MATH 6310, Homework 9
 Due in class 10/30

Please continue to look over $\S 9, \S 13.1, \S 13.2, \S 13.4$ and $\S 13.5$ and do

- $\S 9.4$, questions 2,16
- $\S 9.5$, questions 3,7
- §13.1, question 1
- $\S 13.2$, questions 1,7
and these two questions (thanks to Ken Brown for the first) -

1. By the universal $n \times n$ matrix I mean the matrix $X=\left(x_{i j}\right)$ in the polynomial ring $R:=\mathbb{Z}\left[x_{11}, \ldots, x_{n n}\right]$ in n^{2} variables. Show that the determinant of X is irreducible in R. (This is intuitively clear, since were there a universal factorization of the determinant, you would have learned about it in your first linear algebra course. For a rigorous proof, view det X as a polynomial in x_{11} with coefficients in the polynomial ring in the other variables, and apply Gausss lemma. If this seems too trivial, you're probably forgetting to check something.)
2. Look ahead to $\S 15$ to see what is meant by an algebraic set over a field. Explain why it follows from Hilbert's Basis Theorem that every algebraic set over a field is the set of common roots of finitely many polynomial equations. (Thus an infinite collection of equations can always be "replaced" by a finite collection.)

Read on in $\S 10$.

