LECTURE 2: TORIC VARIETIES

Sue Tolman, University of Illinois at Urbana-Champaign
March 12, 2002

Recall

- A symplectic manifold is an even dimensional manifold $M^{2 n}$ with a closed 2-form $\omega \in \Omega^{2}(M)$ such that $\omega^{n}{ }_{\left.\right|_{x}} \neq 0 \forall x$.
- We assume that S^{1} acts on M.
- We also assume the existence of a moment map for this action, that is $\phi: M \longrightarrow \mathbb{R}$ defined by $\imath_{\xi_{M}} \omega=d \phi$. We say $x \in M$ is critical if $d \phi_{\left.\right|_{x}}=0$. If we denote by $M^{S^{1}}$ the set of fixed points of the action, then by definition of the moment map, x is critical if and only if x is a fixed point.
- The extrema of ϕ are critical, and hence fixed points. In particular, if M is compact then ϕ must have fixed points.
- Also covered were the equivariant Darboux theorem and symplectic reduction.

1 Extending the S^{1} action to more general groups

Let a torus $T=\left(S^{1}\right)^{k}$ act on (M, ω). We can extend the moment map definition from the previous lecture to this action.

Definition Denote by \mathfrak{t} the Lie algebra of the torus T, and by \mathfrak{t}^{*} its dual. Define ξ_{M} to be the vector field on M induced by the flow $\exp (t \xi)$. Then a map $\phi: M \longrightarrow \mathfrak{t}^{*}$ is a moment map if

$$
\imath_{\xi_{M}} \omega=-d \phi^{\xi} \quad \forall \xi \in \mathfrak{t}
$$

where ϕ^{ξ} is the component of ϕ in the ξ direction, i.e. $\phi^{\xi}(x)=\langle\phi(x), \xi\rangle$.
Note This definition reduces to the one from the previous lecture when $T=S^{1}$.
Example The n-dimensional torus $\left(S^{1}\right)^{n}$ acts on \mathbb{C}^{n} by $\lambda \cdot x=\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)$.
The moment map $\phi: \mathbb{C}^{n} \longrightarrow\left(\mathbb{R}^{n}\right)^{*}$ is

$$
\phi(z)=\left(\frac{1}{2}\left|z_{1}\right|^{2}, \ldots, \frac{1}{2}\left|z_{n}\right|^{2}\right)
$$

Note that $\phi\left(\mathbb{C}^{n}\right)=\left(\mathbb{R}_{\geq 0}^{n}\right)^{*}$, the image of the moment map is the positive orthant.
Claim ϕ is T-invariant and $\omega\left(\xi_{M}, \eta_{M}\right)=0$ for all $\xi, \eta \in \mathfrak{t}$.
Exercise Prove the claim for compact M. Hint: Use the existence of fixed points of ϕ.
Definition $A T$-action is effective if $T \longrightarrow \operatorname{Symp}(M, \omega)$ is injective, or in other words, if the identity element of T is the only element of T that fixes the whole of M.

Note We will assume that all actions are effective.
Corollary (to the claim)

$$
\operatorname{dim} T \leq \frac{1}{2} \operatorname{dim} M
$$

Reason For any two vectors ξ, η in the torus direction, $\omega(\xi, \eta)=0$ (no two vectors of T are paired under ω).

Theorem (Guillemin-Sternberg, Atiyah, 1982)

Suppose (M, ω) is a compact symplectic manifold with a moment map ϕ. Then

1. $\phi^{-1}(a)$ is connected in \mathfrak{t}^{*};
2. $\phi(M)$ is a convex polytope, in fact the convex hull of the images of the fixed points convhull $\left(\phi\left(M^{T}\right)\right)$.

Note Since M is compact, there will be only finitely many connected components of fixed points. If we pick a connected component F of the set of fixed points M^{T}, then $\phi_{\left.\right|_{F}}$ is constant, because $d \phi=0$ on F. So every component maps to a single point under the moment map. This is why the convex polytope $\phi(M)$ has finitely many vertices.

Note $\mathfrak{t}^{*} \cong\left(\mathbb{R}^{n}\right)^{*}$ since $\operatorname{Lie}\left(S^{1}\right) \cong \mathbb{R}$.
Example Let the torus $T=S^{1} \times S^{1}$ act on symplectic manifold $M=S^{2} \times S^{2}$ by rotation in each fiber. Then the fixed points are $M^{T}=\{(N, N),(N, S),(S, N),(S, S)\}$ if N and S are the North and South poles of S^{2}. If the rotations are around the z-axes, the moment map is (exercise)

$$
\phi\left(\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)\right)=\left(z_{1}, z_{2}\right),
$$

and the image of M under the moment map is $\phi(M)=[-1,1] \times[-1,1]$.

So the fixed points here are the vertices of the convex hull. This isn't always true, but we'll see that it is for toric varieties.

2 Toric varieties

We want a class of manifolds for which the image of the moment map determines everything. For this, we want the action to be "big enough", and so we require that $\operatorname{dim} T=\frac{1}{2} \operatorname{dim} M$.

Definition A toric variety is a compact connected $2 n$-dimensional symplectic manifold M with an n-dimensional torus T action and a moment map $\phi: M \longrightarrow \mathfrak{t}^{*}$.

Definition A (n-dimensional) Delzant polytope is a polytope such that each vertex is contained in exactly n facets, and where the normals to the n facets containing a given vertex form a \mathbb{Z}-basis for a lattice $\mathfrak{l} \subset \mathfrak{t}$, so that $T=\mathfrak{t} / \mathfrak{r}$.

Fact Let (M, ω, ϕ) be a toric variety. Then $\phi(M)$ is a Delzant polytope.

Example

Good $\quad \mathbb{Z}^{2} \subset \mathbb{R}^{2}$

Good $\Leftrightarrow p= \pm 1$

$(0,-1)$
Bad

The normals of the n facets containing v will be the \mathbb{Z}-basis of lattice if there is a transformation of $S L(n, \mathbb{Z})$ that sends them to the standard basis.
Exercise Show that the only Delzant polytope in \mathbb{R}^{n} with $n+1$ facets is

$$
\Delta=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0 \text { and } \sum x_{i} \leq c\right\} \quad\left(\text { some } c \in \mathbb{R}_{>0}\right)
$$

up to translations and transformations of $S L(n, \mathbb{Z})$.

Theorem (Delzant)

1. There is a one-to-one correspondence between toric varieties up to equivariant symplectomorphism and Delzant polytopes up to translation.
2. There is also a one-to-one correspondence between toric varieties up to equivariant symplectomorphism and automorphisms of T, and Delzant polytopes up to translation and transformations of $S L(n, \mathbb{Z})$.

The Delzant polytope associated to a toric variety is determined by the moment map. Given a Delzant polytope, the associated toric variety is constructed via symplectic reduction of actions of subgroups of $\left(S^{1}\right)^{k}$ on \mathbb{C}^{k}, using the theorem of Darboux.

Fact In the case of a toric variety, the image $\phi\left(M^{T}\right)$ of the fixed points under the moment map are the vertices of the polytope $\Delta=\phi(M)$, and each edge corresponds to points with codimension 1 stabilizers.

$$
\square \rightsquigarrow\{N\} \times S^{2}
$$

Thus the Delzant polytope contains all the important information about toric varieties; the fixed points and their images under the moment map give everything.

Here for example is how we would compute the cohomology ring $H^{*}\left(M_{\Delta}\right)$ of the toric variety M_{Δ} associated to a Delzant polytope Δ.
Suppose $\Delta=\left\{x \in \mathfrak{t}^{*}:\left\langle\eta_{i}, x_{i}\right\rangle \leq c\right\}$, where Δ has k facets D_{1}, \ldots, D_{k} and $\eta_{1}, \ldots, \eta_{k}$ are the outward normals to these facets. First construct the set Σ containing, for all subsets of the facets that have a non-empty intersection, the set of indices of these facets:

$$
\Sigma=\left\{I \subseteq\{1,2, \ldots, k\}: \bigcap_{j \in I} D_{j} \neq \emptyset\right\} .
$$

For example, we would have

We can then define the Stanley-Reisner ideal (due to Danilov)

$$
J=\left\{\prod_{i_{k} \in I} x_{i_{k}}: I \notin \Sigma\right\}
$$

In the pentagon example, J would contain $x_{1} x_{3}, x_{1} x_{4}$, etc.
We also need to define a second ideal, of linear relations:

$$
K=\left\{\sum_{i}\left\langle\eta_{i}, \xi\right\rangle x_{i}: \xi \in \mathfrak{t}\right\}
$$

With these definition, the cohomology ring of M_{Δ} is

$$
H^{*}\left(M_{\Delta}\right)=\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] /(J+K) .
$$

Example

$$
\begin{array}{ll}
1_{1}^{1} & \text { Image of the moment map on } \mathbb{C} \mathbb{P}^{1}\left(\text { or } S^{2}\right) \\
0^{2} & \mathbb{C}\left[x_{1}, x_{2}\right] /\left\langle x_{1}-x_{2}, x_{1} x_{2}\right\rangle \cong \mathbb{C}[x] /\left\langle x^{2}\right\rangle
\end{array}
$$

Image of the moment map on $\mathbb{C} \mathbb{P}^{2}$

$$
\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left\langle x_{1}-x_{2}, x_{2}-x_{3}, x_{1} x_{2} x_{3}\right\rangle \cong \mathbb{C}[x] /\left\langle x^{3}\right\rangle
$$

 $n)$. The latter is called the Hirzebruch n-surface).
Note The first Chern class is $c_{1}(M)=\sum x_{i}$. In general, Chern classes are symmetric polynomials.

In the construction above, if instead of computing the (ordinary) cohomology, we want to compute the equivariant cohomology, we quotient the polynomial ring by J only.

Discussion

Charney-Davis conjecture

Consider an even dimensional simplicial polytope P and its associated toric variety X_{P}. Suppose that the dimension of P is $2 e$. The boundary ∂P of P is a simplicial complex, and Danilov showed that the Betti numbers of X_{P} can be related to the h-vector of ∂P by

$$
\beta_{2 i}\left(X_{P}\right)=h_{i}(\partial P)
$$

It is conjectured that if the Stanley-Reisner ring of P is generated by quadratic monomials, then

$$
(-1)^{e} \sum_{i=0}^{2 e}(-1)^{i} h_{i}(\partial P) \geq 0
$$

The conjecture has a more general form: suppose Δ is a Gorenstein* simplicial complex, meaning that for every face F of Δ, the reduced homology of the $\operatorname{link} \mathrm{lk} F$ of F is given by

$$
\tilde{H}_{i}(\operatorname{lk} F) \cong \begin{cases}\mathbb{Z} & \text { if } \operatorname{dim}(\operatorname{lk} F)=i \\ 0 & \text { otherwise }\end{cases}
$$

The general conjecture is that if Δ has dimension $2 e-1$, its h-vector is $h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{2 e}\right)$ and its Stanley-Reisner ring is generated by quadratic monomials, then

$$
(-1)^{e} \sum_{i=0}^{2 e}(-1)^{i} h_{i}(\Delta) \geq 0
$$

Note If Δ has even dimension $2 e$, the Dehn-Sommerville equations $h_{i}=h_{2 e+1-i}$ with the sign changes in the above sum make all the terms cancel by pairs.

References

R. Charney, M. Davis, The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold, Pacific J. Math. 171 (1995), no. 1, 117-137.
N. C. Leung, V. Reiner, The signature of a toric variety, math. $A G / 0111064$.

Notation

(M, ω)	generic notation for a symplectic manifold
$\Omega^{k}(M, \mathbb{R})$	space of (real) k-forms on M
$T_{p} M$	tangent space of a point p of M
$\mathcal{X}(M)$	vector fields on M
S^{k}	k-dimensional sphere
S^{1}	1-dimensional sphere (circle), and group of rotations in \mathbb{C}
ξ_{M}	vector field induced by an action of a torus T on M
\mathcal{L}	Lie derivative
$l_{\xi_{M}}$	map defined by $\imath_{\xi_{M}} \omega(a)=\omega\left(\xi_{M}, a\right)$
ϕ	moment map associated to an action of a torus T on (M, ω)
ϕ^{ξ}	component of ϕ in the ξ direction: $\phi^{\xi}(x)=\langle\phi(x), \xi\rangle$
$H^{k}(M, \mathbb{R})$	de Rham cohomology groups
$[\sigma]$	cohomology class of σ
T^{k}	k-dimensional torus $\left(S^{1}\right)^{k}$
$\mathrm{Stab} y$	stabilizer of y
M^{T}	fixed points of M under an action of a torus T
$M / / S^{1}$	reduced space of (M, ω) under an action of S^{1}
$\mathbb{C} \mathbb{P}^{n}$	complex n-dimensional projective space
$S U(n)$	Lie group of determinant 1 unitary $n \times n$ matrices
$\mathfrak{s u}(n)$	Lie algebra of $S U(n)$
$S y m p(M, \omega)$	groups of symplectomorphisms $(M, \omega) \longrightarrow(M, \omega)$
$\mathfrak{t}, \mathfrak{t}^{*}$	Lie algebra of a torus T and its dual
\mathfrak{l}	lattice in \mathfrak{t}
$\mathrm{SL}(n, \mathbb{Z})$	group of determinant $1 n \times n$ matrices with integer coefficients
Δ	(Delzant) polytope
M_{Δ}	toric variety associated to a Delzant polytope Δ
$H^{*}(M)$	cohomology ring of M
$c_{n}(M)$	nth Chern class of M
$\beta_{i}(M)$	i th Betti number of M
$h(\Delta)$	h-vector of Δ

