class of hypergeometric identities.

Definition A hypergeometric identity is an identity of the form
∑

k

f(n, k) = h(n)

where the left hand side of the equation is a hypergeometric sum (n

is considered a parameter).

Etienne Rassart 11 MIT
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Standard form for identities

Consider the hypergeometric identity
∑

k f(n, k) = h(n).

• Assume that f(n, k) is zero for all k outside of a finite interval.

• Assume also that the sum is taken over all k in that interval.

• Let

F (n, k) =











f(n, k)

h(n)
if h(n) 6= 0

f(n, k) if h(n) = 0.

• Checking the initial identity is the same as checking that
∑

k F (n, k) = 1 if h(n) 6= 0, or checking that
∑

k F (n, k) = 0 if

h(n) = 0.

Etienne Rassart 12 MIT
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The crucial part

• Imagine there exists a G(n, k) such that

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) ,

and suppose it vanishes outside a k-interval like F (n, k).

• Then if we sum this equation over all k, the G(n, k) cancel each

other out and the left hand side telescopes to 0:
∑

k

(

F (n + 1, k) − F (n, k)
)

=
∑

k

(

G(n, k + 1) − G(n, k)
)

≡ 0 .

Etienne Rassart 13 MIT
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• This says that
∑

k

F (n + 1, k) =
∑

k

F (n, k) .

• But this means that
∑

k F (n, k) is independent of n.

• So it is a constant.

• We evaluate the value of the constant by plugging any value of

n (usually 0) in the sum.

• If h(n) 6= 0, the constant should be 1, and if h(n) = 0, it should

be 0.

Etienne Rassart 14 MIT
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The certificate

• An important part of a good computer proof is being able to

verify it.

• Zeilberger’s algorithm (described later) gives a way of

computing the “magical” function G(n, k), if F (n, k) satisfies

certain conditions.

• The great thing about this is that although F (n, k) and G(n, k)

might be very complicated hypergeometric terms, they will be

related by

G(n, k) = R(n, k)F (n, k)

where R(n, k) is a rational function called the certificate.

Etienne Rassart 15 MIT
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Example Let’s consider the identity
∑

k

(

n

k

)

= 2n.

Using algorithms that will be presented later, the computer can

prove this identity, and outputs the certificate

R(n, k) =
k

2(k − n − 1)
.

Let’s verify by hand, using the certificate, that the computer’s

proof is correct.

Step 0

• In our case, h(n) = 2n 6= 0, so we set

F (n, k) =

(

n
k

)

2n
=

(

n

k

)

2−n .
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Step 1

• We set G(n, k) = R(n, k)F (n, k):

G(n, k) =
k

2(k − n − 1)

(

n

k

)

2−n

= − kn!2−n

2(n + 1 − k)k!(n − k)!
= −

(

n

k − 1

)

2−n−1

Step 2

• We have to verify that

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) .

Etienne Rassart 17 MIT
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F (n + 1, k) − F (n, k) − G(n, k + 1) + G(n, k)

=

(

n + 1

k

)

2−n−1 −
(

n

k

)

2−n +

(

n

k

)

2−n−1 −
(

n

k − 1

)

2−n−1

= 2−n−1

((

n + 1

k

)

−
(

n

k

)

−
(

n

k − 1

))

= 0 (Pascal’s triangle)

• Hence
∑

k

(

n + 1

k

)

2−(n+1) −
∑

k

(

n

k

)

2−n ≡ 0

and so
∑

k

(

n

k

)

2−n is a constant independent of n.
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Step 3

• We compute the constant by evaluating the sum for one value

of n:
∑

k

(

0

k

)

2−0 =

(

0

0

)

= 1 .

• Therefore, the WZ algorithm proves that
∑

k

(

n

k

)

2−n = 1 for all

n (positive integer) and thus

∑

k

(

n

k

)

= 2n .
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Famous identities

Definition For a nonnegative integer n, we denote by (a)n the

rising factorial:

(a)n = a(a + 1)(a + 2) . . . (a + n − 1) .

Gauss’s 2F1 identity. If b is a nonpositive integer or c − a − b has

positive real part, then

2F1





a b

c
; 1



 =
Γ(c − a − b)Γ(c)

Γ(c − a)Γ(c − b)
,

where Γ is Euler’s gamma function.

Etienne Rassart 20 MIT
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Saalschütz’s 3F2 identity. If d + e = a + b + c + 1 and c is a

negative integer, then

3F2





a b c

d e
; 1



 =
(d − a)|c|(d − b)|c|

(d)|c|(d − a − b)|c|
.

Clausen’s 4F3 identity. If d is a nonpositive integer and

a+ b+ c− d = 1
2 , and e = a+ b+ 1

2 , and a+ f = d+1 = b+ g, then

4F3





a b c d

e f g
; 1



 =
(2a)|d|(a + b)|d|(2b)|d|
(2a + 2b)|d|(a)|d|(b)|d|

.

All these identities and many more can be proved by the computer

using WZ theory and the method described above.
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WZ Theory

• Sister Celine Fasenmyer’s algorithm (1945)

• Gosper’s algorithm (1978)

• Zeilberger’s algorithm (1990)

• Petkovšek’s algorithm (1991)

Etienne Rassart 22 MIT
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Sister Celine Fasenmyer’s algorithm

Given a hypergeometric sum f(n) =
∑

k F (n, k), a good first step

towards finding a nice formula for f(n) is computing a recurrence

that it satisfies.

Sister Celine’s algorithm does that by finding a linear recurrence

satisfied by the F (n, k), whose coefficients don’t involve the

summation index k.

• For the algorithm to work, F (n, k) should be doubly

hypergeometric, meaning that

F (n + 1, k)

F (n, k)
and

F (n, k + 1)

F (n, k)

are both rational functions of n and k.
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• The algorithm is guaranteed to stop if F (n, k) is a proper

hypergeometric term.

Definition F (n, k) is a proper hypergeometric term if it can be

written in the form

F (n, k) = P (n, k)

∏M1

i=1(ain + bik + ci)!
∏M2

i=1(uin + vik + wi)!
xk

where

• x is an indeterminate,

• P is a polynomial,

• the ai, bi, ui and vi, are specific integers, i.e. not depending on

n, k or other parameters,

• M1 and M2 are specific nonnegative integers.
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How it works

We want to find a recurrence satisfied by f(n), where

f(n) =
∑

k F (n, k).

• Given a doubly hypergeometric term F (n, k), the algorithm

tries to find a recurrence of the form

I
∑

i=0

J
∑

j=0

ai,j(n)F (n − j, k − i) = 0 .

• It is very important that the ai,j depend only on n and not on

k, because if the algorithm succeeds, then we can find a

recurrence for the sum over all k:

f(n − j) =
∑

k

F (n − j, k − i)

Etienne Rassart 25 MIT
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and therefore
I
∑

i=0

J
∑

j=0

ai,j(n)f(n − j) = 0 ,

which we can rewrite as

J
∑

j=0

(

I
∑

i=0

ai,j(n)

)

f(n − j) = 0 .

This recurrence is linear in the f(n− j), and it turns out that when

the algorithm succeeds, the ai,j are rational functions of n. So we

can clear out the denominators and get a linear recurrence with

polynomial coefficients.

We can then try to solve this recurrence with Petkovšek’s algorithm

or other techniques.
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The algorithm

1. Fix initial values of I and J (usually I = J = 1).

2. Set up the recurrence

I
∑

i=0

J
∑

j=0

ai,j(n)F (n − j, k − i) = 0

where the ai,j(n) are undetermined (variables to be solved for).

3. Divide the whole recurrence by F (n, k). Because F (n, k) is

doubly hypergeometric, F (n − j, k − i)/F (n, k) will be rational

in n and k. So we are left with rational functions only.
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4. Put the expression over a common denominator. The

numerator is a polynomial in n and k, which we can write as a

polynomial in k (over C[n]).

5. The only way for the rational expression to be zero is if its

numerator is zero. The numerator will be zero for all n if and

only if the coefficient of each power of k in it vanishes.

6. This gives a system of linear equations in the ai,j (n is

considered a parameter). If the system has a solution, the

algorithm has found the recurrence. Otherwise we increase one

of I or J (or both) and restart.
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Example Consider F (n, k) = k
(

n

k

)

and f(n) =
∑

k F (n, k). The

summand F (n, k) is a proper hypergeometric term because we can

write it as

F (n, k) = k

(

n

k

)

= k
n!

k! (n − k)!
.

Let’s run Sister Celine’s algorithm:

1. We set I = J = 1.

2. So we are looking for a recurrence of the form

a0,0F (n, k)+a1,0F (n, k−1)+a0,1F (n−1, k)+a1,1F (n−1, k−1) = 0 .

3. We then divide by F (n, k) throughout. After simplification,

this gives

a0,0 + a1,0
k − 1

n − k + 1
+ a0,1

n − k

n
+ a1,1

k − 1

n
= 0 .
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4. We then write this expression over a common denominator and

take the numerator as a polynomial in k:

(a0,1 − a1,1)k
2

+ (a1,0n + a1,1n − 2a0,1n − a0,0n + 2a1,1 − a0,1)k

+ (a0,0n
2 + a0,1n

2 + a0,0n + a0,1n − a1,0n − a1,1n − a1,1)

5. We have to set the coefficients of the powers of k equal to zero

so that the numerator is zero:

a0,1 − a1,1 = 0

−na0,0 − (2n + 1)a0,1 + na1,0 + (n + 2)a1,1 = 0

(n2 + n)a0,0 + (n2 + n)a0,1 − na1,0 − (n + 1)a1,1 = 0

Etienne Rassart 30 MIT



Primera Conferencia Iberoamericana de Matemática Computacional

6. This system has the solutions














a0,0

a0,1

a1,0

a1,1















= a0,1















−n−1
n

1

0

1















If a recurrence is satisfied by F (n, k), then every scalar

multiple of it is also satisfied, so we could take a0,1 = 1.

However, since n is considered a parameter in this case, it is a

scalar, and to avoid having rational coefficients, we can take

a0,1 = n and get polynomial coefficients.
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Hence F (n, k) = k
(

n

k

)

satisfies the recurrence

(n − 1)F (n, k) = nF (n − 1, k − 1) + nF (n − 1, k) .

We can then sum over all k to get that f(n) =
∑

k k
(

n

k

)

satisfies the

recurrence

(n − 1)f(n) = 2nf(n − 1) or f(n) = 2
n

n − 1
f(n − 1) ,

which we can solve by iteration for

f(n) = 2n−1nf(1) = 2n−1n .
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F (n, k) = P (n, k)

∏M1

i=1(ain + bik + ci)!
∏M2

i=1(uin + vik + wi)!
xk

Theorem (Sister Celine Fasenmyer, 1945)

If F (n, k) is a proper hypergeometric term, then there exist positive

integers I, J , and polynomials ai,j(n) for i = 0, . . . , I, j = 0, . . . , J ,

not all zero, such that

I
∑

i=0

J
∑

j=0

ai,j(n)F (n − j, k − i) = 0

where

J =
∑

s

|bs| +
∑

s

|vs|

I = 1 + deg(P ) + J

((

∑

s

|as| +
∑

s

|us|
)

− 1

)

.
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Summary (Sister Celine’s algorithm)

• Sister Celine’s algorithm is useful, but it gets very slow as I

and J grow large.

• It has the disadvantage of not really providing a nice formula

for the hypergeometric sum, just a recurrence it satisfies.

• It also requires F (n, k) to be summed up over the whole

k-range.

• The good thing is that it is completely algorithmic and can be

done by a computer.
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Gosper’s algorithm

• Hypergeometric sums don’t always range over the full set of

indices where the summand doesn’t vanish.

• Gosper’s algorithm is more powerful than Sister Celine’s in

that sense, because it can decide whether a hypergeometric

sum has an indefinite sum of a certain type.

• Indefinite sums are like indefinite integrals. F (x) is the

indefinite integral of f(x) if

∫ b

a

f(x) dx = F (b) − F (a) ∀ a, b.
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Similarly, H(k) is the indefinite sum of h(k) if

b−1
∑

k=a

h(k) = H(b) − H(a) .

• Running Gosper’s algorithm on a hypergeometric term is like

trying to find the antiderivative of a function in calculus.

Definition A function tk of k is a hypergeometric term if tk+1/tk is

a rational function of k.

What Gosper’s algorithm does

Gosper’s algorithm can decide whether a hypergeometric term has

an indefinite sum which is also a hypergeometric term. If it exists,

the algorithm will find it.
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What we want to do

Given a sum
∑b

k=a tk where tk is a hypergeometric term, suppose

that we can find another function zk of k such that

tk = zk+1 − zk .

Then

b−1
∑

k=a

tk = (za+1 − za) + (za+2 − za+1) + . . . + (zb − zb−1)

= zb − za .

So for such a zk, the sum telescopes and we have the “antisum”, or

indefinite sum, that we we looking for.

Gosper’s algorithm decides whether a hypergeometric term tk has

an indefinite sum zk which is also a hypergeometric term.
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How it’s done

• We start by assuming we have a solution zk (a hypergeometric

term) to the equation tk = zk+1 − zk, and see what form it

would have to take.

• If zk is a solution, then its ratio with tk is

zk

tk
=

zk

zk+1 − zk

=
1

zk+1

zk

− 1
,

which is a rational function of k since zk is a hypergeometric

term.

• So zk = y(k)tk for some rational function y(k).
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• The equation tk = zk+1 − zk becomes

tk = y(k + 1)tk+1 − y(k)tk or

1 = y(k + 1)r(k) − y(k)

where r(k) is the rational function tk+1/tk.

• Now comes the tricky part. Suppose we can write r(k) in the

form

r(k) =
a(k)

b(k)

c(k + 1)

c(k)

where a(k), b(k), c(k) are polynomials, and where a(k) and

b(k + h) have no common factors for any nonnegative integer h.
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• Then suppose we write

y(k) =
b(k − 1)x(k)

c(k)

where x(k) is some rational function.

• The equation 1 = y(k + 1)r(k) − y(k) becomes

1 =
b(k)x(k + 1)

c(k + 1)

a(k)

b(k)

c(k + 1)

c(k)
− b(k − 1)x(k)

c(k)

=
a(k)x(k + 1) − b(k − 1)x(k)

c(k)
,

or

a(k)x(k + 1) − b(k − 1)x(k) = c(k) .

Etienne Rassart 40 MIT



Primera Conferencia Iberoamericana de Matemática Computacional

• Then something great happens:

Theorem (Gosper, 1978)

Suppose a(k), b(k), c(k) are polynomials such that

gcd(a(k), b(k + h)) = 1 for all nonnegative integer h, and suppose

that x(k) is a rational function satisfying

a(k)x(k + 1) − b(k − 1)x(k) = c(k). Then x(k) is a polynomial with

determinable degree.

• The first important observation is that the polynomials a(k),

b(k) and c(k) are known and fixed.

• This means that the degree of x(k) can take only certain

values. In fact we can find the degree of x(k) explicitly in

terms of the degrees of a(k), b(k) and c(k).
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• For example, suppose a(k) and b(k) are of different degrees or

have different leading coefficient. Then since x(k + 1) and x(k)

have the same leading term, the leading terms of a(k)x(k + 1)

and b(k − 1)x(k) cannot cancel each other out, which means

that the leading term of c(k) must be of the same power. This

means that

deg c(k) = max{deg(a(k)x(k + 1)), deg(b(k − 1)x(k))}
= max{deg a(k) + deg x(k), deg b(k) + deg x(k)}
= deg x(k) + max{deg a(k), deg b(k)}

so that the degree of x(k) is

deg c − max{deg a(k), deg b(k)}.
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• Once we have the maximal degree d for x(k), we set

x(k) =
∑d

i=0 aik
i. Substituting this expression in the equation

a(k)x(k + 1) − b(k − 1)x(k) = c(k) gives a system of linear

equations (the coefficients of the powers of n must be equal).

• Depending on whether this system has a solution or not, the

indefinite sum

zk =
b(k − 1)x(k)

c(k)
tk

exists or doesn’t.
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Example If we run Gosper’s algorithm on tk = k! (i.e. we want

the indefinite sum
∑

k k!), we get no solutions:

r(k) =
tk+1

tk
=

(k + 1)!

k!
= (k + 1) ,

so we can take a(k) = k + 1 and b(k) = c(k) = 1. Then the

equation a(k)x(k + 1) − b(k − 1)x(k) = c(k) is

(k + 1)x(k + 1) − x(k) = 1 ,

and since a(k) and b(k) have different degrees, the maximal degree

of x(k) is

deg c(k) − max{deg a(k), deg b(k)} = 0 − max{1, 0} = −1

This means that no indefinite sum that is a hypergeometric term

exists in this case.
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Example However if we take tk = kk!, then

r(k) =
(k + 1)(k + 1)!

kk!
=

(k + 1)2

k
=

k + 1

1

k + 1

k
.

So we take a(n) = k + 1, b(k) = 1 and c(k) = k.

In this case, the equation a(k)x(k + 1) − b(k − 1)x(k) = c(k) is

(k + 1)x(k + 1) − x(k) = k ,

which has the solution x(k) = 1.

This gives the indefinite sum

zk =
b(k − 1)x(k)

c(k)
tk =

1

k
kk! = k! .
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The tricky part

We have yet to explain why it is always possible to write the ratio

r(k) = tk+1/tk in the form

r(k) =
a(k)

b(k)

c(k + 1)

c(k)

with polynomial a(k), b(k), c(k) and gcd(a(k), b(k + h)) = 1 for all

nonnegative integers h.

One way that works is as follows.

• Write r(k) = f(k)/g(k) for polynomials f(k) and g(k).

• Suppose that for some nonnegative integer h, f(k) and g(k + h)

have a common factor u(k) 6= 1. This means

f(k) = f̄(k)u(k)

g(k) = ḡ(k)u(k − h) ,
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so that

r(k) =
f(k)

g(k)
=

f̄(k)

ḡ(k)

u(k)

u(k − h)
.

• But then

u(k)

u(k − h)
=

u(k)u(k − 1) . . . u(k − h + 1)

u(k − 1) . . . u(k − h + 1)u(k − h)

can be written in the form c̄(k + 1)/c̄(k).

• We then repeat this process with f̄ and ḡ and include the part

coming from the common factor into the c̄ term.

• After a finite number of steps, f̄(k) and ḡ(k + h) no longer

have common factors, for any h, and we call them a(k) and

b(k) and combine the c̄(k) terms together to get c(k).
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Summary (Gosper’s algorithm)

• Gosper’s algorithm, when it gives a positive answer, provides a

closed form formula (a hypergeometric term) for a

hypergeometric sum by doing the more powerful job of

computing the indefinite sum.

• Also, if Gosper’s algorithm finds no answer, then no answer

that is a hypergeometric term exists.
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Zeilberger’s algorithm

• Some functions, like e−x2

have no indefinite integral expressible

in terms of elementary functions, but have definite integrals

over certain definite ranges:
∫ ∞

−∞

e−x2

dx =
√

π .

• The same thing often occurs with hypergeometric sums: a

hypergeometric term tk can have no indefinite sum, but
∑b

a tk

can have a nice formula for certain values of a and b, especially

if we sum over the whole range
∑

k tk.
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Example The partial sum of binomial coefficients

m
∑

k=0

(

n

k

)

does not have a nice formula for general m, while
∑n

k=0

(

n

k

)

does.

• This is why Sister Celine’s algorithm is important despite

appearing less powerful than Gosper’s, and being much slower.

• Zeilberger’s algorithm does essentially the same thing as Sister

Celine’s algorithm, but does it much faster.
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Zeilberger’s algorithm relies on the following theorem:

Theorem (Wilf, Zeilberger, 1992) If F (n, k) is a proper

hypergeometric term, then it satisfies a recurrence of the form

J
∑

j=0

aj(n)F (n + j, k) = G(n, k + 1) − G(n, k)

in which

R(n, k) =
G(n, k)

F (n, k)

is a rational function of n and k (the certificate).
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Why it’s useful

• If F (n, k) vanishes outside of a finite k-interval for every n,

then so does G(n, k) since it is a rational multiple of F (n, k).

• So if we sum the recurrence over all k, the G(n, k) terms on the

right hand side telescope to 0.

• If we let f(n) =
∑

k F (n, k), we get a recurrence on the sum:

J
∑

j=0

aj(n)f(n + j) = 0 .

• So we get something very similar to what Sister Celine’s

algorithm outputs.

• But we get it much faster.

Etienne Rassart 52 MIT



Primera Conferencia Iberoamericana de Matemática Computacional

How it works

• Zeilberger’s algorithm takes advantage of Gosper’s algorithm,

which is very fast.

• Instead of running Gosper on F (n, k), we run it on a general

linear combination of the F (n + j, k):

a0F (n, k) + a1F (n + 1, k) + . . . + aJF (n + J, k) ,

for some J .

• On top of solving for the polynomial x(k) in Gosper, we now

have to solve for the ai(n) as well.

• Both systems are linear. If there is a solution, we have found

the recurrence. Otherwise we increase J by 1 and start again.

• The process eventually stops because the theorem of Wilf and

Zeilberger ensures that there is a such a recurrence.
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Petkovšek’s algorithm

• So far we saw that although Gosper’s algorithm can sometimes

provide a nice formula for a hypergeometric sum, as a single

hypergeometric term, such a nice formula doesn’t always exist.

• But it is possible to do more, by relaxing what we mean by

nice formula:

Definition We say that a function f(n) is of closed form if it is a

sum of a fixed number (not depending on n) of hypergeometric

terms.

• So now the question is: “When does a hypergeometric sum

f(n) =
∑

k F (n, k) have a closed form?”
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• If F (n, k) is doubly hypergeometric, we know that the

algorithms of Sister Celine and Zeilberger provide a linear

recurrence with polynomial coefficients satisfied by the f(n).

• So the question can be reformulated as “When does a linear

recurrence with polynomial coefficients have a closed form

solution?”

• Petkovšek’s algorithm Hyper can decide that question, even in

the case where the equation is inhomogeneous (the

inhomogeneous term must itself be of closed form, i.e. the sum

of a fixed number of hypergeometric terms).
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Example Consider the recurrence

(n − 1)y(n + 2) − (n2 + 3n − 2)y(n + 1) + 2n(n + 1)y(n) = 0 .

In a way similar to what happens for linear differential equations,

we expect two linearly independent solutions here.

The first step of Petkovšek’s algorithm finds that the two solutions

can be obtained by solving two polynomial recurrences.

The algorithm gives the solutions y(n) = 2n and y(n) = n!, which

yields the general solution

y(n) = A2n + Bn!

for arbitrary constants A and B.
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Recent developments

Recent developments in WZ theory all use the fact that the theory

can be written down and explained in terms of operators.

Definition Given a function F (n, k) of the (discrete) variables n

and k, we define the operators ∆n, ∆k, N and K by

∆nF (n, k) = F (n + 1, k) − F (n, k)

N F (n, k) = F (n + 1, k)

∆kF (n, k) = F (n, k + 1) − F (n, k)

K F (n, k) = F (n, k + 1) .
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With this notation, the equation

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) becomes

∆nF (n, k) = ∆kG(n, k)

while the Wilf-Zeilberger theorem states the existence of a

polynomial P (n, N) such that

P (n, N)F (n, k) = ∆kG(n, k) .

We can now describe briefly two recent trends in WZ theory

research.
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Parallel with differential topology (Zeilberger)

• It is possible to mimic parts of differential topology in the

discrete case.

• Zeilberger defines difference forms in a way similar to

differential forms, by using the difference operators in each of

the variables instead of the partial derivatives.

• It is also possible to define a notion of discrete manifold, and to

sum (integrate) difference forms over them.

• Some of the important theorems on the integration of

differential forms can be translated into the discrete setup, like

Stokes theorem and the Poincaré lemma.
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• Certain difference forms, called WZ forms, are closely related

to hypergeometric identities.

• In this language, proving a hypergeometric identity from its

associated WZ form just consists of checking that the form is

closed.

• Hypergeometric identities coming from exact WZ forms are

trivial in a special sense.

• So the interesting hypergeometric identities are those coming

from the closed but not exact WZ forms.

• This defines a notion of WZ cohomology.
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Elimination theory (Chyzak)

• Recall that with the operator notation, the Wilf-Zeilberger

theorem stated the existence of a nonzero polynomial P (n, N)

such that

P (n, N)F (n, k) = ∆kG(n, k) = (K − 1)G(n, k) .

• Recall also that G(n, k) is a rational multiple of F (n, k):

G(n, k) = R(n, k)F (n, k) .
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• This means that

P (n, N)F (n, k) = (K − 1)
(

R(n, k)F (n, k)
)

= R(n, k + 1)F (n, k + 1) − R(n, k)F (n, k)

= (K · R(n, k))(K · F (n, k)) − R(n, k)F (n, k)

= ((K · R)K − 1
)

F (n, k)

so that

P (n, N) + 1 − (K · R)K

annihilates F (n, k).

• What makes this equation useful is the absence of the variable

k, the summation index.
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• Normally, given F (n, k) which is doubly hypergeometric, we

will be able to write down a system of operators in N , K, n, k

that annihilate F (n, k).

• It is actually possible to make this system a system of

noncommutative polynomials in N , K, n and k.

• Then with a noncommutative analogue of the Buchberger

algorithm for Gröbner bases, we can try to eliminate the

variable k from the system.

• More is possible in the more general context or Ore algebras.
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