MATH 6310, Homework 8 Due in class 10/23

Please look over $\S8.3$ and on into $\S9$ and do

- §8.3, questions 3 (see Corollary 19 on page 291), 6, 8
- §9.1, question 8
- $\S9.3$, question 4

and -

- 1. Let R be a UFD with field of fractions F. Let f be a monic polynomial in R[x]. Show that every root of f in F lies in R. (This problem generalizes Euclid's theorem that $\sqrt{2}$ is irrational. It has a straightforward direct proof, but you might find it instructive to deduce it from Gausss lemma.)
- 2. Let R be a UFD with field of fractions F. Prove that the quotient group F^{\times}/R^{\times} is a free abelian group; in other words, it is isomorphic to a direct sum of copies of \mathbb{Z} .
- 3. (a) An integral domain is a UFD if and only if it satisfies:
 - (1) Every irreducible element is prime.
 - (2) The principal ideals satisfy the ACC.

Much of a proof can be found in the arguments I gave in class. You do not have to repeat those arguments, but please determine and explain the missing steps required to prove the result.

(b) Question 4 in §9.3 gives an example of an integral domain that satisfies (1) but is not a UFD. So (2) must fail. Give an explicit example of an infinite ascending chain of principal ideals in this ring.

(Thanks to Ken Brown for these questions.)

Read on in $\S9$ and $\S13.1$, $\S13.2$ and $\S13.4$.