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1 Basic objects

Let M be a connected 2n-dimensional manifold. (No compactness assumptions).

Definition A symplectic form is a 2-form ω ∈ Ω2(M,R) (recall that a 2-form ω is an
antisymmetric function that associates to any point p ∈ M and tangent vectors X, Y ∈
Tp(M), a real number ω(X, Y )) such that

1. dω = 0 (ω closed);

2. ωn
p 6= 0 ∀p ∈M (ω non-degenerate everywhere).

Note ωn can be regarded as a multiple of the volume form on M .

The following is the standard example of a symplectic manifold.

Example 1 Consider M = Cn with symplectic form

ω = dx1 ∧ dy1 + · · · + dxn ∧ dyn ,

ωn = dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ . . . ∧ dxn ∧ dyn ,

where the (xi, yi) are the coordinates on the copies of C.

If we have a =
∑

(

ai

∂

∂xi

+ a′i
∂

∂yi

)

and b =
∑

(

bi
∂

∂xi

+ b′i
∂

∂yi

)

, then ω(a, b) =
∑

(aib
′
i −

a′ibi).

Symplectic geometry is the study of even dimensional manifolds with a symplectic form
and a group action.

2 Group actions

Let S1 act on M and preserve the symplectic form ω. This defines a vector field ξM on M .
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2 Introduction to Symplectic Geometry

Definition If we define ıξM
ω by ıξM

ω(a) = ω(ξM , a), then a moment map is a map φ :
M −→ R such that

ıξM
ω = −dφ .

The Lie derivative along a vector field X satisfies Cartan’s “magical formula”:

LX = ıXd+ dıX . (1)

so that we have
dıξM

ω = LξM
ω − ıξM

dω .

However, in the case of a symplectic manifold (M,ω), since ω is a closed form, the second
term vanishes. The first also vanishes because ω is preserved by the group action. This
means that

dıξM
ω = 0 . (2)

Thus the obstruction to a moment map has to lie in H1(M,R), where

H1(M,R) =
closed 1-forms

exact 1-forms
(the de Rham cohomology).

In particular, simply connected symplectic manifolds have moment maps.

If a moment map exists, it is unique up to translation:

dφ = dφ̃ ⇔ φ̃(x) = φ(x) + c .

Note The moment map depends not only on (M,ω) but on the action of S1 on the
manifold.

Example 2 Let S1 act on (Cn,
∑

dxi ∧ dyi) by

λ · (z1, . . . , zn) = (λm1z1, . . . , λ
mnzn) .

(m1, . . . , mn can be viewed as different turning speeds on the different copies of C).

Vector field on a C-plane

xi

∂

∂yi

− yi

∂

∂xi

Then ξ �
n =

∑

mi

(

xi

∂

∂yi

− yi

∂

∂xi

)

, and therefore

ıξ � n

(

∑

dxi ∧ dyi

)

= −
∑

mi (yi dyi + xi dxi) .
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Then φ should satisfy dφ =
∑

mi (yi dyi + xi dxi), and so we take

φ =
1

2

∑

mi (x
2
i + y2

i ) =
1

2

∑

mi|zi|
2 .

Example 3 Consider the torus T 2 = R2/Z2 with symplectic form ω = dx ∧ dy and the
action of S1 given by λ · (x, y) = (λ+ x, y).

Then ξT 2 =
∂

∂x
and thus ıξT

ω = dy.

But [dy] 6= 0 in H1(T 2) (since y is not a well-defined function on T 2: an increasing function
cannot be periodic) and therefore there is no moment map.

3 When are two symplectic manifolds the same?

Theorem (Moser stability)

Let M be a compact symplectic manifold. Given forms ω0 and ω1 such that

1. ωt = (1 − t)ω0 + tω1 is symplectic ∀t ∈ [0, 1];

2. [ω0] = [ω1] ∈ H2(M) ,

there exists a diffeomorphism ψ : M −→M such that ψ∗(ω1) = ω0.

Proof Exercise. (Hints: ∃β ∈ Ω1(M) such that dβ = ω0 − ω1; there is a unique vector
field X ∈ X (M) on M such that ıXω = β; let ψt be the 1-parameter flow). �

Theorem (Darboux)

Locally, (M,ω) ∼= (Cn,
∑

dxi ∧ dyi).

Proof Without loss of generality, M = Cn and x = 0. Let ω̃ =
∑

dxi ∧ dyi. After a
linear transformation, ω|0 = ω̃|0 (exercise). This implies that there is a neighborhood
U of 0 such that ωt = (1 − t)ω + tω̃ is symplectic on U (being symplectic is an
open condition). Then apply Moser’s method. (Although Cn is not compact, cut-off
functions can be used to make the vector fields compactly supported). �

Definition Stab y = {x ∈ S1 : x · y = y} .

Definition MS1
= {x ∈M : Stabx = S1} .

Definition (N, σ)
f

−−−→ (M,ω) is symplectomorphic if f ∗(ω) = σ and equivariant if it
preserves the group action, i.e. if f(λ · x) = λ · f(x) (for λ ∈ S1).

Lemma If p ∈ MS1
, there exists a neighborhood equivariantly symplectomorphic to

Example 2.

Proof Exercise. (Check that Moser’s theorem works equivariantly). �
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4 Symplectic reduction

Let φ be a moment map for (M,ω) under an S1 action.

A point a ∈ R is regular for φ, if dφx is onto ∀x ∈ φ−1(a), or equivalently, dφx 6= 0 ∀x ∈
φ−1(a). A point is critical if it is not regular. Then since ıξM

ω = −dφ, the critical points
of φ correspond to its fixed points.

Assume that 0 is regular and let Z = φ−1(0).

Claim φ is S1 invariant on Z.

Proof First observe that LξM
ω|Z = 0. Then LξM

φ = ıξM
dφ = −ıξM

ıξM
ω = 0. �

Therefore S1 acts on Z and we will assume that the action is free (what comes next
would still hold without that assumption, but would require introducing orbifolds). Then
Z ∩MS1

= ∅.

The reduced space, denoted by M��S1, is the quotient Z�S1. This quotient is a manifold
since the action of S1 is free, and we have

S1 −−−→ Z




y

π

M��S1

We also observe that ıξM
ω|Z = −dφ|Z = 0. This means that there must be a form ω̄ on

M��S1 such that π∗(ω̄) = ω|Z . (Note: When this happens, we say ω|Z is a basic form).

Claim ω̄ is a symplectic form.

Proof We have to prove closedness and non-degeneracy:

1. π∗(dω̄) = dω|Z = 0. So dω̄ = 0.

2. Given p ∈ Z, fix Y ∈ TpM such that ω(ξMp, Y ) = 1 (or, equivalently, such that
−dφ(Y ) = 1).

For any X in TpM , let X ′ = X − ω(X, Y )ξM |p. Then ω(X ′, Y ) = 0 (X ′ is built

up to be “symplectic perpendicular” to Y ), and so there must exist X̃ ∈ TpM
such that ω(X ′, X̃) 6= 0, because ω is non-degenerate.

So ∃a ∈ R with X̃ − aY ∈ TpZ and ω(X ′, X̃ − aY ) 6= 0 (in fact, we can take
a = dφ(X̃)). We conclude by observing that X and X ′ must have the same
image in the quotient.

�

Example 4 Let S1 act on Cn+1 by λ · (x0, . . . , xn) = (λx0, . . . , λxn). The moment map is

φ =
1

2

∑

|xi|
2 =

1

2
‖x‖2
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Then Z = φ−1(1) ∼= S2n−1, and therefore M��S1 = S2n−1
�S1 = C Pn.

We can take the inverse image of any regular point when defining Z because any translate
of φ is also a moment map. ω̄ is called the Fubini-Studi form.

This shows that the projective spaces are symplectic manifolds.

Exercise Show that with the area form on S2, the moment map is the height function.

Discussion

The torus T n−1 acts on SU(n) (as diagonal matrices), but SU(n) is not a symplectic
manifold in general because it doesn’t always have even dimension: dimSU(3) = 3 and
more generally dim SU(n) = n2 − 1.

However, dim
(

SU(n)�T n−1

)

= n2 − 1 − (n− 1) = n2 − n is always even, and it turns out

that SU(n)�T n−1 is actually a symplectic manifold and has a moment map.

Example Consider a compact manifold M of dimension 2n, and suppose that M is
symplectic with form ω. Since ωn is a volume form, [w]n 6= 0 in H2n(M) (M is compact).
If ω was exact, say ω = dη, then ωn would also be exact since ωn = d(η ∧ dη ∧ . . . ∧ dη).
But this would contradict the fact that [ωn] = [ω]n 6= 0. Thus for compact symplectic M ,
[ω] 6= 0, and therefore H2(M) 6= 0.

In particular, the spheres S2n for n > 1 have H2(S2n) = 0 and hence they are not symplectic
manifolds.

Fixed points

Example S1 acts on SU(2)�S1 ∼= S2 by rotations. The fixed points are the poles, and
the Weyl group acts by taking one pole to the other.

SU(n) acts on su(n) by conjugation: G · A = GAG−1. If we denote by (1, 2, . . . , n) the
diagonal matrix with entries 1, 2, . . . , n on the diagonal, then the orbit of this action going
through (1, 2, . . . , n) (i.e. containing (1, 2, . . . , n)) is SU(n)�T . The set of fixed points
consists of all the permutations of (1, 2, . . . , n), and the moment map projects points of an
orbit O ⊆ su(n) on a the subspace t of diagonal matrices of su(n). To get such a projection,
we use a non-degenerate form on su(n), such as the Killing form: (A,B) 7→ −trace(AB).
Given a subspace t, this form defines a projection p : su(n) −→ t, and the restiction p|O of
p to the orbit O.
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Appendix – The Lie derivative1

Theorem Let X be a C∞ vector field on a manifold M . For each point m ∈M , there is a
curve γm defined on some interval (am, bm) in R ∪ {±∞} such that

(a) a(m) < 0 < bm, γm(0) = m;

(b) γm is an integral curve, i.e. σ̇(t) = X(σ(t));

(c) γm is unique in the following sense: if µ : (c, d) −→ M is a smooth curve satisfying
conditions (a) and (b), then (c, d) ⊆ (am, bm) and µ = γ|(c,d)

.

Note γm is the path that a leaf would take when dropped in a stream (manifold) with
flow pattern determined by X.

The boundaries γ(am) and γ(bm) are where the leaf gets stuck.

Instead of fixing a point m ∈ M and looking at the flow through m as a function of time
t, we can fix a time t and look where the flow would take a point m after time t. This
prompts the following definition: Xt(m) = γm(t). Note that Xt is not defined on all M for
all t; it is only defined in the domain Dt = {m ∈M : t ∈ (am, bm)}.

The Lie derivative indicates how differential forms change along integral curves of X in a
small neighborhood of m ∈ M , something a normal derivative can’t do because tangent
vectors at m can’t easily be related to tangent vectors at γm(t) for t 6= 0.

Definition Let σ be a differential form (or anything that “pulls back”). The Lie derivative
along X of σ at m is

LXσm = lim
t→0

X∗
t (σXt(m)) − σ(m)

t
.

(Now X∗
t σXt(m) is in TmM if σ(m) is.)

Definition Define ıX(m) by ıX(m)σ(a) = σ(X(m), a) if σ is a 2-form and X(m), a ∈ TmM .

Theorem (Cartan)
LX = ıXd+ dıX .

Proof Non trivial. �

Corollary If ω is a closed 2-form, then LXω = dıX .

Proof Since ω is closed, dω = 0 and thus ıXdω = 0 in Cartan’s theorem. �

Observation: If a symplectic form ω is preserved under an S1-action, that is, ifX∗
t (ωXt(m) =

ω(m), then LX(ω) = 0.

Main point of differential geometry: Reducing local questions in a neighborhood of
m ∈ M to infinitesimal questions in the tangent space to m. In essence: to reduce the
geometry to linear algebra.

1by Sara Billey
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Notation

(M,ω) generic notation for a symplectic manifold

Ωk(M,R) space of (real) k-forms on M

TpM tangent space of a point p of M

X (M) vector fields on M

Sk k-dimensional sphere

S1 1-dimensional sphere (circle), and group of rotations in C

ξM flow induced by an action of S1 on M

L Lie derivative

ıξM
map defined by ıξM

ω(a) = ω(ξM , a)

φ moment map associated to an action of S1 on (M,ω)

Hk(M,R) de Rham cohomology groups

[σ] cohomology class of σ

T k k-dimensional torus

Stab y stabilizer of y

MS1
fixed points of M under an action of S1

M��S1 reduced space of (M,ω) under an action of S1

C Pn complex n-dimensional projective space

SU(n) Lie group of determinant 1 unitary n× n matrices

su(n) Lie algebra of SU(n)



8 Introduction to Symplectic Geometry

Glossary

differential form A k-form σ is a family of alternating multilinear maps σp from (TpM)k

to R that vary smoothly with p ∈ M . The linear map σp : ΛkTpM −→ R can be
regarded as a functional in ΛkT ∗

pM , and σ as a smooth section of ΛkT ∗M .

closed form A differential form σ is closed if dσ = 0.

exact form A differential form σ is exact if there a differential form η such that dη = σ.
In particular, an exact form is closed because dσ = d2η = 0.

de Rham cohomology Differential closed k-forms and exact k-forms are vector spaces
(over R). Since the exact k-forms are a subspace of the closed k-forms, we can define
their quotient space, called the kth de Rham cohomology group Hk(M).

diffeomorphism A diffeomorphism f : M −→ N between (smooth) manifolds M and N
is a smooth bijection whose inverse is also smooth.

symplectomorphism A diffeomophism f : M −→ N between symplectic manifolds
(M,ω) and (N , σ) is a symplectomorphism if f ∗σ = ω.

equivariant Suppose a group G acts on a set M . A function f from M to itself is
equivariant if f(g · x) = g · f(x) ∀g ∈ G, x ∈ M .

Hamiltonian action An action of a torus on a symplectic manifold is Hamiltonian if there
is a moment map for that action.
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