

Outstanding Problems in Low-Dimensional Topology and Group Theory

Tim Riley

Fields Workshop in Asymptotic Group Theory and Cryptography at Carleton University, Ottawa

December 14, 2007

The Poincaré Conjecture

J.H. Poincaré

Every closed simply connected 3-manifold is homeomorphic to the 3-sphere.

W.P. Thurston

R. Hamilton

G. Perelman

"How not to prove the Poincaré Conjecture"

M a closed 3-manifold

Let
$$\Gamma_g := \pi_1 \Sigma_g$$
 and $F_g = \pi_1 U_1 = \pi_1 U_2$.

$$\begin{split} & \Sigma_g \overset{\rightarrowtail}{\searrow} \frac{U_1}{U_2} \text{ induces } \Gamma_g \overset{\phi}{\underset{\psi}{\Rightarrow}} \frac{F_g}{F_g} \text{ and } \phi \times \psi : \Gamma_g \to F_g \times F_g \\ & \text{that is surjective on each factor — a splitting homomorphism.} \end{split}$$

 $\phi \times \psi$ is surjective iff $\pi_1 M = 1$.

Splitting homomorphisms $\phi_1 \times \psi_1$ and $\phi_2 \times \psi_2$ are equivalent when there exist automorphisms $\theta : \Gamma_g \supset$ and $\alpha, \beta : F_g \supset$ such that:

 $\Gamma_a \xrightarrow{\phi_1 \times \psi_1} F_q \times F_g$ $\theta \mid \quad \circ \quad \downarrow \alpha \times \beta$ $\Gamma_g \underset{\phi_2 \times \psi_2}{\longrightarrow} F_g \times F_g$

Stallings invoked results of Jaco, Papakyriakopoulus, and Waldhausen. In fact, this formulation is due to Hempel. The Poincaré Conjecture is true iff every epimorphism $\Gamma_g \twoheadrightarrow F_g \times F_g$ is equivalent to the standard one:

 $\langle a_1, b_1, \dots, a_g, b_g | \prod_{i=1}^g [a_i, b_i] \rangle$ $\rightarrow \langle a_1, \dots, a_g \rangle \times \langle b_1, \dots, b_g \rangle.$

The Andrews–Curtis Conjecture

Every balanced presentation

$$\langle a_1, \ldots, a_m \mid r_1, \ldots, r_m \rangle$$

of the trivial group can be converted to

$$\langle a_1, \ldots, a_m \mid a_1, \ldots, a_m \rangle$$

using the moves

•
$$r_i, r_j \mapsto r_i r_j, r_j, \quad i \neq j$$

• $r_i \mapsto r_i^{-1}$
• $r_i \mapsto a_k^{\mp 1} r_i a_k^{\pm 1}$.

Stable Version. Also allow the move

$$\left\langle \begin{array}{c} a_1, \dots, a_m \mid r_1, \dots, r_m \right\rangle \leftrightarrow \\ \left\langle a_1, \dots, a_m, a_{m+1} \mid r_1, \dots, r_m, a_{m+1} \right\rangle$$

Some Candidate Counterexamples

— all are known to present the trivial group

Akbulut–Kirby (open for $n \ge 3$) $\langle a, b \mid aba = bab, a^{n+1} = b^n \rangle$

Miller–Schupp $\langle a, b \mid a^2b = ba^3, w = 1 \rangle$ where the exponent sum of the *b*'s in *w* is ±1.

B.H. Neumann (proposed as a counterexample by Rapaport) $\langle a, b, c \mid c^{-1}bc = b^2, a^{-1}ca = c^2, b^{-1}ab = a^2 \rangle$

Example trivialization (A.J. Casson**)**

(A.D. Miasnikov, A.G. Miasnikov and V. Shpilrain were the first to find some trivialization)

$$\langle a, b \mid aba = bab, a^3 = b^2 \rangle \rightsquigarrow \langle a, b \mid a, b \rangle$$

$$abab^{-1}a^{-1}b^{-1}, a^{3}b^{-2}$$

 $a^{3}b^{-2}, a^{2}b^{-1}aba^{-1}b^{-1}$
 $a^{2}b^{-1}aba^{-1}b^{-1}, ab^{-1}ab^{-1}a^{-1}b$
 $ab^{-1}ab^{-1}a^{-1}, a^{2}b^{-1}ab^{-1}$
 $a^{2}b^{-1}ab^{-1}, a^{2}b^{-1}$
 ab^{-1}, a
 a, b

The Grigorchuk–Kurchanov Conjecture

Let
$$\mathcal{A} = \{a_1, \dots, a_n\}$$
. Every $2n$ -tuple
 $(r_1, \dots, r_n, q_1, \dots, q_n)$
of words on $\mathcal{A}^{\pm 1}$ such that
 $\{ t^{-1}r_it \mid i = 1, \dots, n; t \in F(q_1, \dots, q_n)$
generates $F(\mathcal{A})$, can be converted to the $2n$ -tuple
 $(a_1, \dots, a_n, 1, \dots, 1)$

using the moves:

•
$$r_i, r_j \mapsto r_i r_j, r_j, (i \neq j)$$

• $r_i \mapsto r_i^{-1}$
• $r_i \mapsto q_k^{\pm 1} r_i q_k^{\pm 1}$
• $q_i \mapsto q_i r_j$
• $q_i \mapsto q_i^{-1}$
• $q_i, q_j \mapsto q_i q_j, q_j, (i \neq j)$.

R. Grigorchuk

P.F. Kurchanov

The **GK-Conjecture** implies the **AC-Conjecture**. — take $(a_1, \ldots, a_n) = (q_1, \ldots, q_n)$.

The GK-Conjecture is true iff every epimorphism $F_{2g} \rightarrow F_g \times F_g$ is equivalent to the standard one: $\langle a_1, b_1, \dots, a_g, b_g \rangle \rightarrow \langle a_1, \dots, a_g \rangle \times \langle b_1, \dots, b_g \rangle$.

(This theorem is established via results of Grigorchuk, Kurchanov, Lysenok. Cf. work of Craggs.)

From presentations to 2-complexes

 $\Gamma = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle$

• $\pi_1(K) = \Gamma$ by the Seifert–van Kampen Theorem.

• If m = n and Γ is trivial, then $\chi(K) = 1$ and K is contractible.

The Smooth 4-Dimensional Poincaré Conjecture

Every closed C^{∞} 4-manifold M homotopy equivalent to the 4-sphere is diffeomorphic to the 4-sphere.

 $B^2 \times B^3$

 B^5

K = the pres. 2-complex of a balanced pres. \mathcal{P} of the trivial group. Embed K in \mathbb{R}^5 .

 $W = \text{ a regular nbhd of } K \text{ in } \mathbb{R}^5$ = $B^5 \cup (1\text{-handles}) \cup (2\text{-handles})$ $B^1 \times B^{4*}s$ $B^2 \times B^{3*}s$ $M = \partial W$ is a closed 4-manifold with

$$\chi(M) = \chi(S^4) = 2$$

 $\pi_1 M = \pi_1(W \smallsetminus K) = \pi_1 W = \pi_1 K = 1.$
So $M \simeq_{\text{h.e.}} S^4.$

Unstable AC-moves \longleftrightarrow handle slides on WStabilization \longleftrightarrow adding a cancelling I-handle, 2-handle pair to W

So if $\mathcal P$ is AC-trivializable, then M is diffeomorphic to S^4 .

So potential counter-examples to the AC-Conjecture generate potential counterexamples to the C^{∞} 4-diml Poincaré Conjecture.

But —

(Gompf) The Akbulut–Kirby presentations all give standard 4-spheres.

Simple Homotopy and Collapsibility

K, L CW-complexes

Elementary expansions $L \not \sim K$ are the inverses of elementary collapses.

Write $K \land L$ (or $K \land L$) when K and L are related by a sequence of elementary collapses and expansions (involving cells of dim $\leq n$).

Spaces X, Y are simple-homotopy equivalent when they are homeomorphic to K, L such that $K \nearrow L$.

X is collapsible $(X \searrow pt)$ when it is homeomorphic to a complex that can be reduced to a point via a sequence of elementary collapses.

Examples

2. M^n a triangulated manifold with boundary. Then $M^n \searrow N^{n-1}$ for some (n-1)-complex N^{n-1} (a spine of M^n).

3. M^n a triangulated manifold. $M^n \searrow \text{pt}$ iff $M^n \cong B^n$.

Folk-theorem (P. Wright, J.R. Stallings). The Stable AC-Conjecture is true iff $K \nearrow pt$ for every finite contractible 2-complex K.

The Zeeman Conjecture

If K^2 is a finite contractible 2-complex $K^2 \times I \searrow \mathrm{pt}$.

E.C. Zeeman

The Zeeman Conjecture

The Stable AC-Conjecture

K a finite contractible **2-complex** $K \nearrow K \times I$

Then by Zeeman, $K \times I \searrow pt$.

So $K \xrightarrow{3} pt$.

The Poincaré Conjecture

M a closed simply connected 3-manifold

Assume M is simplicially triangulated. Let N be M with the interior of a 3-simplex removed and K be a spine of N.

 $\chi(K) = \chi(N) = \chi(M) + 1 = 1$ $\pi_1(K) = \pi_1(N) = \pi_1(M) = \{1\} \implies K \text{ is contractible}$ So $N \times I \searrow K \times I \searrow pt$ by Zeeman. So $N \times I \cong B^4$ and $N \times \{0\} \subseteq \partial(N \times I) \cong S^3$. But $\partial N \cong S^2$ and in the PL-category an S^2 in an S^3 bounds a B^3 by the Schönflies Theorem. So $N \cong B^3$ and $M \cong S^3$.

Whitehead's Asphericity Question

Is every subcomplex of an aspherical 2-complex, itself aspherical?

J.H.C.Whitehead and friend

An Eilenberg-Maclane Space (a $K(\Gamma, 1)$) for a group Γ is an aspherical CW-complex with $\pi_1 K(\Gamma, 1) = \Gamma$.

The geometric dimension, $gd(\Gamma)$, of Γ is the minimal n such that there is a $K(\Gamma, 1)$ for Γ of dimension n.

The cohomological dimension, $\mathrm{cd}(\Gamma)$, of Γ is the minimal n such that $\mathbb Z$ admits a resolution

$$0 \to P_n \to \cdots \to P_1 \to P_0 \to \mathbb{Z} \to 0$$

by projective $\mathbb{Z}\Gamma$ -modules.

Note. $cd(\Gamma) \leq gd(\Gamma)$ — the cellular chain complex of a $K(\Gamma, 1)$ yields a projective resolution.

The Eilenberg–Ganea Conjecture

Theorem (Stallings–Swan) $cd(\Gamma) = 1 \iff gd(\Gamma) = 1 \iff \Gamma$ is free.

Eilenberg–Ganea Theorem

 $\operatorname{cd}(\Gamma) \ge 3 \implies \operatorname{cd}(\Gamma) = \operatorname{gd}(\Gamma)$

Eilenberg–Ganea Conjecture $cd(\Gamma) = 2 \implies gd(\Gamma) = 2$

S. Eilenberg

T. Ganea

(I am unaware of anywhere Eilenberg and Ganea actually stated this as conjecture.)

 Γ is of type F_n if it admits a $K(\Gamma, 1)$ with finitely many *n*-cells.

Note. Type F_2 is finite presentability.

 Γ is of type FP_n if \mathbb{Z} admits a partial projective resolution $P_n \to \cdots \to P_1 \to P_0 \to \mathbb{Z} \to 0$ by finitely generated projective $\mathbb{Z}\Gamma$ -modules.

Note. Type F_n implies type FP_n .

 Γ is of type FP if \mathbb{Z} admits a projective resolution $0 \to P_n \to \cdots \to P_1 \to P_0 \to \mathbb{Z} \to 0$

by finitely generated projective $\mathbb{Z}\Gamma$ -modules.

Bestvina–Brady Groups

A finite graph G with vertices \mathcal{A} and edges \mathcal{E} determines a right-angled Artin group

$$A = \langle \mathcal{A} \mid [a_i, a_j] = 1, \ \forall (a_i, a_j) \in \mathcal{E} \rangle.$$

Define Γ to be the kernel of the homomophism $A \to \mathbb{Z}$ in which $a \mapsto 1, \forall a \in \mathcal{A}$.

N is the flag complex with I-skeleton G.

Theorem Γ is

- of type FP_n iff $H_i(N) = 0, \forall i < n$.
- of type $\operatorname{FP}\,$ iff $\,N\,$ is acyclic.
- finitely presentable (of type F_2) iff N is simply connected.

M. Bestvina

N. Brady

Corollary

Suppose N is a spine of the Poincaré Homology Sphere. Then Γ is FP but not finitely presentable. (In fact, $cd(\Gamma) = 2$.)

Moreover,

- either Γ is a counterexample to the Eilenberg–Ganea Conjecture (i.e. has $gd(\Gamma) = 3$),
- or Whitehead's Asphericity question has a negative answer. (The universal cover of a 2-dimensional $K(\Gamma, 1)$ would have a non-contractible subcomplex.)

Main tools – • Morse Theory

CAT(0) geometry

The Relation Gap Problem

$$\Gamma = \langle a_1, \dots, a_m \mid r_1, \dots, r_n \rangle = F/R$$
where $F = F(a_1, \dots, a_m)$ and $R = \langle \langle r_1, \dots, r_n \rangle \rangle$.

 F acts on R by conjugation, so induces an action of Γ on $R^{ab} = \frac{R}{[R, R]}$

Rank of R^{ab} as a $\mathbb{Z}\Gamma$ -module $\leq \min \left\{ k \mid \exists s_1, \dots, s_k \in F, \\ R = \langle \langle s_1, \dots, s_k \rangle \rangle \right\}$.

The difference is the relation gap.

Open question. Is there a presentation with (finite) non-zero relation gap?

If Γ is of type FP_2 then R^{ab} is finitely generated as a $\mathbb{Z}\Gamma$ -module. So the Bestvina–Brady example has infinite relation gap.

Bridson–Tweedale example

$$\Gamma = \left\langle x, y, s, t \middle| \begin{array}{c} x^m = 1, & x^s x x^{-s} = x^{m+1}, \\ y^n = 1, & y^t y y^{-t} = y^{n+1} \end{array} \right\rangle$$

where m, n > 1, and $(m+1)^m - 1$ and $(n+1)^n - 1$ are coprime.

The $\mathbb{Z}\Gamma$ -module R^{ab} is generated by $x^s x x^{-s} x^{-m-1}, \ y^t y y^{-t} y^{-n-1}, \ x^m y^n.$ Express Γ as F(x, y, s, t)/R.

Conjecture. R is not the normal closure of 3 elements.

(Cf. examples of K. Gruenberg & P. Linnell, and also some Bestvina–Bradystyle examples of Brisdon & Tweedale.)

M. Bridson

M.Tweedale

The D(2) Conjecture

X a space with universal cover \widetilde{X} .

 $X \, {\rm enjoys} \, {\rm the} \, D(n)$ property when

- $H_i(\widetilde{X}) = 0$ for all i > n, and
- $H^{n+1}(X, \mathcal{M}) = 0$ for all local coefficient systems \mathcal{M} on X.

C.T.C. Wall

Theorem. For $n \neq 2$, a finite CW complex X is homotopic to a finite n-dimensional CW complex iff X enjoys the D(n) property.

Folk Conjecture. The same is true when n = 2.

Theorem (M. Dyer). If there is a group Γ with $H^3(\Gamma, \mathbb{Z}\Gamma) = 0$ and a presentation that

- has a relation gap, and
- realises the deficiency of Γ ,

then the D(2)-Conjecture is false.

J. Harlander wrote up a proof. See also M. Tweedale's thesis.

The Bridson–Tweedale examples would satisfy these conditions if they have a relation gap.

Magnus Problem

Given a balanced presentation

$$\langle a_1,\ldots,a_m \mid r_1,\ldots,r_m \rangle$$

of the trivial group, can some r_i always be replaced by a primitive element of $F(a_1, \ldots, a_m)$ whilst triviality of the group is preserved?

W. Magnus

S.V. Ivanov gave an explicit negative example (with m=3).

Kervaire-Laudenbach Conjecture

If
$$\Gamma$$
 is non-trivial and $r \in \Gamma * \mathbb{Z}$,
then $\frac{\Gamma * \mathbb{Z}}{\langle\!\langle r \rangle\!\rangle}$ is non-trivial.

M. Kervaire

F. Laudenbach

(Klyachko.) The conjecture is true for all torsion free Γ .

There is a good account by R. Fenn.

A. Klyachko

Remark (S.V. Ivanov).

Special case of the Kervaire–Laudenbach Conjecture –

If $\langle a_1, \ldots, a_m | r_1, \ldots, r_m \rangle$ is a balanced presentation of the trivial group and $a_m^{\pm 1}$ does not occur in r_1, \ldots, r_{m-1} , then $\Gamma = \langle a_1, \ldots, a_{m-1} | r_1, \ldots, r_{m-1} \rangle$ is also trivial.

By Klyachko, in a counterexample, Γ would contain torsion elements and so its presentation 2-complex would not be aspherical, answering Whitehead's problem negatively.

"Toy" Problems

I.) Can $\langle a, b \mid aba = bab, a^4 = b^3 \rangle$ be converted to $\langle a, b \mid a, b \rangle$ using Andrews–Curtis moves?

2.) Do there exist r_1, r_2, r_3 such that

$$\left\langle \begin{array}{ccc} x, y, s, t & x^2 = 1, & x^s x x^{-s} = x^3, \\ y^3 = 1, & y^t y y^{-t} = y^4 \end{array} \right\rangle$$
$$= \left\langle x, y, s, t & r_1, r_2, r_3 \right\rangle$$

3.) Does the Bestvina–Brady example have $gd(\Gamma) = 3$?

Triumphs of Geometry

Poincaré Conjecture — Geometrization + Ricci Flow

Bestvina–Brady — CAT(0) geometry and Morse Theory

Magnus Problem (Ivanov) — small cancellation

A (far from complete) list of references / sources of further reading -

- •S. Akbulut and R. Kirby, A potential smooth counterexample in dimension 4 to the Poincaré conjecture, the Schonflies conjecture, and the Andrew-Curtis conjecture, Topology 24, no. 4 (1985), 375-390.
- •J.J. Andrews and M.L. Curtis, Free Groups and Handlebodies, Proc. AMS, Vol. 16, No. 2., pp. 192-195, 1965
- •M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math., Vol.129, pp. 445-470, 1997
- •K. Brown, Cohomology of Groups
- •*M.M. Cohen, A course in simple-homotopy theory,* Springer, Graduate texts in mathematics, 1973
- •D.J.Collins, R.I.Grigorchuk, P.F.Kurchanov and H.Zieschang, Combinatorial Group Theory and Applications to Geometry, Springer
- •R. Craggs, Free Heegaard diagrams and extended Nielsen Transformations I, Michigan Math. J., 26, 1979
- •R. Craggs, Free Heegaard diagrams and extended Nielsen Transformations II, III. J. Math., 23, 1979
- •S. Eilenberg, T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Annals of Mathematics, 2nd Ser., 65 (1957), no. 3, 517 518
- •J. Harlander, C. Hog-Angeloni, W. Metzler, S. Rosebrock, *Problems in Low-dimensional topology*, Encyclopaedia of Mathematics, Springer
- •S.V. Ivanov, On balanced presentations of the trivial group, Inventiones, Volume 165, Number 3 / September, 2006
- •C. Hog-Angeloni, W.Metzler, A.J. Sieradski (eds.), *Two-dimensional Homotopy and Combinatorial Group Theory*, LMS Lecture Note Series No. 197, C.U.P., 1993
- A.D.Myasnikov, A.G.Myasnikov and V.Shpilrain, On the Andrews-Curtis equivalence, Contemp. Math., Amer. Math. Soc. 296 (2002), 183-198.
- •C.F. Miller III and P.E. Schupp, Some presentations of the trivial group
- •E.S. Rapaport, Remarks on groups of order 1, Amer. Math. Monthly, 75, (1968), 714–720
- •D. Rolfsen, Cousins of the Poincaré Conjecture (lecture notes), http://www.math.ubc.ca/~rolfsen/
- •J.R. Stallings, How not to prove the Poincaré Conjecture, http://math.berkeley.edu/~stall/
- •The World of Groups open problems list, http://www.grouptheory.info/
- •P. Wright, Group presentations and formal deformations, Trans. Amer. Math. Soc. 208, (1975), 161–169
- •E.C. Zeeman, On the dunce hat, Topology 2, 1964, 341–358.