MATH 6310, Homework 5

Due in class 9/25

Continue to look over $\S 6.1$ and, in overview, $\S 6.2$. Additionally look over $\S 6.3$.
Do $\S 6.3$, Questions 1 and 3.

1. Show that for a group G, the following are equivalent.
(i) There exists a normal subgroup $A \unlhd G$ such that both A and G / A are abelian.
(ii) $G^{\prime \prime}=1$. (Notation: G^{\prime} denotes the derived subgroup $[H, H]$ and $H^{\prime \prime}$ denotes $\left(H^{\prime}\right)^{\prime}$.)

Such a group is called metabelian.
2. Which of the following are nilpotent and which are solvable (or neither, or both)?
(a) S_{4}
(b) $\left\langle a, b \mid b^{-1} a b=a^{2}\right\rangle$
(c) $\mathbb{Z} \imath \mathbb{Z}$ which is defined to be $S \rtimes_{\varphi} \mathbb{Z}$ where $S=\bigoplus_{\mathbb{Z}} \mathbb{Z}$ denotes the set of finitely supported functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and \mathbb{Z} acts on S by

$$
(\varphi(r)(f))(n)=f(n+r)
$$

(Cf. the definition of the wreath products we saw in Qu. 23 from §5.5. Another way to describe S is as the set of \mathbb{Z}-indexed integer sequences with only finitely many non-zero entries, and then the action is to shift the indexing of these sequences.)
(d) The group of orientation-preserving isometries of the plane.
(e) The unitriangular matrix group $\mathrm{UT}_{n}(\mathbb{Z})$, the multiplicative group of upper triangular $n \times n$ integer matrices with all 1 s on the diagonal.
(f) The Borel subgroup $B_{n}(\mathbb{R})$, consisting of invertible upper triangular real $n \times n$ matrices.

For those that are nilpotent, what is their class? For those that are solvable what is their solvability length (a.k.a. derived length)?
3. Prove that $\left\langle a, b, c \mid a^{-1} b^{-1} a b=c, a c=c a, b c=c b\right\rangle$ presents \mathcal{H}_{3}, the three-dimensional integral Heisenberg group, which is the multiplicative group of three-by-three matrices of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

where $x, y, z \in \mathbb{Z}$. (In other words, $\mathcal{H}_{3}=\mathrm{UT}_{3}(\mathbb{Z})$ of the previous question.)
Show that every element of \mathcal{H}_{3} can be expressed uniquely as $a^{r} b^{s} c^{t}$ for some $r, s, t \in \mathbb{Z}$.
4. Suppose $\langle A \mid R\rangle$, where the generating set is $A=\left\{a_{1}, \ldots, a_{s}\right\}$ and the defining relators are $R=\left\{r_{1}, \ldots, r_{m}\right\}$, presents a group $G \cong F(A) /\langle\langle R\rangle\rangle$.
The defining relations tell us when words w and w^{\prime} represent the same group element: specifically, when w^{\prime} can be obtained from w by a finite sequence of the moves -

- free reduction: remove a substring $a_{i} a_{i}^{-1}$ or $a_{i}{ }^{-1} a_{i}$ from within a word;
- free expansion: insert a substring $a_{i} a_{i}^{-1}$ or $a_{i}^{-1} a_{i}$ into a word;
- apply a defining relation: replace a substring u in a word with a new substring v such that $u v^{-1}$ or $v u^{-1}$ is a cyclic permutation of one of the words in R.

A null-sequence for a word w is such a sequence that transforms w to the empty word. The words that admit null-sequences are those that represent the identity in the group.
The Dehn function $f: \mathbb{N} \rightarrow \mathbb{N}$ maps n to the minimal number N such that if w is a word of length at most n that represents the identity, then there is a null-sequence for w involving at most N applications-of-defining-relations moves. (There are only finitely many words of length at most n since the alphabet A is finite, and so N is well-defined.)
(a) Find a null-sequence for $a^{-2} b^{-2} a^{2} b^{2}$ with respect to the presentation $\left\langle a, b \mid a^{-1} b^{-1} a b\right\rangle$ of $\mathbb{Z} \times \mathbb{Z}$.
(b) Find a null-sequence for $a^{-2} b^{-1} a b^{2} a b^{-1}$ with respect to the presentation of \mathcal{H}_{3} in Question ??.
(c) Show that there is a constant $C>0$ such that the Dehn function $f(n)$ of the presentation $\left\langle a, b \mid a^{-1} b^{-1} a b\right\rangle$ of $\mathbb{Z} \times \mathbb{Z}$ satisfies $f(n) \leq C n^{2}$ for all n. Bonus: find the minimal C.
(d) Show that there is a constant $C>0$ such that the Dehn function $f(n)$ of the presentation of \mathcal{H}_{3} from Question ?? satisfies $f(n) \leq C n^{3}$ for all n. Hint: use the last part of that question.
(e) Show that, we can equivalently define the Dehn function by declaring $f(n)$ to be the minimal N such that if w is a word of length at most n that represents the identity, then w is equal in $F(A)$ to a product

$$
\left(u_{1}{ }^{-1} r_{j_{1}}{ }^{\epsilon_{1}} u_{1}\right) \cdots\left(u_{M}{ }^{-1} r_{j_{M}}{ }^{\epsilon_{M}} u_{M}\right)
$$

of some $M \leq N$ conjugates of defining relations or their inverses - that is, each u_{i} is a word on $A^{ \pm 1}$, each $r_{j_{i}}$ is in R, and each ϵ_{i} is ± 1.
(f) The words $w_{k}:=a^{-k} b^{-k} a^{k} b^{k}$ have length $4 k$ and represent the identity in $\langle a, b|$ $\left.a^{-1} b^{-1} a b\right\rangle$.
Suppose, as per part (a), that u_{i} are words on $\{a, b\}^{ \pm 1}$ and $\epsilon_{i}= \pm 1$ so that

$$
W_{k}=\left(u_{1}^{-1}\left(a^{-1} b^{-1} a b\right)^{\epsilon_{1}} u_{1}\right) \cdots\left(u_{M}^{-1}\left(a^{-1} b^{-1} a b\right)^{\epsilon_{M}} u_{M}\right)
$$

equals w_{k} in $F(a, b)$.
i. Show that W_{k} represents the same element as $c^{\epsilon_{1}} \cdots c^{\epsilon_{M}}$ in \mathcal{H}_{3}.
ii. Show that w_{k} and $c^{k^{2}}$ represent the same element in \mathcal{H}_{3} and that c has infinite order in \mathcal{H}_{3}.
iii. Show that $M \geq k^{2}$.

Together parts (e) and (f) establish a quadratic lower bound on the Dehn function of $\left\langle a, b \mid a^{-1} b^{-1} a b\right\rangle$. A similar argument can be used to establish a cubic lower bound on the Dehn function of \mathcal{H}_{3}.

Read ahead in $\S 7$.

