MATH 6310, Homework 4 Due in class 9/18

Look over $\S6.1$ and (perhaps just in overview) $\S6.2$.

Do §6.1: qus. 1, 14, 17, 25 (the definition of $\Phi(G)$ is at the bottom of page 198); §6.2: qu. 27.

- 1. Find the upper and lower central series for A_4 .
- 2. Recall that

$$D_{2n} = \langle u, t \mid u^n = e = t^2, tut^{-1} = u^{-1} \rangle.$$

Show that D_{2n} is nilpotent if and only if n is a power of 2. In this case (where $n = 2^a$ with $a \ge 1$), determine the lower central series.

3. Suppose a group G contain elements g, h such that the commutator [g, h] commutes with both g and h. Show that for all $m, n \in \mathbb{N}$,

$$[g, h^n] = [g, h]^n$$
 and $[g^m, h] = [g, h]^m$.

Suppose now that G is nilpotent and x and y are elements of coprime order m and n. Show (by induction on the class of G or otherwise) that xy = yx. (*Caution: do not assume G is finite!*)

- 4. Suppose that $G = H \times K$. Show that for each *i* the terms of the lower central series are related by $G^i = H^i \times K^i$. (So if H and K are nilpotent, then so is G.)
- 5. (a) Let H_1, H_2, K_1, K_2 be normal subgroups of G. Show that

$$[H_1H_2, K_1K_2] = [H_1, K_1][H_2, K_1][H_1, K_2][H_2, K_2].$$

(b) Suppose that H and K are normal subgroups of G both of which are nilpotent. Show that for any given r, the subgroup

$$[\underbrace{HK,\ldots[HK,[HK,HK]]}_r]\ldots]$$

is contained in a product of normal subgroups of type $[X_r, \ldots [X_3, [X_2, X_1]] \ldots]$ where each X_i is either H or K.

- (c) Show that in such a product $[X_r, ..., [X_3, [X_2, X_1]]...]$, that if k + 1 of the X_i are H, then $[X_r, ..., [X_3, [X_2, X_1]]...] \le H^k$ and if $\ell + 1$ of the X_i are K, then $[X_r, ..., [X_3, [X_2, X_1]]...] \le K^{\ell}$.
- (d) Deduce that if H has class c and K has class d, then HK is nilpotent of class at most c + d.

Read ahead in $\S6.3$.