MATH 6310, Homework 3
 Due in class 9/11

Review direct and semidirect products and abelian groups in $\S 5$.
Do $\S 5.1$, question $17 ; ~ § 5.2$, questions $2(\mathrm{c}), 3(\mathrm{c}), 4(\mathrm{c}), 9 ; \S 5.4$, question 20 ; and $\S 5.5$, questions 12 , 16, 23

1. (a) Show that the dihedral group D_{8} can be expressed as a split extension of Z_{4} by Z_{2} and also as a split extension of V_{4} by Z_{2} (where $V_{4} \cong Z_{2} \times Z_{2}$ is the Klein 4-group).
(b) Show that S_{4} is a split extension of V_{4} by S_{3} and also of A_{4} by Z_{2}.
2. Say a group G is p-nilpotent if there is a normal subgroup K (called a normal p-complement) such that for any Sylow p-subgroup P we have $G=P K$ and $K \cap P=\{e\}$.
(a) Show that if G is p-nilpotent, then $K=\{g \in G \mid p \nmid o(g)\}$. (Here $o(g)$ denotes the order of g.)
(b) Deduce that G is p-nilpotent if and only if $\{g \in G \mid p \nmid o(g)\}$ is a subgroup; and also that if G is p-nilpotent, then its normal p-complement is unique.
(c) Prove that subgroups and factor groups of p-nilpotent groups are p-nilpotent.
(d) Prove that if G is p-nilpotent, then for any p-subroup Q of G, we have $N_{G}(Q) / C_{G}(Q)$ is a p-group.
[The converse of (d) is a theorem of Frobenius.]
3. Suppose that M and N are normal subgroups of G. By considering the map $g \mapsto(g M, g N)$ $(g \in G)$, show that $G /(M \cap N)$ is isomorphic to a subgroup of $G / M \times G / N$. Show further that if $[G: M]$ and $[G: N]$ are coprime, then

$$
G /(M \cap N) \cong G / M \times G / N .
$$

Deduce that G is p-nilpotent for all prime divisors p of $|G|$ if and only if G is the direct product of its Sylow subgroups.

Read ahead in $\S 6$.

