MATH 6310, Homework 8
 Due in class 10/23

Please look over $\S 8.3$ and on into $\S 9$ and do

- $\S 8.3$, questions 3 (see Corollary 19 on page 291), 6,8
- $\S 9.1$, question 8
- $\S 9.3$, question 4
and -

1. Let R be a UFD with field of fractions F. Let f be a monic polynomial in $R[x]$. Show that every root of f in F lies in R. (This problem generalizes Euclid's theorem that $\sqrt{2}$ is irrational. It has a straightforward direct proof, but you might find it instructive to deduce it from Gausss lemma.)
2. Let R be a UFD with field of fractions F. Prove that the quotient group F^{\times} / R^{\times}is a free abelian group; in other words, it is isomorphic to a direct sum of copies of \mathbb{Z}.
3. (a) An integral domain is a UFD if and only if it satisfies:
(1) Every irreducible element is prime.
(2) The principal ideals satisfy the ACC.

Much of a proof can be found in the arguments I gave in class. You do not have to repeat those arguments, but please determine and explain the missing steps required to prove the result.
(b) Question 4 in $\S 9.3$ gives an example of an integral domain that satisfies (1) but is not a UFD. So (2) must fail. Give an explicit example of an infinite ascending chain of principal ideals in this ring.
(Thanks to Ken Brown for these questions.)
Read on in $\S 9$ and $\S 13.1, \S 13.2$ and $\S 13.4$.

