MATH 6310, Homework 5 Due in class 9/25

Continue to look over $\S6.1$ and, in overview, $\S6.2$. Additionally look over $\S6.3$.

Do $\S6.3$, Questions 1 and 3.

1. Show that for a group G, the following are equivalent.

- (i) There exists a normal subgroup $A \leq G$ such that both A and G/A are abelian.
- (ii) G'' = 1. (Notation: G' denotes the derived subgroup [H, H] and H'' denotes (H')'.)

Such a group is called *metabelian*.

- 2. Which of the following are nilpotent and which are solvable (or neither, or both)?
 - (a) S_4
 - (b) $\langle a, b \mid b^{-1}ab = a^2 \rangle$
 - (c) $\mathbb{Z} \wr \mathbb{Z}$ which is defined to be $S \rtimes_{\varphi} \mathbb{Z}$ where $S = \bigoplus_{\mathbb{Z}} \mathbb{Z}$ denotes the set of finitely supported functions $f : \mathbb{Z} \to \mathbb{Z}$ and \mathbb{Z} acts on S by

$$(\varphi(r)(f))(n) = f(n+r).$$

(Cf. the definition of the wreath products we saw in Qu. 23 from §5.5. Another way to describe S is as the set of \mathbb{Z} -indexed integer sequences with only finitely many non-zero entries, and then the action is to shift the indexing of these sequences.)

- (d) The group of orientation–preserving isometries of the plane.
- (e) The unitriangular matrix group $UT_n(\mathbb{Z})$, the multiplicative group of upper triangular $n \times n$ integer matrices with all 1s on the diagonal.
- (f) The Borel subgroup $B_n(\mathbb{R})$, consisting of invertible upper triangular real $n \times n$ matrices.

For those that are nilpotent, what is their class? For those that are solvable what is their solvability length (a.k.a. derived length)?

3. Prove that $\langle a, b, c | a^{-1}b^{-1}ab = c, ac = ca, bc = cb \rangle$ presents \mathcal{H}_3 , the three-dimensional integral Heisenberg group, which is the multiplicative group of three-by-three matrices of the form

$$\left(\begin{array}{rrrr}1 & x & z\\0 & 1 & y\\0 & 0 & 1\end{array}\right),$$

where $x, y, z \in \mathbb{Z}$. (In other words, $\mathcal{H}_3 = \mathrm{UT}_3(\mathbb{Z})$ of the previous question.) Show that every element of \mathcal{H}_3 can be expressed uniquely as $a^r b^s c^t$ for some $r, s, t \in \mathbb{Z}$.

4. Suppose $\langle A \mid R \rangle$, where the generating set is $A = \{a_1, \ldots, a_s\}$ and the defining relators are $R = \{r_1, \ldots, r_m\}$, presents a group $G \cong F(A)/\langle\!\langle R \rangle\!\rangle$.

The defining relations tell us when words w and w' represent the same group element: specifically, when w' can be obtained from w by a finite sequence of the moves –

- free reduction: remove a substring $a_i a_i^{-1}$ or $a_i^{-1} a_i$ from within a word;
- free expansion: insert a substring $a_i a_i^{-1}$ or $a_i^{-1} a_i$ into a word;
- apply a defining relation: replace a substring u in a word with a new substring v such that uv^{-1} or vu^{-1} is a cyclic permutation of one of the words in R.

A *null-sequence* for a word w is such a sequence that transforms w to the empty word. The words that admit null-sequences are those that represent the identity in the group.

The Dehn function $f : \mathbb{N} \to \mathbb{N}$ maps n to the minimal number N such that if w is a word of length at most n that represents the identity, then there is a null-sequence for w involving at most N applications-of-defining-relations moves. (There are only finitely many words of length at most n since the alphabet A is finite, and so N is well-defined.)

- (a) Find a null–sequence for $a^{-2}b^{-2}a^{2}b^{2}$ with respect to the presentation $\langle a, b \mid a^{-1}b^{-1}ab \rangle$ of $\mathbb{Z} \times \mathbb{Z}$.
- (b) Find a null-sequence for $a^{-2}b^{-1}ab^2ab^{-1}$ with respect to the presentation of \mathcal{H}_3 in Question ??.
- (c) Show that there is a constant C > 0 such that the Dehn function f(n) of the presentation $\langle a, b \mid a^{-1}b^{-1}ab \rangle$ of $\mathbb{Z} \times \mathbb{Z}$ satisfies $f(n) \leq Cn^2$ for all n. Bonus: find the minimal C.
- (d) Show that there is a constant C > 0 such that the Dehn function f(n) of the presentation of \mathcal{H}_3 from Question ?? satisfies $f(n) \leq Cn^3$ for all n. *Hint: use the last part of that question.*
- (e) Show that, we can equivalently define the Dehn function by declaring f(n) to be the minimal N such that if w is a word of length at most n that represents the identity, then w is equal in F(A) to a product

$$(u_1^{-1}r_{j_1}^{\epsilon_1}u_1)\cdots(u_M^{-1}r_{j_M}^{\epsilon_M}u_M)$$

of some $M \leq N$ conjugates of defining relations or their inverses — that is, each u_i is a word on $A^{\pm 1}$, each r_{j_i} is in R, and each ϵ_i is ± 1 .

(f) The words $w_k := a^{-k}b^{-k}a^kb^k$ have length 4k and represent the identity in $\langle a, b | a^{-1}b^{-1}ab \rangle$.

Suppose, as per part (a), that u_i are words on $\{a, b\}^{\pm 1}$ and $\epsilon_i = \pm 1$ so that

$$W_k = \left(u_1^{-1} (a^{-1}b^{-1}ab)^{\epsilon_1} u_1 \right) \cdots \left(u_M^{-1} (a^{-1}b^{-1}ab)^{\epsilon_M} u_M \right)$$

equals w_k in F(a, b).

- i. Show that W_k represents the same element as $c^{\epsilon_1} \cdots c^{\epsilon_M}$ in \mathcal{H}_3 .
- ii. Show that w_k and c^{k^2} represent the same element in \mathcal{H}_3 and that c has infinite order in \mathcal{H}_3 .
- iii. Show that $M \ge k^2$.

Together parts (e) and (f) establish a quadratic lower bound on the Dehn function of $\langle a, b | a^{-1}b^{-1}ab \rangle$. A similar argument can be used to establish a cubic lower bound on the Dehn function of \mathcal{H}_3 .

Read ahead in §7.