MATH 6310, Homework 3 Due in class 9/11

Review direct and semidirect products and abelian groups in §5.

Do $\S5.1$, question 17; $\S5.2$, questions 2(c), 3(c), 4(c), 9; $\S5.4$, question 20; and $\S5.5$, questions 12, 16, 23

- 1. (a) Show that the dihedral group D_8 can be expressed as a split extension of Z_4 by Z_2 and also as a split extension of V_4 by Z_2 (where $V_4 \cong Z_2 \times Z_2$ is the Klein 4–group).
 - (b) Show that S_4 is a split extension of V_4 by S_3 and also of A_4 by Z_2 .
- 2. Say a group G is p-nilpotent if there is a normal subgroup K (called a normal p-complement) such that for any Sylow p-subgroup P we have G = PK and $K \cap P = \{e\}$.
 - (a) Show that if G is p-nilpotent, then $K = \{g \in G \mid p \nmid o(g)\}$. (Here o(g) denotes the order of g.)
 - (b) Deduce that G is p-nilpotent if and only if $\{g \in G \mid p \nmid o(g)\}$ is a subgroup; and also that if G is p-nilpotent, then its normal p-complement is unique.
 - (c) Prove that subgroups and factor groups of *p*-nilpotent groups are *p*-nilpotent.
 - (d) Prove that if G is p-nilpotent, then for any p-subroup Q of G, we have $N_G(Q)/C_G(Q)$ is a p-group.

[The converse of (d) is a theorem of Frobenius.]

3. Suppose that M and N are normal subgroups of G. By considering the map $g \mapsto (gM, gN)$ $(g \in G)$, show that $G/(M \cap N)$ is isomorphic to a subgroup of $G/M \times G/N$. Show further that if [G:M] and [G:N] are coprime, then

$$G/(M \cap N) \cong G/M \times G/N.$$

Deduce that G is p-nilpotent for all prime divisors p of |G| if and only if G is the direct product of its Sylow subgroups.

Read ahead in §6.