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1 Definition of the D-H measure

Let (M2n, ω) be a symplectic manifold.

Definition A Borel set in M is a set generated from compact subsets of M under countable
union and complementation.

Definition Given a Borel set U in M , the Liouville measure of U is defined as

vol(U) =

∫

U

ωn

(2π)nn!
.

Let a torus T act on (M,ω) with proper moment map φ : M −→ t∗. (A moment map φ is
proper if φ−1(K) is compact whenever K is.)

Definition The Duistermaat-Heckman measure m = mDH on t∗ is the push-forward of
the Liouville measure. Thus, for U ⊆ t∗ Borel,

m(U) = vol(φ−1(U)) =

∫

φ−1(U)

ωn

(2π)nn!
.

It follows from the definition that the support of the D-H measure lies inside the image of
M under φ : supp(m) ⊆ φ(M), because U ∩ φ(M) = ∅ ⇒ m(U) = 0.

Theorem (Archimedes, ∼230 BC)

The area on the sphere between two latitudes depends only on the difference of their heights
along the rotation axis.

δ

δ

1



2 The Duistermaat-Heckman measure

Proof Let S1 act on S2 by rotation (S2 embedded in R3 in the usual way). If the rotation
is around the z-axis, φ(x, y, z) = z. The image of S2 under φ is the interval [−1, 1].

The definition of the D-H measure gives that for [a, b] ⊆ [−1, 1], m([a, b]) = b− a. �

2 The D-H polynomial

Theorem (Duistermaat-Heckman)

There is a function f : t∗ −→ R such that

1. f is a polynomial of degree at most 1
2
dimM − dimT on each component of regular

values of φ;

2. m(U) =
∫

U
f dλ (λ is the Lebesgue measure).

Note The D-H measure is absolutely continuous with respect to the Lebesgue measure.

Example In the example above (S1 acting on S2), we expect f to be of degree at most
1
2
dimS2−dim S1 = 0, i.e. a constant on the connected component of regular values (−1, 1),

and indeed f is the characteristic function χ
[−1,1] of the interval [−1, 1].

Note f is called the Duistermaat-Heckman polynomial, even though it is really piecewise
polynomial.

Fact Whenever 1
2
dimM = dim T , f will not only be a constant, but actually be either 0

or 1.

Example S1 acts on C by λ · z = λz, and the moment map of this action is φ(z) = 1
2
|z|2

(see first lecture). The image of C under φ is R≥0. Computing the D-H measure from the
definition, we get

m([0, b]) =
1

2π
(area of the disk of radius

√
2b ) =

1

2π
2πb = b ,

so that for [a, b] ⊆ R≥0, m([a, b]) = b− a.

Thus the D-H polynomial is χ�
≥0

.

Example (S1)
n

acts on Cn by λ·z = (λ1z1, . . . , λnzn). The image of Cn under the moment
map φ(z) = 1

2

∑ |zi|2 is (R≥0)
n. Then (R>0)

n is a connected component of regular values
and the D-H polynomial is χ(

�
≥0)

n .

Example Since 1
2
dimM = dimT for toric varieties, the D-H polynomial on any toric

variety (M,ω, φ) will be χφ(M).

3 Behavior of the D-H measure under projections

Let T act on M with moment map φ : M −→ t∗. Given a subgroup H of T , we get the
inclusion h ↪→ t and a projection p : t∗ −→ h∗.



Lecture 4 — Sue Tolman 3

Fact The moment map ψ : M −→ h∗ for the H-action is ψ = p ◦ φ.

So for U ⊆ h∗,

m � ∗(U) = vol
(

ψ−1(U)
)

= vol
(

φ−1(p−1(U))
)

= m � ∗(p−1(U)) .

(m � ∗ is called the push-forward measure.)

The D-H polynomial also behaves nicely : for a ∈ h∗,

f � ∗(a) =

∫

p−1(a)

f � ∗(p−1(a)) dλ .

Example f � ∗ is the “thickness” of the fiber above a projected point.

t∗

f � ∗

h∗

t∗

f � ∗

h∗

Let T < (S1)
n

act on Cn via λ · z = (λα1

1 z1, . . . , λ
αn
n zn). The projection p : (Rn)∗ −→ t∗

sends the standard basis element ei to αi.

The moment map ψ : Cn −→ t∗ is given by ψ(z) = 1
2

∑

αi|zi|2. Therefore

∆ = ψ(Cn) = {s1α1 + · · ·+ snαn | s1, . . . , sn ≥ 0} .

We also find that ψ is proper if and only if ∆ is properly contained in a half-space (or
equivalently, does not contain a line).

α1

α3

α20

not proper not proper proper



4 The Duistermaat-Heckman measure

For ψ, the D-H function on t∗ is given by

f(a) = vol{s1, . . . , sn ≥ 0 | a = s1α1 + · · · + snαn} .

Example

polynomial 1

polynomial 2

S1 on C2 Projection from R3 to R2

4 Computing the D-H measure

A way to compute the D-H measure comes out of the proof of the Duistermaat-Heckman
theorem, so we give an idea of the proof here.

For the sake of simplicity, suppose that T = S1. Assume that 0 is a regular value of the
moment map, and that t ∈ R is near 0.

Let (Mt, ωt) denote the reduced space at t. If we let Z = φ−1(0), then we have the bundle

S1 −−−→ Z




y

π

M0

Let α be a connection one-form, i.e. find α such that ıξM
α = 1 and LξM

α = 0; then dα is
basic (the pull-back of a form β on M). So dα = π∗(β) (β is the curvature and is in the
cohomology class of c1).

Fact Near 0, M ≈ Z × (−ε, ε), φ(z, t) = t and ω ≈ π∗(ω0) − d(αt).

So Mt ≈M0 and ωt = ω0 − tβ and thus the symplectic form varies linearly. So

vol(Mt) =

∫

M0

([ω0] − t[β])n−1) (n− 1 =
1

2
dimM − dim S1)

=
∑

(

n− 1

k

) (
∫

M0

[ω0]
k[β]n−1−k

)

tk .

[ω] and [β] are constant cohomology classes (don’t depend on t). Therefore vol(Mt) is a
polynomial in t. So it is straightforward to compute the D-H function:

f(t) = vol
(

(Mt, ωt)
)

.
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5 Computing the D-H polynomial combinatorially

We will assume from this point on that M is compact and that the set of fixed points M T

is finite.

For each p ∈ MT , let the weights at p be α1
p, . . . , α

n
p ∈ t∗. Pick ξ ∈ t such that the inner

product (αi
p, ξ) is never zero.

For each p, define βi
p ∈ t∗ by

βi
p =

{

αi
p if (αi

p, ξ) > 0 ,

−αi
p if (αi

p, ξ) < 0 .

Also let wp be the number of αi
p with (αi

p, ξ) < 0.

Definition For a ∈ t∗, let

fp(a + φ(p)) = vol{s1, . . . , sn | s1β
1
p + · · ·+ snβ

n
p = a} .

Theorem (Guillemin-Lerman-Sternberg, after Atiyah-Bott)

The D-H polynomial is
∑

p

(−1)wpfp.

Example Consider ξ with 4 fixed points and the privileged direction ξ

as indicated.

For each vertex p (fixed point), we compute (−1)wpfp:

+1

+1
+1

+1

−1
−1

−1

−1

−1

+1

+1

Adding up gives the D-H function χ
φ(M)

+1 0

0
0

0
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Discussion

Lattice points inside a polytope

Something similar to the computation of the D-H function using the Guillemin-Lerman-
Sternberg formula occurs when counting integer lattice points inside a polytope (with in-
teger vertices), using the monomial weight xi1

1 x
i2
2 . . . x

in
n for the lattice point (i1, i2, . . . , in)

(if we are in Zn). For each vertex on the polytope, we consider the cone at that vertex
pointing inside the polytope. The total weight of the lattice points inside that cone is a
rational function of the xi. If we add up all the weights of the vertex cones, we get the
weight of the integer points in the polytope.

For example consider the square

(1,0)(0,0)

(0,1) (1,1)

x0y0 + x1y0 + x0y1 + x1y1 = 1 + x + y + xy

The cones and their weights are

(0,0) (1,0)

(1,1) (0,1)

1

(1 − x)(1 − y)

x

(1 − x−1)(1 − y)

xy

(1 − x−1)(1 − y−1)

y

(1 − x)(1 − y−1)

= = = =

1

(1 − x)(1 − y)

−x2

(1 − x)(1 − y)

x2y2

(1 − x)(1 − y)

−y2

(1 − x)(1 − y)

And they sum up to

1 − x2 − y2 + x2y2

(1 − x)(1 − y)
=

(1 − x2)(1 − y2)

(1 − x)(1 − y)
= (1 + x)(1 + y) = 1 + x+ y + xy .
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Weight multiplicities

Let g be a semisimple Lie algebra and fix a root system. If λ is a dominant weight, then
there is a (unique up to isomorphism) irreducible g-module V (λ) with highest weight λ.
For µ in the weight lattice, we can ask what the dimension of the weight space V (λ)µ is in
the weight space decomposition of V (λ). This dimension is called the multiplicity of µ in
the representation V (λ).

To get weight multiplicities instead of the D-H measure (which is a sort of limiting case), the
volumes have to be replaced by the numbers of integer lattice points inside the corresponding
polytopes, and a ∈ t∗ has to be replaced by a + ρ (ρ is half the sum of the positive roots).

Stationary phase formula

Suppose we have a function f : Rn −→ R such that 0 is a critical point ( ∂f
∂xi

= 0 ∀i) and

such that the Hessian
(

∂2

∂xi∂xj

)

i,j
at 0 is non-degenerate.

Then for t� 0 and g compactly supported near 0, we get the asymptotic formula

∫

eitfg dx1 . . . dxn ∼ itn/2

√

det

(

(

∂2

∂xi∂xj

)

i,j

)

.

If M is symplectic and compact, f the S1-moment map, and dx1 . . . dxn = ωn/n!, then the
formula above is exact (no asymptotics).
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Notation

(M,ω) generic notation for a symplectic manifold

Ωk(M, R) space of (real) k-forms on M

TpM tangent space of a point p of M

X (M) vector fields on M

Sk k-dimensional sphere

S1 1-dimensional sphere (circle), and group of rotations in C

ξM vector field induced by an action of a torus T on M

L Lie derivative

ıξM
map defined by ıξM

ω(a) = ω(ξM , a)

φ moment map associated to an action of a torus T on (M,ω)

φξ component of φ in the ξ direction: φξ(x) = 〈φ(x), ξ〉
Hk(M, R) de Rham cohomology groups

[σ] cohomology class of σ

T k k-dimensional torus (S1)k

Stab y stabilizer of y

MT fixed points of M under an action of a torus T

M��S1 reduced space of (M,ω) under an action of S1

C Pn complex n-dimensional projective space

SU(n) Lie group of determinant 1 unitary n × n matrices

su(n) Lie algebra of SU(n)

Symp(M,ω) groups of symplectomorphisms (M,ω) −→ (M,ω)

t, t∗ Lie algebra of a torus T and its dual

l lattice in t

SL(n, Z) group of determinant 1 n × n matrices with integer coefficients

∆ (Delzant) polytope

M∆ toric variety associated to a Delzant polytope ∆

H∗(M) cohomology ring of M

cn(M) nth Chern class of M

βi(M) ith Betti number of M

h(∆) h-vector of ∆

ηi weights of a moment map

λp, λF index of an isolated fixed point p or a fixed component F

Dλ disk of dimension λ

N(F ) negative normal bundle

D(E), S(E) disk and sphere bundles of E

e Euler class of E

EG classifying space

H∗
G(M) equivariant cohomology of M

P (X) Poincaré polynomial

vol Liouville measure

m,mDH Duistermaat-Heckman measure
χ

X characteristic function of set X (χX(a) = 1 if a ∈ X and 0 otherwise)

f, f � ∗, f � ∗ Duistermaat-Heckman polynomial (function)
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