

Cornell University

SCREWBALL CONJECTURES IN GROUP THEORY AND LOW-DIMENSIONAL TOPOLOGY

TIMOTHY RILEY

$$\Gamma = \langle a_1, \dots, a_m | r_1, \dots, r_n \rangle$$
$$= F(a_1, \dots, a_m) / \langle \langle r_1, \dots, r_n \rangle \rangle$$

$\pi_1(K) = \Gamma$ by Seifert-van Kampen

 $\langle a, b \mid \rangle$

$$\langle a, b \mid a^{-1}b^{-1}ab \rangle$$

 $\langle \, a,b,c,d \ \mid \ a^{-1}b^{-1}ab\,c^{-1}d^{-1}cd \, \rangle$ a b C a C a

THE ANDREWS-CURTIS CONJECTURE

FREE GROUPS AND HANDLEBODIES

J. J. ANDREWS¹ AND M. L. CURTIS¹

In this note we state a conjecture about free groups and give some topological consequences which would follow if the conjecture is true.

Proc AMS 1965

THE ANDREWS-CURTIS CONJECTURE

Every balanced presentation $\langle a_1, \dots, a_m | r_1, \dots, r_m \rangle$ of the trivial group can be converted to $\langle a_1, \dots, a_m | a_1, \dots, a_m \rangle$ using the moves $r_i, r_j \mapsto r_i r_j, r_j$ $r_i \mapsto r_i^{-1}$

 $r_i \mapsto r_i^{\pm 1}$ $r_i \mapsto a_k^{\pm 1} r_i a_k^{\pm 1}$ $a^{-1}b^{-1}ab^{-1}a^{-1}, aba^{-1}$ $a^{-1}b^{-1}, aba^{-1}$ $a^{-1}b^{-1}, b$ a^{-1}, b a, b

 $abab^{-1}a^{-1}b^{-1}, \ a^3b^{-2}$ $a^{3}b^{-2}, a^{2}b^{-1}aba^{-1}b^{-1}$ $a^2b^{-1}aba^{-1}b^{-1}, \ ab^{-1}ab^{-1}a^{-1}b$ $ab^{-1}ab^{-1}a^{-1}, \ a^2b^{-1}ab^{-1}$ $a^2b^{-1}ab^{-1}, a^2b^{-1}$ a^2b^{-1}, ab^{-1} ab^{-1}, a a, b

Andrew Casson

Unknown:

$$\langle a, b \mid aba = bab, a^{n+1} = b^n \rangle \qquad n \ge 3$$

Akbulut-Kirby

$$\langle a, b \mid a^2b = ba^3, w = 1 \rangle$$

where the exponent sum of b in w is ± 1 .

Miller-Schupp

$$\langle a, b, c \mid c^{-1}bc = b^2, a^{-1}ca = c^2, b^{-1}ab = a^2 \rangle$$

B.Neumann-Rapaport-Higman

Computational searches

Miasnikov & Myasnikov 1999 Casson ~2003 Havas & Ramsay 2003 Panteleev & Ushakov 2016 Lisitsa 2019

No counterexamples with relations of total length ≤ 12 .

All examples with relations of total length ≤ 13 trivializable or reducible to

 $\langle a, b \mid aba = bab, a^4 = b^3 \rangle$

Bridson (2015) cf. Lishak (2015)

Presentations of total length $\sim n$ which are trivialisable but require at least

 $2^{2} \left[\log_2 n \right]$

moves.

E.g.

$$\begin{split} \langle a,t,\alpha,\tau \mid [tat^{-1},a]a^{-1}, & [\tau\alpha\tau^{-1},\alpha]\alpha^{-1}, \\ & \alpha t^{-1}\alpha^{-1}[a,\,[t[t[ta^{20}t^{-1},\,a]t^{-1},\,a]t^{-1},\,a]], \\ & a\tau^{-1}a^{-1}[\alpha,\,[\tau[\tau[\tau\alpha^{20}\tau^{-1},\,\alpha]\tau^{-1},\,\alpha]\tau^{-1},\,\alpha]] \rangle. \end{split}$$

requires at least 10^{10,000} moves.

Myasnikov (1984)

No obstructions in solvable groups

Borovik-Lubotzky-Myasnikov (2003) No obstructions in finite groups (

$$\langle a_1, \dots, a_m | r_1, \dots, r_m \rangle$$

$$\downarrow$$

$$\langle a_1, \dots, a_m | a_1, \dots, a_m \rangle$$

$$r_i, r_j \mapsto r_i r_j, r_j$$

$$r_i \mapsto r_i^{-1}$$

$$r_1 \mapsto r_i^{-1}$$

 $r_i \mapsto a_k^{\pm 1} r_i a_k^{\pm 1}$

Barmak (2018)

P and *Q* are not AC-equivalent despite their 2-complexes being simple homotopy equivalent.

Invariant in F_2/F_2'' .

Stabilization:

$\langle a_1, \dots, a_m \mid r_1, \dots, r_m \rangle$ $\nleftrightarrow \langle a_1, \dots, a_m, a_{m+1} \mid r_1, \dots, r_m, a_{m+1} \rangle$

THE POINCARE CONJECTURE

Every simply connected, closed 3-manifold is homeomorphic to the 3sphere.

Il y a donc deux cycles de V qui ne sont pas équivalents à zéro; donc V n'est pas simplement connexe.

En d'autres termes, le groupe fondamental de V ne saurait se réduire à la substitution identique, puisqu'il contient comme sous-groupe le groupe icosaédrique.

Il resterait une question à traiter :

Est-il possible que le groupe fondamental de V se réduise à la substitution identique, et que pourtant V ne soit pas simplement connexe?

En d'autres termes, peut-on tracer les cycles K''_1 et K''_2 de telle façon qu'ils ne soient pas bouclés et ne se coupent pas; que les équivalences

 $K'_{\mathbf{r}} \equiv K'_{\mathbf{2}} \equiv 0, \quad K''_{\mathbf{r}} \equiv K''_{\mathbf{2}} \equiv 0$

Cinquième Complément à L'Analysis Situs, 1904

 $\Sigma = U_1 \cap U_2 = \partial U_1 = \partial U_2$ $\Gamma = \pi_1 \Sigma = \left\langle a_1, b_1, \dots, a_g, b_g \left| \prod_{i=1}^g [a_i, b_i] \right\rangle$ $F = \pi_1 U_1 = \pi_1 U_2$

 $\Sigma \xrightarrow{\to U_1} \text{ induces } \Gamma \xrightarrow{\twoheadrightarrow F} \text{ i.e. } \Gamma \xrightarrow{\to F \times F}$

which is surjective iff $\pi_1 M = 1$. A "splitting homomorphism."

Equivalence of splitting homomorphisms:

 $\begin{array}{cccc} \Gamma & \twoheadrightarrow & F \times F \\ \downarrow \cong & \circ & \downarrow(\alpha,\beta) & \alpha,\beta \in \operatorname{Aut}(F) \\ \Gamma & \twoheadrightarrow & F \times F \end{array}$

Stallings (1965)

Poincaré holds iff every splitting homomorphism is equivalent to

$$\left\langle a_1, b_1, \dots, a_g, b_g \left| \prod_{i=1}^g [a_i, b_i] \right\rangle \twoheadrightarrow \langle a_1, \dots, a_g \rangle \times \langle b_1, \dots, b_g \rangle \right\rangle$$

GRIGORCHUK-KURCHANOV CONJECTURE

 $A = \{a_1, \ldots, a_n\}$. Every tuple of words $(r_1,\ldots,r_n,q_1,\ldots,q_n)$ on $A^{\pm 1}$ such that $\{ t^{-1}r_it \mid i=1,\ldots,n; t \in F(q_1,\ldots,q_n) \}$ generates F(A) can be converted to $(a_1,\ldots,a_n,1,\ldots,1)$ using $r_i, r_j \mapsto r_i r_j, r_j$ $q_i, q_j \mapsto q_i q_j, q_j$

 $\begin{array}{cccc} r_i, \ r_j \mapsto r_i r_j, \ r_j & q_i, q_j \mapsto q_i q_j, q_j \\ r_i \mapsto r_i^{-1} & q_i \mapsto q_i^{-1} \\ r_i \mapsto a_k^{\pm 1} r_i a_k^{\pm 1} & q_i \mapsto q_i r_j \end{array}$

$$G-K \implies A-C$$

(1993) G–K holds iff every splitting homomorphism

$F_{2n} \twoheadrightarrow F_n \times F_n$

is equivalent to

 $\langle a_1, b_1, \ldots, a_n, b_n \rangle \twoheadrightarrow \langle a_1, \ldots, a_g \rangle \times \langle b_1, \ldots, b_g \rangle$

THE GENERALIZED POINCARE CONJECTURE

If a closed n-manifold M is homotopic to an n-sphere, is it an n-sphere?

THE GENERALIZED POINCARE CONJECTURE

If a closed *n*-manifold *M* is homotopic to an *n*-sphere, is it an *n*-sphere?

$\Gamma = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle$

If m = n and Γ is trivial, then $\chi(K) = 1$ and K is contractible.

$K \hookrightarrow \mathbb{R}^5$

N = regular neighbourhood of K in \mathbb{R}^5

 $M = \partial N$ is a closed 4-manifold.

If the presentation is balanced, then $\chi(M) = \chi(S^4) = 2$.

 $\pi_1 M = \pi_1 N = \pi_1 K$

So if $\pi_1 K = 1$, then *M* is homotopy equivalent to S^4 .

A-C-moves correspond to handle-slides.

So potential counterexamples to A-C yield potential counterexamples to the Smooth 4–Dimensional Poincaré Conjecture.

Gompf (1991). $\langle a, b | aba = bab, a^5 = b^4 \rangle$ yields a standard 4-sphere.

SIMPLE HOMOTOPY AND COLLAPSIBILITY *K*, *L* CW-complexes

Elementary expansions are their inverses.

X, Y "simple homotopic" when homeomorphic to complexes related by a sequence of elementary collapses and expansions.

X "collapsible" when homeomorphic to a complex reducible to a point through a sequence of elementary collapses.

Whitehead: a PL-manifold is collapsible iff it is a ball.

THE ZEEMAN CONJECTURE

1964. If K is a finite contractible 2-complex then $K \times I$ is collapsible.

E.g. the dunce hat $\langle a \mid a^2 a^{-1} \rangle$ $K = \bigwedge$

Folklore, P. Wright, J.R. Stallings

A-C with stabilization holds iff every finite contractible 2-complex is simple homotopic to a point via dimension at most 3.

 $egin{aligned} r_i, \ r_j &\mapsto r_i r_j, \ r_j \ r_i &\mapsto r_i^{-1} \ r_i &\mapsto a_k^{\pm 1} r_i a_k^{\pm 1} \end{aligned}$

So Zeeman \implies A-C with stabilization.

Also, Zeeman \implies Poincaré!

Suppose M is a closed simply connected 3-manifold. Assume M is simplicially triangulated.

Let N be M with the interior of a 3-simplex removed. Let K be a spine of N.

 $\chi(K) = \chi(N) = \chi(M) + 1 = 1$ $\pi_1 K = \pi_1 N = \pi_1 M = 1$ $\Longrightarrow K \text{ contractible}$

 $N \times I \searrow K \times I \underset{\text{Zeeman}}{\searrow} \text{pt}$ $N \times I \cong B^{4} \quad N \times \{0\} \subseteq \partial(N \times I) \cong S^{3}$ $\partial N \cong S^{2} \quad \text{A PL}-S^{2} \text{ in an } S^{3} \text{ bounds a } B^{3} \text{ by Schönflies.}$ So $N \cong B^{3}$ and $M \cong S^{3}$.

R. Lickorish (1973) $\langle a, b \mid a^2b^3, a^3b^4 \rangle$ does not give a counterexample to Zeeman.

M. Cohen (1975) If *K* is a finite contractible 2–complex then $K \times I^6$ is collapsible.

M. Cohen (1977)

For all $n \ge 3$, there is a finite contractible *n*-complex *K* such that $K \times I$ is not collapsible.

Zeeman is true for 2-complexes arising from Poincaré.

WHITEHEAD'S ASPHERICITY QUESTION

Is every connected subcomplex of an aspherical 2-complex itself aspherical?

Why are these questions hard?

There is no algorithm to decide which finite 2–complexes have trivial π_1 .

Open Question

Is there an algorithm to decide which finite simplicial 2-complexes are contractible?

...equivalently, which finite balanced presentations give the trivial group?

Collatz map

 $n \mapsto egin{cases} 3n+1 & ext{for } n ext{ odd} \ n/2 & ext{for } n ext{ even} \end{cases}$

Leary (2019)

There is no algorithm to decide which infinite recursively described acyclic aspherical 2– complexes are contractible.

Leary (2019)

There is an infinite recursively described acyclic aspherical 2-complex which is contractible iff the Collatz Conjecture is true.

THANK YOU

Further references / acknowledgements

D. Calegari, The 4-dimensional Poincaré Conjecture, unpublished notes available on his web page

A. Kupers, Zeeman's Conjecture, unpublished notes available on his web page

J. Harlander, C. Hog-Angeloni, W. Metzler, S. Rosebrock, Problems in Low-dimensional topology, Encyclopaedia of Mathematics, Springer

D. Rolfsen, Cousins of the Poincaré Conjecture, unpublished notes on his web site