LECTURE 4: THE DUISTERMAAT-HECKMAN MEASURE

Sue Tolman, University of Illinois at Urbana-Champaign
April 2, 2002

1 Definition of the D-H measure

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold.
Definition A Borel set in M is a set generated from compact subsets of M under countable union and complementation.

Definition Given a Borel set U in M, the Liouville measure of U is defined as

$$
\operatorname{vol}(U)=\int_{U} \frac{\omega^{n}}{(2 \pi)^{n} n!}
$$

Let a torus T act on (M, ω) with proper moment map $\phi: M \longrightarrow \mathfrak{t}^{*}$. (A moment map ϕ is proper if $\phi^{-1}(K)$ is compact whenever K is.)
Definition The Duistermaat-Heckman measure $m=m_{D H}$ on \mathfrak{t}^{*} is the push-forward of the Liouville measure. Thus, for $U \subseteq \mathfrak{t}^{*}$ Borel,

$$
m(U)=\operatorname{vol}\left(\phi^{-1}(U)\right)=\int_{\phi^{-1}(U)} \frac{\omega^{n}}{(2 \pi)^{n} n!}
$$

It follows from the definition that the support of the D-H measure lies inside the image of M under $\phi: \operatorname{supp}(m) \subseteq \phi(M)$, because $U \cap \phi(M)=\emptyset \quad \Rightarrow m(U)=0$.
Theorem (Archimedes, ~230 BC)
The area on the sphere between two latitudes depends only on the difference of their heights along the rotation axis.

Proof Let S^{1} act on S^{2} by rotation (S^{2} embedded in \mathbb{R}^{3} in the usual way). If the rotation is around the z-axis, $\phi(x, y, z)=z$. The image of S^{2} under ϕ is the interval $[-1,1]$. The definition of the D-H measure gives that for $[a, b] \subseteq[-1,1], m([a, b])=b-a$.

2 The D-H polynomial

Theorem (Duistermaat-Heckman)

There is a function $f: \mathfrak{t}^{*} \longrightarrow \mathbb{R}$ such that

1. f is a polynomial of degree at most $\frac{1}{2} \operatorname{dim} M-\operatorname{dim} T$ on each component of regular values of ϕ;
2. $m(U)=\int_{U} f d \lambda$ (λ is the Lebesgue measure).

Note The D-H measure is absolutely continuous with respect to the Lebesgue measure.
Example In the example above (S^{1} acting on S^{2}), we expect f to be of degree at most $\frac{1}{2} \operatorname{dim} S^{2}-\operatorname{dim} S^{1}=0$, i.e. a constant on the connected component of regular values $(-1,1)$, and indeed f is the characteristic function $\chi_{[-1,1]}$ of the interval $[-1,1]$.

Note f is called the Duistermaat-Heckman polynomial, even though it is really piecewise polynomial.

Fact Whenever $\frac{1}{2} \operatorname{dim} M=\operatorname{dim} T$, f will not only be a constant, but actually be either 0 or 1.
Example S^{1} acts on \mathbb{C} by $\lambda \cdot z=\lambda z$, and the moment map of this action is $\phi(z)=\frac{1}{2}|z|^{2}$ (see first lecture). The image of \mathbb{C} under ϕ is $\mathbb{R}_{\geq 0}$. Computing the D-H measure from the definition, we get

$$
m([0, b])=\frac{1}{2 \pi}(\text { area of the disk of radius } \sqrt{2 b})=\frac{1}{2 \pi} 2 \pi b=b,
$$

so that for $[a, b] \subseteq \mathbb{R}_{\geq 0}, m([a, b])=b-a$.
Thus the D-H polynomial is $\chi_{\mathbb{R}_{\geq 0}}$.
Example $\left(S^{1}\right)^{n}$ acts on \mathbb{C}^{n} by $\lambda \cdot z=\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right)$. The image of \mathbb{C}^{n} under the moment $\operatorname{map} \phi(z)=\frac{1}{2} \sum\left|z_{i}\right|^{2}$ is $\left(\mathbb{R}_{\geq 0}\right)^{n}$. Then $\left(\mathbb{R}_{>0}\right)^{n}$ is a connected component of regular values and the D-H polynomial is $\chi_{\left(\mathbb{R}_{\geq 0}\right)^{n}}$.
Example Since $\frac{1}{2} \operatorname{dim} M=\operatorname{dim} T$ for toric varieties, the D-H polynomial on any toric variety (M, ω, ϕ) will be $\chi_{\phi(M)}$.

3 Behavior of the D-H measure under projections

Let T act on M with moment map $\phi: M \longrightarrow \mathfrak{t}^{*}$. Given a subgroup H of T, we get the inclusion $\mathfrak{h} \hookrightarrow \mathfrak{t}$ and a projection $p: \mathfrak{t}^{*} \longrightarrow \mathfrak{h}^{*}$.

Fact The moment map $\psi: M \longrightarrow \mathfrak{h}^{*}$ for the H-action is $\psi=p \circ \phi$.
So for $U \subseteq \mathfrak{h}^{*}$,

$$
m_{\mathfrak{h}^{*}}(U)=\operatorname{vol}\left(\psi^{-1}(U)\right)=\operatorname{vol}\left(\phi^{-1}\left(p^{-1}(U)\right)\right)=m_{\mathfrak{t}^{*}}\left(p^{-1}(U)\right) .
$$

($m_{\mathfrak{h}^{*}}$ is called the push-forward measure.)
The D-H polynomial also behaves nicely : for $a \in \mathfrak{h}^{*}$,

$$
f_{\mathfrak{h}^{*}}(a)=\int_{p^{-1}(a)} f_{\mathfrak{t}^{*}}\left(p^{-1}(a)\right) d \lambda .
$$

Example $f_{\mathfrak{h}^{*}}$ is the "thickness" of the fiber above a projected point.

t^{*}

\mathfrak{h}^{*}

Let $T<\left(S^{1}\right)^{n}$ act on \mathbb{C}^{n} via $\lambda \cdot z=\left(\lambda_{1}^{\alpha_{1}} z_{1}, \ldots, \lambda_{n}^{\alpha_{n}} z_{n}\right)$. The projection $p:\left(\mathbb{R}^{n}\right)^{*} \longrightarrow \mathfrak{t}^{*}$ sends the standard basis element e_{i} to α_{i}.
The moment map $\psi: \mathbb{C}^{n} \longrightarrow \mathfrak{t}^{*}$ is given by $\psi(z)=\frac{1}{2} \sum \alpha_{i}\left|z_{i}\right|^{2}$. Therefore

$$
\Delta=\psi\left(\mathbb{C}^{n}\right)=\left\{s_{1} \alpha_{1}+\cdots+s_{n} \alpha_{n} \mid s_{1}, \ldots, s_{n} \geq 0\right\}
$$

We also find that ψ is proper if and only if Δ is properly contained in a half-space (or equivalently, does not contain a line).

not proper

not proper

proper

For ψ, the D-H function on \mathfrak{t}^{*} is given by

$$
f(a)=\operatorname{vol}\left\{s_{1}, \ldots, s_{n} \geq 0 \mid a=s_{1} \alpha_{1}+\cdots+s_{n} \alpha_{n}\right\}
$$

Example

S^{1} on $\mathbb{C}^{2} \quad$ Projection from \mathbb{R}^{3} to \mathbb{R}^{2}

4 Computing the D-H measure

A way to compute the D-H measure comes out of the proof of the Duistermaat-Heckman theorem, so we give an idea of the proof here.
For the sake of simplicity, suppose that $T=S^{1}$. Assume that 0 is a regular value of the moment map, and that $t \in \mathbb{R}$ is near 0 .
Let $\left(M_{t}, \omega_{t}\right)$ denote the reduced space at t. If we let $Z=\phi^{-1}(0)$, then we have the bundle

Let α be a connection one-form, i.e. find α such that $\imath_{\xi_{M}} \alpha=1$ and $\mathcal{L}_{\xi_{M}} \alpha=0$; then $d \alpha$ is basic (the pull-back of a form β on M). So $d \alpha=\pi^{*}(\beta)(\beta$ is the curvature and is in the cohomology class of c_{1}).

Fact Near $0, M \approx Z \times(-\varepsilon, \varepsilon), \phi(z, t)=t$ and $\omega \approx \pi^{*}\left(\omega_{0}\right)-d(\alpha t)$.
So $M_{t} \approx M_{0}$ and $\omega_{t}=\omega_{0}-t \beta$ and thus the symplectic form varies linearly. So

$$
\begin{aligned}
\operatorname{vol}\left(M_{t}\right) & \left.=\int_{M_{0}}\left(\left[\omega_{0}\right]-t[\beta]\right)^{n-1}\right) \quad\left(n-1=\frac{1}{2} \operatorname{dim} M-\operatorname{dim} S^{1}\right) \\
& =\sum\binom{n-1}{k}\left(\int_{M_{0}}\left[\omega_{0}\right]^{k}[\beta]^{n-1-k}\right) t^{k} .
\end{aligned}
$$

$[\omega]$ and $[\beta]$ are constant cohomology classes (don't depend on t). Therefore $\operatorname{vol}\left(M_{t}\right)$ is a polynomial in t. So it is straightforward to compute the D-H function:

$$
f(t)=\operatorname{vol}\left(\left(M_{t}, \omega_{t}\right)\right)
$$

5 Computing the D-H polynomial combinatorially

We will assume from this point on that M is compact and that the set of fixed points M^{T} is finite.

For each $p \in M^{T}$, let the weights at p be $\alpha_{p}^{1}, \ldots, \alpha_{p}^{n} \in \mathfrak{t}^{*}$. Pick $\xi \in \mathfrak{t}$ such that the inner product (α_{p}^{i}, ξ) is never zero.
For each p, define $\beta_{p}^{i} \in \mathfrak{t}^{*}$ by

$$
\beta_{p}^{i}=\left\{\begin{aligned}
\alpha_{p}^{i} & \text { if }\left(\alpha_{p}^{i}, \xi\right)>0 \\
-\alpha_{p}^{i} & \text { if }\left(\alpha_{p}^{i}, \xi\right)<0
\end{aligned}\right.
$$

Also let w_{p} be the number of α_{p}^{i} with $\left(\alpha_{p}^{i}, \xi\right)<0$.
Definition For $a \in \mathfrak{t}^{*}$, let

$$
f_{p}(a+\phi(p))=\operatorname{vol}\left\{s_{1}, \ldots, s_{n} \mid s_{1} \beta_{p}^{1}+\cdots+s_{n} \beta_{p}^{n}=a\right\}
$$

Theorem (Guillemin-Lerman-Sternberg, after Atiyah-Bott)
The D-H polynomial is $\sum_{p}(-1)^{w_{p}} f_{p}$.
Example Consider
 with 4 fixed points and the privileged direction ξ as indicated.

For each vertex p (fixed point), we compute $(-1)^{w_{p}} f_{p}$:

Adding up gives the D - H function $\chi_{\phi(M)}$

Discussion

Lattice points inside a polytope

Something similar to the computation of the D-H function using the Guillemin-LermanSternberg formula occurs when counting integer lattice points inside a polytope (with integer vertices), using the monomial weight $x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}$ for the lattice point $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ (if we are in \mathbb{Z}^{n}). For each vertex on the polytope, we consider the cone at that vertex pointing inside the polytope. The total weight of the lattice points inside that cone is a rational function of the x_{i}. If we add up all the weights of the vertex cones, we get the weight of the integer points in the polytope.

For example consider the square

$$
x^{0} y^{0}+x^{1} y^{0}+x^{0} y^{1}+x^{1} y^{1}=1+x+y+x y
$$

The cones and their weights are

And they sum up to

$$
\frac{1-x^{2}-y^{2}+x^{2} y^{2}}{(1-x)(1-y)}=\frac{\left(1-x^{2}\right)\left(1-y^{2}\right)}{(1-x)(1-y)}=(1+x)(1+y)=1+x+y+x y
$$

Weight multiplicities

Let \mathfrak{g} be a semisimple Lie algebra and fix a root system. If λ is a dominant weight, then there is a (unique up to isomorphism) irreducible \mathfrak{g}-module $V(\lambda)$ with highest weight λ. For μ in the weight lattice, we can ask what the dimension of the weight space $V(\lambda)_{\mu}$ is in the weight space decomposition of $V(\lambda)$. This dimension is called the multiplicity of μ in the representation $V(\lambda)$.
To get weight multiplicities instead of the D-H measure (which is a sort of limiting case), the volumes have to be replaced by the numbers of integer lattice points inside the corresponding polytopes, and $a \in \mathfrak{t}^{*}$ has to be replaced by $a+\rho$ (ρ is half the sum of the positive roots).

Stationary phase formula

Suppose we have a function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ such that 0 is a critical point $\left(\frac{\partial f}{\partial x_{i}}=0 \forall i\right)$ and such that the Hessian $\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right)_{i, j}$ at 0 is non-degenerate.
Then for $t \gg 0$ and g compactly supported near 0 , we get the asymptotic formula

$$
\int e^{i t f} g d x_{1} \ldots d x_{n} \sim \frac{i t^{n / 2}}{\sqrt{\operatorname{det}\left(\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right)_{i, j}\right)}}
$$

If M is symplectic and compact, f the S^{1}-moment map, and $d x_{1} \ldots d x_{n}=\omega^{n} / n$!, then the formula above is exact (no asymptotics).

References

[1] A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics 1764, Springer, 2001.
[2] V. Guillemin, E. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge University Press, 1996.

Notation

(M, ω)	generic notation for a symplectic manifold
$\Omega^{k}(M, \mathbb{R})$	space of (real) k-forms on M
$T_{p} M$	tangent space of a point p of M
$\mathcal{X}(M)$	vector fields on M
S^{k}	k-dimensional sphere
S^{1}	1-dimensional sphere (circle), and group of rotations in \mathbb{C}
ξ_{M}	vector field induced by an action of a torus T on M
\mathcal{L}	Lie derivative
${ }^{{ }^{\prime}{ }_{M}}$	map defined by $\imath_{\xi_{M}} \omega(a)=\omega\left(\xi_{M}, a\right)$
ϕ	moment map associated to an action of a torus T on (M, ω)
ϕ^{ξ}	component of ϕ in the ξ direction: $\phi^{\xi}(x)=\langle\phi(x), \xi\rangle$
$H^{k}(M, \mathbb{R})$	de Rham cohomology groups
[σ]	cohomology class of σ
T^{k}	k-dimensional torus $\left(S^{1}\right)^{k}$
Stab y	stabilizer of y
M^{T}	fixed points of M under an action of a torus T
$M / / S^{1}$	reduced space of (M, ω) under an action of S^{1}
$\mathbb{C} \mathbb{P}^{n}$	complex n-dimensional projective space
$S U(n)$	Lie group of determinant 1 unitary $n \times n$ matrices
$\mathfrak{s u}(n)$	Lie algebra of $S U(n)$
$\operatorname{Symp}(M, \omega)$	groups of symplectomorphisms $(M, \omega) \longrightarrow(M, \omega)$
$\mathfrak{t}, \mathfrak{t}^{*}$	Lie algebra of a torus T and its dual
1	lattice in \mathfrak{t}
$\mathrm{SL}(n, \mathbb{Z})$	group of determinant $1 n \times n$ matrices with integer coefficients
Δ	(Delzant) polytope
M_{Δ}	toric variety associated to a Delzant polytope Δ
$H^{*}(M)$	cohomology ring of M
$c_{n}(M)$	nth Chern class of M
$\beta_{i}(M)$	i th Betti number of M
$h(\Delta)$	h-vector of Δ
η_{i}	weights of a moment map
λ_{p}, λ_{F}	index of an isolated fixed point p or a fixed component F
D^{λ}	disk of dimension λ
$N(F)$	negative normal bundle
$D(E), S(E)$	disk and sphere bundles of E
e	Euler class of E
$E G$	classifying space
$H_{G}^{*}(M)$	equivariant cohomology of M
$P(X)$	Poincaré polynomial
vol	Liouville measure
$m, m_{\text {DH }}$	Duistermaat-Heckman measure
χ_{X}	characteristic function of set $X\left(\chi_{X}(a)=1\right.$ if $a \in X$ and 0 otherwise)
$f, f_{\mathfrak{t}^{*}}, f_{\mathfrak{h}^{*}}$	Duistermaat-Heckman polynomial (function)

