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The Poincaré Conjecture

Every closed simply connected 3-manifold is 
homeomorphic to the 3-sphere.

J.H. Poincaré

W.P.  Thurston R. Hamilton G. Perelman



“How not to prove the Poincaré Conjecture”

M a closed 3-manifold

M = ∪
U1 U2

↪→

Σg = U1 ∩ U2 = ∂U1 = ∂U2

A Heegaard decomposition of     :M

Γg := π1Σg Fg = π1U1 = π1U2Let                       and                                   .   

U2

↪→
↪→Σg

U1 induces                    and
FgΓg

!
Fg

!
φ

ψ

φ× ψ : Γg → Fg × Fg

that is surjective on each factor — a splitting homomorphism.

φ× ψ           is surjective iff                  .π1M = 1



Splitting homomorphisms                
and                are equivalent when 
there exist automorphisms
             and                   such that: 

φ1 × ψ1
φ2 × ψ2

θ : Γg

!

α, β : Fg

!

Γg −→ Fg × Fg

Γg −→ Fg × Fg

↓ ↓

φ1 × ψ1

φ2 × ψ2

◦θ α× β

J.R. Stallings

Stallings invoked results of 
Jaco, Papakyriakopoulus, 
and Waldhausen.  In fact, 
this formulation is due to 
Hempel.

The Poincaré Conjecture is true iff every 
epimorphism                           is equivalent 
to the standard one: 

Γg ! Fg × Fg

.

〈a1, b1, . . . , ag, bg |
∏g

i=1[ai, bi] 〉
! 〈a1, . . . , ag〉 × 〈b1, . . . , bg〉



The Andrews–Curtis Conjecture

〈 a1, . . . , am | r1, . . . , rm〉

〈 a1, . . . , am | a1, . . . , am〉

ri, rj !→ rirj , rj , i #= j

ri !→ ri
−1

ri !→ ak
∓1riak

±1

Every balanced presentation

of the trivial group can be converted to

using the moves

Stable Version.  Also allow the move

〈 a1, . . . , am | r1, . . . , rm〉 ↔
〈 a1, . . . , am, am+1 | r1, . . . , rm, am+1〉

.



Akbulut–Kirby (open for            )

Some Candidate Counterexamples

〈 a, b | aba = bab, an+1 = bn 〉

B.H. Neumann (proposed as a counterexample by Rapaport) 

〈 a, b, c | c−1bc = b2, a−1ca = c2, b−1ab = a2 〉

Miller–Schupp

〈 a, b | a2b = ba3, w = 1 〉
b w ±1where the exponent sum of the   ‘s in     is       .   

n ≥ 3

— all are known to present the trivial group



Example trivialization (A.J. Casson)

abab−1a−1b−1, a3b−2

a3b−2, a2b−1aba−1b−1

a2b−1aba−1b−1, ab−1ab−1a−1b

ab−1ab−1a−1, a2b−1ab−1

a2b−1ab−1, a2b−1

a2b−1, ab−1

ab−1, a

a, b
a

b

〈 a, b | aba = bab, a3 = b2 〉 ! 〈 a, b | a, b 〉

(A.D. Miasnikov, A.G. Miasnikov and V. Shpilrain 
were the first to find some trivialization) 



Let                               .  Every      -tuple  

                                       

of words on         such that           

generates           , can be converted to the      -tuple     

      

The Grigorchuk–Kurchanov Conjecture

R. Grigorchuk

A = {a1, . . . , an}

A±1

{ t−1rit | i = 1, . . . , n; t ∈ F (q1, . . . , qn) }
F (A)

2n

2n
(a1, . . . , an, 1, . . . , 1)

using the moves:

ri !→ ri
−1

ri !→ qk
∓1riqk

±1

ri, rj !→ rirj , rj , (i #= j)

qi !→ qirj

qi !→ qi
−1

qi, qj !→ qiqj , qj , (i #= j)

(r1, . . . , rn, q1, . . . , qn)

P.F. Kurchanov

?
.



The GK-Conjecture implies the AC-Conjecture.
— take                                              .(a1, . . . , an) = (q1, . . . , qn)

The GK-Conjecture is true iff every epimorphism
                           is equivalent to the standard one: F2g ! Fg × Fg

〈a1, b1, . . . , ag, bg〉 ! 〈a1, . . . , ag〉 × 〈b1, . . . , bg〉.

(This theorem is established via results of Grigorchuk, Kurchanov, Lysenok.  Cf. work of Craggs.) 



From presentations to 2-complexes

Γ = 〈a1, . . . , am | r1, . . . , rn〉

r2 r3

r4 rn

a1

a2

a3
a4

am

r1

!

K =

π1(K) = Γ by the Seifert–van Kampen Theorem. 

If              and     is trivial, then                   and      is contractible. m = n Γ χ(K) = 1 K



The Smooth 4-Dimensional Poincaré Conjecture

Every closed        4-manifold      homotopy equivalent to the 
4-sphere is diffeomorphic to the 4-sphere.

C∞ M

Embed     in     . R5K

W = a regular nbhd of     in    R5K

So                     .     M !h.e. S4

K =  the pres. 2-complex of a balanced pres.     of the trivial group.P

.

M = ∂W is a closed 4-manifold

π1M = π1(W ! K) = π1W = π1K = 1
χ(M) = χ(S4) = 2

with B1 ×B4

B5

B2 ×B3

= B5 ∪ (1-handles) ∪ (2-handles)
B1 ×B4 B2 ×B3‘s

‘s

‘s



Unstable AC-moves               handle slides on ←→

Stabilization     ←→ adding a cancelling 1-handle, 
2-handle pair to 

W

W

So if     is AC-trivializable, then      is diffeomorphic to     . S4P M

(Gompf)  The Akbulut–Kirby presentations all give standard 4-spheres.

But —

So potential counter-examples to the AC-Conjecture generate 
potential counterexamples to the       4-diml Poincaré Conjecture.C∞



Simple Homotopy and Collapsibility

Elementary 
collapses
             :  K ↘ L

K L    ,     CW-complexes

e

Elementary expansions               
             are the 
inverses of elementary 
collapses. 

L↗ Ke



Write                  (or                  ) when     and    are related by a sequence 
of elementary collapses and expansions (involving cells of dim         ).   

K LK
n

!↘ LK!↘ L
≤ n

Spaces    ,    are simple-homotopy equivalent when they are homeomorphic 
to    ,     such that                .  

X Y
K L K!↘ L

X    is collapsible (              ) when it is homeomorphic to a complex that can 
be reduced to a point via a sequence of elementary collapses.

X ↘ pt



K × I =

Examples

1. The Dunce Hat:                         — contractible, but not collapsible

3.         a triangulated manifold.                      iff                  .  Mn Mn ↘ pt Mn ∼= Bn

2.         a triangulated manifold with boundary.  Then       
for some             -complex             (a spine of        ).    

Mn Mn ↘ Nn−1

(n− 1) Nn−1 Mn

∪=

=

K=

↘

↘

pt↘∪↘



Folk-theorem (P.  Wright,  J.R. Stallings).  The Stable AC-Conjecture

is true iff                   for every finite contractible 2-complex     .K
3

!↘ pt K

Moot Corollary.  Were a spine     of a closed 3-manifold      a 

counterexample to the Stable AC-Conjecture (as above),      

would be a counterexample to the Poincaré Conjecture. 



The Zeeman Conjecture

E.C. Zeeman

If       is a finite contractible 2-complex
                                          

K2

K2 × I ↘ pt .



The Zeeman Conjecture

The Stable
AC-Conjecture

=⇒

    a finite 
contractible 
2-complex

Then by Zeeman,

So

K ↗ K × I

K
3

!↘ pt

K

K × I ↘ pt

The Poincaré Conjecture

=⇒
M a closed simply connected 3-manifold

Assume     is simplicially triangulated.   Let    be      
with the interior of a 3-simplex removed and    be 
a spine of    .

M N M

N
K

χ(K) = χ(N) = χ(M) + 1 = 1
π1(K) = π1(N) = π1(M) = {1}

}
=⇒      is 

contractible
K

N × I ↘ K × I ↘ ptSo                                 by Zeeman.

So                   and                                      .N × I ∼= B4 N × {0} ⊆ ∂(N × I) ∼= S3

But               and in the PL-category an     in an   
bounds a      by the Schönflies Theorem.

N ∼= B3 M ∼= S3

∂N ∼= S2 S2 S3

B3

So             and              .

.

.



Whitehead’s Asphericity Question

J.H.C.Whitehead and friend

Is every subcomplex of an 
aspherical 2-complex, itself 
aspherical?



An Eilenberg-Maclane Space (a              ) for a group     is an 
aspherical CW-complex with                           . 

K(Γ, 1) Γ
π1K(Γ, 1) = Γ

The geometric dimension,            , of     is the minimal     such that 
there is a               for    of dimension    .

gd(Γ)
K(Γ, 1) Γ

Γ n
n

Note.                         — the cellular chain complex of a
               yields a projective resolution.

cd(Γ) ≤ gd(Γ)
K(Γ, 1)

nThe cohomological dimension,           , of     is the minimal    such that 
     admits a resolution

Γcd(Γ)

by projective       -modules. ZΓ

Z
0→ Pn → · · ·→ P1 → P0 → Z→ 0



The Eilenberg–Ganea Conjecture

S. Eilenberg T. Ganea

?
Eilenberg–Ganea Theorem

cd(Γ) ≥ 3 =⇒ cd(Γ) = gd(Γ)

Theorem (Stallings–Swan)

cd(Γ) = 1 ⇐⇒ gd(Γ) = 1 ⇐⇒ Γ is free.

Eilenberg–Ganea Conjecture

cd(Γ) = 2 =⇒ gd(Γ) = 2

(I am unaware of anywhere Eilenberg and 
Ganea actually stated this as conjecture.) 



    is of type       if it admits a               with finitely many    -cells.   Γ Fn K(Γ, 1) n

Note.  Type      is finite presentability.   F2

Note.  Type      implies type         .   Fn FPn

    is of type          if      admits a partial projective resolution 

by finitely generated projective       -modules. ZΓ

ZFPnΓ

    is of type          if      admits a projective resolution 

by finitely generated projective       -modules. ZΓ

ZΓ FP
0→ Pn → · · ·→ P1 → P0 → Z→ 0

Pn → · · ·→ P1 → P0 → Z→ 0



Bestvina–Brady Groups

M. Bestvina

N. Brady

 A finite graph     with vertices     and edges    
determines a right-angled Artin group

AG E

.A = 〈A | [ai, aj ] = 1, ∀(ai, aj) ∈ E〉

Define       to be the kernel of the homomophism    
              in which                          .  a !→ 1,∀a ∈ A

Γ
A→ Z

     is the flag complex with 1-skeleton    .GN

Theorem  

 of type          iff                                  .FPn

 of type        iff       is acyclic.FP
 finitely presentable (of type      ) iff      is simply 
connected.

F2

Γ is

N

N

Hi(N) = 0,∀i < n



Suppose      is a spine of the Poincaré Homology Sphere.
FP

Corollary

Then     is       but not finitely presentable.   (In fact,                   .)

either    is a counterexample to the Eilenberg–Ganea 
Conjecture (i.e. has                   ),  

or  Whitehead’s Asphericity question has a negative answer. (The 
universal cover of a 2-dimensional                would have a non-
contractible subcomplex.) 

Moreover,

Main tools –       Morse Theory

                         CAT(0) geometry

N
cd(Γ) = 2Γ

gd(Γ) = 3
Γ

K(Γ, 1)



The Relation Gap Problem

Open question.  Is there a presentation with (finite) non-zero 
relation gap?

Γ = 〈a1, . . . , am | r1, . . . , rn〉 = F/R

F = F (a1, . . . , am) R = 〈〈r1, . . . , rn〉〉where                                   and                               . 

Rank of        as a      -module                                                         .  Rab ZΓ ≤ min
{

k

∣∣∣∣
∃ s1, . . . , sk ∈ F,
R = 〈〈s1, . . . sk〉〉

}

The difference is the relation gap.

If      is of type         then        is finitely generated as a      -module.  FP2 Rab ZΓΓ
So the Bestvina–Brady example has infinite relation gap.

F R Rab =
R

[R,R]
    acts on     by conjugation, so induces an action of     on                        .Γ



Bridson–Tweedale example

M. Bridson

M. Tweedale

Γ =
〈

x, y, s, t

∣∣∣∣
xm = 1, xsxx−s = xm+1,
yn = 1, ytyy−t = yn+1

〉

where                 , and                          and
                       are coprime.

(m + 1)m − 1
(n + 1)n − 1

m,n > 1

The       -module         is generated by  RabZΓ
xsxx−sx−m−1, ytyy−ty−n−1, xmyn

.

(Cf. examples of K. Gruenberg & P. Linnell, and also some Bestvina–Brady-
style examples of Brisdon & Tweedale.)   

Conjecture.      is not the normal closure of 3 
elements.

F (x, y, s, t)/RΓ

R

Express     as                          .



The         Conjecture

C.T.C. Wall

D(2)

D(n)

X X̃     a space with universal cover    .  

X     enjoys the           property when

Hn+1(X,M) = 0

i > n

                               for all local coefficient 
systems       on     .

for all          , and

M X

Theorem. For            , a finite CW complex      is homotopic to a   
 finite   -dimensional CW complex iff     enjoys the           property.  

n != 2 X
n X D(n)

Folk Conjecture.  The same is true when           .n = 2

Hi(X̃) = 0



Theorem (M. Dyer).  If there is a group     with              
and a presentation that     

H3(Γ, ZΓ) = 0Γ

has a relation gap, and

realises the deficiency of    ,Γ

then the          -Conjecture is false.D(2)

The Bridson–Tweedale examples would satisfy these conditions if 
they have a relation gap.

J. Harlander wrote up a proof.  
See also M. Tweedale’s thesis.



W. Magnus

Magnus Problem

〈 a1, . . . , am | r1, . . . , rm〉
Given a balanced presentation

of the trivial group, can some     always be replaced
by a primitive element of                           whilst
triviality of the group is preserved?

ri

F (a1, . . . , am)

S.V. Ivanov gave an explicit negative example (with             ). m = 3



Kervaire–Laudenbach Conjecture

M. Kervaire

?
F. Laudenbach

If     is non-trivial and                  ,   Γ
Γ ∗ Z
〈〈r〉〉

then             is non-trivial.

r ∈ Γ ∗ Z

A. Klyachko

(Klyachko.)  The conjecture is true 
for all torsion free    .Γ

There is a good account by R. Fenn.

?



Remark (S.V. Ivanov).

Special case of the Kervaire–Laudenbach Conjecture –

〈 a1, . . . , am | r1, . . . , rm〉If                                                 is a balanced presentation of the 

trivial group and           does not occur in                        , then 

                                                               is also trivial. 

am
±1 r1, . . . , rm−1

Γ = 〈 a1, . . . , am−1 | r1, . . . , rm−1〉

By Klyachko, in a counterexample,     would contain torsion 
elements and so its presentation 2-complex would not be 
aspherical, answering Whitehead’s problem negatively.

Γ



“Toy” Problems

1.)  Can                                                    be converted to
                              using Andrews–Curtis moves?  

〈 a, b | aba = bab, a4 = b3 〉
〈 a, b | a, b 〉

2.)  Do there exist                 such that 

= 〈 x, y, s, t | r1, r2, r3 〉

r1, r2, r3

?

〈
x, y, s, t

∣∣∣∣
x2 = 1, xsxx−s = x3,
y3 = 1, ytyy−t = y4

〉

3.)  Does the Bestvina–Brady example have                   ?  gd(Γ) = 3



Triumphs of Geometry

Poincaré Conjecture — Geometrization + Ricci Flow

Magnus Problem (Ivanov) — small cancellation

Bestvina–Brady — CAT(0) geometry and Morse Theory
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